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A. LUBOTZKY AND B. WEISS
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ABSTRACT. Most explicit examples of expanding graphs are families of Cayley
graphs of finite groups. In this note we consider the question of what is it that
makes a family of siich Cayley graphs expanders- is it a property of the groups
alone or does it also depend upon the set of generators? We also give some
conditions which prevent an infinite family of groups from being expanders,
discuss some examples and raise some further problems and conjectures.

1. INTRODUCTION

Expanding graphs have received a great deal of attention in recent years, mainly
because of their importance in computer science and in particular their useful-
ness in constructing communication networks. This interest led to various explicit
constructions of families of expanders ([M1], [LPS], [M2], [L1], [C], [Mo]). These
constructions usually take the following from. Starting with an infinite group I" and
finite set of generators X, let m; : I' — G; be an infinite family of finite quotients.
The Cayley graphs {X(G;, (X))} will be the family of expanders if the right con-
ditions prevail. The basic reasons vary, one uses property 7" of I', Selberg’s theorem
AL 2> %, the Ramanujan conjecture or one of their modifications. We give a brief
survey in §2.

In §3, we give some general methods of constructing families of bounded degree
Cayley graphs that are not expanders. For example: theorem 3.1 states that if I’
is a finitely generated amenable group, I' = (X), then the Cayley graphs {X; =
X (m;(T"), m(X))} are non expanders for any infinite family of finite quotients. That
means that for every € > o, there is some i such that X; is not an e-expander.

As a corollary we deduce in 3.2 that if {G;} is an infinite family of finite solvable
groups of bounded derived length, and G; = (£;) with the cardinality of the %;
bounded, then {X(G;, X;)} is a non expander family. In contrast to this we give
an example in 3.3 of an infinite family of solvable groups which are expanders thus
answering_a question raised in [AB].
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The results of §2 and §3 suggest a very basic question: does the expander - non
expander property of a family of groups depend on the groups alone or is it also a
function of the generating sets. More precisely we formulate

Problem 1.1. Let {G;} be a family of finite groups, (£;) = (Z!) = G; and |Z;],

|24 <k, for all i. Does the fact that {X(G;, £;)} is an expander family imply the
same for {X(G;, Z0)}?

The known methods of proving that a family is an expander certainly depend on
the choice of generators. For example the groups SL,(p) for fixed n and p a prime
are known to be expanders with the generators chosen globally (from SL,(Z)).
Computations by Laffery and Rockmore [LR] suggest (for n = 2) that randomly
chosen generators, or possible even “worst case” generators for these groups also
give expanders.

A positive answer to problem 1.1 would in fact be surprising. Some evidence for
such an answer is the following. The natural strategy to 1.1 is to find a profinite
group K with two finitely generated dense subgroups, A and B, with A amenable
and B having property T'. Then the finite quotients {G;} of K would give a negative
answer to 1.1. We conjecture that this is impossible.

Conjecture 1.2. Let K be a compact group. If A and B are both finitely gen-
erated subgroups that are dense in K with A amenable and B having property T
then K is finite.

The latter part of the paper is devoted mainly to some evidence favoring this
conjecture. We show in 5.5. that this conjecture is valid if K is a linear group over
some field.

We also observe that while for n > 3

K. =[] SLa(p)
P

has a dense subgroup with property T it doesn’t have a dense finitely generated
amenable group. In contrast with this we consider in §4

K? = [ SLa(p)

and show that it does contain a finitely generated dense amenable group. Some
standard conjectures on the congruence subgroup problem imply that all known
examples of groups with property 7' cannot be densely embedded in KP. Thus
both K, and K? seem to support our conjecture for very different reasons.

2. EXPANDER GROUPS

A finite k-regular graph X is called an e-expander (¢ > 0) if for all subsets

A C X with |A| < 3|X| we have |0A| > ¢|A| where
~ 0A = {y € X : distance (y,A) = 1}.

