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A large family of explicit k-regular Cayley graphs X is presented. These graphs satisfy a
number of extremal combinatorial properties.

(i) For eigenvalues A of X either A=+k or |i|=2 Vk—1. This property is optimal and leads
to the best known explicit expander graphs.

(if) The girth of X is asymptotically =4/3 log, ., |X| which gives larger girth than was previously
known by explicit or non-explicit constructions.

1. Introduction

Let X=X, ;. be a k-regular graph on » vertices. If 4 is its adjacency matrix
and A=A =...=4,_, its eigenvalues then | =k. Infact i,=k and X is bipartite
if and only if 4, ;=—k. If X is connected, which we assume, then l,=k and
/n—1=—k (in the bipartite case) are both simple eigenvalues as is easily verified.
Denote by A(X) the absolute value of the largest eigenvalue (in absolute value)

of A4 which is distinct from =+k; in other words A2(X) is the next to largest eigen-
value of 42.

Definition 1.1. A graph X, , will be called a Ramanujan graph if
ACG) = 2=

The importance of the number 2})k—1 in the above definition lies in the
following lower bound due to Alon and Boppana; see [3] and Proposition 4.2 below:

(1.1) lim A(X, ) =2Vk-1.
M= aa
Thus if one wants graphs with 2, as small as possible, 2}Vk—1 serves as
the lower limit of what can be done. Ramanujan graphs are optimal in this sense.
Graphs with 4, small make good expander graphs and indeed the Ramanujan
graphs introduced in this paper give the best known explicit expanders. This and

their importance in many explicit algorithms in computer science are discussed in
our announcement [17].

* The work of the second author was supported in part by the NSF under the Grant No.
DMS-85-03297 amd the third by NSF Grant No. DMS-85-04329,
AMS subject classification (1980); 05C35



Let p and g be unequal primes congruent to I' mod 4. Our Ramanujan graphs
XP1will be (p+ 1)-regular Cayley graphs of the group PSL (2, Z/qZ) if the Legendre

symbol (E]—l and of PGL (2, Z/qZ) if [‘;] —1. In both cases the Cayley

graph is constructed from p-1 generators which are chosen according to the
p+1 ways of representing p as a sum p=a;-+-a;+a;+a; with a,=>0 and odd,
and a; even for j=1, 2, 3. That there are p+1 such solutions follows from the well
known theorem of Jacobi which states that the number of representations of a
positive integer as a sum of 4 squares is

(1.2) ry(n) =8 > d.
din
41d
Jacobi’s theorem and more generally the representation of integers by certain
quaternary quadratic forms are needed in the construction of our graphs as well
as in the proofs. Let Q=0,(x;, X2, X3, X;) be the quadratic form

(1.3) Q(x1, Xa, X3, Xy) = xi+4q° x5 +4q° x5 +4g%x3

and let ro(n) be the number of representations of n by Q, i.e. the number of solu-
tions to

(1.4) O(v)=n with veZ"

In this generallty there is no explicit formula for rg(n) as in (1.2). However the
Ramanujan conjecture (see Ramanujan [22]) and 1ts proof in the above cases by
Eichler [6] and Igusa [12], lead to a good approximation to ry(n). (Eichler’s results
are not complete enough for our purposes here as they ignore a finite unspecified
set of primes. Igusa’s work fills in this gap.) Thus for the case n=p*, k=0

(1.5) ro(?") = C(P)+0,(p*1?+9) as k> Ve=0
where
3
¢, >d if [ﬁ =
d| p* q/
Glpry=rcy 2 doit (E =—1 and k iseven
d|p* q/
\
0 if [f_ =—1 and k is odd.
| q/

The constants ¢, and ¢, are determined during the course of the discussion in Sec-
tion 4. That our graphs are Ramanujan graphs will be a consequence of (1.5).

The explicit Cayley graphs X™? also satisfy a number of other extremal
combinatorial properties. Let g(X) denote the girth of a graph X (i.e. the length
of the shortest circuit), i(X) the independence number (i.e. the maximal number of
independent vertices), ¥ (X) the chromatic number and diam (X) the diameter of X.
See [4] fcur the definitions. The graph X9 is regular of degree k=p+1. We will
prove the following inequalities:



Case i. [%]:—1; X% is bipartite of order n=|X7"9=q(¢g*—1),

(a) g(X™9) =4log,q—log,4, g
(b) diam (X™9) = 2log, n+2log,2+1.

