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Abstract. We prove the following three closely related results:
(1) Every finite simple group G has a profinite presentation with 2 generators

and at most 18 relations.

(2) If G is a finite simple group, F a field and M an FG-module, then
dim H2(G, M) ≤ (17.5) dim M .

(3) If G is a finite group, F a field and M an irreducible faithful FG-module,
then dim H2(G, M) ≤ (18.5) dim M .
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2 GURALNICK ET AL

1. Introduction

The main goal of this paper is to prove the following three results which are
essentially equivalent to each other. Recall that a quasisimple group is one that is
perfect and simple modulo its center. Note that the last theorem is about all finite
groups.

Theorem A. Every finite quasisimple group G has a profinite presentation with 2
generators and at most 18 relations.

Theorem B. If G is a finite quasisimple group, F a field and M an FG-module,
then dimH2(G,M) ≤ (17.5) dim M .

Theorem C. If G is a finite group, F a field and M an irreducible faithful FG-
module, then dimH2(G,M) ≤ (18.5) dim M .

All three theorems depend on the classification of finite simple groups. One
could prove Theorems A and B independently of the classification for the known
simple groups.

We abuse notation somewhat and say an FG-module is faithful if G acts faithfully
on M . We call M a trivial G-module if it is 1-dimensional and G acts trivially on
M .

In [21], the predecessor of this article, we showed that every finite non-abelian
simple group, with the possible exception of the family 2G2(3

2k+1), has a bounded
short presentation (with at most 1000 relations – short being defined in terms of
the sums of the lengths of the relations). We deduced results similar to the first
two theorems above but with larger constants. In [22], we show that every finite
simple group (with the possible exception of 2G2(3

2k+1)) has a presentation with
at most 2 generators and 100 relations.

In many cases, the results proved here and in [22] are much better, e.g, for An

and Sn, we produce presentations with 4 generators and at most 10 relations [22].
Here we give still better results for these groups in the profinite case – there are
profinite presentations with 2 generators and at most 4 relations.

We believe that with more effort (and some additional ideas) the constants in
these three theorems may be dropped to 4, 2 and 1/2 respectively. One of the
methods used in this paper is possibly of as much interest as the results themselves.
We show how to combine cohomological and profinite presentations arguments –
by going back and forth between the two topics to deduce results on both.

The bridge between the two subjects is a formula given in [34] which states:
If G is a finite group and r̂(G) is the minimal number of relations in a profinite
presentation of G, then

r̂(G) = sup
p

sup
M

(⌈dimH2(G,M) − dimH1(G,M)

dim M

⌉

+ d(G) − ξM

)

, (1.1)

where d(G) is the minimum number of generators for G, p runs over all primes, M
runs over all irreducible FpG-modules, and ξM = 0 if M is the trivial module and
1 if not. By [19], if G is a quasisimple finite group, then for every FpG module M ,

dim H1(G,M) ≤ (1/2) dim M. (1.2)

Set

h′
p(G) = max

M

dimH2(G,M)

dimM
, and h′(G) = max

p
h′

p(G), (1.3)
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where M ranges over nontrivial irreducible FpG-modules. If G is a finite quasisimple
group, then d(G) ≤ 2 [4, Theorem B] and dimH2(G, Fp) ≤ 2 [16, pp. 312–313])
and so

max{2, dh′(G) + 1/2e} ≤ r̂(G) ≤ max{4, dh′(G) + 1e}. (1.4)

This explains how Theorems A and B are related and are essentially equivalent. We
see in Section 5 that Theorem B implies Theorem C. On the other hand, the bound
for Schur multipliers for finite simple groups and Theorem C implies a version of
Theorem B.

We also define

h(G) = max
M,p

dim H2(G,M)

dim M
, (1.5)

where M ranges over all FpG-modules.
We now give an outline of the paper. After some preparation in Sections 3, 4,

and 5, we show in Sections 6, 7 and 9, respectively, that:

Theorem D. For every n, h(An) < 3 and h(Sn) < 3 and r̂(An) and r̂(Sn) ≤ 4.

Theorem E. For every prime power q and 2 ≤ n ≤ 4, h(SL(n, q)) ≤ 2.

Theorem F. max{h(G), r̂(G)} ≤ 6 for each rank 2 quasisimple finite group G of
Lie type,

In fact, the results are more precise – see sections 6, 7 and 9 for details.
From (1.4) we see that Theorems D, E and F imply that all the groups in

those theorems have profinite presentations with a small number of relations. In
sections 8 and 10, we repeat our “gluing” arguments from [21, §6.2] to show how to
deduce from these cases the existence of bounded (profinite) presentations for all
the quasisimple finite groups of Lie type. In fact, this time the proof is easier and
the result is stronger as we do not insist of having a short presentation as we did in
[21]; we count only the number of relations but not their length. Moreover, Lemma
3.15 gives an interesting method for saving relations which seems to be new (the
analog is unlikely to work for discrete presentations). In Section 11, we discuss the
sporadic simple groups. If a Sylow p-subgroup has order at most pm, one can use
the main result of [30] to deduce the bound h′

p(G) ≤ 2m. In many sporadic cases,
discrete presentations for the groups are known [51] and the results follow. There
are not too many additional cases to consider.

This completes the outline of the proof of Theorem A. Applying (1.4) in the
reverse direction we deduce Theorem B (at least for Fp – however, changing the
base field does not change the ratio dimH2(G,M)/dim M– see Lemma 3.2 and
the discussion following it). In Section 5, we prove Theorem 5.3 which shows that
Theorem B implies Theorem C.

Holt [30] conjectured Theorem C for some constant C. He proved that

dimH2(G,M) ≤ 2ep(G) dim M,

for M an irreducible faithful G-module, where pep(G) is the order of a Sylow p-
subgroup of G. Holt also reduced his proof to simple groups. However, he was
proving a weaker result than we are aiming for, and his reduction methods are not
sufficient for our purposes.

As we have already noted in (1.2), the analog of Theorem B for H1 holds with
constant 1/2. It is relatively easy to see that this implies that the analog of Theorem
C for H1 with constant 1/2 is valid. We give examples to show that the situation for
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higher cohomology groups is different (see Section 12). In particular, the following
holds:

Theorem G. Let F be an algebraically closed field of characteristic p > 0 and let
k be a positive integer.
There exists a sequence of finite groups Gi, i ∈ N and irreducible faithful FGi

modules Mi such that:

(1) limi→∞ dimMi = ∞,
(2) dim Hk(Gi,Mi) ≥ e(dim Mi)

k−1 for some constant e = e(k, p) > 0, and

(3) if k ≥ 3, then lim
i→∞

dim Hk(Gi,Mi)

dim Mi

= ∞.

Thus the analog of Theorem C for Hk with k ≥ 3 does not hold for any constant –
although it is still possible that an analog of Theorem B holds. This also shows that
dimH2(G,M) can be arbitrarily large for faithful absolutely irreducible modules –
it is not known whether this is possible for H1(G,M) under the same hypotheses.
We suspect that there is an upper bound for dimHk(G,M) of the same form as
the lower bound in (2) above.

Finally, in Section 13 we give some applications of the results in [21] and the
current paper for general finite groups, as well as some questions. An especially
intriguing question is related to the fact that r̂(G) ≤ r(G), the minimal number of
relations required in any presentation of the group G. As far as we know, it is still
not known whether for some finite group G, we can have r̂(G) < r(G).

There is a long history of studying presentations of groups and, in particular, the
number and length of relations required for finite groups. Presentations of groups
also rise in connection with various problems about counting isomorphism classes of
groups. Much of the work done recently on these questions (e.g., [21], [31], [33], and
[36, Chapter 2]) was motivated by the paper [39] of Avinoam Mann. We dedicate
this paper to him on the occasion of his retirement.

2. General Strategy and Notation

2.1. Strategy.

We outline a method for obtaining bounds of the form dimH2(G,M) ≤ C dim M
for some constant C. Here G is a finite group and M is an FG-module with F a
field of characteristic p > 0 (in characteristic zero, H2(G,M) = 0 – see Corollary
3.12). There are several techniques that we use to reduce the problem to smaller
groups.

The first is to use the long exact sequence for cohomology (Lemma 3.3) to reduce
to the case that M is irreducible. Then we use Lemma 3.2, which allows us to
assume that we are over an algebraically closed field and that M is absolutely
irreducible (occasionally, it is convenient to use this in the reverse direction and
assume that M is finite and over Fp – see the discussion after Lemma 3.2). We
also use the standard fact that H2(G,M) embeds in H2(H,M) whenever H ≤ G
contains a Sylow p-subgroup of G [17, p. 91]. Typically, M will no longer be
irreducible as an FH-module, but we can reduce to that case as above.

We use these reductions often without comment.
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We use our results on low rank finite groups of Lie type and the alternating
groups to provide profinite presentations for the larger rank finite groups of Lie
type, and so also bounds for H2 via (1.4).

2.2. Notation.

We use standard terminology for finite groups. In particular, Φ(G) is the Frattini
subgroup of G, F(G) is the Fitting group, F∗(G) is the generalized Fitting subgroup
and Op(G) is the maximal normal p-subgroup of G. A component is a subnormal
quasisimple subgroup of G. E(G) is defined to be the (central) product of all
components of G. Note that E(G) and F(G) and commute. The generalized Fitting
subgroup is F∗(G) := E(G)F(G). We let Ct denote the cyclic group of order t. See
[2] for a general reference for finite group theory. We also use [16] as a general
reference for properties of the finite simple groups – the Schur multipliers and
outer automorphism groups of all the simple groups are given there.

If M is an H-module, MH is the set of H fixed points on M and [H,M ] is the
submodule generated by {hv − v|h ∈ H, v ∈ M}. Note that [H,M ] is the smallest
submodule L of M such that H acts trivially on M/L. If V is a module for the
subgroup H of G, V G

H is the induced module.

3. Preliminaries on Cohomology

Most of the results in this section are well known. See [6], [10], [37] and [17] for
standard facts about group cohomology.

We first state a result that is an easy corollary of Wedderburn’s theorem on
finite division rings. We give a somewhat different proof based on Lang’s theorem
(of course, Wedderburn’s theorem is a special case of Lang’s Theorem). See also a
result of Brauer [15, 19.3] that is slightly weaker.

Lemma 3.1. Let K be a (possibly infinite) field of characteristic p > 0, and let G
be a finite group. Let V be an irreducible KG-module.

(1) There is a finite subfield F of K and an irreducible FG-module W with
V ∼= W ⊗F K.

(2) EndKG(V ) is a field.

Proof. Clearly, (1) implies (2) by Wedderburn’s Theorem and Schur’s Lemma. One
can give a more direct proof. Let F be a finite subfield of K. Then B := KG ∼=
FG ⊗F K. Thus, B/Rad(B) is a homomorphic image of (FG/Rad(FG)) ⊗F K.
By Wedderburn’s Theorem, FG/Rad(FG) is a direct product of matrix rings over
fields, and so the same is true for B/Rad(B). Thus, B/AnnB(V ) ∼= Ms(K

′) for
some extension field K ′/K. Since K ′ ∼= EndG(V ), (2) follows.

We now prove (1). Set n = dim V . Let φ : G → GL(n,K) be the representation
determined by V . Let F be the subfield of K generated by the traces of elements
of φ(g) ∈ G acting on V . Clearly, F is a finite subfield of K.

Let σ be the pth power automorphism. Note that σ generates Aut(F ). Then, σ
induces endomorphisms of FG and KG, and so defines a new KG-module V ′ := V σ.
Let L denote the algebraic closure of K. Since the character of V is defined over
F , it follows that the characters of V and V ′ are equal (and indeed, similarly for
the Brauer characters). This implies that V ′ ∼= V as KG-modules (or equivalently
as LG-modules). Thus, there exist U ∈ GL(n,K) with Uφ(g)U−1 = σ(φ(g)) for
all g ∈ G. By Lang’s theorem, U = X−σX for some invertible matrix X (over
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L). This implies that φ′(g) := Xφ(g)X−1 = σ(Xφ(g)X−1) defines a representation
from G into GL(n, F ). Let U be the corresponding module. Clearly, V ∼= U ⊗F K.
�

We state another result about extensions of scalars.

Lemma 3.2. Let G be a finite group and F a field. Let M be an FG-module.

(1) If K is an extension field of F , then H2(G,M)⊗F K and H2(G,M ⊗F K)
are naturally isomorphic, and in particular have the same dimension.

(2) If M is irreducible and F has positive characteristic, then E := EndG(M)
is a field, M is an absolutely irreducible EG-module and dimF H2(G,M) =
[E : F ] dimE H2(G,M).

Proof. These results are well known. See [10, 0.8] for the first statement. By
Lemma 3.1, E is a field. Clearly, M is an absolutely irreducible EG-module, and
so H2(G,M) is also a vector space over E. The last equality holds for any finite
dimensional vector space over E. �

The previous result allows us to change fields in either direction. If F is alge-
braically closed of characteristic p > 0 and M is an irreducible FG-module, then M
is defined over some finite field E – i.e. there is an absolutely irreducible EG-module
V such that M = V ⊗E F and we can compute the relevant ratios of dimensions
over either field. Similarly, if M is an irreducible FG-module with F a finite field,
then we can view M an EG-module, where E = EndG(V ), and so assume that M
is absolutely irreducible. Alternatively, we can view M as an FpG-module.

See [10, III.6.1 and III.6.2] for the next two results.

Lemma 3.3. Let G be a group and 0 → X → Y → Z → 0 a short exact sequence
of G-modules. This induces an exact sequence:

0 → H0(G,X) → H0(G,Y ) → H0(G,Z) → H1(G,X) → · · ·
→ Hj−1(G,Z) → Hj(G,X) → Hj(G,Y ) → Hj(G,Z) → · · ·

In particular, dim Hj(G,Y ) ≤ dim Hj(G,X)+dim Hj(G,Z) for any integer j ≥ 0.

Lemma 3.4 (Shapiro’s Lemma). Let G be a finite group and H a subgroup of G.
Let V be an FH-module. Then Hj(H,V ) ∼= Hj(G,V G

H ) for any integer j ≥ 0.

Lemma 3.5. Let G have a cyclic Sylow p-subgroup. Let F be a field of charac-
teristic p. If M is an indecomposable FG-module and j is a non-negative integer,
then dimHj(G,M) ≤ 1.

Proof. By a result of D. G. Higman (see [8, 3.6.4]), M is a direct summand of
WG

P , where P is a Sylow p-subgroup of G and W is an FP -module. Since M
is indecomposable, we may assume that W is an indecomposable P -module. By
Shapiro’s Lemma (Lemma 3.4), Hj(G,M) is a summand of Hj(P,W ). So it suffices
to assume that G = P is a cyclic p-group and W is an indecomposable P -module
(which is equivalent to saying W is a cyclic FP -module).

In this case we show that dim Hj(P,W ) = 1 unless W is free (in which case the
dimension is 0) by induction on j. If j = 0, this is clear. So assume that W is
not free. Since W is self cyclic and self dual, it embeds in a rank one free module
V . Then Hi(P, V ) = 0 and by Lemma 3.3, Hi(P,W ) ∼= Hi−1(P, V/W ) and so is
1-dimensional (since V/W is nonzero and cyclic). �
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The next result is standard – cf. [17, p. 91].

Lemma 3.6. If H contains a Sylow p-subgroup of G, then the restriction map
Hi(G,M) → Hi(H,M) is an injection.

The next result is an easy consequence of the Hochschild-Serre spectral sequence
[37, p. 337]. See also [29].

Lemma 3.7. Let N be a normal subgroup of G, F a field and M an FG-module.
Then dim Hq(G,M) ≤

∑

i+j=q dimHi(G/N,Hj(N,M)).

We single out the previous lemma for the cases q = 1, 2. See [37, pp. 354–355]
or [30, Lemma 2.1].

Lemma 3.8. Let N be a normal subgroup of H and let M be an FH-module. Then

(1) dimH1(H,M) ≤ dimH1(H/N,MN ) + dim H1(N,M)H , and
(2) dimH2(H,M) ≤ dimH2(H/N,MN ) + dim H2(N,M)H+

dimH1(H/N,H1(N,M)).

We shall use the following well known statements without comment.

Lemma 3.9. If G is perfect, then H1(G, Fp) = 0 and dimH2(G, Fp) is the p-rank
of the Schur multiplier of G.

We also use the following consequence of the Künneth formula.

Lemma 3.10. Let F be a field and let H = H1 × · · · × Ht with the Hi finite
groups. Let Mi be an irreducible FHi-module for each i and set M = ⊗t

i=1Mi, an
irreducible FH-module. Then

(1) Hr(H,M) = ⊕(ei)H
e1(H1,M1)⊗ · · · ⊗Het(Ht,Mt), where the sum is over

all (ei) with with the ei non-negative integers and
∑

ei = r.
(2) If Hi acts nontrivially on Mi for each i, then Hr(H,M) = 0 for r < t and

dim Ht(H,M) =
∏

dimH1(Hi,Mi).
(3) If each Hi is quasisimple and each Mi is nontrivial, then dim Ht(H,M) ≤

dim M/2t.
(4) If the Hj are perfect for j > 1, M1 is nontrivial and Mj is trivial for j > 1,

then H2(H,M) ∼= H2(H1,M1).