We will say that a family of groups ¥ = {G;} is an expander family if for some
k and € > 0 there are generating sets £; for G; of size at most k such that all
the Cayley graphs X (G;, £;) are e-expanders. The family Y will be called a non-
expander family if for some k there are generating sets E; for G; of size at most
k, and for all positive € at least one of the Cayley graphs X; = X(G;, £;) is not an
e-expander.
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The major problem that motivated the work presented here is whether or not
a family of groups can be both an expander family and a non-expander family. In
this section we will survey the known methods of constructing, of finding, expander
families, while the next-section will be devoted to non-expander families.

The known expander families of groups have the following common structure.
Start with an infinite group I that is finitely generated and fix a set of generators X.
The family {G;} is a family of homomorphic images of I', 7;(I") with 2; = m;(2).
Here are the main expander families. (The reader is referred to [L1] for more
details.)

I: Let I be a countable group with property 7' (see [M3] or [L1] for def-
initions) ¥ any finite generating set, and take for G; all finite quotient
groups of I'. This result is due to Margulis in [M1]. If T is a lattice in a
semi simple Lie group all of whose factors H; have rank > 2 then I' has
property T' (the H; can be Lie groups over an arbitrary local field).

A weaker property, called 7, suffices for the above to hold, see [LZ]. A
group I' has property 7 if all of the finite dimensional unitary representa-
tions of I' are bounded away from the trivial representation. For this it
suffices that I' be an irreducible lattice in [] H;, with the H; simple Lie

groups and at least one of the H;’s havingjrauk =)

IT: Let M be a compact Riemannian manifold, T’ = (M) and N; a family

of finite index normal subgroups of I such that the corresponding finite
covers M; of M satisfy Ai(M;) > ¢ > 0 where A\ (M;) is the smallest
positive eigenvalue of the Laplacian on M;. Assume ¥ is a finite set of
generators for I' and take for 7; the canonical projections 7; : I' — I'/N;.
Instead of compactness one can assume M = X/I' with X a symmetric
space and I' any lattice in Aut(X). An example of this situation is when
M is the modular surface, I' = SLy(Z) and N; the congruence subgroups
of I, i.e. the G; are SLy(Z/iZ). The fact that one can take here ¢ = 3/16 is
a well known result of Selberg [S]. The Jacquet-Langlands correspondence
extends this to uniform arithmetic lattices of SLy(R) as well.
Selberg’s result was extended to all arithmetic groups in SO(n, 1) ([EGM],
[LPSS]) and SU(n, 1) ([Li]). From these results it can be shown that one
gets an expander family for every characteristic zero S-arithmetic group
(with V; the congruence subgroups) provided that I' is an ineducable
lattice in [] H; and at least one of the H;’s is a real simple Lie group of
rank> 1.

ITI: Let I be an arithmetic lattice in SLy(@Q,) and N; the family of congu-
vence subgroups, ¥ any finite set of generators. The fact that we get a
family of expanders follows now from the Ramanujan conjecture proved
by Eichler and Deligne. This is shown in [LPS] and [M2]. Here @, may
be replaced by any non-Archimedean local field of arbitrary character-
istic. For positive characteristic this follows from the work of Drinfeld
who proved the analogue of the Ramanujan conjecture there. This was
shown in [Mo], (as explained there the Jacauet-Langlands correspondence
is needed once again).

Given all of the above the following conjecture suggests itself:
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Conjecture 2.1. Let k be a global field, S a finite set of primes (i.e. valuations)
of k that contains all Archimedean ones. Let G be a simple, simply connected,
(connected) algebraic group defined over k and I' = G(Og) where Og is the ring of
S-integers of ki i.e.

Os={z€k:v(z)>0forallv¢S}

Assume that I" has a finite generating set ¥ and that N; are normal congruence
subgroups. Then with 7; : I' — I'/N; the canonical projections the Cayley graphs
X (m;(T),m;(X)) are e-expanders for some fixed £ > 0.

Remark 2.2.