Case ii. [%] =1; n=|X"9 =¢(¢g°—1)/2 and X1 is not bipartite,

(a) g(X™) =2log,q,
(b) diam (X™9) = 2log,n+2log,2+1,
2Vp
i nq e e
(c) i(XP9) = o1 n,

p+1

@ 1G9 =T~

Some comments concerning these inequalities are in order. First we note
that the main results, which we establish for X”4, are the Ramanujan property
and the bounds for the girth. The bounds on the diameter and independence number
are consequences of the Ramanujan property, while the bound on the chromatic
number is a simple consequence of the bound on i(X). Second (i) (a) shows that
the X?-9 are k-regular bipartite graphs of order n which asymptotically satisfy g(X)=
=4 log; _n/3. The problem of exhibiting regular graphs with large girth is non-
trivial [4]. ErdGs and Sachs [7] proved, using counting arguments, the existence of
graphs with g(X)=log,_n (k fixed n—<c). The result of Margulis [19] was fol-
lowed by an improvement by Imrich [14] which gave explicit examples with
g=4log,_,n/9. Thus our explicit graphs give an improvement even over “the
known random one”. This should be compared with the easily derived asymptotic
upper bound of g(X, )=2log,_;n. In the case k=3 Weiss [27] gave explicit
examples which have the same lower bound as ours.

Equalities (ii) (c) and (d) were pointed out to us by N. Alon [, 2]. Indeed
his Proposition 5.2 below shows in general that for a nonbipartite Ramanujan
graph, i(X) has such a bound. (ii) (a) and (c) show that these X?'? furnish a rich
explicit family of graphs with arbitrary large girth and i(X)/n arbitrary small.
It appears that this is the first such explicit family. In particular we have an explicit
family with arbitrarily large girth and chromatic number; see [4] for a history and
discussion of this problem. Precisely, given g we have graphs of girth =g order n
and independence number =pn'—1/%,

Finally we remark that we may view our graphs in the following
way: the homogeneous tree of degree p+1 may be realized as the coset space

PGL (2, Q,)/PGL (2,Z,) (where Q, is the field of p-adic numbers and Z, is the
ring of p-acic integers:; see Serre [23]5. Then by choosing suitable arithmetic discrete
subgroups I' of GL (2, Q,) (see for example Serre 23] or Vignéras [24]) one may
form the double coset space '\ PGL (2, Q,)/PGL (2, Z,) which is a finite graph

if I is torsion free. By using the theory of automorphic forms one can prove (see



Thara [13] and [181], Theorem 4.1]) that these are Ramanujan graphs. In fact the
graphs of this paper are explicit versions of these, where I' is taken to be an
appropriate congruence subgroup of H(Z[I /p])*, H being the Hamiltonian quater-
nions. In general these graphs are not Cayley graphs but if the class number of
the quaternion algebra is one they may be presented as such.

The paper is organized as follows: In Section 2 we give the construction of
X4 in Section 3 we realize the graphs as quotients of a “quaternion group” and
estimate the girth. In Section 4 we prove the graphs are Ramanujan graphs and in
fact determine their spectral densities. The diamzter and related quantities are esti-
mated in Section 5.

2. Construction of X719

In this short section we describe the graphs X79. Let p, ¢ be unequal primes
congruent to 1 mod 4. Let i be an integer satisfying i*=—1 (mod g). By (1.2)
there are 8(p-+1) solutions a=(ay, @, a;, a;) to a;+ai+as-+a;=p. Among them
(see the next section) there are p+1 with @,>0 and odd and a; even for j=1, 2, 3.
To each such solution « associate the matrix & in PGL (2, Z/gZ)

1 [ ag+iay aﬁ—faa]
o= : - .
—as+iag ag—1a,

(2.1)

Form the Cayley graph of PGL (2, Z/qZ) relative to the above p+1 ele-
ments (the Cayley graph of a group G relative to a symmetric set of elements S is
the graph whose vertices are the elements of G and whose edges are (x, ) if x=sy

for some s€S). Thisis a (p+1)-regular graph with n=¢(¢g*—1) vertices. If [-g] =1

then this graph is not connected since the generators all lie in the index two subgroup
PSL (2, Z/qZ) (their determinant is a square). We therefore define the Cayley graph