Proof. The first statement is just the Künneth formula as given in [8, 3.5.6], and the
second statement follows immediately since H0(Hi,Mi) = 0. If Hi is quasisimple,
then (2) and (1.2) imply (3). Finally (4) follows from (1) and the fact that, by
Lemma 3.9, H1(Hj ,Mj) = 0 for j > 1. �

Note that there are quite a number of terms involved in Hr(H,M) in the lemma
above. Fortunately, when r is relatively small, most terms will be 0.

See [6, 35.6] for the next result.

Lemma 3.11. Assume that N is normal in H and Hr−1(N,M) = 0. Then there
is an exact sequence

0 → Hr(H/N,MN ) → Hr(H,M) → Hr(N,M)H .

We single out a special case of the previous lemma.

Corollary 3.12. Let H be a finite group with a normal subgroup N . Let M be an
FH-module.
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(1) If MN = Hj−1(N,M) = 0, then the restriction map Hj(H,M) → Hj(N,M)
is injective.

(2) If N has order that is not a multiple of the characteristic of M and MN = 0,
then Hj(H,M) = 0 for all j.

(3) If N has order that is not a multiple of the characteristic of M and MN =
M , then Hj(H/N,M) ∼= Hj(H,M) for all j.

Proof. (1) is an immediate consequence of the previous lemma. Under the assump-
tions of (2), M is a projective FN -module and so Hj(N,M) = 0 for all j > 0 and
H0(N,M) = 0 by hypothesis. Thus (2) follows by induction on j and (1). Note
that (3) is a special case of Lemma 3.11. �

The previous corollary in particular illustrates the well known result that all
higher cohomology groups for finite groups vanish in characteristic 0. So we will
always assume our fields have positive characteristic in what follows.

It is also convenient to mention a special case of Lemma 3.11 for H1.

Lemma 3.13. Let G be a finite group with p a prime. Let N be a normal p-subgroup
of G and V an FpG-module with N acting trivially on V . Then dimH1(G,V ) ≤
dimH1(G/N, V ) + dim HomG(N,V ).

Lemma 3.14. Let A and B be quasisimple groups with trivial Schur multipliers,
and let G = A × B. Then d(G) = 2 and r̂(G) = max{r̂(A), r̂(B)}.

Proof. Since d(A) = d(B) = 2, it follows that d(G) = 2 unless possibly A ∼= B. In
that case d(G) = 2 follows from the fact that the set of generating pairs of a finite
simple group are not a single orbit under the automorphism group (e.g., use the
main result of [20]). The last statement now follows by Lemma 3.10 and (1.1). �

Since (1.1) does not give an explicit presentation, we cannot give one in the
previous result. It would be interesting to do so.

The next result is an interesting way of giving profinite presentations with fewer
relations than one might expect by giving presentations with more generators than
the minimum required. Recall that a profinite presentation for a finite group G is a
free profinite group F and a finite subset U of F such that if R is the closed normal
subgroup generated by U , G ∼= F/R.

We show in the next result that if G has a profinite presentation with d(G) + c
generations and e relations, then it has a profinite presentation with d(G) generators
and e − c relations. Often, we will give profinite presentations with more than the
minimum number of generators required and so we deduce the existence of another
profinite presentation with d(G) generators and fewer relations. We do not know
how to make this explicit. We do not know if this is true for discrete presentations.
Indeed, the best result we know is that if G has a (discrete) presentation with r
relations, then it is has a (discrete) presentation with d(G) generators and r+d(G)
relations (see [21, Lemma 2.1]).

If M is an FpG-module, let dG(M) be the minimum size of a generating set
for M as an FpG-module. The key result is in [34, Theorem 0.2], which asserts
that if G = F/R is a finite group, F is a free profinite group and R is a closed
normal subgroup of F , then the minimal number of elements needed to generate
R as a closed normal subgroup of F is equal to maxp{dG(M(p)}, where M(p) is
the G-module R/[R,R]Rp and p ranges over all primes. Moreover, by [17, 2.4] the
structure of M(p) depends only on the rank of F .
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Lemma 3.15. Let G be a finite group. Consider a profinite presentation G = F/R
where F is the free profinite group on d(G) + c generators. Let e to be the minimal
number of elements required to generate R as a closed normal subgroup of F . Then
r̂(G) = e − c. In particular, the minimal number of relations occurs when the
number of generators is minimal, and only in that case.

Proof. Set M = R/[R,R] and M(p) = M/pM for p a prime. So M is the relation
module for G in this presentation and M(p) is an FpG-module.

As noted above, R is normally generated (as a closed subgroup) in F by e ele-
ments, where e = maxp{dG(M(p)}. Also as noted above the structure of M(p) only
depends on the number of generators for F and not on the particular presentation.
So we may assume that all but d(G) generators in the presentation are sent to 1,
whence we see that M(p) = N(p) ⊕ Xp where Xp is a free FpG-module of rank c
and N(p) is the p-quotient of the relation module for a minimal presentation.

Now the first statement follows from the elementary fact that, if an FpG-module
Y can be generated by s elements but no fewer, then the FpG-module Y ⊕ FpG
is generated by s + 1 elements but no fewer. Indeed, this holds for any finite
dimensional algebra A over a field – for by Nakayama’s Lemma, we may assume
that A is semisimple and so reduce to the case that A is a simple algebra, where
the result is clear.

The last statement is now an immediate consequence. �

Lemma 3.16. Let G be a finite group with a normal abelian p-subgroup L. Let V
be an irreducible FpG-module.

(1) There is an exact sequence of G-modules,

0 → ExtZ(L, V ) → H2(L, V ) → ∧2(L∗) ⊗ V → 0.

(2) dim H2(L, V )G ≤ dim((L/pL)∗ ⊗ V )G + dimF (∧2(L/pL)∗ ⊗ V )G.
(3) If G = L, then dimH2(G, Fp) = d(d + 1)/2 where d = d(G).

Proof. Since G acts irreducibly on V , it follows that L acts trivially on V .
It is well known (cf. [10, p. 127] or [7]) that when L is abelian and acts trivially

on V , there is a (split) short exact sequence as in (1) in the category of abelian
groups. Here ExtZ(L, V ) is the subspace of H2(L, V ) corresponding to abelian
extensions of L by V . The natural maps are G-equivariant, giving (1). Note that
ExtZ(L, V ) ∼= Hom(L/pL, V ) ∼= (L/pL)∗ ⊗ V even as G-modules. Also, ∧2(L∗) ⊗
V ∼= ∧2(L/pL)∗ ⊗ V since V is elementary abelian.

Taking G-fixed points gives (2), and taking G = L and V = Fp gives (3). �

Lemma 3.17. Let T be a finite cyclic group of order (q − 1)/d acting faithfully on
the irreducible FpT -module X of order q = pe. Set Y = ∧2(X). Assume either that
d < p or that both d = 3 and q > 4. Then

(1) Y is multiplicity free as a T -module; and
(2) X is not isomorphic to a submodule of Y .

Proof. Let x ∈ T be a generator. Thus, x acts on V with eigenvalue λ ∈ Fq of order
(q − 1)/d. It is straightforward to see that Y ⊗Fp

Fq is a direct sum of submodules

on which x acts via λ(pi+pj) where 1 ≤ i < j < e. These submodules are all
nonisomorphic (if not, then d(pi +pj) ≡ d(pi′ +pj′

) modulo pe−1 for some distinct
pairs {i, j} and {i′, j′}) and similarly are not isomorphic to X. �
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Lemma 3.18. Let G be a finite group. Let V be an irreducible FpG-module of
dimension e. Then ∧2(V ) can be generated by e − 1 elements as an FpG-module.
In particular, dim HomG(∧2(V ),W ) ≤ (e − 1) dim W for any FpG-module W .

Proof. Choose a basis v = v1, . . . , ve for V . It is clear that v1 ∧ vj , 2 ≤ j ≤ e, is
a generating set for ∧2(V ) as a G-module, which proves the first statement. The
second statement is a trivial consequence of the first. �

We will use the following elementary result to bound the number of trivial com-
position factors in a module.

Lemma 3.19. Let G be a finite group and F a field of characteristic p. Let M be
an FG-module and let J be a subgroup of G.

(1) If MG = 0 and G can be generated by 2 conjugates of J , then dimMJ ≤
(1/2) dim M .

(2) If |J | is a not a multiple of p, then the number of trivial FG composition
factors is at most dimMJ .

Proof. If G = 〈J,K〉 for some conjugate K of J , then MJ∩MK = MG = 0, whence
(1) holds. In (2), since J has order coprime to the characteristic of F , M = MJ ⊕V
where J has no trivial composition factors on V . Thus, the number of J-trivial
composition factors is at most dim MJ and so this is also an upper bound for the
number of G-trivial composition factors. �

4. Covering Groups

We will also switch between the simple group and a covering group. Recall that
a group G is quasisimple if it is perfect and G/Z(G) is a nonabelian simple group.
Recall also the definition of h′(G) from (1.3).

If N is a normal of G and M is a G-module with MN = M , then we may and
do view M as a G/N -module.

Lemma 4.1. Let G be a finite quasisimple group. Let r be prime and let Z be a
central r-subgroup of G. Let M be a nontrivial irreducible FG-module with F a
field of characteristic p.

(1) If MZ = M , then H1(G/Z,M) ∼= H1(G,M).
(2) If r 6= p, then either Z acts nontrivially and H2(G,M) = 0, or Z acts

trivially and H2(G/Z,M) ∼= H2(G,M).
(3) If r = p, then Z acts trivially on M , and

dim H2(G/Z,M) ≤ dim H2(G,M) ≤ dim H2(G/Z,M) + cdim H1(G/Z,M),

where c is the rank of Z. In particular,

dimH2(G,M) ≤ dimH2(G/Z,M) + dim M

(4) h′(G/Z) ≤ h′(G) ≤ h′(G/Z) + 1.

Proof. The first statement follows by Lemma 3.8. (2) is included in Lemma 3.12.
So assume that r = p.
We use the inequality from Lemma 3.8(2):

dim H2(G,M) ≤ H2(G/Z,MZ) + dimH2(Z,M)G + dim H1(G/Z,H1(Z,M)).

By Lemma 3.16, dim H2(Z,M)G ≤ dim HomG(Z,M)+dim HomG(∧2(Z),M) =
0 since MG = 0. So the middle term of the right hand side above is 0. Now
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H1(Z,M) ∼= Hom(Z/pZ,M). Since Z/pZ is a direct sum of c copies of the trivial
FpG-module, where c is at most the rank of Z, Hom(Z/pZ,M) is isomorphic to c
copies of M (as a G-module). Thus, dim H1(G/Z,H1(Z,M)) ≤ cdim H1(G/Z,M)
and so the second inequality in (3) holds. Since c ≤ 2 [16, pp. 313–314], and
dimH1(G/Z,M) ≤ (dim M)/2, the last part of (3) follows.

Finally we show that dimH2(G/Z,M) ≤ dim H2(G,M). We use relation mod-
ules for this purpose. Write G = F/R where F is free of rank d(G). Let S/R
be the central subgroup of F/R corresponding to Z. Let R(p) = R/[R,R]Rp

be the p-relation module for G and S(p) = S/[S, S]Sp the p-relation module
for G/Z. Clearly, there is a G-map γ : R(p) → S(p) with S(p)/γ(R(p)) having
trivial G-action. Thus, the multiplicity of an irreducible nontrivial G-module M
in S(p)/Rad(S(p)) is at most the multiplicity of M in R(p)/Rad(R(p)). Since
these multiplicities are dim H2(G,M) − dim H1(G,M) and dimH2(G/Z,M) −
dimH1(G/Z,M), and since, by (1), dimH1(G/Z,M) = dim H1(G,M), the in-
equality follows.

Now (4) follows from (1), (2), (3) and (1.2). �

We can interpret this for profinite presentations. Recall that r̂(G) is the minimal
number of relations required among all profinite presentations of the finite group
G.

Corollary 4.2. Let G be a quasisimple group with a central subgroup Z.

(1) r̂(G/Z) ≤ max{r̂(G), 2+rank(J)} ≤ max{r̂(G), 4}, where J = H2(G/Z, C∗)
is the Schur multiplier of G/Z.

(2) r̂(G) ≤ r̂(G/Z) + 1.

Proof. We first prove (1). Let M be an irreducible G/Z-module. We may view M
as a G-module. First suppose that M is trivial. Then dimH2(G/Z,M) ≤ rank(J).

Now assume that M is nontrivial. Then by Lemma 4.1(3),

dimH2(G,M) − dimH1(G,M) ≥ dimH2(G/Z,M) − dim H1(G/Z,M).

It follows by (1.1) that either r̂(G/Z) = 2+rank(J) ≤ 4 or r̂(G/Z) ≤ r̂(G), whence
the result holds.

We now prove (2). Note that d(G) = d(G/Z). Let M be an irreducible
FpG-module which achieves the maximum r̂(G) in (1.1). If M is trivial, then
dimH2(G/Z,M) ≥ dimH2(G,M) and so r̂(G) ≤ r̂(G/Z) in this case.

Suppose that M is nontrivial. If Z acts nontrivially on M , then Hj(G,M) = 0
for all j, a contradiction. So we may assume that Z is trivial on M . Then by
Lemma 4.1(4),

dim H2(G,M)

dim M
≤

dimH2(G,M)

dimM
+ 1,

As noted in the previous proof, dimH1(G,M) = dim H1(G/Z,M). Now apply
(1.1). �

The previous two results allow us to work with covering groups rather than
simple groups. So if we prove that the universal central extension G of a simple
group S can be presented profinitely with r ≥ 4 relations, the same is true for any
quotient of G (and in particular for S). Conversely, if a finite simple group S can
be presented with r profinite relations, then any quasisimple group with central
quotient S can be presented with r + 1 profinite relations.
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5. Faithful Irreducible Modules and Theorem C

In this section we show that a bound for dimH2(G,M)/dim M with G simple
and M a nontrivial irreducible FpG-module implies a related bound for arbitrary fi-
nite groups and irreducible faithful modules. In particular, this shows how Theorem
B implies Theorem C.

It is much easier to prove that dim H1(G,M) ≤ dimH1(L,M) if M is an irre-
ducible faithful FG-module and L is any component of G. See [18] and Lemma 5.2
(5) below for a stronger result.

For H2, the reduction to simple groups is more involved, and it is not clear
that the constant one obtains for simple groups is the same constant for irreducible
faithful modules. Holt [30] used a similar reduction for a weaker result, and it is
not sufficient to appeal to his results.

If L is a nonabelian simple group, let

hi(L) = max{dim Hi(L,M)/dim M},

where the maximum is taken over all nontrivial irreducible FpL-modules and all
p. So h2(L) = h′(L) as defined in (1.3). Let op(L) denote the maximal dimension
of any section of Out(L) that is an elementary abelian p-group (this is called the
sectional p-rank of Out(L)). Let o(L) = maxp{op(L)}. We record some well known
facts about this. See [16, Chapter 4].

Lemma 5.1. Let L be a nonabelian finite simple group. Then op(L) ≤ 2 for p odd,
and o(L) ≤ 3.

(1) If L = An, n 6= 6 or L is sporadic, then Out(L) has order at most 2, and
o(L) ≤ 1.

(2) Out(A6) is elementary abelian of order 4.
(3) Assume that L is of Lie type. Then o2(L) ≤ 2 unless L ∼= PSL(d, q) with q

odd and d > 2 even, or L ∼= PΩ+(4m, q) with q odd.

Lemma 5.2. Let F be a field of characteristic p, G a finite group and M an
irreducible FG-module that is faithful for G. Assume that Hk(G,M) 6= 0 for some
k > 0 (and so in particular, p > 0).

(1) Op(G) = Op′(G) = 1; in particular G is not solvable.
(2) Let N = F∗(G). For some t ≥ 1, N is a direct product of t nonabelian

simple groups.
(3) G has at most k minimal normal subgroups.
(4) If W is an irreducible FN -submodule of M , and if two distinct components

of G act nontrivially on W , then H1(G,M) = 0 and dimH2(G,M) ≤
(dim M)/4. In particular, this is the case if G does not have a unique
minimal normal subgroup.

(5) Suppose that N is the unique minimal normal subgroup of G and L is a
component of G.
(a) dim H1(G,M) ≤ dim H1(L,W ) for W any irreducible L-submodule of

M with WL = 0.
(b) dim H2(G,M) ≤ (h1(L)(o(L) + 1/2) + h2(L)/t) dim M .
(c) If N = L, then dimH2(G,M) ≤ (h2(L) + 1) dim M .

Proof. The hypotheses imply that M is not projective and so p > 0. Since M
is faithful and irreducible, Op(G) = 1. If Op′(G) 6= 1, then by Corollary 3.12,
Hd(G,M) = 0 for all d. So (1) and (2) hold.
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We may assume that F is algebraically closed (see Lemma 3.2). Write N =
N1 × · · · × Ne where the Ni are the minimal normal subgroups of G. Let W be
an irreducible FN -submodule. Then W = W1 ⊗ · · · ⊗ We is a tensor product
of irreducible FNi-modules. Since M is faithful and irreducible, MNi = 0. In
particular, each Ni is faithful on W , whence Wi is nontrivial for each i.