(i): In almost all cases I is indeed finitely generated, the only exception is

when char(k) = p > 0 and > rank(G(k,)) =1 (see [Be] or [L2])
vES
(i1): In most cases the conjecture is known to hold. Indeed I' is an irre-

ducible lattice in [] G(k,), where £k, is the completion of k with respect
veS

to v. If for some v, rank(G(k,)) is at least 2 then the conjecture holds
as explained in (I). If for all v, rank(G(k,)) < 1 but one of these k, is
R or C then the conjecture holds by (II) above. If at least one of the
G(k,) is SLy(k,) the conjecture holds by (III). In order to prove it in full
generality it would suffice to work out the analogues of [EGM] (or [LPSS])
and [Li] for rank one groups (not SL2) over non-Archimedean fields.

3. NON EXPANDER GROUPS

In the preceding section we surveyed the methods of finding expander families
of groups. Here we show how to find non expander families. In many ways the
opposite of groups with property 7' are amenable groups. As we shall see this
is also the case with respect to the expander property. Recall that a group I' is
amenable if £°°(I") has a [-invariant mean. By a well known result of Folner (cf.
[L1]) and the references there) a discrete group is amenable if and only if for every
finite set ¥ and every é > 0, there is a finite set A C I' satisfying

ISAAA| < ¢lA|

where XA = {sa: s € ¥,a € A} and A denotes the symmetric difference. In words.
A is “almost invariant” with respect to left multiplication by X.

Theorem 3.1. Let I' be a finitely generated amenable group and ¥ = {G;} an
'énﬁnﬁe family of quotient groups, then Y is a non expander famaily.

Remark 3.2. If m; : I' — G; are the canonical projections and ¥ is any generating
set for I we shall show that the Cayley graphs X (G;.m; (X)) are not an e-expander
family for any ¢ > 0. This is a little more than the assertion that Y is a non
expander family.
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Proof. Fix a generating set ¥, and a positive ¢ > 0. Find a finite set A in I" such
that [sAAA| < ¢|A| foralls e ZUT™L If m: T — G; is onto one of our quotient
groups and L; = ker(7), define a function on G; by

o= Y La(h).

hex—1(g)
Calculating
I () — elle, = 2 lo(m(s)g) — w(9)]
g
— 0 | RS (<) = SRR TR (2]
) g hem—l(g) her=1(g)
< X [1a(sh) — 1a(h)|
her
= |AAsA| + |sTLAAA| < 2¢|A|
= 265”9{7”{31'

Thus ¢ is an approximately invariant £; function on G;. Furthermore, since there
are infinitely many G;’s it is clear that we may assume that ¢ is far from being
a constant function, indeed it’s support is at most of size |A| and we may assume
|Gi| > 2|Al.

To conclude the proof we repeat the standard argument that an approximately
invariant function gives rise to approximately invariant sets which will preclude the
possibility that {G;} is an v/2e-expander family.

Define

Bi={g€Gi:p(g) 2J}
o
Clearly, if 1p, are the indicator functions of the B;’s we have ¢ = }_ 1p,, and one
j=1

can also easily check that

o0

(2) lIm(s)e = @lle, = Y lIm(s)1s, — 1B, |le,

j=1
Denote by
Js = {j : [In(s)lp, — 1B,lle, > V2¢||LB, |le, }
and compute

\/2_52 H]'Bj”El < Z ”:‘T(S)]-BJ = IB,H& < “‘JT(.‘i)tp = (f?Hfl

jEJﬂ JEJN
< 2¢|¢lle,
by (1) and (2), hence

(3) - > Il < V2ol

JEJs

o0
Since ||¢|le, = X lI1B; e, , if |E|- V26 < 1 there are indices jo that are not in any of
14

the J,’s and any such Bj, is clearly v/2e-invariant under all the n(s), s € X. Since
€ > 0 was arbitrary we have shown that {G;} is a non-expander family. O
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For a group G, denote G; = G and G;+1 = [G;, G;]. Recall that G is solvable of
derived length £ if G¢ # {e} but Gy41 = {e}.