X714 to be the above Cayley graph if [—;]:—l, and to be the Cayley graph of
PSL (2, Z/gZ) relative to these generators if {i;—]zl. We will see that X7 is

connected. These are the graphs referred to in Section 1. If [§]=~1, XP1 g

bipartite, the bipartition corresponding to the subsets PSL (2, Z/¢gZ) and its com-

lement. When |£|=1 we will see that it is definitely not bipartite. Thus X7
P 7 y

is a k=p-+1 regular graph of order n=q(g*—1) or g(¢*—1)/2 depending on the

sign of A
q



3. Quaternions

Let H(Z) denote the integral quaternions
™

H(Z) = {& = ay+a,i+asj +askla;€Z), #=j=k*=—1

ij=—ji=k etc. Set d=a,—a,i—a,j—azk and let N(z) be the integer a&. The units
of the ring H(Z) are 1, £i, £j, £k. As before take p=1(4) to be a prime and
consider the set of a€ H(Z) with N(a)=p. Since p=1(4) only one of the a,’s
of o will be odd. As in the introduction the number of such &’s is 8(p+1). The
units act on this set and it is clear that each solution has exactly one associate e,
¢ a unit, with ex=1(2) and a,=0. Let S be the set of these p+1 elements with
N()=p, a=1(2) and a,>0. This set splits into distinct conjugate pairs
{org, &, ooy Eay ouus 0, &} Where s=(p+1)/2. By a reduced word of length m in
the elements s€S we mean a word of length m in the o, &;’s in which no expression
of the form «;@; or &;«; appears.

Lemma 3.1. ([8].) Every a€H(Z) with N(x)=p* can be expressed uniquely in
the form
oni= Skl (00, seavats)

where € is a unit, 2r+m=k, and R, is a reduced word in the o’s of length m.

Proof. To obtain the existence of such an expression we use the results of Dickson
[5] which show that for odd quaternions (i.e. those of odd norm) one has a theory
of g.c.d’s and the usual factorization (on the left and right). Since « is odd and a
quaternion is prime if and only if its norm is prime we may write a=yf with
N(y)=p*~*, N(B)=p.

Now by the choice of S we can find a unit & such that a¢=yes; with s,€S.
Now repeat this for ye, etc. We eventually get a=és;5....5, with 5;€S. After
performing cancellations we arrive at «=¢gp"R,, for some r and m. This proves the
existence of such a decomposition.

We show the uniqueness by a counting argument. First, the number of reduced
words R, (o, ..., 8) is (p+1)p™=* for m=1 and is 1 if m=0. Hence the num-
ber of expressions &p" R, (¢, ..., &) with 2r+m=k is

8( 2 (p+D)pF—*-144(k)

0= r-n:kf 2
where

Sk { if k 1s even
WSO L i cad

Hence the number of such expressions is
pk*1&1 ]
8 [— =8 2 d.
p—1 a%:

This is the number of «€ H(Z) with N(o)=p*. It follows that each such expression
represents a distinct element.



Corollary 3.2. If a=1(2) and N(x)=p* then
o =x1p "R, (o, ..., &) with 2r+m =k,

and this representation is unigue.

Consider the set A(2) of all a€H(Z), «=1(2) and N(x)=p® for some
veZ. A’(2) is closed under multiplication and if we identify « and f in A’(2) when-
ever LpYa=p'f, v;, v,€Z then the classes so obtained form a group with

[ed[p] = [«f] and [«][a] = [1].

Corollary 3.2 implies that this group which we denote by A(2) is free on
[o4], [eta], -5 []- The Cayley graph of A(2) with respect to the set S is therefore
a tree of degree p+1. This tree will be denoted by A(2) as well. We have thus
realized this free group or tree in a suitable number theoretic way. In order to form
finite graphs we choose a normal subgroup I' of A(2) of finite index. Then I' acts
on A(2) by multiplication on the right and the quotient graph (or group) A(2)/I
is finite. This is of course a Cayley graph of A(2)/" with respect to the generators
Oy Aty Olglly oy Clxlbis

In order to have any number theoretic significance we must choose I' in
an appropriate way. Let (m, p)=1 and consider all [«]€ A(2) such that 2m]a;,
Jj=1,2,3, where o=a,+a,i+a,j+azk. This defines a subgroup A(2m) of A(2).
It is in fact a normal subgroup of finite index in A(2) since it may be viewed
as follows:

Let H(Z/2mZ) be the quaternions with entries in Z/2mZ and let H(Z/2mZ)*
be the invertible elements of this ring. Let Z=H(Z/2mZ)* be the central sub-
group: Z={a|a,#0}. The homomorphism n: A(2)—H(Z/2mZ)*/Z defined by
[¢] (o mod 2m)Z is well defined. Its kernel is A (2m).