It follows by Lemma 3.10, that Hj(N,W ) = 0 for j < e. So Hj(N, gW ) = 0
for any g ∈ G with j < e. Since M is a direct sum of irreducible N -modules of
the form gW , g ∈ G, Hj(N,M) = 0 for j < e. It follows by Lemma 3.11 that
Hj(G,M) embeds in Hj(N,M) = 0 for j < e, whence (3) follows (see also [48]).

The same argument shows that Hj(G,M) = 0 if there is an irreducible FN -
submodule W of G in which at least j + 1 components act nontrivially. If pre-
cisely j components act nontrivially, the argument shows that dimHj(G,M) ≤
(dim M)/2j . Since Ni has no fixed points on M , it follows that at least e compo-
nents act nontrivially on any irreducible FN -submodule, whence (4) holds.

So assume that N is the unique minimal normal subgroup of G. Write N =
L1 × · · · × Lt with the Li isomorphic nonabelian simple groups. Set L = L1 and
h1 = h1(L).

Let W be an irreducible FN -submodule with WL = 0. Suppose first that
Lj acts nontrivially on W for some j > 1. Arguing as above and using Lemma
3.10 and Lemma 3.8 shows that H1(G,M) = H1(N,M) = 0. Similarly, we see
that dim H2(N,W ) ≤ h2

1 dim W and dimH2(G,M) ≤ dimH2(N,M) ≤ h2
1 dimM .

Using (1.2) shows that (5b) follows in this case.
So to complete the proof of all parts of (5), we may assume that Lj is trivial on

W for j > 1 (for case (5c), there is only one component).
We now prove the first part of (5). Let U be the largest L-homogeneous submod-

ule of M containing W (i.e. U is the L-submodule generated by the L-submodules
isomorphic to W ).

Let I be the stabilizer of U in G. Note that I ≤ NG(L) (since for j 6= 1, Lj

acts trivially on U). Since M is irreducible, U is an irreducible I-module. Let R =
LCI(L). By Lemma 3.4, Hk(G,M) ∼= Hk(I, U). By Lemma 3.11, dim H1(I, U) ≤
dimH1(R,U). Since R = L × CI(L), U is a direct sum of modules of the form
W ⊗ X where each X is an irreducible CI(L)-module. Since W is irreducible, it
follows that either all X are trivial CI(L)-modules or none are. In the latter case,
H1(R,W ) = 0 by Lemma 3.10, and so H1(G,M) = 0. So CI(L) acts trivially on
U . Set J = I/CI(L).

By Lemma 3.8, dim H1(I, U) ≤ dim H1(J, U)+dim H1(CI(L), U)I . Since CI(L)
is trivial on W , H1(CI(L),W )I is the set of I- homomorphisms from CI(L) to
U . Since L acts trivially on CI(L) and UL = 0, H1(CI(L), U)I = 0. Thus
dimH2(I, U) ≤ dimH2(J, U). Note that J is almost simple with socle L and that J
acts irreducibly on U . So we have reduced the problem to the case t = 1, CG(L) = 1
and G = I. Now use the fact that G/L is solvable (which depends on the classifica-
tion of finite simple groups) and let D/L be a maximal normal subgroup of I/L. So
I/D is cyclic of prime order s. If D does not act homogeneously, then U is induced
and we can apply Lemma 3.4. So we may assume that D acts homogeneously. It
follows by Clifford theory and the fact that I/D is cyclic that D acts irreducibly
on U . By Lemma 3.11, dim H1(I, U) ≤ dim H1(D,U)I ≤ dimH1(D,U), and so by
induction (on |I : L|), dimH1(D,U) ≤ dim H1(L,W ), as required.
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Now consider H2(G,M) in (5). Let Mi = [Li,M ]. So M is the direct sum of
the Mi. Another application of Lemma 3.8, together with the fact that MN = 0,
shows that

dimH2(G,M) ≤ dimH2(N,M)G + dimH1(G/N,H1(N,M)).

Now H2(N,M) is the direct sum of the H2(N,Mi) ∼= H2(Li,Mi) (by Lemma 3.10),
and G permutes these terms transitively. Thus dim H2(N,M)G ≤ dimH2(L,M1) ≤
(h2(L)/t) dim M .

Similarly, H1(N,M) is the direct sum of the H1(Li,Mi), and G/N permutes
these. Thus, H1(N,M) is an induced G/N -module, and so by Shapiro’s Lemma
(Lemma 3.4) H1(G/N,H1(N,M)) ∼= H1(NG(L)/N,H1(L,M1)). Note that M1 is
an irreducible NG(L)-module and is a faithful L-module (since M is irreducible for
G).

Let P be a Sylow p-subgroup of NG(L). Let K = ∩iNP (Li) and note that K
is normal in P . Then KN/N can be generated by o(L)t elements (by induction
on t). By [4, Theorem 2.3], P/K can be generated by bt/2c elements, whence
PN/N can be generated by at most (o(L)+1/2)t elements. Since dim H1(L,M1) ≤
h1(L)(dim M1), it follows that

dimH1(NG(L)/N,H1(L,M1)) ≤ dimH1(PN/N,H1(L,M1))
≤ h1(L)(o(L) + 1/2)t dim M1

= h1(L)(o(L) + 1/2) dim M.

Thus,
dimH2(G,M)

dimM
≤ h1(L)(o(L) + 1/2) + h2(L)/t.

This gives (5b).
We now prove (5c). So assume that t = 1. Then PN/N can be generated by o(L)

elements and so we get the bound dim H2(G,M)/dim M ≤ h2(L) + o(L)h1(L).
By (1.2), h2(L) + o(L)h1(L) ≤ h2(L) + 1 unless o(L) > 2. However, we have

already noted that in the cases where o(L) = 3, L must be a group of Lie type over
a field of odd characteristic and the p-subgroup of Out(L) requiring 3 generators
must be a 2-subgroup. It follows by [28] that in all these cases dimH1(L,M) ≤
(dim M)/3, whence the result holds. �

Theorem 5.3. Let F be a field, G be a finite group with M a faithful irreducible
FG-module. If H2(G,M) 6= 0, then G has a component L and

dimH2(G,M)

dimM
≤ max{7/4, h2(L) + 1}.

Proof. Since H2(G,M) 6= 0, the previous lemma applies. If G has more than one
minimal normal subgroup, then dimH2(G,M) ≤ (dim M)/4 by Lemma 5.2(4), and
the result holds. So we may assume that G has a unique minimal normal subgroup
N , that L is a component of G and that N is a direct product of t conjugates of
L. Now the bound in (5b) of the previous lemma applies.

As we have noted above, o(L) ≤ 3 with equality implying that G is a finite group
of Lie type A of rank at least 3 or of type D of rank at least 4. If o(L) ≤ 2, it
follows from (1.2) that h1(L)(o(L) + 1/2) ≤ 7/4. If o(L) = 3, it follows from [19]
that h1(L) ≤ 1/3, whence h1(L)(o(L) + 1/2) ≤ 5/4.

Let t be the number of components of G. If t = 1, the result follows by (5c)
of the previous lemma. So assume that t > 1. By (5b) of the previous result,
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dimH2(G,M)/dim M ≤ h1(L)(o(L) + 1/2) + h2(L)/2. The right hand side is
bounded above by (5/4) + h2(L)/2 ≤ max{7/4, h2(L) + 1}, and the result follows.
�

An immediate consequence of the previous result is:

Corollary 5.4. Theorem B implies Theorem C.

6. Alternating and Symmetric Groups

We will need the following better bound for H1 for alternating groups given in
[23].

Theorem 6.1. Let G = An, n > 4. If F is a field and M is an irreducible FG-
module, then

(1) dim H1(G,M) ≤ (dim M)/(f − 1) where f is the largest prime such that
f ≤ n − 2;

(2) dim H1(G,M) ≤ (2/n) dim M for n > 8;
(3) dim H1(A8,M) ≤ (dim M)/6; and
(4) if F has characteristic p, then dimH1(G,M) ≤ (dim M)/(p − 2).

The goal of this section is to prove the following results:

Theorem 6.2. Let G = An or Sn, n > 4, and let p be a prime. Let F be a field of
characteristic p and M an FG-module.

(1) If p > 3, then dimH2(G,M) ≤ (dim M)/(p − 2) ≤ (dim M)/3.
(2) If p = 3, then dim H2(G,M) ≤ dim M with equality if and only if n = 6 or

7 and M is the trivial module.
(3) If p = 2, then dimH2(An,M) ≤ (35/12) dim M .
(4) If p = 2, then dimH2(Sn,M) < 3 dim M .

These results are likely quite far from best possible. By (1.1) and Corollary 4.2,
this gives:

Corollary 6.3. (1) r̂(An) ≤ 4,
(2) r̂(Sn) ≤ 4, and
(3) if G is any quasisimple group with G/Z(G) = An, then r̂(G) ≤ 5.

Almost certainly, it is the case that r̂(An) = r̂(Sn) = 3 for n > 4. Since the
Schur multipliers of An and Sn are nontrivial for n > 4, r̂(An) and r̂(Sn) are both
at least 3. The proof we give says very little about finding specific relations. It
would be quite interesting to pursue this further.

The main idea is to pass to a subgroup containing a Sylow p-subgroup of G and
having a normal subgroup that is a direct product of alternating groups. We then
use induction together with the results of Section 3.

We do this first for p > 3, then for p = 3 and finally for p = 2. If p > 3, each of
these smaller alternating groups is simple and has Schur multiplier prime to p. If
p = 3, there may be an A3 factor. Also, A6 and A7 have Schur multipliers of order
6. For p = 2, there may be solvable factors, all Schur multipliers have even order
and there are further complications as well.
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6.1. p > 3.

For this subsection, let F be an algebraically closed field of characteristic p > 3.
Our goal is to prove the following result, which includes Theorem 6.2 for p > 3.

Theorem 6.4. Let p > 3 be a prime. Let G = An and F a field of characteristic
p. If M is an FG-module, then dimHj(G,M) ≤ (dim M)/(p − 2) for j = 1, 2.

Proof. We induct on n. If p < n, all FG-modules are projective and so Hj(G,M) =
0 for j > 0.

If p does not divide n, then the restriction map from Hj(An,M) to Hj(An−1,M)
is injective by Lemma 3.6 and the result follows. So we may assume that p|n. Since
G is perfect, Lemma 3.9 implies that H1(G,F ) = 0, and since p does not divide
the order of the Schur multiplier of G, H2(G,F ) = 0.

As usual, we may assume that M is an irreducible FG-module.
If n = p, then by Lemma 3.5, dim Hj(G,M) ≤ 1. Thus, the result follows by

noting that dimM ≥ p − 2 for every nontrivial irreducible G-module.
Suppose that n 6= pa for any a. Write n = pa + n′ where pa is the largest power

of p less than n. Set H = Apa ×An′ < G. Since H contains a Sylow p-subgroup of
G, it suffices to show by Lemma 3.6 that H satisfies the conclusion of the theorem.
So let V = V1 ⊗ V2 be an irreducible FH-module. If V is a trivial H-module, then
Hj(H,V ) = 0 for j = 1, 2 (by Lemma 3.9). Otherwise, the result follows by Lemma
3.10 and induction.

Finally suppose that n = pa+1 > p. Let H = Apa o Ap < G. Then H contains a
Sylow p-subgroup of G and again it suffices to show that the conclusion holds for
H. Let V be an irreducible FH-module. Let N be the normal subgroup of H with
H/N ∼= Ap. So N = L1 × · · · × Lp where Li

∼= Apa . The result is straightforward
and easier for H1, and we just give the argument for H2. By Lemma 3.8,

dim H2(H,V ) ≤ dimH2(H/N, V N ) + dim H2(N,V )H + dimH1(H/N,H1(N,V )).

If N is trivial on V , then the last two terms are 0 and the result holds since
we already know the theorem for n = p. So suppose that V N = 0. Let W be an
irreducible FN -submodule of V . So W = W1⊗· · ·⊗Wp, where Wi is an irreducible
FLi-module. By Lemma 3.10, H1(N,W ) = 0 unless (after reordering if necessary)
W1 is nontrivial and Wj is trivial for each j > 1. Suppose that for some j > 1, Wj ,
is nontrivial. Thus, by Lemma 3.10, H1(N,W ) ∼= H1(N, gW ) = 0 for every g ∈ G
Since W is a direct sum of N -submodules of the form gW, g ∈ G, this implies that
H1(N,V ) = 0. By Lemma 3.11 and induction, dimH2(H,V ) ≤ dimH2(N,V )H ≤
(dim V )/(p − 2).

Now suppose that W1 is nontrivial and Wj is trivial for all j > 1. Let W1 ≤
M1 be the set of fixed points of L2 × · · · × Lp on V . The stabilizer of M1 is
clearly NH(L1), and so V is induced from M1. By Shapiro’s Lemma (Lemma 3.4),
H2(H,M) ∼= H2(NH(L1),M1). Since [NH(L1) : N ] is prime to p, it follows by
Lemma 3.12 that dim H2(H,M) ≤ dim H2(N,M1). By Lemma 3.10 and the fact
that H1(Lj ,M1) = 0 for j > 0, H2(N,M1) = H2(L1,M1) and the result follows.
�

6.2. p = 3.
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Theorem 6.5. Let G = An, n > 2 and F a field of characteristic p = 3. Let M be
an irreducible FG-module.

(1) If M is trivial, then H2(G,M) = 0 unless n = 3, 4, 6 or 7, in which case
H2(G,M) is 1-dimensional.

(2) If n = 3a > 3, then dim H2(G,M) ≤ (3/5) dim M .
(3) If M is nontrivial, then dimH2(G,M) ≤ (21/25) dim M .

Proof. The proof proceeds as in the previous result. However, note that if M is
the trivial module, then H2(G,M) is 1-dimensional for n = 3, 4, 6 and 7 and 0
otherwise (for n ≥ 5, see [16, p. 314] and for n = 3 or 4, a Sylow 3-subgroup is
cyclic). We use Lemma 3.6 extensively and sometimes without comment.

So assume that M is irreducible and nontrivial. There is no loss in assuming
that F is algebraically closed.

If n ≤ 12, the result is in [42]. By induction, using Lemma 3.6, we may assume
that n is divisible by 3 (since n > 12 and (1) implies that trivial modules are not
an exception to the bound).

Case 1. n = 3a+1 > 9.

Let N := H1 × H2 × H3 where each Hi = A3a . Let H be a subgroup of the
normalizer of N with H/N ∼= A3. Note that H contains a Sylow 3-subgroup of G
and so Lemma 3.6 applies.

Let V be an absolutely irreducible FH-module. If V N = V , then by Lemma 3.8,
dimH2(H,V ) ≤ dim H2(H/N, V ) + dim H2(N,V )H + dimH1(H/N,H1(N,V )).
Since 3a > 3, the Schur multiplier of N is a 2-group and so the middle term above
is 0. Since N is perfect, the last term above is 0, and so dimH2(H,V ) ≤ 1 by
Lemma 3.5.

Suppose that V N = 0. Let W be an irreducible FN -submodule of V . Write
W = W1 ⊗W2 ⊗W3 where Wi is an FHi irreducible module. We may assume that
W1 is nontrivial. By Lemma 5.3, either dimH2(H,V ) ≤ dimH2(N,V ) ≤ dim V/4
or W2 and W3 are trivial. Thus, V = XH

N where X is the fixed space of H2×H3. By
Lemma 3.4, it follows that H2(H,V ) ∼= H2(N,X). By Lemma 3.10, H2(N,X) ∼=
H2(H1,X). By induction, dimH2(H,V ) ≤ (3/5) dim X = (1/5) dim V .

We claim that the number d of trivial composition factors of N on M is at
most (dim M)/2 (in fact, it is usually much less). Let T be a Sylow 2-subgroup
of N . It is easy to see that some pair of conjugates of T generate G. So we see
by Lemma 3.19 that d ≤ dim MT ≤ (dim M)/2. The previous paragraphs show
that dim H2(H,M) ≤ d + (dim M − d)/5. Since d ≤ (dim M)/2, this implies that
dimH2(H,M) ≤ (dim M)/2 + (dim M)/10 = (3/5) dim M as required.

Case 2. n is not of the form 3a + 3 or 3a + 6.

We may assume also that n 6= 3a (by case 1). So n = n1+n2 where n1 = 3a > n/3
and n2 ≥ 9. Set H = H1 × H2 < G where the Hi are alternating groups of degree
ni. Note that [G : H] has index prime to 3. By induction and Lemma 3.10, the
result follows.

Case 3. n = 3a + 3 > 12.
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Let H = H1 × H2 < G with H1 = A3 and H2 = A3a . Let V be an irreducible
FH-module. Then V is trivial for H1 (since it is a normal 3-subgroup of H)
and irreducible for H2. If V is nontrivial then, by Lemma 3.10, H2(H,V ) ∼=
H1(H2, V ) ⊕ H2(H2, V ). By Theorem 6.1 and the fact that n1 ≥ 27, the first
term has dimension at most (1/23) dim V and the second has dimension at most
(3/5) dim V by induction. Thus, dimH2(H,V ) < (17/25) dim M .