Corollary 3.3. Let Y = {G;} be an infinite family of finite solvable groups that
are all of derived length at most £ and are also generated by k elements, say ;
generates G, |5;| =k for alli. Then the Cayley graphs X (G;,X;) are not a family
of expanders.

Proof. Let F = F(z1,... ) be the free group on k-generators, ¥ = {x,... ,z1}.
The group I' = F/Fy,; is a solvable group and the map 7; taking ¥ to ¥; extends
to a homomorphism from I' onto G;. Since I' is amenable the corollary follows at
once from the theorem. O

The bound on the derived length is essential as the following example of an
infinite expander family of solvable groups shows:

Example 3.4. Let I' = SL, (Z) and for a fixed prime p set
I'(p™) = ker(SLn(Z) — SL(Z/p™Z)).

As is well known, I' is finitely generated, for example if {e;,... ,e,} is the standard
basis of R™, and T, S are defined by

e = Sliguge j i
e; g

€it1 d<sim)
SE,‘ = {

(=1)*'e;y i=n

then T and S generate I'. Since I'(p) is of finite index in I it too is finitely generated.
say by a finite set £. Now the Cayley graphs X,, = X (I'(p)/T(p™). ) satisfy:
(i): T(p)/I'(p™) is a p-group and hence solvable (it is even nilpotent) for
all m.
(ii): For some € > 0, the X,, are all e-expanders.

To check (i) one verifies easily that the order of I'(p)/I'(p™) is p™m—D®*=1) For
(ii) we distinguish between n > 3 and n = 2. In the first case I'(p) is a lattice in
SLy(R) and thus has property (7') and by I. of §2 we have (ii). The result for the
second case follows from Selberg’s theorem as we have already indicated in II of §2.

This example answers a question raised in [AB].

We turn now to another method for showing that a family of groups cannot be
made into a family of expanders with respect to any (bounded) set of generators.
First a definition;

Definition 3.5. Let G be a group together with a finite generating set £. For a

fixed *initary representation p denote by

K(G,Z,p) = inf me s)v — vl|?
(G.Z,p) ||,',H=1‘§.‘g%””(")” |

and let

K(G,2)=inf{K(G,Z,p): p arepresentation
that contain no non zero fixed vectors}
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This will be called the Kazhdan constant of (G, X), and a group has property T if
and only if this constant is positive for some (and hence all) finite generating set.

Theorem 3.6. For any k > 0 and positive d, there is a constant ¢ = ¢(k,d) such
that if G is any group with generators ¥ satisfying

(0)|Z]<d; (b)) K(G,Z) >k
then for any subgroup Gy < G with [G : Gg) < n
‘GO/[GU,GO” <ol

Before proving this rather technical theorem here is a corollary that fulfills the
promise that we just made about more non expander families.

Corollary 3.7. 1. If X; = X(G;,%;) is a family of Cayley graphs with |X;| bounded
that is an expander, then there is a constant ¢ > 0 such that for all i, and any
subgroup M of index n in G;

|M/[M, M]| < "

2. Let M; be any family of finite groups, {p;} an infinite sequence of primes and
let

Gi = Cp,wrM;

denote the wreath product of the cyclic group with p; elements and M;, i.e.
Gi = Fp,[M;] @ M;

when Fy,[M;] is the additive group of the group algebra of M; over the field F;, and
M; acts on it by multiplication. Then X(G;,Y;) is not an expander family with
respect to any bounded set of generators X;.

Proof. 1. It is shown in [L1,Chap. 4] (cf. also [LZ]) that X (G;, £;) are an expander
family if and only if K(G;, ;) is bounded away from zero. Thus this follows at
once from theorem 3.5.

2. This follows from 1. since G; contains an abelian subgroup A; = Fj, [M;]
which is of index |M;| but of size pLM"l and hence for all ¢, if p; is sufficiently large
|Ai/[As, ;)| < €444 cannot hold. O

We do not know that the corollary continues to hold if the p; are a fixed prime,
although we do expect it to. An interesting special case is F»[Sy] % S, where S,, is
the symmetric group on n letters.

