A Moore Bound for Simplicial Complexes
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Abstract

Let X be a d-dimensional simplicial complex with N faces of di-
mension (d — 1). Suppose that any (d — 1)-face of X is contained in
at least k > d + 2 faces of X of dimension d. Extending the classical
Moore bound for graphs, it is shown that X must contain a ball B of
radius at most [log;_4 V| such that Hy(B;R) # 0. The Ramanujan
Complexes constructed by Lubotzky, Samuels and Vishne are used to
show that this upper bound on the radius of B cannot be improved
by more then a multiplicative constant factor.

1 Introduction

Let G = (V, E) be a graph on n vertices. Let §(G) denote the minimal
degree in G and let g(G) = ¢ denote the minimal length of a cycle in G.

An easy counting argument (see e.g. Theorem IV.1 in [2]) shows that if
d(G) =k > 3 then
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This implies the classical Moore bound
Theorem A. ¢g(G) < 2log;,_,n+ 2.

Let dg(u,v) be the distance between the vertices u and v in the graph
metric and let B.(v) = {u € V : dg(u,v) < r} denote the ball of radius
r around v. Define the acyclicity radius r,(G) of G at the vertex v to be
the maximal 7 such that the induced graph G[B,(v)] is acyclic. Let r(G) =
min,ey r,(G), then 7(G) = L@J — 1. The asymptotic version of Moore’s
bound is equivalent to the following

Theorem A;. If 6(G) = k > 3 then for every v € V

ro(G) < [logy_yn] . (2)

The best lower bound for the girth of k-regular graphs is given by the
Ramanujan graphs of Lubotzky, Phillips and Sarnak [6]. For a fixed prime
p, the construction in [6] provides a sequence of (p + 1)-regular graphs G; =
(Vi, E;) with |V;] — oo such that ¢(G;) > 3log, |Vi| — O(1). A similar result
was obtained by Morgenstern [9] for any prime power ¢. In terms of the
acyclicity radius we therefore have:

Theorem B;. For every prime power q, there exists a sequence of (q+ 1)-
reqular graphs G; = (V;, E;) with |V;| — oo such that for every v € V

2
r(Gi) > S log, Vil = O(1)

In this note we extend Theorems A; and By to higher dimensional simpli-
cial complexes. Let X be a d-dimensional simplicial complex on the vertex
set V. Let H;(X) denote the i-dimensional homology group of X with some
fixed field coefficients. For 0 < i < dlet X(i) = {0 € X : dimo = ¢} and let
fi(X) = |X(7)|]. For a subset of vertices S C V let X[S] denote the induced
subcomplex on S. The degree of a (d — 1)-simplex o € X(d — 1) is

deg(o) =|{r € X(d):0 C T} .

Let §(X) = min{deg(c) : 0 € X(d—1)} . A complex X is called k-regular if
deg(o) = §(X) = k for every 0 € X(d—1). Denote by B,.(v) the ball of radius
r around v with respect to the graph metric on the 1-dimensional skeleton of
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X. Extending the notion of acyclicity radius to the higher dimensional setting
we define r,(X) as the maximal r such that Hy(X[B,(v)]) =0, and 7(X) =
min,ey 7,(X). The following result extends Theorem A; to d-dimensional
complexes.

Theorem A,. Let X be a d-dimensional complexr with 6(X) =k > d + 2.
Then for any vertex v € V' which is contained in some (d — 1)-face

(X)) < [logy,_g fa—1(X)]

For the lower bound, we use the Ramanujan Complexes presented by
Lubotzky, Samuels and Vishne in [8] to show:

Theorem B,. For d > 1 and q a prime power, there exists a sequence of
d-dimensional (q + 1)-regular complexes X; on vertex sets V; with |V;| — oo,
such that for any v € V

log, |Vl
(X 2 g =
Theorem A, is proved in Section 2, while Theorem By is established in
Section 3. Note that Theorem A, reduces to Theorem A; when d = 1. On
the other hand, specializing theorem B, for the case d = 1, yields a somewhat
weaker version of Theorem By (The constant is ¢ rather then ). In Section
4 we discuss some open problems and suggestions for further research. One

such challenge is to improve the constant in Theorem B,.

2 The Upper Bound

Proof of Theorem A,;: First note that if Y is a d-dimensional complex
such that f4(Y) > f4_1(Y) , then Hy(Y') # 0. Indeed, let C;(Y") denote the
space of simplicial i-chains of Y. Then dim Cy(Y) = fo(Y) > far(Y) =
dim Cy_1(Y’) implies that the boundary map 0 : Cy(Y) — Cy_1(Y) has a
non-trivial kernel.