If V is trivial, then dimH2(H,V ) = 1. Arguing as above, we see that the number
of H-trivial composition factors in M is at most (dim M)/2 and so

dim H2(G,M)

dim M
≤

1 + 17/25

2
=

21

25
.

Case 4. n = 3a + 6 ≥ 15.

The proof is quite similar to the previous case.
Let H = H1 × H2 where H1

∼= A3a and H2
∼= A6. Then H contains a Sylow

3-subgroup of G. So it suffices to prove the bound for H. Let V be an irreducible
FH-module. So V = V1 ⊗ V2 where Vi is an irreducible FHi-module for i = 1, 2.
If both Vi are nontrivial, then dimH2(H,V ) = dim H1(H1, V1) · dimH1(H2, V2).
The first term is at most (1/7) dim V1 by Theorem 6.1 and the second is at most
(1/2) dim V2, and so dim H2(H,V ) ≤ (1/14) dim M . If V1 nontrivial and V2 is
trivial, then by Lemma 3.10, H2(H,V ) ∼= H2(H1, V1) ≤ (3/5) dim M . If V1 is
trivial, then dimH2(A6, V2) ≤ dimV2. As in the previous case, the number of
trivial composition factors for H1 is at most (dim M)/2, and the result follows as
in the previous case. �

6.3. p = 2.

Let F be an algebraically closed field of characteristic 2. In this section, all
modules are over F . Let n ≥ 5 be a positive integer. Write n =

∑r
i=1 2ai , where

the ai = ai(n) are decreasing positive integers.
The next result follows since the 2-part of the Schur multiplier for An has order

2 [16, p. 312].

Lemma 6.6. Let M be the trivial module.

(1) dim H2(An,M) = 1; and
(2) dim H2(Sn,M) = 2.

Lemma 6.7. Let M be an irreducible nontrivial FSn-module for n ≥ 8. Then

(1) dim H2(Sn,M) ≤ dim H2(An,M) + dimM/2a1(n)−1.
(2) dim H2(Sn,M) ≤ dim H2(An,M) + dimM/13 for n ≥ 12.

Proof. By Lemma 3.8, we have

dim H2(Sn,M) ≤ dimH2(An,M)Sn + dim H1(Sn/An,H1(An,M)).

By Theorem 6.1, the right hand term is at most dimH1(An,M) ≤ dimM/(f − 1)
where f is the largest prime with f ≤ n − 2. By Bertrand’s postulate, there is a
prime f with a1(n) ≤ n/2 ≤ f −1 ≤ n−2, whence (1) holds. Now (2) holds by the
same argument for n ≥ 15 (since 13 is prime and 13 ≤ n− 2), and by computation
for n ≤ 14 [42]. �

Lemma 6.8. Let n = 2a+1 ≥ 4. Let G = An or Sn. Let F be an algebraically
closed field of characteristic 2. Let M be an irreducible nontrivial FG-module.
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(1) If n = 4 and G = An, then dim H2(G,M) ≤ 1.
(2) If n = 4 and G = Sn, then dimH2(G,M) ≤ 1.
(3) If n ≥ 8 and G = An, then dim H2(G,M) ≤ (65/24) dim M .
(4) If n ≥ 8 and G = Sn, then dimH2(G,M) < (17/6) dim M .

Proof. If n ≤ 8, this is done by a computer computation in [42]. So assume that
n ≥ 16. We induct on n. By (2) of the previous lemma, it suffices to prove
(3). As usual, we will compute cohomology for subgroups which contain a Sylow
2-subgroup. So we may use Lemma 3.6.

Let N = A2a × A2a = H1 × H2 and H be the normalizer in G of N . Let
V be an irreducible FH-module. If V is trivial, it follows by Lemma 3.8 that
dimH2(H,V ) ≤ dim H2(H/N, V ) + dim H2(N,V )H + dimH1(H/N,H1(N,V )).
Since N is perfect, the last term is 0. Since H/N has order 4, the first term on
the right side of the inequality is 3. Since the Schur multiplier of each factor of N
has order 2, H2(N,V ) is 2-dimensional and H acts nontrivially on this, whence the
middle term has dimension 1. Thus, dimH2(H,V ) ≤ 4.

Suppose that V is nontrivial. Then V N = 0. Let W be an irreducible N -
submodule of V . Write W = W1 ⊗W2. Note that V is a direct sum of N -modules
of the form gW , g ∈ H. If both W1 and W2 are nontrivial, then by Lemma 3.10,
H2(N,W ) = H1(H1,W1) ⊗ H1(H2,W2) and H1(N,V ) = 0. By Theorem 6.1 and
Lemma 3.8, dim H2(H,V ) ≤ dim H2(N,V )H ≤ (dim V )/36.

If W2 is trivial, then V is an induced module – so we may write V = UH
J

where J = N or H/J has order 2. Thus, by Lemma 3.4, H2(H,V ) ∼= H2(J, U).
If J = N , this implies that dimH2(J, U) = dimH2(H1, U). So by induction,
dimH2(J, U) ≤ (65/24) dim U , whence dim H2(H,V ) ≤ (65/96) dim V . If J/N has
order 2, then we apply Lemma 3.8 to conclude that

dim H2(J, U) ≤ dim H2(J/N2, U) + dim H2(H2, U)J + dimH1(J/H2,H
1(N2, U)).

Since H2 is perfect and U is trivial for H2, the last term is 0. Since H2 is trivial on
U and H2(N2, F ) is 1-dimensional, we see that H2(N2, U) ∼= U as a J-module and
so J has no fixed points on the module, whence the middle term is 0. Noting that
J/H2

∼= S2a and using Lemma 6.7 and induction, we conclude that dimH2(J, U) ≤
(17/6) dim U . Since dimU = (dim V )/2, we obtain the desired inequality that
dimH2(H,V ) ≤ (17/12) dim V .

Note H contains an element h that is the product of two disjoint cycles of length
2a − 1. It is easy to see that An can be generated by two conjugates of h. Setting
J = 〈h〉 and using Lemma 3.19, we see that the number α of trivial H-composition
factors in M is at most (dim M)/2. Thus, dimH2(H,M) ≤ 4α +(17/12)(dim M −
α). Since α ≤ (dim M)/2, this implies that dimH2(H,M) ≤ (65/24) dim M . �

Theorem 6.9. Let n > 4 be a positive integer and F an algebraically closed field
of characteristic 2. Let M be an FG-module with G = An or Sn.

(1) dim H2(An,M) ≤ (35/12) dim M ; and
(2) dim H2(Sn,M) < 3 dim M .

Proof. If M is trivial, then dimH2(An,M) = 1 since a Sylow 2-subgroup of the
Schur multiplier has order 2. Since Sn/An has order 2, it follows by Lemma 3.8
that dim H2(Sn,M) ≤ 2, whence the result holds in this case. So we may assume
that M is a nontrivial irreducible FG-module. If n ≤ 14, then (1) and (2) follow
by computation [42]. So we assume that n > 14.
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By Lemma 6.7, it suffices to prove the results for An. So assume that G = An

and M is a nontrivial irreducible FG-module.
The result holds for n a power of 2 by the previous lemma. So assume that this

is not the case. As usual, we will obtain bounds for a subgroup of odd index and
then apply Lemma 3.6. We may also assume that n is even (since if not, An−1 has
odd index). Thus, we may write n = n1 + n2 where n1 = 2a is the largest power of
2 less than n and n2 ≥ 2.

First suppose that n2 = 2. Then S2a contains a Sylow 2-subgroup of G and so
by the previous lemma, dim H2(G,M) ≤ (17/6) dim M . So we assume that n2 ≥ 4.

Let N = N1 × N2 where Ni
∼= Ani

and let H be the normalizer of N . Then
H/N has order 2 and H contains a Sylow 2-subgroup of G.

Let V be an irreducible FH-module. If V is trivial, then by Lemma 3.8,
dimH2(H,V ) ≤ dim H2(H/N, V ) + dim H2(N,V )H + dimH1(H/N,H1(N,V )).
The first term on the right hand side is 1. Since N = N1 × N2, H2(N,V ) is 2-
dimensional. If n2 > 4, then N is perfect, and H1(N,V ) = 0. If n2 = 4, then
H1(N,V ) = Hom(N,V ) = 0. Thus, dimH2(H,V ) ≤ 3.

Suppose that V is nontrivial. Let W be an irreducible FN -submodule. Write
W = W1⊗W2 with the Wi irreducible Ni-modules. If both of the Wi are nontrivial,
then H1(N,W ) = 0 by Lemma 3.10 and so H1(N,V ) = 0 (since V is a direct
sum of submodules of the form gW, g ∈ H). Also by Lemma 3.10, H2(N,W ) =
H1(N1,W1) ⊗ H1(N2,W2) has dimension at most (dim W )/4 (we leave it to the
reader to verify this when n2 = 4). It follows by Lemma 3.8 that dimH2(H,V ) ≤
(dim V )/4.

If W1 is nontrivial, but W2 is trivial, then dimH2(N,W ) ≤ dim H2(N1,W ) ≤
(65/24) dim W . By Lemma 3.8,

dim H2(H,V ) ≤ dimH2(H/N, V N ) + dim H2(N,V )H + dimH1(H/N,H1(N,V )).

Note that V N = 0 and as noted above the middle term is at most (65/24)(dim V ).
Finally, observe that since H1(N2, F ) = 0, dim H1(N,V ) = dim H1(N1, V ) <
dimV/8 (this last inequality follows by Theorem 6.1 for 2a > 8). This gives
dimH2(H,V ) ≤ (17/6) dim V .

Finally, suppose that N1 is trivial on V , but N2 is not. We consider the
inequality above. The first term on the right side of the inequality is 0. If
n2 > 8, then the middle term is at most dimH2(N2, V ) ≤ (65/24) dim V and
dimH1(N,V ) = dimH1(N2, V ) ≤ (1/13) dim V . Thus dimH2(H,V ) ≤ ((65/24)+
(1/13))(dim V ) < (17/6) dim V . If n2 < 8, it follows by [42] that dimH2(N2, V ) +
dimH1(N2, V ) ≤ dim V for all nontrivial irreducible modules. In particular, it
follows that dimH2(H,V ) ≤ (17/6)(dim V ) for all values of n2.

Arguing as usual, we see that the number of trivial composition factors of N1

on M is at most (dim M)/2. Thus, by the previous arguments, dimH2(H,M) ≤
(3/2 + 17/12) dim M = (35/12) dim M . �

7. SL: Low Rank

In this section, we consider the groups SL(d, q), d ≤ 4. We use a gluing argument
and the bounds for SL(4, q) and Sd to get bounds for all SL(d, q) in the next section.

We start with an improvement of the bound given in (1.2) for H1 in the natural
characteristic. There are much better bounds for cross characteristic representa-
tions [28]. We will use Lemma 3.6 without comment below.
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Theorem 7.1. Let G = SL(d, q) be quasisimple and F an algebraically closed field
of characteristic p with q = pe. Let M be an irreducible FG-module.

(1) If d = 2, then dim H1(G,M) ≤ (dim M)/3 unless either p = 2 and
dim M = 2 or p = 3 and G = SL(2, 9) with dimM = 4.

(2) dim H1(G,M) ≤ (dim M)/d′, where d′ is the largest prime with d′ ≤ d.

Proof. If d = 2, all first cohomology groups have been computed [1], and the result
holds by inspection.

If the center of G acts nontrivially on M , then H1(G,M) = 0 by Lemma 3.12.
So we may view M as an H-module with H = PSL(d, q). Note that by Lemma 3.8,
H1(G,M) ∼= H1(H,M).

We now prove (2) when d is an odd prime. Let T be a maximal (irreducible)
torus of size (qd − 1)/((q − 1) gcd(d, q − 1)). Let N = NH(T ) and note that N/T is
cyclic of order d. We claim that d does not divide |T |. If d does not divide q − 1,
this follows from the fact that qd ≡ q mod d. If d|(q − 1), then write q = 1 + djs
where d does not divide s. Then since d is odd, qd = 1 + dj+1s′ where d does not
divide s′ and this proves the claim.

Let y ∈ N be of order d. We claim that CT (y) = 1. Since gcd(|T |, d) = 1, we
can lift T to an isomorphic subgroup of SL(d, q) and it suffices to prove CT (y) = 1
in SL(d, q). Then we can identify T with the norm 1 elements in F

∗
qd of order prime

to d and y induces the q-Frobenius automorphism of this field, whence its fixed
point set is F

∗
q . This has trivial intersection with T , whence the claim follows. This

also implies that y permutes all nontrivial characters of T in orbits of size d. Thus
dim[T,M ]〈y〉 = (dim[T,M ])/d.

Note that up to conjugacy, y is a d-cycle in Sd ≤ PSL(d, q). So y is conjugate
to y−1 in Sd and so also in H. So choose z ∈ H that inverts y. Then z does not
normalize T (since y is not conjugate to y−1 in N). It now follows by the main
result of [9] (based on [24]) that H = 〈N, zNz−1〉. Apply [23, Lemma 4] to conclude
that dim H1(H,M) ≤ dim[T,M ]〈y〉 ≤ (dim M)/d.

We now complete the proof of (2) by induction. We have proved the result
for d any odd prime. It is more convenient work with FqG-modules. Suppose d
is not prime – in particular, d′ ≤ d − 1 in (2). Let P be a maximal parabolic
stabilizing a 1-space. So P = LQ where Q is the unipotent radical of P , L is a Levi
subgroup with L ∼= GL(d−1, q) and Q is the natural module for J = SL(d−1, q) ≤
L. Since P contains a Sylow p-subgroup of G, it suffices to prove the bound for
H1(P, V ) with V an irreducible L-module. If V is not isomorphic to Q as FpL-
modules (equivalently, if V is not isomorphic to a Galois twist of Q as FqL-modules),
then H1(P, V ) = H1(L, V ) (by Lemma 3.8) and induction gives the result. If
V ∼= Q, then H1(L,Q) = 0 unless q = 2 and d = 4 (cf. [7]). This implies that
dimH1(P, V ) = 1 ≤ (dim V )/(d − 1) ≤ (dim V )/d′. If q = 2 and d = 4, then
G = A8, and the result is in [42]. �

7.1. SL(2).

Theorem 7.2. Let G = SL(2, pe) with p odd, pe ≥ 5 and F an algebraically closed
field of characteristic r > 0. Let M be an irreducible FG-module. Set q = pe.

(1) If r 6= 2 and r 6= p, then dimH2(G,M) ≤ 2(dim M)/(q − 1).
(2) If p 6= r = 2, then dimH2(G,M) ≤ dimM .
(3) If r = p, then dim H2(G,M) ≤ (dim M)/2.
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Proof. If q ≤ 11, these results all follow by direct computation [42]. So assume that
q > 11.

In (1), a Sylow r-subgroup of G is cyclic, whence Lemma 3.5 implies that
dimH2(G,M) ≤ 1. Since the smallest nontrivial representation of SL(2, q) in any
characteristic other than p has dimension (q − 1)/2, (1) holds.

Now consider (2). We first bound dimH2(PSL(2, q),M). Set H = PSL(2, q).
We refer the reader to [11] for basic facts about the 2-modular representations of
H. In particular, every irreducible representation is the reduction of an irreducible
representation in characteristic zero. The characters of these representations are
described in [14, Theorem 38.1]. Let B = TU be a Borel subgroup of H (of order
q(q − 1)/2) with T a torus of order (q − 1)/2. Note that B has a normal subgroup
UT0 of index a power of r.

It follows from [11] and [14, 38.1] that either M is one of two Weil modules of
dimension (q−1)/2 or has dimension q±1. Moreover, it follows that the modules of
dimension q + 1 are all of the form λH

B with λ a nontrivial 1-dimensional character
of B, and so by Shapiro’s Lemma, H2(H,M) ∼= H2(B, λ). Since λ is nontrivial, it
is nontrivial on UT0 and so by Lemma 3.12, H2(B, λ) = 0.

Suppose that dimM = q − 1. If 4|(q − 1), then M is projective (cf. [14, 62.3,
62.5]) and so H2(H,M) = 0. So suppose that 4|(q + 1). By inspection of the
character tables in [14, 38.1], M is multiplicity free as a U -module and so every
nontrivial character of U occurs precisely once in M . Since T acts semiregularly
on the nontrivial characters of U (and so all the U -eigenspaces as well), M is a free
rank 2 module for the split torus T . Let x be an involution inverting T . Note that
|T | = (q−1)/2 is odd. Thus, the only T -eigenspace that is x-invariant is the trivial
eigenspace. Write M = [T,M ] ⊕ MT . So all Jordan blocks of x on [T,M ] are of
size 2. Since dim MT = 2, x has either 0 or 2 Jordan blocks of size 1. Since there
is a unique class of involutions in H, this implies that if Y is any cyclic 2-subgroup
of H, thenY has at most 2 Jordan blocks of less than maximal size on M . Since
Jordan blocks of maximal size correspond to projective modules, this implies that
dimHk(Y,M) ≤ 2 for k > 0.

