
WHAT IS ... a Thin Group?

Alex Kontorovich, D. Darren Long,
Alexander Lubotzky, and Alan W. Reid1

The group SL2(Z) of 2 × 2 integer matrices
with unit determinant is a quintessential arith-
metic group. By this we mean that there is an
algebraic group, that is, a variety defined by
polynomial equations, namely,

SL2 : {(a, b, c, d) : ad− bc− 1 = 0},

whose points over a ring happen to also form
a group (under standard matrix multiplication,
which is a polynomial map in the entries); then
SL2(Z) is the set of integer points in this alge-
braic group. More generally, an arithmetic group
Γ is a finite-index subgroup of the integer points
G(Z) of an algebraic group G. Roughly speak-
ing, a “thin” group is an infinite-index subgroup
of an arithmetic group which “lives” in the same
algebraic group, as explained below.

While the term “thin group”2 was coined in
the last 10-15 years by Peter Sarnak, such groups
had been studied as long as 100-150 years ago;
indeed, they appear naturally in the theory of
Fuchsian and Kleinian groups. For a long while,
they were largely discarded as “irrelevant” to
arithmetic, in part because there was not much
one could do with them. More recently, thin
groups have become a “hot topic” thanks to the
explosion of activity in “Super Approximation”
(see below). Armed with this new and massive
hammer, lots of previously unrelated problems
in number theory, geometry, and group theory
started looking like nails. Our goal here is to de-
scribe some of these nails at a basic level; for a

more advanced treatment of similar topics, the
reader would do well to consult [Sar14].

Let’s get to the general definition from first
seeing some (non-)examples. Take your favorite
pair, A,B, say, of 2 × 2 matrices in SL2(Z) and
let Γ = 〈A,B〉 be the group generated by them;
should Γ be called thin?

Example 1. Suppose you choose A =
(
1 1
0 1

)
and

B =
(

0 1
−1 0

)
. Then, as is well-known, Γ is all of

SL2(Z). This cannot be called “thin”; it’s the
whole group.

Example 2. If you choose A =
(
1 2
0 1

)
and

B =
(
1 0
2 1

)
, then the resulting Γ is also well-

known to be a congruence group, meaning
roughly that the group is defined by congruence
relations. More concretely, Γ turns out to be the
subset of SL2(Z) of all matrices with diagonal en-
tries congruent to 1(mod 4) and evens off the di-
agonal; it is a good exercise to check that these
congruence restrictions do indeed form a group.
It is not hard to prove that the index3 of Γ in
SL2(Z) is 12, so just 12 cosets of Γ will be enough
to cover all of SL2(Z); that also doesn’t qualify
as thin.

Example 3. Say you chose A =
(
1 4
0 1

)
and

B =
(
1 6
0 1

)
; that will generate Γ =

(
1 2Z
0 1

)
, the

group of upper triangular matrices with an even
upper-right entry. This group is certainly of infi-
nite index in SL2(Z), so now is it thin? Still no.
The reason is that Γ fails to “fill out” the alge-
braic variety SL2. That is, there are “extra” poly-
nomial equations satisfied by Γ besides det = 1;
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namely, Γ lives in the strictly smaller unipotent
(all eigenvalues are 1) algebraic group

U : {(a, b, c, d) : ad−bc−1 = a−1 = d−1 = c = 0}.
The fancy way of saying this is that U is the
Zariski-closure of Γ, written

U = Zcl(Γ).

That is, Zcl(Γ) is the algebraic group given by
all polynomial equations satisfied by all elements
of Γ. And if we look at the integer points of U ,
we get U(Z) =

(
1 Z
0 1

)
, in which Γ has finite index

(namely, two). So again Γ is not thin.

Example 4. Take A =
(
2 1
1 1

)
and B =

(
5 3
3 2

)
.

This example is a little more subtle. The astute
observer will notice that B = A2, so Γ = 〈A〉,
and moreover that

An =
( f2n+1 f2n
f2n f2n−1

)
,

where fn is the n-th Fibonacci number, deter-
mined by fn+1 = fn + fn−1 and initialized by
f0 = f1 = 1. Again it is easy to see that Γ is
an infinite index subgroup of SL2(Z), and unlike
Example 3, all the entries are changing. But it is

still not thin! Let φ = 1+
√
5

2 be the golden mean
and K = Q(φ); there is a matrix g ∈ SL2(K)
which conjugates Γ to

Γ1 = gΓg−1 = {
( φ2n 0

0 φ−2n

)
: n ∈ Z}.