Let v be a vertex which is contained in a (d — 1)-simplex. Abbreviate B, =

Bi(v) and write a(t) = fo—1(X[Bi]) , B(t) = fa(X[B]). Let
v(#t) =H(o,7) : o€ X[BJ(d—1), 1€ X(d), o C T} .
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Then

)= D deg(o) = fa(X[By]) - 6(X) = aft) - k . (3)

oeX[Bg](d—1)

For a d-simplex 7 € X (d) let s(7) denote the number of (d — 1)-simplices in
X |[By] that are contained in 7. Then

[ d+1 1€ X[B]
() _{ 0 T & X[Biy1]

and s(7) < 1if 7 € X[B;41] — X[By]. Thus

V()= Y s(r) < (d+1)B(H) + (Bt +1) = B(t) =

TeX(d)
dp(t) + Bt +1) . (4)
Let m = r,(X). Combining (3) and (4) we obtain that for all t < m
ka(t) < dp(t) + Bt +1) < da(t) +a(t+1) .

Hence
alt+1) > (k—da(t) > > (k—d)'of

1).
Since v is contained in a (d — 1)-face, it follows that a(1) > kd 4+ 1. Thus
(kd+1)(k —d)™ ™ < a(m) < f11(X)

and m < [log;,_4 fa—1(X)].

3 The Lower Bound

The proof of Theorem B, depends on certain finite quotients of affine
buildings constructed by Lubotzky, Samuels and Vishne [8], based on the
Cartwright-Steger group [4] (see also [11] for a similar construction, as well
as [3, 5, 7] for related results). In Section 3.1 we recall the definition and
some properties of affine buildings of type A4_1. In Section 3.2 we describe
the relevant finite quotients and show that they have a large acyclicity radius.
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3.1 Affine Buildings of Type A, ;

Let F' be a local field with a valuation v : F' — Z and a uniformizer 7. Let
O denote the ring of integers of F' and O/7O = F, be the residue field. A
lattice L in the vector space V = F'¢ is a finitely generated O-submodule of
V such that L contains a basis of V. Two lattices L, and Lo are equivalent
if Ly = ALy for some 0 # X\ € F. Let [L] denote the equivalence class of
a lattice L. Two distinct equivalence classes [L1] and [Ls] are adjacent if
there exist representatives L) € [Ly] , L} € [Lo] such that 7L} C L, C L.
The affine building of type Ay_; associated with F is the simplicial complex
B = By(F) whose vertex set B is the set of equivalence classes of lattices
in V', and whose simplices are the subsets {[Lo], ..., [Lx]} such that all pairs
(L], [L;] are adjacent. It can be shown that {[Lo],...,[Ls]} forms a simplex
iff there exist representatives L, € [L;] such that

mL, CLyC---CLj . (5)

It is well known that B is a contractible (d—1)-dimensional simplicial complex
and that the link of each vertex is isomorphic to the order complex A4_1(F,)
of all non-trivial proper linear subspaces of F¢ (see e.g. [10, 7]). This implies
that §(B) = ¢+ 1.

The type function 7 : B — Z4 is defined as follows. Let O be the
standard lattice in V. For any lattice L, there exists g € GL(V') such that L =
gO?. Define 7([L]) = v(det(g)) (mod d). Let dist([L], [L']) denote the graph
distance between [L],[L'] € B° in the 1-skeleton of B. Let dist([L], [L])
denote the minimal ¢ for which there exist [L] = [Lo],...,[L: = [L/] such
that [L;] and [L;41] are adjacent in B and 7([L;y1]) — 7([L:]) = 1 for all
0<:i:<t—-1.

Claim 3.1. For two lattices Ly, Lo
dist ([L1], [Lo]) < (d — 1)dist([La], [La]) - (6)

Proof: This follows directly from (5). Alternatively, let vq,...,v4 be a
basis of V' and let ay,...,aq be integers such that L; = @4 ,0Ov; and L, =
®L 7% Ov;. Then

dist([L4], [Ls]) = max a; — miin a; (7)



and
d

disty ([L4], [Lo]) = Z a; — dmina; . (8)

Now (6) follows from (7) and (8).

3.2 Finite Quotients of Affine Buildings

Let ¢ be a prime power and let F' be the local field F,((y)) with local
ring O = Fy[[y]]. The construction of finite quotients of B = B4(F) in [§],
depends on the remarkable Cartwright-Steger group I' < PGL4(F') (see [4]).
We briefly recall the construction of I' and some of its properties.

Let ¢ : Fja — F,a denote the Frobenius automorphism. Extend ¢ to
F,a(y) by defining ¢(y) = y. Then ¢ is a generator of the cyclic Galois
group Gal(F,a(y)/Fq(y)). Let D be the d*-dimensional F,(y)-algebra given
by D = F,a[o] with the relations ca = ¢(a)o for all a € Fa(y), and 0% = 1+y.
D is a division algebra that splits over the extension field F' = F,((y)). Denote
D(F) =D®F, then there is an isomorphism D(F') = My(F') which in turn
induces an isomorphism

D(F)*/Z(D(F)*) = PGLq4(F) . (9)

Let b, = 1 — o ! € D*, and for u € Fy let b, = uthu. Let g, €
D(F)*/Z(D(F)*) denote the image of b, under the quotient map. The
Cartwright-Steger group I' is the subgroup of D(F)*/Z(D(F)*) generated
by {g. : u € Fy,}. Utilizing the isomorphism (9), we also regard I' as a
subgroup of PGLy4(F'). We shall use the following properties of T

Theorem 3.2. (Cartwright and Steger [4])
a) T acts simply transitively on the vertices of B.

b) Let Ly = O Then for g €T

disty (g[Lo], [Lo]) = min{t : g = gu, - - gu, for some wy,...,u; € Fa}.