Remark 3.8. If " has property T then it cannot have finite index group with infinite
abelian quotients. Our theorem 3.5 may be viewed as a quantitative version of this
giving for any such I' an estimate

(4) |H/[H, H]| < )

for some constant e, since as is well known groups with property T are finitely
generated. A polynomial bound in (4), suggested by the known examples of groups
with property 7', would have interesting applications.

For the proof of theorem 3.5 we need the following:
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Proposition 3.9. Let G be a group generated by ¥, |X| =d, and H a finite index
subgroup. Then H has a generating set ¥' satisfying

(a): |Z'| <d-[G: H]

(b): K(H,T') > K(G,T).

Proof. Denote by n the index [G : H] and let T = {t1,... ,,} be a right transversal
for H in G, i.e. right coset representatives and denote by ¢ — § the map from
G — T such that

g3 e H.

As is well known H is generated by ¥’ the non trivial elements of the form (t;s)(Eis) L,
ti €T, s € ¥ (cf. [MKS, p.89]). For any unitary representation p of H on a Hilbert
space V' with no non zero fixed vector let (V, p) = Indg(p) denoted the induced
representation. Recall that V is the space of functions f : G — V that satisfy

f(hg) = p(h)f(g)

with G acting on the right. Such a function is determined as soon as flti), tieT
is given and hence V may be identified with V" as the direct sum of n-copies of V.
One checks directly or via Frobenius reciprocity that p doesn’t contain the trivial
representation.

Now given vy € V, define f € V by setting f(t;) = vo/\/nfori=1,... ,n. Then
lfIl = 1 and therefore by the definition of K (G, X) there is some s € ¥ such that

K(G,%) <|lp(s)f = fI?

Il
Il M=

2 I|f(t:is) — f(t:)])?
= > |If(tis(tis) ™" - is) — f(2:)]|2
llo(tis(tis)~1) - f(Zis) — f(&:)]]?

=]

..
Il
fe

NgE

)
i=1

=

pltis(Eis) ™) 2 — |2

I
i=1

I
2=
M=
=
=
w
o
knad
3
v
=1
\:
e
(=]
|
[~
s
=

.
Il
—

and thus for one of the elements in ¥, say u we get
K(G,%) < ||p(w)vo — vpl|?.
Since vo was arbitrary we obtain as required K(H,¥’) > K(G,X). O

Proposition 3.10. Let A be an abelian group generated by k elements, S, with
K(A,%) =e. Then |A| < C* where C = [2£] + 1.

Proof. Divide the unit circle into C' equal arcs starting at 1. This gives a subdivision
on the k-torus, IT*, into C* boxes. Any unitary character of A determines a point
of I*. If |A| > CF then there are two distinct characters that land in the same box
and thus their quotient would be a non trivial character y satisfying

o 1-1e < (2)
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for all s € £. Since x defines a one dimensional unitary representation we conclude

that
= o\ 2
E [—
C
which contradicts our choice of C. Thus |A| < C* are required. O

Finally we can complete the proof of 3.5 as an immediate consequence of propo-
sitions 3.8 and 3.9 choosing for the constant in the theorem ([%I +1)4.

4. {SL,(p)}-FIXED n VERSUS FIXED p

This section is devoted to examples of finitely generated amenable groups T'.
Using theorem 3.1 this leads us to finite quotient groups which are not expanders
with respect to the generators that come from I'.

o0
Example 4.1. Let K = [] Sy, where S, is the permutation group of {1,2,... ,n}.
n=s
Let 7 = (7,), 0 = (o) be the elements of K defined by:
e—=(12)yalln: " ap = (1 2'3--n), allin;

ie. oy s the cyclic permutation on the n numbers 123 ---n. Let I' = (o,7) C K
denoted the countable group generated by 7 and o.