Let J be a nonsplit torus of order (q+1)/2. There is a unique class of involutions
in H and so by conjugating we may assume that x is the unique involution in J .
Write J = J1 × J2 where J1 has odd order and J2 is the Sylow 2-subgroup of
J . Set s = |J2|. We see from [11] and [14] that dimMJ1 = 2s or 2s − 2 and so
from our observations about the Jordan structure of the involution in J , J has at
most 3 Jordan blocks with trivial character and at most 2 of those have size less
than s. By Lemma 3.12, Hj(J, [J1,M ]) = 0. So Hj(J,M) = Hj(J2,M

J1). Thus,
dimHj(J,M) ≤ 2 for j > 0 and dimMJ ≤ 3. Let L = NH(J) and note that
[H : L] is odd. By Lemma 3.8,

dimH2(L,M) ≤ dimH2(L/J,MJ ) + dimH2(J,M) + dimH1(L/J,H1(J,M)).

The first term on the right is at most 3, the middle term at most 2 and the
last term at most 2. Thus, dim H2(G,M) ≤ 7. Since q > 11, this implies that
dimH2(G,M) < (7/18) dim M < (dim M)/2.

Finally, consider the case that M is a Weil module. In this case (by [14, Theorem
38.1]), Q has (q − 1)/2 distinct characters on M that are freely permuted by T ,
whence M ∼= FT as an FT -module. If 4|(q − 1), then the normalizer of T has odd
index, and arguing as above, we see that dimH2(H,M) ≤ 1. If 4 does not divide
q − 1, then as above, we see that an involution has precisely one trivial Jordan
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block, and so if i > 0, dim Hi(J,M) ≤ 1. In all cases dim H2(H,M) ≤ 3. Thus,
dimH2(H,M) < (dim M)/2 (since q ≥ 11).

Let Z = Z(G) and note that |Z| = 2. In all cases,

dimH2(G,M) ≤ dimH2(H,M) + dimH2(Z,M)G + dim H1(H,H1(Z,M)).

If M is trivial, then dimH2(G,M) = 1. Otherwise, the middle term on the right
is 0. The first term on the right is at most dim M/2. The last term is at most
(dim M)/2. Thus, dimH2(G,M) ≤ dimM .

Finally, consider (3). It is more convenient to work over F = Fp in this case.
Let B = TU be a Borel subgroup with |U | = q.

Let W be an irreducible FB-module. Then by Lemma 3.8 and the fact that T
has order coprime to p,

dimH2(B,W ) ≤ dim H2(U,W )T .

Note that U is a T -module by conjugation. As we have seen (Lemma 3.16),
H2(U,W ) = ∧2(U∗) ⊗ W ⊕ U∗ ⊗ W . So T has fixed points if and only if either
U ∼= W or W is a homomorphic image of ∧2(U). Note we are taking exterior powers
over F and so ∧2(U) has dimension e(e − 1)/2. Suppose that α of order (q − 1)/2
is an eigenvalue on U for a generator t of T . Then the eigenvalues of t on U (over
the algebraic closure) are just the e Galois conjugates of α. So the eigenvalues of t

on ∧2(U) are all Galois conjugates of α1+pj

for some 0 < j < e. Note that this is
never a Galois conjugate of α and also T has no multiple eigenvalues on ∧2(U) (by
Lemma 3.17).

So we have seen that H2(B,W ) = 0 unless W ∼= U or W ∼= U ⊗Fq
Upj

for some

j with 1 < j < e as FpT -modules. Moreover, as noted above, ∧2(U) is multiplicity
free, and so, using Lemma 3.16, dim H2(B,W )T ≤ dimW .

This already gives the inequality dimH2(G,M) ≤ dimH2(B,M) ≤ dim M . If
M is trivial, then H2(G,M) = 0. If M is irreducible and nontrivial, then if W oc-
curs as a T -submodule, so does W ∗. Thus, in fact, dimH2(B,M) ≤ (dim M)/2. �

Theorem 7.3. Let G = SL(2, q) with q = 2e ≥ 4, and let F be an algebraically
closed field of characteristic r > 0. Let M be an irreducible FG-module.

(1) If r 6= 2, then dimH2(G,M) ≤ (dim M)/(q − 1).
(2) If r = 2, then dimH2(G,M) ≤ (dim M)/2 unless 2e = 4 and M is the

trivial module.

Proof. If r is odd, then a Sylow r-subgroup is cyclic, whence dim H2(G,M) ≤ 1 by
Lemma 3.5. If M is trivial, H2(G,M) = 0. It is obvious that the smallest faithful
representation for a Borel subgroup has dimension q − 1, whence also for G.

Let r = 2. If q > 4, the proof is identical to the proof in the previous lemma
when p = r. If q = 4, then ∧2(U) is the trivial module, which explains why
H2(SL(2, 4), F ) 6= 0. For q = 4, the result follows by [42]. �

7.2. SL(3).

Theorem 7.4. Let p and r be primes. Let G = SL(3, q), q = pe, F = Fr and M
an irreducible FG-module. Then either dimH2(G,M) ≤ dimM or 3 = r 6= p and
dimH2(G,M) ≤ (3/2) dim M .
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Proof. If q ≤ 4, the result follows by a direct computation [42]. So assume that
q > 4.

First consider the case that r 6= p.
If r does not divide q − 1, then a Sylow r-subgroup of G is cyclic, whence the

result holds by Lemma 3.5.
Next suppose that 3 6= r|(q − 1). Then a Sylow r-subgroup fixes a 1-space

and a complementary 2-space in the natural representation. Let P be the full
stabilizer of one of these subspaces with unipotent radical Q. Then for one of the
choices for P , dimMQ ≤ (dim M)/2. Note that P = LQ with L = GL(2, q). Let
J = SL(2, q) < L. So dimH2(G,M) ≤ dim H2(P,M) ≤ dim H2(L,MQ) (here
we are using Lemma 3.8 and the fact that r does not divide |Q|). Let V be an
irreducible L-module. If V is the trivial module, then dimH2(L, V ) = 1 (since J
has trivial Schur multiplier and L/J is cyclic of order a multiple of r). Otherwise,
by Lemma 3.8,

dimH2(L, V ) ≤ dimH2(J, V ) + dimH1(L/J,H1(J, V )).

By the results of the previous subsection, dimH2(J, V ) ≤ dim V , and by (1.2)
dimH1(J, V ) ≤ (dim V )/2. Thus, dim H2(G,M) ≤ (1.5) dim MQ ≤ (3/4) dim M .

Suppose that r = 3 does divide q − 1. Then a Sylow 3-subgroup is contained in
the normalizer H of a split torus T and H/T ∼= S3.

Let V be an irreducible FH-module. If T is nontrivial on V , then by Corollary
3.12, H2(H,V ) = 0. So we may assume that dim V = 1 and H either acts trivially
on V or via the sign representation for S3. Now we use Lemma 3.8 to see that

dim H2(H,V ) ≤ dimH2(S3, V ) + dimH2(T, V )H + dim H1(S3,H
1(T, V )).

Note that H1(T, V ) ∼= Hom(T, V ) is an indecomposable 2-dimensional S3 module.
Thus, by Lemma 3.5, the left and right hand terms of the right side of the above
inequality are each at most 1. Finally, by Lemma 3.16, there is an exact sequence

0 → HomH(T, V ) → H2(T, V )H → HomH(∧2(T ), V ).

Note that the only H-simple homomorphic image of T is the sign representation
for S3 while ∧2(T ) only surjects onto the trivial module. Thus, dimH2(T, V )H ≤ 1
and so dim H2(H,V ) ≤ 3 dim V . Let T0 denote the Hall 3′-subgroup of T . Then
M = [T0,M ]⊕MT0 . Since q > 4, T0 is nontrivial (indeed it is either a Klein group
of order 4 or contains a regular semisimple element). Considering the maximal
subgroups of SL(3, q) [40] and [27], there are two conjugates of T0 which generate
G, whence dim MT0 ≤ (dim M)/2 by Lemma 3.19. Since H2(H, [T0,M ]) = 0 by
Lemma 3.12, the computation above shows that dimH2(H,M) ≤ 3 dim MT0 ≤
(3/2)(dim M).

Now consider the case p = r. Let P = LQ be the stabilizer of a 1-space or
a hyperplane where Q is the unipotent radical of P and L ∼= GL(2, q) is a Levi
complement. Let Z = Z(L) and note that Z is cyclic of order q − 1. Let T be a
split torus containing Z (of order (q − 1)2).

Let V be an irreducible FP -module. It suffices to prove that dim H2(P, V ) ≤
dimV . By Lemma 3.8,

dim H2(P, V ) ≤ dimH2(L, V ) + dimH2(Q,V )L + dim H1(L,H1(Q,V )).

Consider the middle term on the right. Using Lemma 3.16 and arguing as in the
proof of Lemma 3.17, ∧2Q has distinct composition factors as an L-module (and no
composition factor is isomorphic to Q as an L-module), whence the second term has
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dimension at most (dim V )/2 (since the dimension of V is at least 2 over EndG(V )
unless [L,L] acts trivially on V but then V is not a homomorphic image of Q or
∧2(Q)).

Suppose that Z is trivial on V . Since q > 4, Z is nontrivial on Q and every
composition factor of ∧2Q, whence the middle term on the right is 0. Similarly, Z
acts without fixed points on H1(Q,V ) and so by Corollary 3.12, H1(L,H1(Q,V )) =
0 as well. Thus, dimH2(P, V ) ≤ dim H2(L, V ) and this is at most (dimV )/2 by
the result for SL(2).

Now suppose that Z is nontrivial on V . By Lemma 3.12, H2(L, V ) = 0. Note
that W := H1(Q,V ) ∼= Q∗ ⊗ V as an L-module (however, the tensor product is
over Fp). Since V is L-irreducible, it must be Z-homogeneous. By Lemma 3.12,
H1(L,W ) = H1(L,WZ) and this is either 0 unless V and Q involve the same FpZ-
irreducible module. If that is the case, then dimWZ = 2dim V . Thus by (1.2),
dimH1(L,W ) ≤ dimV . In this case, HomZ(∧2Q,V ) = 0 and so dim H2(P, V ) ≤
dimV unless perhaps Q ∼= V . We still obtain this inequality since we compute in
this case that dim H1(L,W ) < dim V .

If Z is nontrivial on V , but V and Q do not involve the same irreducible FpZ-
module, then H1(L,W ) = 0 and so in this case dimH2(P, V ) ≤ (dim V )/2. �

7.3. SL(4).

Theorem 7.5. Let G = SL(4, q), q = pe. Let F = Fp. If M is an irreducible
FpG-module, then dim H2(G,M) < 2 dim M .

Proof. If q ≤ 3, see [42]. So assume that q > 3. Let P be the stabilizer of a
1-space. Since P contains a Sylow p-subgroup, it suffices to bound dimH2(P,M).
Write P = LQ where Q is the unipotent radical of P and L ∼= GL(3, q) is the Levi
complement.

By Lemma 3.8

dim H2(P,M) ≤ dim H2(L,MQ) + dimH2(Q,M)L + dim H1(L,H1(Q,M)).

Since G is generated by Q and the radical of the opposite parabolic, by replacing
P by its opposite, we may assume that dim MQ ≤ (1/2)(dim M), and so by the
result for SL(3), dimH2(L,MQ) ≤ (1/2) dim M .

Consider H2(Q,M) as an L-module. By taking a P -composition series for M , it
suffices to bound dimH2(Q,V )L where V is an irreducible FP -module. By Lemma
3.16 we have the exact sequence,

0 → Hom(Q,V )L → H2(Q,V )L → Hom(∧2(Q), V )L

Since Q is an irreducible FL-module, the second term either is zero or is isomor-
phic to EndL(Q) ∼= Fq and so has dimension (dimV )/3. Next consider ∧2(Q)
over Fp. Note that Q ⊗Fp

⊗Fq is is the sum of Galois twists Qi, 1 ≤ i ≤ e

as an FqL-module. The exterior square will be the sum of all Qi ⊗ Qj , i < j
plus the sum of all ∧2Qi. We note that these are all irreducible and nonisomor-
phic as FqL-modules. Since none of them is isomorphic to Q, it follows that if
V = Q, then dim H2(Q,V )L ≤ (dim V )/3. So assume this is not the case. Thus,
Hom(∧2(Q), V )L = 0 unless V is isomorphic to one of Qi ⊗ Qj or ∧2(Qi) If V is
one of these modules, then Hom(∧2(Q), V )L ∼= EndL(V ) and so has dimension at
most (dim V )/3. Thus, H2(Q,V )L has dimension at most (dim V )/3.
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Finally, consider the far right term of the sequence above. Again, we can take
a P -composition series for M and consider H1(L,H1(Q,V )) for V an irreducible
FP -module. Now H1(Q,V ) = Hom(Q,V ) (over Fp). Let T = Z(L). By Corollary
3.12, H1(L,H1(Q,V )) = H1(L,H1(Q,V )T ). Then dimH1(Q,V )T ≤ 3 dim V .
So applying Theorem 7.1, we see that dimH1(L,H1(Q,V )) ≤ dim V . Thus,
dimH2(G,M)/dim M < 1/2 + 1/3 + 1 < 2 as required. �

Theorem 7.6. Let G = SL(4, q), q = pe. Let F = Fr for r a prime. If M is an
irreducible FG-module, then dimH2(G,M) < 2 dim M .

Proof. By the previous result we may assume that r 6= p.
Let R be a Sylow r-subgroup. We consider various cases.
First suppose that r > 3, whence R is abelian. If r|(q − 1), then R ≤ J , the

monomial group J := T.S4 where T is a split torus. Since r does not divide |S4|,
Lemma 3.8 and Corollary 3.12 imply that dimH2(J,M) ≤ dimH2(T,M)S4 . It
suffices to prove the inequality for W irreducible for J . If T is not trivial on W ,
then H2(J,W ) = 0. If T is trivial on W , then by Lemma 3.16, dimH2(T,W ) ≤
dim HomG(T,W ) + dim HomG(∧2(T ),W ). Note that the only irreducible quotient
of T is the 3-dimensional summand of the permutation module. Similarly, the only
irreducible quotient of ∧2(T ) is the same module. So if W is not that module,
H2(J,W ) = 0. If W is that module, then each term on the right in the above
inequality is 1 and so dimH2(J,W ) ≤ 2 < 3 = dim W .

If r > 3 and does not divide q − 1, then R has rank at most 2. If R is cyclic,
the result holds by Lemma 3.5. If not, then R is contained in the stabilizer of
a 2-space. The radical Q of this parabolic has fixed space of dimension at most
(dim M)/2 (since Q and its opposite generate G). Lemma 3.8 together with the
fact that dimH2(R,F ) = 3 gives dim H2(R,M) ≤ (3/2)(dim M), and the result
holds.

Suppose r = 3. If 3 does not divide q−1, then R is abelian and stabilizes a 2-space
and the argument above applies. So suppose that 3|(q− 1). Then R fixes a 1-space
and 3-space, and so is contained in the corresponding parabolic P = QL. We may
assume that dim MQ ≤ (dim M)/2. Thus, dimH2(P,M) ≤ dimH2(L,MQ).

By the result for SL(3, q) (Theorem 7.4), we see that H2(J,MQ) has dimension
at most (3/2)(dim MQ) where J is the derived subgroup of L. So

dimH2(L,MQ) ≤ dim H2(L/J,MQL)+dim H2(J,MQ)+dim H1(L/J,H1(J,MQ)).

The terms on the right are bounded by (dimM)/2, (3/4) dim M and (dimM)/4,
whence dim H2(G,M) < 2 dim M .

Finally, consider the case r = 2. If q = 3, see [42]. So assume that q ≥ 5. We work
over an algebraically closed field. If M is the trivial module, then dimH2(G,F ) = 0
(since the Schur multiplier of SL(4, q) is trivial). So assume that M is not trivial.
By computing orders, we see that R is contained in H, the stabilizer of a pair of
complementary 2-spaces. Let L = L1 × L2 = SL(2, q) × SL(2, q). Note that L is
normal in H, and H/L is a dihedral group of order 2(q − 1).

Let V be an irreducible H-module. If V L = 0, let W be an irreducible L-
submodule of V . So W = W1 ⊗ W2 with Wi an irreducible Li-module. If each Wi

is nontrivial, then by Lemma 3.10, H1(L, V ) = 0, and so by Lemma 3.11, it follows
that dimH2(H,V ) ≤ dimH2(L, V ) ≤ (dim V )/4. If W1 is nontrivial and W2 is
trivial, then V is an induced module, and so H2(H,V ) ∼= H2(X,D) where X/L is
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cyclic and L2 is trivial on D. Then by Lemma 3.8,

dimH2(X,D) ≤ dim H2(L,D) + dimH1(X/L,H1(L,D)).

Then dimH2(L,D) = dimH2(L1,D) ≤ dim D ≤ (dim V )/2. Furthermore, we
know that dimH1(X/L,H1(L,D)) ≤ dimH1(L,D) = dim H1(L1,D). By (1.2),
dimH1(L1,D) ≤ (dim D)/2 ≤ (dim V )/4. Thus, dimH2(H,V ) ≤ (3/4)(dim V ).