We next show that the graphs presented in Section 2 can be identified with
the Cayley graphs of the group 4(2)/4(2g) with respect to the generators o, ..., &.
From now on m=q.

Define the homomorphism ¢: A(2)—~PGL (2, Z/gZ) by

G 2 Sl ag+ia, a2+ia3]

"‘ﬂg‘{‘iaﬂ an_ial
q

where 7 is a fixed integer satisfying i*=—1 (mod ¢). It is easily verified that ¢ is
well defined and is a homomorphism.

Proposition 3.3.
PGL(2, Z/qZ) if [%]=-

Image ¢ =
PSL(2,Z/qZ) if [%] = 1.

Proof. If o;€ H(Z) is of norm p then ¢(2;) is in PSL (2, Z/qZ) if and only if [%]:1.
Since TPGL (2, Z/qZ): PSL (2, Z/qZ)]=2, it suffices to show that ¢(A(2))2



=2 PSL (2, Z/gZ). Now ¢ factors as
AQ2) 2> H(Z[29Z)*|Z %+ H(Z[qZ)*|Z 22~ PGL (2, Z/qZ).

ms is clearly an isomorphism so that the point to check is: What is the image of
m,om;? To prove the Proposition it suffices to show that if B=by+b,i+b,j+bk
isin H(Z/qZ) and is of norm 1 (mod ¢) then there is o€ H(Z) satisfying N(o)=p*
forsome k, «=1(2) and a=p(g). So letsucha f be given; set Y=Yo+Y1i+7sj+ 75k
where y,=b, (mod g), 2y;=b; (mod q) for j=1,2,3. Then

Yo +43 + 43+ 493 = 1(g).

We will use some results from the theory of quadratic diophantine equations
and in particular the theory of singular series of Hardy and Littlewood. Malifev [20]
obtained the following from this theory: Let f(x, ..., x,) be a quadratic form in
n=4 variables with integral coefficients and discriminant d. Let g be an integer
prime to 2d then if m is sufficiently large (depending on f and g) with (g, 2md)=1,
m generic for £, and if (by, ..., b,, g)=1, f(b,, ..., b,)=m (mod g) then there are
integers (ay, ..., @,)=(b,, ..., b,) (mod g) with f(ay, ..., a,)=m. Indeed he obtains
an asymptotic formula for the number of such (a, ..., a,) as m--< (the sin-
gular series).

We apply this to

Sy, %2, X3, %4) = x3+4x3+4x3+4x2,

m=p*, g=q and (by; by, bs, b3)=(yo, V1, 2, 7s)- If k is large enough and p*=1(q)
then we have f(yy, 71, ¥2» 75)=p"(g) and p* is generic so there is (ay, ay, a,, a;)=
(Yo» 71> Y25 ¥5)(g) satisfying a}+4a3+4a3+4a2=p*. Hence if

o= ap+2ai+2aj+2a,k
then N(o)=p*, =1(2) and «=f (mod g) as needed.

Remark 1. Proposition 3.3 may also be deduced from the strong approximation
theorem for arithmetic groups see ([16]).

From Proposition 3.3 it follows that A4(2)/4(2g)=PGL (2, Z/¢Z) or
PSL (2, Z/gZ) depending on [IEJ] . Furthermore the homomorphism takes the

generators a, ..., & to the matrices in (2.1) hence the graphs X% may be identified
with A(2)/A(2q). For theoretical purposes this latter realization is more useful.
For example it is now clear that the graphs X9 are connected. We now examine
the girth,

Theorem 3.4. If [{;] =—1
g(X™9) = 4log,g—log, 4, |X”9| = q(g°—1)

while if [%]:1
g(X»9) =2log,q and [X71 = g(¢—1)f2.



Proof. X=X71 is a Cayley graph and hence is homogeneous. The shortest circuit
may therefore be assumed to run from the identity to itself. On the tree A(2) this
corresponds to the length of the smallest nontrivial member of A(2g). If
v€ A(2q), y#e is of length ¢ then we can find an integral quaternion J¢€A’(2)

such that
§ = p1Ps...B, with B;€{ay, ..., %}

and I?EA’(zq} Thus N(i;) _.__.pf and ?=a0+2gali+2gaﬂj+2gaﬂks al]'r als ﬂﬂ! aaE z‘
Since y#e at least one of a,, a,, a; is non-zero. Thus we have

(.1) p' = a+4¢? a3 +4q* a3 +4q° a}.