The action of D upon itself by conjugation gives rise to a representation
p:D(F) — GLg(F)

which factors through D(F)*/Z(D(F)*). Let &, ...,&s—1 be a normal basis
of F,a over Fy, then {@-cﬂ}ﬁ;o is a basis of D(F') over F'. An explicit compu-
tation (see Eq. (9) on page 975 in [8]) shows that with respect to this basis,
p(by) is a d* x d* matrix whose entries are linear polynomials in 5 over F,.
Let h(\) € F,[A] be an irreducible polynomial which is prime to A(1+ ), and
let f = h(%) € Ry = Fq[i] and I = fRy. Write 1, for the d* x d* identity
matrix. Let

I(I)={~veTl:p(y)=1e(mod f) }.

This subgroup coincides with the congruence subgroup I'(1) as defined in
Eq. (15) on p.979 in [8]. In particular I'/T'(/) is isomorphic to a subgroup
of PGL4(Ry/fRy). Let B = I'(I)\B denote the resulting quotient complex.
The vertex set BY of B; is the set of orbits of B® under I'(1), i.e.

B ={T(D[L) : [L]eB}.

A subset {I'(I)[Lo], ..., T'(I)[Lk]} forms a simplex in By iff there exist go, ..., gx €
['(I) such that {go[Lo], ..., gx[Lk]} is a simplex in B.
Note that

|B}| = (T : T(I)) < [PGLa(Ro/fRo)| -

Let L be a lattice, and let
¢; = min{ dist([L],g[L]) : 1#£geT()} .
Clearly ¢; is independent of L since I' is transitive and I'(I) <T.

Proposition 3.3.

log, |Bj|
(d—1)(d>-1)
Proof: Let ¢t = dist;(g[Lo], [Lo]). By Theorem 3.2b) there exist uy,...,u; €
F;, such that ¢ = gu, -~ gu,. Let C' = (ci5) = p(bu,) - p(bu,). The c;j’s
are polynomials in Fq[i] of degree at most ¢ in i By assumption g € I'(]),

by > (10)
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hence C' = 1, + fE for some E € Mpg(Ry). If ¢;; # 0 for some i # j, then
t > degy,(cij) > degy,(f). Otherwise C' is a diagonal matrix. If it is a
scalar matrix, then it must be the identity as I', being a lattice in PGLy(F'),
has trivial center. Thus we can assume C'is diagonal and non-scalar. Choose
i,j such that c; # cjj, then ¢ > degy ,, (cii — ¢j;) > degy,(f). Thus, by (6)

dist([Lo], g[Lo]) >

disty (g[L], [L]) =

d—1
deg; , (f) - log, [PGL4(Ro/ fRo)|
(d—1) — (d=1)(d*>-1) -
log, |B]|
(d—1)(d* - 1)

O

Proof of Theorem B, ;: Choose a sequence of irreducible polynomials
hi(\) € F,[A] such that (h;, A\(1 +X) =1 and degh; — oco. Let [; = hi(%/)Rg
and let X; = Bj,. The quotient map B — X is clearly an isomorphism on
balls of radius at most % — 1 in B. Since B is contractible, it follows from

Proposition 3.3 that for any vertex v € X}

lr,

TU(Xi) 2 21 -1 2

log, | X7
2(d — 1)(d2 — 1)

We complete the proof by noting that if 7 is sufficiently large then ¢;, > 4,
hence X; is (d — 1)-dimensional and §(X;) = 6(B) = ¢+ 1.

-1 .

4 Concluding Remarks

We proved a higher dimensional extension of the Moore bound, and showed
that the Ramanujan Complexes constructed in [8] imply that this bound is
tight up to a multiplicative factor. We mention several problems that arise
from these results.



1. In Section 3.2 it is shown that for appropriately chosen ideals [; qu[i],
the (d — 1)-dimensional quotient complexes X; = B, satisfy
7y(X;) > C(d — 1) log, |IX9) —1
with C(d — 1) = m. It seems likely that a more careful choice
of the I;’s will lead to an improved bound on the constant. (Recall that

in the 1-dimensional case, Ramanujan graphs [6] give the constant %,
while C(1) = ).

2. While the construction of Ramanujan Graphs and the proof of Theorem
B; depend on number theoretic tools, there is an elementary (but non-
constructive) argument due to Erdés and Sachs (see e.g. Theorem
I11.1.4 in [1]) that shows the existence of a sequence of k-regular graphs
G; = (Vi, E;) with |V;| — oo such that (G;) > L log,_, |[Vi| — O(1). Tt
would be interesting to obtain a similar result in the higher dimensional
setting.
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