If V is trivial for L, then by Lemma 3.8, dimH2(H,V ) ≤ dim H2(H/L, V ) +
dimH2(L, V )+dim H1(H/L,H1(L, V )). Since L is perfect and since the Schur mul-
tiplier of L is trivial, it follows by Lemma 3.9 that dimH2(H,V ) ≤ dimH2(H/L, V ).
Since H/L is dihedral, it follows that by Corollary 3.12 that either H2(H/L, V ) = 0
or V is trivial. It is easy to see that H2(H/L, F2) is 3-dimensional. It is straightfor-
ward to see that G can be generated by two conjugates of an odd order subgroup
of L, whence H can have at most (dim M)/2 trivial composition factors by Lemma
3.19. Thus, dimH2(H,M)/dim M ≤ (3/2) + (3/8) < 2. �

8. SL: The General Case

We handle SL(n) by means of a gluing argument. This is a variation of the
presentations given in [21] and [22]. Note also that the proposition below applies
in either the profinite or discrete categories. The key idea is that it suffices to
check relations on subgroups generated by pairs of simple root subgroups – this is
a consequence of the Curtis-Steinberg-Tits presentation (see [13]). We will also use
this method to deduce the result for groups of rank at least 3 from the results on
alternating groups and the result on rank 2 groups.

We state the Curtis-Steinberg-Tits result in the following form:

Lemma 8.1. Let G be the universal Chevalley group of a given type of rank at least
2 over a given field. Let Π be the set of simple positive roots of the corresponding
Dynkin diagram and let Lδ be the rank one subgroup of G generated by the root
subgroups Uδ and U−δ for δ ∈ Π. Let X be a group generated by subgroups Xδ, δ ∈
Π. Suppose that π : X → G is a homomorphism such that π(Xδ) = Lδ and π is
injective on 〈Xα,Xβ〉 for each α, β ∈ Π. Then π is an isomorphism.

Let X and Y be two disjoint sets of size 2. Set G = SL(n, q) = SL(V ) for n > 4.
Let e1, . . . , en be a basis for V . Let 〈X|R〉 be a presentation for An (acting on
the set {1, . . . , n}) and 〈Y |S〉 a presentation for SL(4, q) acting on a space W that
is the span of e1, . . . , e4 (viewing these either as profinite presentations or discrete
presentations).

Let G1 be the subgroup of G consisting of the elements which permute the
elements of the basis as even permutations. Let G2 be the subgroup of G that
acts trivially on ej , j > 4 and preserves the subspace generated by e1, . . . , e4. Let
L be the subgroup of SL(4, q) leaving the span of {e1, e2} invariant and acting
trivially on e3 and e4. So L ∼= SL(2, q). Let S ∼= A4 be the subgroup of SL(4, q)
consisting of the even permutations of e1, . . . , e4. Pick generators u, v of S where
u = (e1 e2)(e3 e4) and v = (e1 e2 e3). Note that u normalizes L. Choose a ∈ L
such that L = 〈a, au〉 (e.g., we can take a to be almost any element of order q + 1).

Let T ∼= A4 be the subgroup of An fixing all j > 4. In T , let u′ = (12)(34) and
v′ = (123). Let K ∼= An−2 be the subgroup of An fixing the first two basis vectors.
Let b and c be any generators for K.
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Let J be the group generated by X ∪ Y with relations R,S, u = u′, v = v′,
[a, b] = [a, c] = 1. Let J1 ≤ J be the subgroup generated by X, and J2 the
subgroup generated by Y .

There clearly is a homomorphism γ : J → G determined by sending Ji to Gi for
i = 1, 2 (where we send X to the corresponding permutation matrices in G and Y
to the corresponding elements in G2 – all relations in J are satisfied and so this
gives the desired homomorphism). In particular, this shows that Ji

∼= Gi for i = 1
and 2 and so we may identify Gi and Ji. In particular, u and v are words in Y and
u′, v′ are words in X.

Proposition 8.2. J ∼= G.

Proof. As we noted above, there is a surjection γ : J → G that sends J1 to G1 and
J2 to G2. It suffices to show that γ is an isomorphism. We also view a, b and c as
elements of J , and L as a subgroup of J .

We first show that [K,L] = 1 in J . By the relations, we have that [a,K] = 1.

Since u′ normalizes K and u = u′, we see that 1 = [au,Ku′

] = [au,K]. Since
L = 〈a, au〉, [K,L] = 1. Set E := 〈K,u′〉 ∼= Sn−2 ≤ An. Since u normalizes L,
we see that E does as well. Note that E is precisely the stabilizer in An of the
subset {1, 2}. This is a maximal subgroup of An, and since An does not normalize
L (since γ(An) does not normalize γ(L) in G), it follows that E = NAn

(L) (in J).
Let Ω be the set of conjugates of L under An in J . By the previous remarks,

|Ω| = [An : Sn−2] = n(n − 1)/2 and moreover, there is an identification between
Ω and the subsets of size 2 of {1, . . . , n}. Let Li,j denote the conjugate of L
corresponding to the subset {i, j}. Note that γ(Li,j) is the subgroup of G that
preserves the 2-space {ei, ej} and acts trivially on the other basis vectors of V .

Let ∆ be the orbit of L under A4. Note that |∆| = 6 and ∆ corresponds to the
two element subsets of {1, 2, 3, 4}. Since An is a rank 3 permutation group on Ω,
any pair of distinct conjugates of L in Ω is conjugate to either the pair {L,L2,3} or
{L,L3,4}.

Suppose that L1 and L2 are two of these conjugates. By the above remarks, they
are conjugate by some element in the group to L and M = Lx for some x ∈ A4. In
particular, we see that M is the subgroup of SL(4, q) fixing the 2-space generated
by ex(1) and ex(2) and and fixing the vectors ex(3) and ex(4). Since we are now inside
SL(4, q), we see that either [L,M ] = 1 or L and M generate an SL(3, q) ≤ SL(4, q).
Since γ is injective on SL(4, q), γ is injective on 〈L,M〉 and so is injective on the
subgroup generated by 〈Lh1 , Lh2〉 for any elements h1, h2 ∈ An.

Thus, by the Curtis-Steinberg-Tits relations (Lemma 8.1), N = 〈{Lg|g ∈ An}〉 ∼=
G, and indeed γ : N → G is an isomorphism.

It suffices to show that J = N . Since An normalizes N and since SL(4, q) ≤ N
(SL(4, q) contains the A4 conjugates of L and these generate SL(4, q)), it follows
that N is normal in J . Clearly, SL(4, q) is trivial in J/N and since An ∩ N ≥ A4,
it follows that An ≤ N as well. Thus, J = N and the proof is complete. �

Since L and K are 2-generated, J is presented by 4 generators and |R|+ |S|+ 4
relations.

By Theorem 6.2, we have profinite presentations for An with 4 relations. By
Theorems 7.5 and 7.6, SL(4, q) has a profinite presentation with 3 relations. Thus
we have a profinite presentation for SL(n, q) with 4 generators and 4 + 3 + 4 = 11
relations. Using Lemma 3.15, we obtain:
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Corollary 8.3. Let G = SL(n, q) with n ≥ 5. Then G has a profinite presentation
on 2 generators and 9 relations. In particular, r̂(G) ≤ 9.

Theorem 8.4. Let G be a quasisimple group that surjects on PSL(n, q). Let F be
a field. Then

(1) r̂(G) ≤ 9; and
(2) dim H2(G,M) ≤ 8.5 dim M for any FG-module M .

Proof. If SL(n, q) has trivial Schur multiplier, then (1) follows by Corollary 4.2 and
the previous result. This is the case unless (n, q) = (2, 4), (2, 9), (3, 2), (3, 4) or (4, 2)
[16, p. 313]. In those cases, we have a smaller value for r̂(SL(n, q)) and Corollary
4.2 gives (1). Now (2) follows from (1) by (1.4). �

9. Low Rank Groups

In this section, we consider the rank one and rank two finite groups of Lie type.
We also consider some of the rank three groups which are used for our gluing
method.

The method for the low rank groups is fairly straightforward. With more work,
one can obtain better bounds. As usual, we will use Lemma 3.6 without comment.
We first consider the rank one groups.

Lemma 9.1. Let G be the universal cover of a rank one simple finite group of Lie
type.

(1) If G = SL(2, q), then h(G) ≤ 1.
(2) If G = Sz(q), q = 22k+1 > 2, then h(G) ≤ 1.
(3) If G = SU(3, q), q > 2, then h(G) ≤ 2.
(4) If G = 2G2(q), q = 32k+1 > 3, then h(G) ≤ 3.

Proof. Let R be a Sylow r-subgroup of G for some prime r. Let F = Fr.
(1) is proved in the previous section and (2) is proved in [50].
Consider G = SU(3, q) with q = pe. First suppose that p 6= r. If r 6= 3, then R

is either cyclic or stabilizes a nondegenerate subspace and so embeds in GU(2, q).
We use the result for SL(2, q) and Lemma 3.8 to deduce the result.

If 3 does not divide q + 1, the above argument applies to r = 3. Suppose that
r = 3|(q +1). Then R is contained in the stabilizer of an orthonormal basis and we
argue precisely as we did for SL(3, q) in Theorem 7.4.

So assume that p = r and R ≤ B, a Borel subgroup. Write B = TR with T
cyclic of order q2 − 1. Let Z = Z(R) of order q. If q = 4, one computes directly
that the bound holds. So assume that q > 4. Then T acts irreducibly on Z and on
R/Z. By Lemma 3.8, for V an irreducible FpB-module (i.e. a T -module),

dimH2(B, V ) ≤ dim H2(B/Z, V ) + dimH2(Z, V )B + dimH1(B/Z,H1(Z, V )).

Similarly, dimH2(B/Z, V ) ≤ dim H2(R/Z, V )T . Since V is a trivial R-module,
H2(R/Z, V )T = 0 unless V ∼= R/Z or V is a constituent of ∧2(R/Z). We argue as
usual to show that ∧2(R/Z) is multiplicity free (and does not surject onto R/Z). It
follows that dimH2(R/Z, V )T ≤ dim EndT (V ) ∼= V (as vector spaces). The same
argument shows that either H2(Z, V )B = 0 or V ∼= Z or V is a constituent of
∧2(Z), and in those cases H2(Z, V )B ∼= V (as vector spaces). Finally, note that
H1(B/Z,H1(Z, V )) ∼= H1(B/Z, V ∗), and so is either 0 or has dimension equal to
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dimV if V ∗ ∼= R/Z. So we see that each term is at most dim V , and at most two
of them can be nonzero. Thus, dimH2(B, V ) ≤ 2 dim V .

Finally, consider G = 2G2(3
2k+1), k > 1. See [46, 47] for properties of G.

If r = 2, then R is contained in H := C2 × PSL(2, q). Let V be a nontrivial
irreducible FH-module. By Lemma 3.10, H2(H,V ) ∼= H2(PSL(2, q)). Similarly, if
V is trivial, Lemma 3.10 implies that H2(H,V ) ∼= H2(C2, F ) ⊕ H2(PSL(2, q), F )
and so is 2-dimensional. By Lemma 7.3, it follows that dimH2(H,V ) ≤ 2 dim V .
If r > 3, then R is cyclic and the result holds by Lemma 3.5. If r = 3, then a
Borel subgroup is TR where T is cyclic of order q − 1. Moreover, there are normal
T -invariant subgroups 1 = R0 < R1 < R2 < R3 = R such that T acts irreducibly
on each successive quotient (acting faithfully on the first and last quotients and
acting via a group of order (q − 1)/2 on the middle quotient). Furthermore, R2 is
elementary abelian. Let V be an irreducible B-module. Then, by Lemma 3.8,

dimH2(B, V ) ≤ dimH2(B/R2, V )+dimH2(R2, V )B +dimH1(B/R2,H
1(R2, V )),

and

dimH2(B/R2, V ) ≤ dim H2(R3/R2, V )B .

By Lemma 3.17 and Lemma 3.16, it follows that dimH2(R3/R2, V )B ≤ dim V
and dimH2(R2, V )B ≤ dimV . Finally, consider the final term on the right. We can
write R2 = W (α)⊕W (β) as a direct sum of the T -eigenspaces with characters α and
β (of orders q−1 and (q−1)/2). Write V = W (γ) as a T -module. Then H1(R2, V )
is a direct sum of modules W (α−1γ′) and W (β−1γ′) where γ′ is a Frobenius twist
of γ. Since T has order coprime to the characteristic, we see that dim H2(B/R2, V )
will be the multiplicity of R3/R2 = W (α) in H1(R2, V ). The comments above
show that this multiplicity is 0 unless γ is a product of two twists of α or a twist
of α times a twist of β. It follows that the multiplicity in these cases is 1 and
dimH2(B, V ) ≤ dimV . Thus, dimH2(B, V ) ≤ 3 dim V as required. �

We now consider the groups of rank 2, subdividing them into two classes. The
classical groups of rank 2 will arise in the consideration of higher rank groups and
so we need better bounds. The remaining cases do not occur as Levi subgroups in
higher rank groups and so do not impact any of our gluing arguments.

Lemma 9.2. (1) If G = SL(3, q), then h(G) ≤ 3/2.
(2) If G = SU(4, q), then h(G) ≤ 9/4.
(3) If G = SU(5, q), then h(G) ≤ 4.
(4) If G = Sp4(q), then h(G) ≤ 3.

Proof. We handle the various groups separately proving somewhat better results.
The result for SL(3, q) is a special case of Theorem 7.4. Let Fq be the field of
definition of the group with q = pe. Let r be a prime, R be a Sylow r-subgroup
of G and F = Fr. If M is a trivial FG-module, the result is clear (because we
know the Schur multiplier [16, pp. 312–313]). So it suffices to consider nontrivial
irreducible FG-modules.

Case 1. G = SU(4, q).

If r 6= p does not divide q, then the argument is identical to that given for
G = SL(4, q). Suppose that r = p. Let P be the stabilizer of a totally singular
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2-space. So P = LQ where L = GL(2, q2) and Q is an irreducible FqL-module of
order q4. By Lemma 3.8,

dimH2(G,M) ≤ dimH2(L,MQ) + dim H2(Q,M)L + dimH1(L,H1(Q,M)).

If q = 2, 3, we apply [42]. So assume that q > 3. Let Z = Z(L). By Corol-
lary 3.12, H1(L,H1(Q,M)) = H1(L,H1(Q,M)Z) = H1(L,HomZ(Q,M)). Since
dimH1(SL(2, q),W ) ≤ (dim W )/2 by (1.2), one can see that dim H1(L,H1(Q,M)) ≤
dimM . By Theorems 7.2 and 7.3, dimH2(SL(2, q),W ) ≤ (dim W )/2 and so
dimH2(L,MQ) ≤ (dim MQ)/2 ≤ (dim M)/4. Since ∧2(Q) is multiplicity free
(arguing exactly as in Lemma 3.17), the middle term is certainly at most dimM
and so dim H2(G,M) ≤ (9/4)(dim M).

Case 2. G = SU(5, q).

First consider the case r 6= p and r > 2. If r does not divide q + 1, then either
R is cyclic or R embeds in SU(3, q) or SU(4, q) and the result follows.

Suppose that r|(q+1). Then R is contained in H, the stabilizer of an orthonormal
basis. In particular, H has a normal abelian subgroup N that is homogeneous of
rank 4 with H/N = S5. Let V be an irreducible FH-module. By Lemma 3.8,

dim H2(H,V ) ≤ dimH2(S5, V
N ) + dim H2(N,V )S5 + dimH1(S5,H

1(N,V )).

If N acts nontrivially on V , then Lemma 3.12 implies that H2(H,V ) = 0. So
assume that this is not the case.

Since S5 has a cyclic Sylow r-subgroup, the first term on the right is at most 1
by Lemma 3.5. Since N does not have a 1-dimensional quotient (as an S5-module),
it follows that dimH2(H, Fr) ≤ 1. So we may assume that dim V > 1, and so
dimV ≥ 3.

Recall that dimH2(N,V )S5 ≤ dim HomS5
(N,V )+dim HomS5

(∧2N,V ). So if V
is a not a quotient of either N or ∧2(N), then dimH2(H,V ) ≤ 1 ≤ (1/3) dim V .
So assume that V is a quotient of either N or ∧2(N).

If r = 5, the only quotients of N and ∧2(N) are 3-dimensional. Since dim N = 4
and dim∧2(N) = 6, it follows that dimH2(H,V ) ≤ 4 = (4/3) dim V .