In the case (%] —1 we simply observe that since one of a,, a,,a; is #0

P =4

or t=2log, q as claimed. In the case [i:-;—] = —1 we first note that 7 must be even,

for if not we would have on reducing mod ¢

(5 = ()

Thus ¢ is even and we may write 7=2r. In this case (3.1) has the trivial solutions
a,=tp". The congruence

(3.2) X% = p' (mod ¢°)

has only solutions

(3.2) Xy =*p" (mod ¢*)

since (Z/q*Z)* is cyclic. If we assume that (3.1) has a non-trivial solution with
(3.3) p'=q'/4

then p"<g*2 and so any solution X; of the congruence (3.2) which is not =£p"
will by (3.2)" satisfy
| Xol = ¢%/2

and hence X3=q'/4. But then from (3.1) p'>g'/4 contradicting (3.3). It follows
that p'=q"'/4 or
4log g—log4

t
log p

IV

We end this section by showing that when (%]zl, X717 is not bipartite.

If thisswere so we would have X=PSL (2, Z/¢Z) partitioned into two sets 4 and
B such that o;A=B and o;B=A4 for each of the generators o, ..., &,. If the



it
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2)
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identity is in A then it is clear that A is a subgroup of G=PSL (2, Z/qZ); in fact,
it is the subgroup of all those elements of G which are expressible as a product of
an even number of the generators. However for ¢=3, PSL (2, Z/gZ) is a simple
group and since 4 would be an index two subgroup this is a contradictionf.

4. Spectrum of X719

We investigate the spectrum of the X9 and in particular prove the main result
Theorem 4.1. X™? js a Ramanujan graph.

Before proving this theorem we study the general behavior of the spectrum
of an X, , as n—<e. In particular we begin by proving (1.1).

Proposition 4.2. lim AX, D=2 Vk—-1.

a3

Proof. Let 4 be the adjacency matrix of X, ,. Then 4'=(5{) where §{ is the num-
ber of paths of length / joining i to jin X, ;. Let ly=k=A,=...=1,_, be the eigen-
values of 4. Since trace is independent of basis we have

n—1

@) > 1= 3.
i=0 i

J

Now it is clear that since 7%, the k-regular tree, is the universal cover of X, , we have
o) =o0(l), where ¢(/) is the number of paths of length 7 in T* joining x to x (which
is independent of x). Hence

n=1

(4.2) 2‘ A= no(l).
j=o0

It follows after removing the eigenvalues +k that

2k
2l — T
4.3) MXH = o@D ———-

Now 0(2/)=0'(2/) where ¢'(2]) is the number paths of length 2/ beginning at x
and ending at x for the first time (in 7%). One checks that

1 [—
e =11 Jrete-1y
Thus

s =45 7)o -

2k2!
P P

The Proposition follows from this since

(21-—2

1/21
1_1) -2 as | —-eo,



We can be more precise if girth (X, ;)< as n—o. Associate to the graph
X,.x @ measure uy supported on [—k, k] which puts point masses %- at the eigen-
values of 4.
Proposition 4.3.

lim px =

=2

g(“:u;k}*“
where
Vk—1—1r4 . —
—_——=dt if || =2Vk-1
d () = | TR ) sy
0 otherwise.

The limit in Proposition 4.3 is the weak™ limit i.e.
lim [f(0) dps, () = [£() du(r)
for all continuous f.

Proof. It suffices to show that

(4.4) [ di ()~ [ £dp ()

for each 7/=0. Now for / fixed and n large enough g(X, ;)=2l. Hence locally up
to distances of length /, X, , looks like T*. In particular 6 =o(/) for each vertex i
of X. Thus as in the previous proof

1 n—1 1 1

7 2 A= [ 0= o).

Hence the left hand side of (4.4) converges to o(/) as n—<~. It remains to chack
that o(/) is the sequence of moments of the measure p, in Proposition 4.3. This is
a simple calculation and is carried out in Kesten [15] for example.

As was proved in Section 3 the girth g(X?9) of our graphs —< as g (and

hence n)-- <. Thus the spzctrum of the graphs X lies in [ —2 Vp, 2 Vp] (besides
+(p+1)) and it is distributed in this interval according to the density du, . as g— <.