We claim that

(i): I' is an amenable group

(s o]
(ii): if Ty = TN ([ An), where A, < S, is the alternating group then

[=.2]
I'; is of index 4 in T" and is dense in [] A,.
n=>5
Proof. (i) Clearly I is finitely generated. Let A denote the subgroup of I' generated
by {r,0707},0%1072,...0¥ 170~ (k=1}. The projection of A to S, for n < k is
o0
surjective. On the other hand, the projection of Ay to [[ S, is a finite group,

n=k+1
it is in fact Sy diagonally embedded in that product. Thus Ay is a finite group.
(s o]

Hence A = | J A is a locally finite group and thus is amenable.
1

oo
Now 0~'Ag D A and thusA = |J 0~™A¢™ is amenable as an increasing union
n=1
of amenable groups and it is the normal closure of 7 in I'. Hence I'/A is a cyclic
group generated by the image of ¢. It follows that I', as amenable extension of an
amenable group is itself amenable.
(ii) For even n, both 7, and o, are odd permutations, while for odd n, 7, is odd
and o, is eves. Thus for a word w in 7 and o, the sign of (w), is constant along
even n's and odd n’s separately and the two homomorphisms

sgo(w) = sign of the projection of w into S, for n even
sg,(w) = sign of projection of w into S, for n odd

are well defined and together they define an epimorphism from I onto {£1} x {%1}.
Let I'+. denote the kernel. It is of index 4 and I';. is projected onto A, for all n. In
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o0
order to see that the image of 'y is dense in [] A,, it suffices to show that its image
5

h
in any finite product H = [] A, is onto. In fact the image of I'; is a subgroup L

i n=>35
of H which is mapped onto A, for all 5 < n < h. Each of the simple groups A,
is a Jordan-Hélder factor of H, as well as of L. Since these groups are all different
the order of L equals the order of H whence L = H as required. O

P.M. Neumann called our attention that the group I' above was already been
studied for different reasons by B.H. Neumann in 1937! (see [N]).

Now theorem 3.1 implies that the family of Cayley graphs X,, = X (Sn, {7n,0a})
is not a family of expanders. This is well known and easy to prove directly cf. ([L1]
example 4.3.3.(c)) where three different proofs are given. The easiest one uses the
fact that diameter (X (Sp, {Tn,0n})) is like n? while the diameter of expanders grow
like the logarithm of the order of the group which would be nlogn in this case. We
mention in passing here that the following important problem is still open:

Problem 4.2. Are there bounded sets of generators, ¥,, for S, such that X (S,,,%,)
is an expander family? :

This problem is not yet solved even allowing for non constructive methods. Note
that by a recent result of Alon and Roichman [AR] every finite group is an ex-
pander with respect to O(log |G|) generators- but the issue here is the bound set of
generators.

Here is another example with similar flavor.

o0
Example 4.3. Let p be a fixed prime and denote by K? the product [[ SLn(p).
n=2

Consider the embedding of SLa(p) in SL,(p) in the upper left corner. Now let T
be the subgroup of KP generated by 7 = (1,), u = (un), o = (0,,) where:

Tn = (_01 (l)) € SLa(p) C SLa(p)

un= (g 1) €5Lalo) € SLalo)

0 1 e 2 ()
1 s L)
On = ol A8 e eelS Tr(p):
: : Ok ot il
< (=1)2BLE oo bamn s ik e B0

We claim that I' is a finitely generated amenable group which is dense in K?. The
proof is very similar to the one we gave for example 4.1, and we omit the details.

In [BKL] it was known that the Cayley graphs Y, = X(SL,(p); {7n: tn,0m})
have logarithmic diameter. In spite of this, using example 4.3 and theorem 3.1
we have:
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Corollary 4.4. The family of Cayley graphs X (SLn(p); {Tn,tun,0on}) is not an ex-
pander family.

A more elementary proof of this pact was suggested to us by Yael Luz: SL,(p)
acts transitively on the non zero vectors of Fj'. If the Y, would be expanders then
their quotient graphs Z, would be expanders, where the vertices of Z, are £’ \ {0}
and a € Z, is adjacent to 7= (a), uFl(a), cFl(a). Let A, C Z, be the subset
{€3,- .. ,€[n/z)} Where (¢;) is the standard basis of F} then T (A= AT A
while |0 (A,)AA,| < £|A,, hence the Z,’s are not expanders.