So assume that r 6= 5. If V is a quotient of N , then V is the irreducible
summand of the permutation module for S5. Thus, H2(S5, V ) = 0 by Lemma 3.4.
By dimension, it is clear that dim HomS5

(N,V )+dim HomS5
(∧2N,V ) ≤ 2, whence

the result.
If V is a nontrivial quotient of ∧2(N) and is not a quotient of N , then the same

argument shows that dim H2(H,V ) ≤ 3.
H2(S5, V ) = 0 if V is 1-dimensional and dimV ≥ 3 otherwise, this implies that

dimH2(S5, V
N ) ≤ (dim V )/3. This same argument shows that dim H1(S5,W ) ≤

(dim W )/3 for any FS5-module and so H1(S5,H
1(N,V )) ≤ (dim N)(dim V )/3 ≤

(4/3)(dim V ).
Consider the case that r = 2 6= p. Then R ≤ H := GU(4, q). We use the result

for N := SU(4, q) and Lemma 3.8. So dimH2(G,M) ≤ dim H2(H/N,MN ) +
dimH2(N,M)H + dimH1(H/N,H1(N,M)). This gives dim H2(G,M) ≤ 4 dim M
as above.

Finally, consider the case that r = p. Let P be the stabilizer of a totally singular
2-space. Then P = LU where L is the Levi subgroup of P and U is the unipotent
radical. Let J = SL(2, q2) ≤ L ∼= GL(2, q2) and Z = Z(L) cyclic of order q2 − 1.
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Also, note that W = [U,U ] is irreducible of order q4 and X := U/W is an irreducible
2-dimensional module (over Fq2) and that W is an irreducible 4-dimensional module

over Fq – it is isomorphic to X ⊗ X(q) (which is defined over Fq).
Let V be an irreducible FP -module. By Lemma 3.8,

dim H2(P, V ) ≤ dim H2(P/W, V ) + dim H2(W,V )P + dimH1(P/W,H1(W,V )).

Consider the first term on the right hand side of the inequality. By Lemma 3.8,
dimH2(P/W, V ) ≤ dim H2(L, V ) + dim H2(U/W,V )L + dimH1(L,H1(U/W,V )).
Note that P/W is very similar to a maximal parabolic subgroup of SL(3, q2). Ar-
guing precisely as in that case, we see that dim H2(P/W, V ) ≤ dimV .

Now consider the middle term. It is straightforward to see (arguing as in the
proof of Lemma 3.17) that ∧2(W ) is multiplicity free and has no composition factors
isomorphic to W , whence the middle term has dimension at most dim V .

Finally, consider the last term on the right. Set Y = H1(W,V ) ∼= W ∗ ⊗ V . By
Lemma 3.13, dim H1(P/W, Y ) ≤ dimH1(L, Y ) + dim HomL(U/W, Y ). By Corol-
lary 3.12, H1(L, Y ) ∼= H1(L, Y Z). Note that dim Y Z ≤ 2 dim V and so by (1.2),
it follows that dimH1(L, Y ) ≤ dim H1(J, Y Z) dim V . Thus, HomL(U/W, Y ) ∼=
HomL(U/W ⊗ W,V ).

Let λ be the fundamental dominant weight for J . So U/W = X = X(λ) (the
natural module over Fq2). Note that U is an FqJ-module satisfying U ⊗Fq

⊗Fq2
∼=

X ⊗F
q2

X(q). It is straightforward to see that U/W ⊗ W modulo its radical is

multiplicity free. Thus HomL(U/W, Y ) is either 0 or is isomorphic to EndL(V ),
and so has dimension at most dimV . It follows that dimH2(P, V ) ≤ 4 dim V .

Case 3. G = Sp(4, q).

If r > 3 and r 6= p, then R is abelian of rank 2, whence dimH2(G,M) ≤ 3 dim M
by Lemma 3.16.

If 3 ≥ r 6= p, then R is contained in J , the stabilizer of a pair of orthogonal
nondegenerate 2-spaces. If r = 3, this implies that

dimH2(G,M) ≤ dimH2(SL(2, q) × SL(2, q),M) ≤ dim M

by §7 and Lemma 3.10. If r = 2, then this shows that dimH2(J ′,M) ≤ dimM .
By Lemma 3.8,

dimH2(J,M) ≤ dimH2(J/J ′,MJ ′

)+dim H2(J ′,M)J +dim H1(J/J ′,H1(J ′,M)),

and so dim H2(J,M) < 3 dim M .
If p = r, then R ≤ P , the stabilizer of a totally singular 2-space. Write P = LQ

where L is a Levi subgroup and Q the unipotent radical. Note Q is elementary
abelian of order q3. By Lemma 3.8,

dim H2(P,M) ≤ dim H2(L,MQ) + dimH2(Q,M)L + dim H1(L,H1(Q,M)).

The first term on the right is at most dimMQ (by the result for SL(2, q)) and is
at most (dim M)/2. Arguing as for SL(3, q), dim H1(L,H1(Q,M)) ≤ (3/2) dim M .
By Lemma 3.16, the middle term is at most dim M , whence dim H2(G,M) <
3 dim M . �

We now consider the remaining rank 2 groups.
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Lemma 9.3. Let G be a quasisimple finite group of Lie type and rank 2. Then
r̂(G) ≤ 6.

Proof. By the preceding lemma, we may assume that G is one of G2(q),
3D4(q) or

2F4(q)
′. Let p be the prime dividing q. Note that p = 2 in the last case.

Since G2(2) ∼= PSU(3, 3), we assume that q > 2 if G = G2(q). We also note
that a presentation is known for 2F4(2)′ which gives the result (cf. [51]), so we also
assume that q > 2 in that case.

Let r be a prime, F a field of characteristic r and M an irreducible FG-module.
Let R be a Sylow r-subgroup of G.
Case 1. G = G2(q), q > 2.

If r 6= p and r > 3, then R is contained in a maximal torus (since the order
of R is prime to the order of the Weyl group) and so R is abelian of rank at
most 2, whence dim H2(G,M) ≤ 3 dim M by Lemma 3.16. If p 6= r ≤ 3, then
R is contained in L with L ∼= SL(3, q).2 or SU(3, q).2 (for example, noting that
the only prime dividing the indices of both of these subgroups is p). If r 6= 2,
the result follows from the corresponding result for L. If r = 2, by Lemma 3.8
dimH2(L, V ) ≤ dimH2(L/J, V J)+dim H2(J, V )L+dimH1(L/J,H1(J, V )), where
J is the derived subgroup of L and V is an FL-module. If V is trivial, then this
gives dim H2(L, V ) ≤ 1. Otherwise, V J = 0, and dimH2(L, V ) ≤ dimH2(J, V ) +
dimH1(J, V ) < 4 dim V . So dimH2(G,M) ≤ 4 dim M .

Now assume that r = p. Let R ≤ P be a maximal parabolic subgroup. Write
P = LQ where L is a Levi subgroup and Q is the unipotent radical. We may choose
P so that Q has a normal subgroup Q1 with Q/Q1 and Q1 each elementary abelian
(of dimension 2 or 3 over Fq). Let V be an irreducible FP -module. It suffices by
Lemma 3.6 to prove the bound in the lemma for P .

By Lemma 3.8,

dim H2(P, V ) ≤ dimH2(L, V ) + dimH2(Q,V )L + dim H1(L,H1(Q,V )).

Note that X := H1(Q,V ) = Hom(Q,V ) = Hom(W,V ), where W = Q/Q1 has
order q2. If q is prime, then dim X ≤ 2 dim V , and so by (1.2), dimH1(L,X) ≤
dimV . If q is not prime, then Z = Z(L) acts nontrivially on W and so H1(L,X) =
H1(L,XZ) by Corollary 3.12. Since dimXZ ≤ 2 dim V , the same bound holds
in this case. By the result for SL(2, q) (Theorems 7.2 and 7.3), dimH2(L, V ) ≤
(1/2)(dim V ). So to finish this case, it suffices to show that dim H2(Q,V )L ≤
(5/2)(dim V ).

By Lemma 3.8,

dim H2(Q,V ) ≤ dim H2(Q/Q1, V ) + dim H2(Q1, V ) + dimH1(Q/Q1,H
1(Q1, V )).

The proof of this inequality (either using a spectral sequence or more directly in
[29]) shows that we have the same inequality after taking L-fixed points. Using
Lemma 3.16 and arguing as usual, we see that the sum of the first two terms on
the right is at most dimV . Similarly, the right-most term is Hom(Q/Q1 ⊗ Q∗

1, V )
and the dimension of the L-fixed points is at most dimV . The result follows.

Case 2. G = 3D4(q).

First suppose r 6= p. If p 6= r > 3, then R is contained in a maximal torus and is
abelian. By inspection, R has rank at most 2 and so dimH2(G,M) ≤ 3 dim M . If
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r = 3, then R ≤ H, the central product of SL(2, q)◦SL(2, q3), whence we can use the
bounds in §7 (obtaining a bound of 4 dimM). If r = 2, then R ≤ NG(H) and H has
index 2 in NG(H). The bound for H shows that dimH2(NG(H),M) ≤ 5 dim M .

If r = p, then R ≤ P = LQ with P a maximal parabolic, Q its unipotent
radical and L a Levi subgroup with simple composition factor SL(2, q3). Then
|Z(Q)| = q and Q/Z(Q) is the tensor product of the three twists of the natu-
ral module for SL(2, q3) (over Fq)). We argue as in the previous case to see that
dimH2(G,M) ≤ 5 dim M .

Case 3. G = 2F4(q), q > 2′.

First suppose that r > 3. Then R is abelian of rank at most 2 (by inspection of
the maximal tori – see [38]), and so by Lemma 3.16 dim H2(G,M) ≤ 3 dim M .

Note that G contains a subgroup H ∼= SU(3, q) (see [38]). If r = 3, then R ≤ H
and so dim H2(G,M) ≤ dim H2(SU(3, q),M) ≤ 3 dim M by Lemma 9.1.

If r = p = 2, then R ≤ P = LQ with P a maximal parabolic, L = Sz(q) × Cq−1

its Levi subgroup and unipotent radical Q. There is a sequence of normal subgroups
Q1 < Q2 < Q with elementary abelian quotients of order q, q4 and q5 respectively.
We argue as above and conclude that dimH2(G,M) ≤ 5 dim M . �

We consider two families of rank three groups that are used in the bounds for
F4(q) and 2E6(q).

Lemma 9.4. If G = Sp(6, q) or SU(6, q), then h(G) ≤ 6.

Proof. The proofs are similar to the rank 2 cases and since the bounds are quite
weak, we only sketch the proof.

Let F be a field of characteristic r. Let R be a Sylow r-subgroup of G.
First consider G = Sp(6, q) with q = pa.
If p 6= r ≥ 5, then R is abelian of rank at most 3, whence dimH2(R,M) ≤

6 dim M by Lemma 3.16.
If r = 3 6= p, then R is a contained in the stabilizer of a totally singular 3-

space and so R ≤ GL(3, q) and the result follows by the result for SL(3, q) and the
standard argument. If r = 2 6= p, then R ≤ Sp(4, q) × Sp(2, q) and we argue as
usual.

If r = p, then R ≤ P , the stabilizer of a totally isotropic 3-space. Then P = LU
where L = GL(3, q) is the Levi subgroup and U is elementary abelian of order q6

(and irreducible for L when q is odd). We argue as usual.
Now suppose that G = SU(6, q) with q = pa. First consider the case that p 6= r.

If r > 3 does not divide q+1, then R is abelian of rank at most 3, whence the result
holds. If r = 3 does not divide q + 1, then R ≤ GL(3, q2) and the result follows.

If 3 ≤ r does divide q + 1, then R ≤ S := A.S6 where A is isomorphic to C5
q+1.

The result now follows by using the bounds for S6 and Lemma 3.8.
If r = 2 6= p, then R stabilizes a nondegenerate 4-space. So we use the results

for SU(2, q) and SU(4, q) and argue as usual.
If r = p, then R ≤ P , the stabilizer of a totally singular 3-space. Note P = LQ

where Q is the unipotent radical and L the Levi subgroup. Note Q is an irreducible
L-module of order q9 and L ∼= GL(3, q2). We argue as usual. �
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10. Groups of Lie Type – The General Case

Here we essentially follow the argument in [21] but use profinite presentations.

Theorem 10.1. Let G be a quasisimple finite group with G/Z(G) a group of Lie
type. Then r̂(G) ≤ 18.

Proof. Let G be the simply connected group of the given type of rank n. By the
results of the previous section, we may assume that n ≥ 3. Consider the Dynkin
diagram for G. Let Π be the set of simple roots and write Π = {α1, . . . , αn}.

First suppose that G is a classical group. We assume the numbering of roots is
such that the subsystem {α1, . . . , αn−1} is of type An−1, αn is an end node root
and is connected to only one simple root αj in the Dynkin diagram (in the typical
numbering for a Dynkin diagram, j = n − 1 except for type D when j = n − 2).

Let G1 be the subgroup generated by the root subgroups U±αi
, 1 ≤ i < n. Let

G2 be the rank 2 subgroup generated by the root subgroups U±αn
, U±αj

. Let L2 be
the rank 1 subgroup corresponding to the simple root αn. Let L1 be the subgroup
of G1 generated by the root subgroups that commute with L2. Note that L1 is an
SL unless G has type Dn in which case L2 is of type SL(2) × SL(n − 2). Let L be
the rank one subgroup generated by U±αj

. Let 〈X|R〉 be a presentation for G1 and
〈Y |S〉 be a presentation for G2 with X and Y disjoint.

We give a presentation for a group J with generators X ∪ Y and relations R,S,
[L1, L2] = 1 and we identify the copies of L in G1 and G2. More precisely, take
two generators for each Li, express them as words in X and Y and impose the
four commutation relations. Similarly, take our two generators for L and take two
words each in X and Y which map onto those generators of L in G and equate the
corresponding words.

We claim J ∼= G. Clearly, J surjects onto G. Thus, the subgroup generated by X
in this presentation can be identified with G1 and the subgroup generated by Y can
be identified with G2. Now J is generated by the simple root subgroups contained
in G1 or G2. Any two of the these root subgroups (and their negatives) satisfy
the Curtis-Steinberg-Tits relations (for either they are both in G1 or G2 or they
commute by our relations since [L1, L2] = 1). By Lemma 8.1 J is a homomorphic
image of the universal finite group of Lie type of the given type, and the claim
follows.

Note that the number of relations is |R|+ |S|+6 (since 4 relations are required to
ensure that [L1, L2] = 1 and 2 relations to identify the copies of L) and the number
of generators is |X| + |Y |. Using Lemma 3.15 and the fact that G,G1 and G2 are
all 2-generated, we see that

r̂(G) ≤ r̂(G1) + r̂(G2) + 6 − 2.

Now G1
∼= SL and so satisfies r̂(G1) ≤ 9 by Corollary 8.3, and G2 is either of

type B2 or SU(d, q) with d = 4 or 5. In particular, r̂(G2) ≤ 5 by Lemma 9.2 and
(1.4). This gives r̂(G) ≤ 18 as required, and also r̂(G/Z) ≤ 18 for any central
subgroup Z of G by Corollary 4.2.

We now consider the exceptional groups. The idea is essentially the same, but
we have to modify the construction slightly. If G = En(q) with 6 ≤ n ≤ 8, G1 still
has type An−1, G2 has type A2, but L1 = A2 × An−4, and L1 is generated by 2
elements, there is no difference in the analysis of the presentation. Thus, r̂(G) ≤ 18.
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If G = F4, we take G1 = C3 and G2 = A2. Then L1 = A1. Similarly, if
G = 2E6(q), then G1 = SU(6, q) and G2 is of type A2. By Lemma 9.4, r̂(G1) ≤ 7.
Since r̂(G2) ≤ 3, we see that r̂(G) ≤ 3 + 7 + 2 + 4 − 2 = 14.

Now let G be a quasisimple group with G/Z(G) a simple finite group of Lie type.
If G is a homomorphic image the universal Chevalley group, then we have shown
that in all cases r̂(G) ≤ 18. We need to consider the possibility that G has a Schur
multiplier whose order divides the characteristic of G. If G/Z(G) is isomorphic to an
alternating group, we have already proved the result. By [16, p. 313] the only groups
G/Z(G) that remain to be considered are PSL(3, 2),PSL(3, 4),PSU(4, 2),PSU(6, 2),
Sp(6, 2),Sz(8),PΩ+(8, 2),G2(4),F4(2) and 2E6(2). In all these cases, we have shown
that r̂(G/Z) ≤ 14 Thus, r̂(G) ≤ 15 by Corollary 4.2. �

11. Sporadic Groups

Now let G be a quasisimple sporadic group and M an irreducible FpG-module.
In this section, we prove:

Theorem 11.1. Let G be a finite quasisimple group with G/Z(G) a sporadic simple
group. Then G has a profinite presentation with 2 generators and 18 relations, and
dimH2(G,M) ≤ (17.5) dim M for any FG-module M .

One can certainly prove better bounds. We use the main result of Holt [30] to
see that dim H2(G/Z,M) ≤ 2ep(G/Z) dim M , where pep(G) is the order of a Sylow
p-subgroup of G. Also, for many of the groups, there is a presentation with less
than 18 relations (see [51]), whence the results follow (note that in all cases the
Schur multiplier is cyclic [16, p. 313]).

So we only need to deal with those sporadic groups (and their covering groups)
where neither of these arguments suffices. The only cases to consider are p = 2 and
a few cases for p = 3.

In these cases, it is more convenient to work with the simple group rather than
the covering group.