We turn to the proof of Theorem 4.1. We begin with some remarks concerning
harmonic analysis on the tree 7% Let I’ be a discrete group of isometries acting
freely on T=T* and such that n=|T/I|<<. Consider the space of I" periodic
(or automorphic) complex valued functions on T such that

fx)=f(x) for x€T, yer.

This space is finite dimensional and is denoted by L*(7/I'). The Laplacian on the
tree leaves L*(T/I') invariant and so may be spectrally decomposed. This gives an
orthonormal basis u;(x) of L*(T/I') satisfying

<
(4.5) 0@ = —=, Zo=ptl=k



-~y A

oh For /=0, an integer, define the point pair function k,: TX T—C by (see Remark 2

1=

e B ' R . B

at the end of this proof for a different approach)

> IS (e, 97 =1 -
&) (6, ) = { 0 otherwise.
Set
(4.7) Ki(x,y) = %" ki(yx, y)
; T

Ki(x, y) counts the number of elements in the orbit I'x which are at distance / from
yin T. It is clearly symmetric in x and y and as a function of each is in L2(7/I).
We may therefore expand it

n=1

(4.8) K (x,y) = ‘=Zc" hy(Du;(x)u; ().

The reason we obtain only diagonal terms in this expansion is that 4 commutes
with the ‘integral’ operator k; and hence

: %F&(x, »u;(y) = yé ky(x, »)u; () = hy(Du;(x)

for a suitable /;(/). If =0 is an integer we form

(4.9) Lx,y)= 2 K-_u(xy)

0=r=1/2

which counts the number of elements in the orbit I'x in alternate shells about y at
distances =/. It is not difficult to compute the dependence of h;(I) on 4; and I,
see [18] and in fact Ju

"ot osin (24 1)0;

; iy — pif2
(4.[0) L: (-Ls J—’)_ p jgn' sin Ej

“j(x)“_,'(yJ y
where 0; is complex valued and defined by
(4.11) 4;=21p cos0);.

Here 0; is real if |4;]=2 Vp otherwise it is pﬁre]y imaginary with Im(0;)=0 1_f
Aj=2 V;—;- or it is of the form 7n+iu, p€Rif A;<—2 Vp. For example 0,=ilog }/p

and 6, ,=n+ilogVp if 2,_ = —(p+1). We apply the above considerations to
the case where T=A4(2) and I'=4(2g) as in Section 3. For x¢A(2)

Ki(x, x) = |{r€4Qq): d(x, x) = | = |{{€4Q29): d(x~'yx, €) = I}
Since A(2g) is normal in A(2), this can be rewritten as
(4.12) K (x, x) = |{(y€429): d(ve, &) = 1}].
Hence Ki(x, x)=K,(e,e) for all xc A(2), /=0 and also
(4.13) L,(x,x)=L,(e,e), for all x€A(2), t+=0.



W2 now relate this count to the problem of representing a number by a
quadratic form. Let Q be the quadratic form

Q (%1, X, X35 X3) = x3+(29)°x3+(29)* x5 +(29)" xi-

Then ro(p*) is the number of a€ H(Z) such that 2gla—a, and N(z)=p*. Now
by Corollary 3.2 every such o is of the form =+p" R(a, ..., &) where 2r+i=k
and where [¢]€ A(2g). It follows from this and the uniqueness (Corollary 3.2) that

ro(p*) =2 %ﬂl{a@@ﬂd(«, ¢) = k—2r}|.
In other words
(4.14) ro(p") = 2L (e, €) = 2L, (x, X)-

Inserting (4.10) into the right hand side of this last equation and summing
over x€T/A(2q) gives

(4.15) ro(p") =

This is the key relation relating (1.5) and the spectrum of A(2)/A(2g)=X"7 (notice

the autcmorphic spectrum of 4 is the same as the spectrum of 4 on the quotient

graph!). Combining (1.5) with (4.15) gives

2p*2 n=1 sin(k+1)0;
n j=0 Sln BJ

2pk? n=l sin (k+1)8;
n j=o sin ﬂj :

(4.16) C(p¥)+0,(p*2+D) = Ve = 0.