Example 4.3 is especially interesting in light of the following;:

Proposition 4.5. For fired n, the compact group K,, = [[ SLn(p) does not
p—prime

contain a finitely generated dense amenable group. Forn > 3, K, contains a dense

group with property (T).

Proof. Let T' be a finitely generated subgroup of K,. For each g € I'\ {e} there is an
n-dimensional representation p : ' — SL, (p) for some p with p(g) # 1. By a lemma
due to Wilson [W] (or implicitly to Malcev; see also [LMS] for explicit formulation)
there exists a finite family of fields { K; }ies and representations p; : I' — SL,,(K;)
such that () kerp; = {e}. Hence I' is imbedded in '?J SL,(K;). Now if T is in
i€J i

addition amenable then by the dichotomy of Tits [T] it follows that p;(I") is virtually
solvable for each i € J whence I itself is virtually solvable, i.e. has a finite index
solvable subgroup. The group I' cannot be dense in K, since PSL,(p) are simple
groups of unbounded order. This proves the first assertion of the proposition.

For the second assertion consider the diagonal embedding of SL,,(Z) in [T SLx(p).
bl

This is clearly injective and the image is dense since for every m € Z the canon-
ical projection SL,(Z) — SL,(Z/mZ) is onto. This is a special case of strong
approximation which can be established here by elementary methods. O

Remarks 4.6.
(1): The group @ SL,(p) is an amenable group dense in K, but is not
p

finitely generated.

(2): K, does not have a dense subgroup with property 7. If I' were such
a group then I' would be separated by finitely many two dimensional
representations as in the proof of proposition 4.5. But by a result of
Zimmer every subgroup of SLy(K) with property T is finite (cf. [L1,
thm. 3.4.7]). On the other hand K, does have a dense subgroup with
property (7), i.e. all finite representations are bounded away from the
trivial one (equivalently, I' has property (7) if all of its finite quotients
witlurespect to a fixed generating set are an expander family, see [L1,§4]).
Such a group is SL3(2) X SLa(Z[3]), see [L1, example 4.3.3E].

(3): We do not know whether or not K? contains a dense subgroup with
property T'. This appears to be quite unlikely.

The known examples of discrete groups I' with property 7" are all obtained
from lattices in semisimple Lie groups G which have property T'. In all
cases where G has property 7' it has been shown that all lattices I' are



106 A. LUBOTZKY AND B. WEISS

arithﬁc, [M3] for groups with rank > 2 and [GS] for Sp(n,1) and Fj.
These véses will now considered separately.

(i): When I is a lattice in a s.s Lie group of rank > 2 Serre [Se] conjectured
(and his conjecture has been established in most cases) that there is an
affirmative answer to the congruence subgroup problem (C'SP). This in
turn implies that they cannot be mapped densely into K?.

(ii): Lattices in rank 1 Lie groups like Sp(n, 1) and F; have many infinite
quotient groups [Gr] which give many more examples of exotic groups with
property T'. Nonetheless, the issue as to what kind of finite quotients those
groups have is not so clear. Serre conjectured that such lattices should
have a negative answer to the C'SP. However, in light of the recent proof
of super rigidity for these groups it is not unreasonable to modify his
conjecture so that these lattices also satisfy the C'SP. (even though they
have many infinite normal groups). If this is the case then indeed also this
kind of groups with property T’ cannot be densely embedded in [] SL,(p).

?

5. OPEN PROBLEMS AND REMARKS

As we have already said in the introduction, the fundamental problem that
motivated the work in this paper is whether the expander property for a family of
finite groups is a property of the groups themselves or does it also depend upon the
choice of generators. The contrasting results of §2 and §3 about expander and non
expander families illuminate same aspects of the following open problem:

Problem 5.1. Let {G;} be a family of finite groups with two sets of generators
{Zi}, {£.} and the size of all them being bounded by a fixed constant k. Suppose
that {G;, X;} is an expander family, i.e. the Cayley graphs X (G;, X;) are expanders,
is also {G;, =%} an expander family.