Table 1 lists the cases that are not covered by Holt’s result or by the presentations
given in [51]. We give the structure of a subgroup H of the simple group S := G/Z
that contains a Sylow p-subgroup of S in order to apply Lemma 3.6.

Let G = Co1 and let N = Op(H).
Note that a Sylow 2-subgroup of M24 is contained in a subgroup isomorphic

to 24A8. Using the results for A8 and the computations in [42], we see that
dimH2(M24,M) ≤ dimM . The standard arguments now yield dimH2(H,M) ≤
3 dim M for M an F2H-module where H = 211M24, and therefore we obtain the
same bound for G. Similar computations using the subgroups in the table show
that the results hold in all the remaining cases.

By (1.1), this completes the proof of Theorem 11.1.

12. Higher Cohomology

We have seen that dim Hk(G,M) ≤ C dim M for M a faithful irreducible FG-
module and k ≤ 2. In fact, it is unknown whether there is an absolute bound Ck

for dimHk(G,M) for M an absolutely irreducible FG-module with G simple. It
was conjectured by the first author over twenty years ago that this was the case
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TABLE 1

G/Z |Z|p p H

Co3 1 2 24 · A8

Co2 1 2 21+8 · Sp(6, 2)
Co1 2 2 211 · M24

He 1 2 26 · 3.S6

Fi22 2 2 210 · M22

Fi23 1 2 2 · Fi22
Fi′24 1 2 211 · M24

Suz 2 2 21+6 · U4(2)
J4 1 2 211 · M24

HN 1 2 21+8 · (A5 × A5).2
Th 1 2 25 · L5(2)
B 2 2 21+22 · Co2

M 1 2 21+24 · Co1

Fi23 1 3 O+(8, 3) · 3
Fi′24 3 3 31+10 · U(5, 2)
B 1 3 31+8 · 21+6 · U(4, 2)
M 1 3 38 · O−(8, 3)

for k = 1. Indeed, there are no examples known with dimH1(G,M) > 3 for M an
absolutely irreducible FG-module and G a finite simple group. So we ask again:

Question 12.1. For which k is it true that there is an absolute constant Ck such
that dim Hk(G,V ) < Ck for all absolutely irreducible FG-modules V and all finite
simple groups G with F an algebraically closed field (of any characteristic)?

See [12] for some recent evidence related to this conjecture.
A slightly weaker version of this question for k = 1 is relevant to an old conjecture

of Wall. His conjecture is that the number of maximal subgroups of a finite group
G is less than |G|. If we consider groups of the form V H with V an irreducible
FpH-module, a special case of Wall’s conjecture (and likely the hardest case is):

Question 12.2. If V is an irreducible FpG-module with G finite, is |H1(G,V )| <
|G|?

This is true for G solvable [49], and in that case is essentially equivalent to Wall’s
conjecture.

We now give some examples to show that the analog of Theorem C does not
hold for Hk, k > 2.

Let F be an algebraically closed field of characteristic p > 0.
Let S be a nonabelian finite simple group such that p divides both the order

of S and the order of its outer automorphism group. Let L be a subgroup of
Aut(S) containing S with L/S of order p. Let W be an irreducible FS-module
with H1(S,W ) 6= 0. Note that if x ∈ S has order p, then all Jordan blocks of x
have size p in any projective FS-module. In particular, the trivial module is not
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projective and so H1(S,W ) 6= 0 for some irreducible module W . Obviously such
a W can not be the trivial module. Let U = WL

S . Then either U is irreducible
and H1(L,U) ∼= H1(S,W ) 6= 0 by Lemma 3.4, or each of the p composition factors
of U (as an L-module) is isomorphic to W as FS-modules. Since H1(L,U) 6= 0,
some irreducible L-composition factor of U also has nontrivial H1 by Lemma 3.3.
In either case, we see that there exists an irreducible faithful FL-module V with
H1(L, V ) 6= 0 and H1(L,F ) ∼= F .

Let G = L o Ct and let N < G be the direct product L1 × · · · × Lt with Li
∼= L.

Let X = V ⊗ F · · · ⊗ F . So X is an irreducible FN -module.
By Lemma 3.10, for k ≥ 3,

dim Hk(N,X) ≥ dim H1(L, V ) ·

(

t − 1

k − 1

)

≥ cktk−1.

for some constant ck. Thus, for t sufficiently large, dimHk(N,X) > dktk−1 dimX
for the constant dk := (ck dimH1(L, V ))/(dim V )).

Similarly, dimH2(N,X) = dimH2(L, V ) + (t − 1) dim H1(L, V ) ≥ t − 1.
Now let M = XG

N . By Lemma 3.4, dim Hk(G,M) = dimHk(N,X).
We record the following consequence for k = 2.

Theorem 12.3. Let F be an algebraically closed field of characteristic p > 0. There
is a constant ep > 0 such that if d is a positive integer, then there exist a finite
group G and an irreducible faithful FG-module with dim H2(G,M) ≥ ep dimM and
dimM > d.

In particular, we see that dimH2(G,M) can be arbitrarily large for M an ir-
reducible faithful FG-module in any characteristic. Another way of stating the
previous result is that for a fixed p,

u(p) := lim sup
dim M→∞

dim H2(G,M)

dim M
> 0.

Here we are allowing any finite group G with M any irreducible faithful FpG-
module. The scarce evidence suggests:

Conjecture 12.4. limp→∞ u(p) = 0.

If k > 2, we obtain:

Lemma 12.5. Keep notation as above.

(1) M is an irreducible faithful FpG-module with dim M = t dim X.
(2) dim Hk(G,M) ≥ dktk−2 dim M .
(3) There exists a constant ek > 0 such that dim Hk(G,M) ≥ ek(dim M)k−1.

Proof. Note that M is a direct sum of t nonisomorphic irreducible FN -modules
that are permuted by G and so M is irreducible. Since N is the unique minimal
normal subgroup of G and does not act trivially on M , G acts faithfully on M .
Now (2) follows by the discussion above and by Lemma 3.4. Similarly, (3) follows
with ek = ck/(dim V )k−1. �

So we have shown:

Theorem 12.6. Let k be a positive integer. If k ≥ 3, there exist finite groups G
and faithful absolutely irreducible FG-modules M with dimHk(G,M)/(dim M)k−2

arbitrarily large.
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Our reduction methods in Section 5.3 give very weak bounds for the dimension
of Hk(G,M) with M faithful and irreducible in terms of the bounds for the simple
groups. We ask whether our examples are the best possible:

Question 12.7. For which positive integers k is it true that there is an absolute
constant dk such that dimHk(G,V ) < dk(dim V )k−1 for all absolutely irreducible
faithful FG-modules V and all finite groups G with F an algebraically closed field
(of any characteristic)?

For k = 1, the question reduces to the case of simple groups. Theorem C says
that we can take d2 = 18.5.

13. Profinite Versus Discrete Presentations

In this section, we consider discrete and profinite presentations for finite groups.
Recall that r(G) (respectively r̂(G)) denotes the minimal number of relations re-
quired in a presentation (respectively profinite presentation) of a finite group G.
In fact, if G = F/N is a discrete presentation of G (i.e. F is a free group), then

G = F̂ /N̄ , where F̂ is the profinite completion of F and N̄ is the closure of N in

F̂ . So F̂ /N̄ is a profinite presentation for G. Indeed, every profinite presentation
of G can be obtained this way.

Let R = N/[N,N ] and for a prime p, set R(p) = N/[N,N ]Np. So R (resp.
R(p)) is the relation (resp. p-relation) module of G with respect to the given
presentation. Denote by dF (N) the minimal number of generators required for N
as a normal subgroup of F and dG(R) (resp. dG(R(p)) the minimal number of

generators required for R (resp. R(p)) as a ZG-module. Similarly, define d̂F̂ (N̄) to
be the minimal number of generators required for N̄ as a closed normal subgroup
of F̂ .

A theorem of Swan [17, Theorem 7.8] asserts that dG(R) = maxp dG(R(p)),

and Lubotzky [33] showed that d̂F̂ (N̄) = maxp dG(R(p)). So altogether d̂F̂ (N̄) =

dG(R). Moreover, it is shown in [33] that r̂(G) = d̂F̂ (N̄) for any minimal presen-
tation of G, i.e. a presentation in which d(F ) = d(G) (see also Lemma 3.15). The
analogous property for discrete presentations of finite groups is not known and fails
for infinite groups (cf. [17, p. 2]).

The long standing open problem whether dF (N) = dG(R) (see [17, p. 4]) there-
fore has an equivalent formulation:

Question 13.1. Is dF (N) = d̂F̂ (N̄)?

A variant of this question is even more interesting:

Question 13.2. Is r̂(G) = r(G)?

Of course, a positive answer to Question 13.1 would imply a positive answer to
Question 13.2, but not conversely.

A weaker version of Question 13.1 is:

Question 13.3. Given a presentation G = F/N = F̂ /N̄ of the finite group G, are
there dF̂ (N̄) = dG(R) elements of N which generate N̄ as a closed normal subgroup

of F̂?

In light of the above discussion, it is not surprising that our results in [21]
and in the current paper give better estimates for profinite presentations of finite
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simple groups than for discrete presentations. Theorem B ensures that all finite
simple groups have profinite presentations with at most 18 relations. We investigate
discrete presentations in [21] and [22]. In [22], we worry less about the total length
of relations and prove:

Theorem 13.4. Every finite simple group, with the possible exception of 2G2(3
2k+1),

has a presentation with 2 generators and at most 100 relations.

Of course, both 18 and 100 are not optimal and indeed, as we have already
observed, for many groups we know much better bounds. One may hope that 4 is
the right upper bound for both types of presentations. Indeed, there is no known
obstruction to the full covering group of a finite simple group having a presentation
with 2 generators and 2 relations (see [50]).

Let us now turn our attention to presentations (and cohomology) of general finite
groups.

If G = F/N is simple (and not 2G2(q)) with F free and d(F ) = 2, then by the
results of [21], N can be generated, as a normal subgroup of F , by C words for
some absolute constant C (and the total length of the words used can be bounded
in terms of |G|). Mann [39] showed that if every finite simple group can be pre-
sented with O(log |G|) relations, then every finite group could be presented with
O(d(G) log |G|) ≤ O((log |G|)2) relations. Of course, in [21], we proved that simple
groups (with the possible exception of 2G2(q)) can be presented with a bounded
number of relations – but the better bound for simple groups does not translate to
a better bound for all groups. Mann’s argument also is valid in the profinite case
and since there are no exceptions, we have:

Theorem 13.5. Let G be a finite group.

(1) If G has no composition factors isomorphic to 2G2(3
2k+1), then G has a

presentation with O(d(G) log |G|) relations.
(2) G has a profinite presentation with O(d(G) log |G|) relations.

The example of an elementary abelian 2-group shows that one can do no better
in general. Results like the above have been used to count groups of a given order
(or perfect groups of a given order) and also for getting results on subgroup growth.
Fortunately the profinite result is sufficient for these types of results and so the Ree
groups do not cause problems. See [33].

Using the reduction of [5, Theorem 1.4] to simple groups for lengths of presen-
tations, one sees that:

Theorem 13.6. Let G be any finite group with no composition factors isomorphic
to 2G2(q). Then G has a presentation of length O((log |G|)3).

This is essentially in [5] aside from excluding SU(3, q) and Suzuki groups (at
the time of that paper it was not known that those groups had presentations with
log |G| relations). As pointed out in [5], the constant 3 in the previous theorem
cannot be improved (by considering 2-groups).

We now give some refinements of these results in the profinite setting. We first
prove some results about H2.

We need to introduce some notation. Recall that a chief factor X of a finite group
is a nontrivial section A/B of G where B and A are both normal in G and there is
no normal subgroup of G properly between A and B. Clearly X is characteristically
simple and so X is either an elementary abelian r-group for some prime r or X
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is isomorphic to a direct product of copies of a nonabelian simple group and G
permutes these factors transitively. There is an obvious definition of isomorphism
of chief factors. An appropriate version of the Jordan-Hölder theorem implies that
the multi-set of chief factors coming from a maximal chain of normal subgroups of
G is independent of the chain.

If X is a nonabelian chief factor, let sp(X) denote the p-rank of the Schur
multiplier of a simple direct factor of X. So sp(X) ≤ 2 (and for p > 3, sp(X) ≤ 1)
[16, pp. 312–313]. Let sp(G) denote the sum of the sp(X) as X ranges over the
nonabelian chief factors of G (counting multiplicity). If X is a chief factor of G and
is an elementary abelian p-group, let `p(X) = logp |X|. Let `p(G) denote the sum
of `p(X) as X ranges over the chief factors of G that are p-groups.

Define

hp,1(G) = max{1 + dimH1(G,V )/dim V },

where V is an irreducible FpG-module. Note that this is always bounded by d(G)+1
(or d(G) if V is nontrivial) since a derivation is determined by its images on a set
of generators. We can now prove:

Theorem 13.7. Let G be a finite group and V an FpG-module. Then

dimH2(G,V ) ≤ (C + sp(G) + hp,1(G)`p(G)) dim V,

where C = 18.5 is the constant given in Theorem C.

Proof. Let N be a minimal normal subgroup of G. We first claim that hp,1(G/N) ≤
hp,1(G). Let W be an irreducible Fp(G/N)-module which we may consider as an
FG-module. Let H = W.G. Then N is normal in H. If X is a complement to W
in H/N , then Y is a complement to W in H, where Y is the preimage of X in H.
Thus, the number of complements of W in H is at least the number of complements
of W in H/N . So dimH1(G/N,W ) ≤ dimH1(G,W ), whence the claim.

It suffices to prove the theorem for V irreducible. If G acts faithfully on V ,
this follows from Theorem C. So we may assume that there is a minimal normal
subgroup N of G that acts trivially on V .

By Lemma 3.8,

dimH2(G,V ) ≤ dimH2(G/N, V ) + dimH2(N,V )G + dimH1(G/N,H1(N,V )).

Suppose that N is nonabelian. Then N is perfect, and so H1(N,V ) = 0 by
Lemma 3.9. By Lemma 3.10, H2(N,V ) = ⊕H2(Li, V ), where N is the direct
product of the Li. Since G permutes the Li transitively, it also permutes the
H2(Li, V ), and so H2(N,V )G embeds in H2(L, V ) where L ∼= Li. Since V is a
trivial module, dimH2(L, V ) = dimH2(L,F ) dim V = sp(N) dim V . So in this
case, we have: dim H2(G,V ) ≤ dimH2(G/N, V ) + sp(N) dim V and the result
follows by induction.

Suppose that N is abelian. If N is a p′-group, then the last two terms in the
inequality above are 0 and the result follows. So assume that N is an elemen-
tary abelian p-group. Set e = `p(N). By definition, dimH1(G/N,H1(N,V )) ≤
(hp,1(G) − 1)edim V . By induction, it suffices to show that dimH2(N,V )G ≤
edim V . By Lemma 3.16,

dimH2(N,V )G ≤ dim HomG(N,V ) + dim HomG(∧2(N), V ).

If V ∼= N , then clearly the number of composition factors of ∧2(N) isomorphic to V
is at most (e − 1)/2, and so dimH2(N,V )G ≤ (e + 1)/2(dim EndG(V)) ≤ edim V .
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If V is not isomorphic to N , then H2(N,V )G = 0, and so dimH2(N,V )G ≤
HomG(∧2(N), V ) and by Lemma 3.18, dimH2(N,V )G ≤ (e− 1) dim V . This com-
pletes the proof. �

Note that sp(G) is at most twice the number of nonabelian chief factors of G.
If we only consider d-generated groups, then as noted above, hp,1 ≤ d+1. Indeed,

dimH1(G,V ) ≤ (d − 1) dim V unless V involves trivial modules. So one has:

Corollary 13.8. Let G be a finite group with d(G) = d and V an FpG-module.
Then dim H2(G,V ) ≤ (C + sp(G) + (d + 1)`p(G)) dim V , where C = 18.5 is the
constant given in Theorem C.

Now using (1.1), we can obtain results about profinite presentations. Let h1(G)
be the maximum of hp,1(G) over p, `(G) the maximum of the `p(G) and s(G) the
maximum of the sp(G). The following is a refinement of the results mentioned in
the beginning of the section.

Theorem 13.9. Let G be a finite group. Then r̂(G) ≤ d(G)+C+s(G)+h1(G)`(G),
where C − 1 = 18.5 is the constant in Theorem C. In particular, if d(G) ≤ d, then
r̂(G) ≤ d + C + s(G) + (d + 1)`(G).

This improves Theorem 13.5 in the profinite setting since s(G) and `(G) are
bounded above by log2 |G| and h1(G) ≤ d(G) + 1.

We mention some special cases that are a bit surprising.

Corollary 13.10. Let G be a finite group with no abelian composition factors.
Then r̂(G) ≤ d(G) + 19 + 2s where s is the number of chief factors of G.

Corollary 13.11. Let G be a finite group with no abelian composition factors
and no composition factors that have a nontrivial Schur multiplier. Then r̂(G) ≤
d(G) + 19.

It is not clear that the previous result is true for discrete presentations and may
suggest a strategy for proving that one does not always have r(G) = r̂(G).
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