C(p*) is the “singular series” and it comes from the contribution of the Eisenstein
series when expressing the “0-function™

ﬂ(z) — Z e2niQ(vj:
veZd

as a combination of Eisenstein series and a cusp form — see Hecke [10]. That is,
C(p") is the p*-th Fourier coefficient of a combination of the Einsenstein series of

weight two for I'(164°). From the known Fourier expansions of Eisenstein series
[10, 21] one easily shows that C is of the form

C(n) = 2 dF(d)

din
where F: N—C is periodic of period 44°.
Lemma 4.4. Let G: N—~C be periodic and satisfy

> dG(d) = o(p¥) as k<

d|pk
then
>dG(d) =0 forall k.
d|p*
Proof. Let o= 2, dG(d) then
d{p*
(4.17) % _ 21 = G(ph.

p* p*p
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The left hand side of (4.17) -0 as k- <. Since G is periodic it follows that G(p*)=0
for all k proving the lemma.
Returning to (4.16) we may write

P2 "t sin (k+ 100,

n' e sin 0;

Ve =0.

(4.18) Z dF(.f)-l—O,(p"u"g'“} =
d| p*

We must now distinguish two cases:

Case i. [%] = —1. In this case X9 is bipartite as we saw in Section 3. The eigen-
values A; appear in pairs *=(p+1), £4;, ... etc. Furthermore as was observed at
the beginning of this paper in this case =+(p-+1) are simple eigenvalues hence
|2/<p+1 for j=0, j=n—1. Therefore the right hand side of (4.18) is clearly 0 if
k is odd, while for k even it is of the form

k+1
ol = %%Ho(pk)
as k—o. We apply Lemma 4.4 and conclude that
0 if k is odd
(4.19) C(PH) =140 =1

1) if k is even.
We may now eliminate the leading terms on both sides of (4.18) since they are iden-
tical and conclude that

2pH 75t sin (ko 10,

n j=1 sin ﬂj

— Og(pkilfﬂ—u}) Ye =0

Hence as k—<=, k even

nt sin (k+1)0;
j=s sin 0;

= 0,(p*) Ve=0.

This clearly implies that all the 6;, 2=j=n—2 are real, that is that [4;|=
=2)p for 2=j=n—2. Thus we have shown that X?9 when [%] =—1 is a bipar-

tite Ramanujan graph.

Case ii. [%]:L In this case as we showed at the end of Section 3, X9 is not

bipartite. Hence |A;|<p+1 for j=0. This time (4.16) reads

2o +1 —
C(pY+0,(p2+%) = %)-H(p“)-

Hence by the Lemma

(4.20) s il )

n(p—1)
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and this time
n=1 sin (k+1)6;
Jj=1 S.‘Il’l Bf

=0,(p*) Ve=0.

Hence 0; is real for j=1,...,n—1 and X™9 is Ramanujan. This completes the
proof of Theorem 4.1.

Remark 2. As pointed out to us by a referee the initial part of the proof of Theo-
rem 4.1 (as well as the proof of Theorem 5.1) can be made a little more direct and
self-contained by avoiding the use of the harmonic analysis of point pair functions
as follows. Let Hy(x), Hy(x), ... be the Cebysey polynomials defined by

Hix)=1 H(@x==x
H,(x) = xH,_,(x)—pH,_,(x) for t=2.
Define the operator L, by
' L, = H,(4).

Computing the trace of L, on L*(7/I') as in the argument leading to (4.14) one
finds that TR (L,)=nry(p*)/2. On the other hand on computing this trace spectrally

TR(L:) = 2 H-I ("]"j)-

0=j=n-1

This, when expressed in terms of the 0,’s defined in (4.11), yields

12 =
TR(L!): 2 P SII'I(f‘F"I)gj

0=j=n—1 Sin 9;

(4.15) follows on equating these expressions for TR (L,).

The graphs X” % may be used to construct a somewhat richer family of Rama-
nujan bipartite graphs as follows:

PGL (2, Z/qZ) acts on PY(F)={0,1,...,q—1, e} in the usual linear frac-
tional way. We turn P(F,) into a p+1 regular graph by joining £€P! to y¢ for
each generator y€{a;, ..., &}. Call this graph Y9 It has order g+1. It is clear
that any eigenfunction f of 4 for Y4 gives rise to one F on X4 with the same
eigenvalue. In fact

F(g) = f(g(0)

supplies this correspondence. Thus to show Y79 is Ramanujan non-bipartite all we
need show is that —(p+-1) is not an eigenvalue of ¥4, If it were we clearly must be

in the case [—‘2] =—1 and we can assume that F(g)=f (g(0)) is 1 on PSL (2, Z/gZ)

and —1 on PSL (2, Z/qZ)*™. Now F is constant on the subgroup {[: g]laé#ﬂ}.