We don’t know of any family of groups that is an expander with respect to one
set of generators but not with respect to another. This is rather surprising in view
of the fact that in the expander families of §2 the choice of generators was crucial.
In the other direction we also don’t know of even one family of groups that is an
expander family with respect to all bounded sets of generators. A natural candidate
for such a family would be

{SLa(p) : p a prime}.

Computations carried out in Laffery-Rockmore [LR] suggest indeed that this
might even be an expander family even if one were to choose for each p the “worst”
possible generating set with only two elements. One consequence of the expander
propeny is that the diameters of the graphs in question are logarithmic in the size
of the graph. Here is weaker open question:

Problem 5.2. Is
diameter(X (SLa(p), X)) < C -logp

for some fixed constant C' and all sets of generators £? Is it true at least for random
sets of k-generators where k is fixed and p — oc.
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On the other side of the coin, we did present in §3 at least some examples of
families of groups which are not expanders with respect to any sets of generators
of bounded size.

A problem related to 5.1 but concerning infinite groups is as follows. If I' is
an infinite group with property 7', and ¥ is a finite set of generators then it is
known that K(I',¥X) > 0 where K(T', ) was defined in 3.4. Very little is known
about exact values of K (T, ¥) (see [Bu]) and even the following qualitative question
seems to be open:

Problem 5.3. Let I" be a group with property 7. Is
inf{K(T",X) : ¥ a set of generators for I'}
strictly positive?

Since property T yields expanders while amenable groups give non expanders
the following strategy, for answering problem 5.1 in the negative, suggests itself:
find an infinite family of finite groups which are quotients of a finitely generated
amenable group A and also a quotients of a group B with property T'. For example,
if K were a profinite group and A and B were finitely generated dense in K, with
A amenable and B with property T then we would achieve this goal. In fact we
don’t believe that this is possible. Indeed proposition 4.4 above and 5.5 below lend
support to the following:

Conjecture 5.4. Let K be a compact group. If A and B are both finitely gener-
ated subgroups dense in K with A amenable and B having property 7" then K is
finite.

Proposition 5.5. Conjecture 5.4 is vald if K is a compact Lie group, or more
generally K is a linear group over some field.

Proof. If K is a compact Lie group it is linear over R so that in both cases we have
K — GL,(F) for some field F. From the Tits alternative [T] A C G either contains
a free group on two generators or is a finite extension of a solvable group. Since
A is amenable the first possibility is ruled out and thus A is virtually solvable and
since it is dense in K, K is also virtually solvable which implies that B is virtually
solvable. A subgroup of finite index of a group with property 7 has property T
and if a solvable group has property T it must be finite whence B itself is finite
and thus so is its closure K. O

Another approach is via invariant measures. If K. a compact group, has a
dense subgroup with property 7" then K has an affirmative answer to the Banach-
Ruziewicz problem. That means that Haar measure g on K is the unique finitely
additive mea%ure on K, defined on p-measurable sets, that is invariant under all
group translations. (see [L1 ] and the references there). On the other hand, for a
countable amenable group A C K we can find many finitely additive measures on K
that are invariant under A (this follows easily from the existence of approximately
invariant subsets in K, cf. [Sc]). Unfortunately invariance under A doesn’t imply
invariance under K for finitely additive measures so this doesn't settle conjecture
5.4. In light of examples 4.1 and 4.3 the following test cases are of interest:
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Problem 5.6. Let K be one of the groups:

IISL@), ]I S-
n=2 n=1

and let u denote Haar measure on K. Does K have a finitely additive probability
measure defined on the p-measurable sets which is different from .

An affirmative reply to 5.6 would imply that K doesn’t contain any dense sub-
groups with property T'. This fact alone would also follow from conjecture 5.4
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