This subgroup clearly contains members of PSL (2, Z/gZ) as well as its comple-
ment which is a contradiction. We have shown

Thel;;'em 4.4. The graphs Y™ are non-bipartite Ramanujan graphs of order q+1
and degree p+1.
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5. Diameter and other quantities

We conclude by estimating some other graph theoretic quantities for the graphs
X714, Since X792 A(2)/A(29)=T/A(2q), the diameter may be realized &5

(5.1) diam (X9 = sup inf d(x,yy).

x,ye T 7€A29)

Let k,(x,y) be the function on 7 defined in (4.4) along with K, (x,y) defined in
(4.5). If d(x, y)=I then K,(x,y)=0 for all m=/. Hence

(5.2) 2 an K, (x,y)=0

m=I
for any choice of coefficients a,,. We choose these to be the coefficients of the /'
Cebysev polynomial H,(x);
L
(5.3) H,(x) = cos(larccos(x)) = 3 a,x™
m=0

By the analysis similar to that carried out in Section 4 we find

n—1
(5.4) Zl A K (x, ) = p'* Zu cos (10, )u; (x)u; (»),
m= Ji=

where as before 2;=2 Vp cos 0;. Thus if dy(x, y)>1

n—1
0=p'"" 3 cos(10,)u;(x)u;(y).
j=0
If /'is even this gives 3

I+1 n—2 n—2 .
o =" 2 @uw0) = 97 3 (11, G+l ()2 = ph
=

J=2

n—1

since > |u;(x)I*=1 for any x. Hence p'2=2n or [=2log, (2n). We conclude
j=1

Theorem 5.1. If n=|X"9| then
diam (X*7) = 2 log,n+2 log,2+-1.
It is easy to see on the other hand, that diam (X® )=log, n.

For the rest of this section we assume [?'j] =1. In this case we can give an

upper bound to the independence number of X7 and hence a lower bound to the
chromatic number. That this is so, follows from the following proposition due to
Alon [1]; see also [2].

Proposition 5.2. (Alon) Let X, , be a non-bipartite Ramanujan graph; then

2Vk—1
k

Proof. Suppose that 4 is an independent set of vertices with [4|=r. Define a func-
tion f(x) on X by :

(55) 7 =1

i(X) = n.

1 on A
—c on A°
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where r—(m—r)e=0. Then f11 and hence by the Ramanujan (non-bipartite)
condition

(5.6) 4f[8 = 4(k— D] 113.

On the other hand clearly by the independence property of 4, Af(x)=—ck for
x€A. Thus

(5.7) |Af |2 = c2k2r.

Now c=r/(n—r)=v/(1—v) where v=r/n. (5.6) and (5.7) yield.
(5.8) ck?r =4(k—-1)[f12 = 4(k—1)(r+ c2(n—r))
or

Pk = 4(k—1) [1 +? [%— 1]]

Hence
2 b e s v2 [l—v]
_(l—v)2 kr=4(k-1) [H—([_ng = ]
VEE=4(k—1)(1—v) > k2 = 4(k—1)
or
st 2Vk—1

proving the proposition.
An upper bound on i(X) clearly implies a lower bound on %2(X). We have
shown: X, ; non-bipartite Ramanujan implies

k
2Vk—1"
Remark 3. The bound (5.9) may also be obtained directly from Hofmann [11] using
the Ramanujan property.

In conclusion we remark that the results of this paper show that the explicit
graphs X™4 share many of the extremal properties of random graphs.

(5.9) 1 (Xo) =

Remark 4. We recently learned from Professor Margulis that he has obtained results
similar to those in this paper, see:

G. A. Margulis, Arithmetic groups and graphs without short cycles, 6th Internat.
Symp. on Information Theory, Tashkent 1984, Abstracts, Vol. 1, pp. 123—125 (in
Russian).

G. A. Margulis, Some new constructions of low-density paritycheck codes. 3rd
Internat. Seminar on Information Theory, convolution codes and multi-user commu-
nication, Sochi 1987, pp. 275—279 (in Russian).

G. A. Margulis, Explicit group theoretic constructions of combinatorial schemes
and their applications for the construction of expanders and concentrators, Journal
of Problems of Information Transmission, 1988 (to appear in Russian).

Acknov;ledgements. We would like to thank N. Alon and N. Pippenger for many
illuminating discussions concerning this paper.
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