The latter group lives inside the “diagonal” alge-
braic group

D : {(a, b, c, d) : b = c = ad− 1 = 0}.
This group is an example of what’s called an
algebraic torus; the group of complex points
D(C) is isomorphic to the multiplicative “torus”
C×. When we conjugate back, the torus D goes
to

D1 = g−1Dg = Zcl(Γ);

the variety D1 is now defined by equations with
coefficients in K, not Q. The rational integer
points of D1 are exactly Γ = D1(Z), so Γ is not
a thin group.

Example 5. This time, let A =
(
1 4
0 1

)
and

B =
(

0 1
−1 0

)
, with Γ = 〈A,B〉. If we replace

the upper-right entry 4 in A by 1, we’re back to
Example 1. So at first glance, perhaps this Γ has
index 4 or maybe 8 in SL2(Z)? It turns out that
Γ actually has infinite index (see, e.g., [Kon13,
§4] for a gentle discussion). What is its Zariski
closure? Basically the only subvarieties of SL2

which are also groups look, up to conjugation,
like U and D (and UD), and it is easy to show
that Γ lives in no such group. More generally,

any subgroup of infinite index in SL2(Z) that is
not virtually (that is, up to finite index) abelian
is necessarily thin. Indeed, being non-virtually
abelian rules out all possible proper sub-algebraic
groups of SL2, implying that Zcl(Γ) = SL2.

It is now a relatively simple matter to give an
almost-general definition.

Definition 6. Let Γ < GLn(Z) be a subgroup
and let G = Zcl(Γ) be its Zariski closure. We say
Γ is a thin group if the index of Γ in the integer
points G(Z) is infinite. (Most people add that Γ
should be finitely generated.)

For more context, we return to the classical
setting of a congruence group Γ < SL2(Z). Such
a group acts on the upper half plane H = {z ∈
C : Imz > 0} by fractional linear transformations(

a b
c d

)
: z 7→ az + b

cz + d
,

and much 20th and 21st century mathematics has
been devoted to the study of:

• “Automorphic forms,” meaning eigen-
functions ϕ : H → C of the hyperbolic
Laplacian ∆ = y2(∂xx + ∂yy) which are
Γ-automorphic, that is,

ϕ(γz) = ϕ(z),

for all γ ∈ Γ and z ∈ H, and
square-integrable (with respect to a cer-
tain invariant measure) on the quotient
Γ\H. These are called “Maass forms” for
Hans Maass’s foundational papers in the
1940’s. Their existence and abundance
in the case of congruence groups is a con-
sequence of the celebrated Selberg trace
formula, developed in the 1950’s.

• “L-functions” attached to such ϕ. These
are certain “Dirichlet series,” meaning
functions of the form

Lϕ(s) =
∑
n≥1

aϕ(n)

ns
,

where aϕ(n) is a sequence of complex
numbers called the “Fourier coefficients”
of ϕ. When ϕ is also an eigenfunction
of so-called “Hecke operators” and nor-
malizing aϕ(1) = 1, these L-functions are
also multiplicative, enjoying Euler prod-
ucts of the form

Lϕ(s) =
∏
p

(
1 +

aϕ(p)

ps
+
aϕ(p2)

p2s
+ · · ·

)
,
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where the product runs over primes.
Needless to say, such L-functions are es-
sential in modern analytic number the-
ory, with lots of fascinating applications
to primes and beyond.
• More generally, one can define related

objects (called “automorphic representa-
tions”) on other arithmetic groups G(Z),
and study their L-functions. The trans-
formative insight of Langlands is the con-
jectured interrelation of these on differ-
ent groups, seen most efficiently through
the study of operations on their L-
functions. Consequences of these hypoth-
esized interrelations include the General-
ized Ramanujan and Sato-Tate Conjec-
tures, among many, many others. We
obviously have insufficient capacity to do
more than graze the surface here.

Hecke, in studying Example 5, found that his
theory of Hecke operators fails for thin groups,
so such L-functions would not have Euler prod-
ucts,4 and hence no direct applications to ques-
tions about primes. Worse yet, the Selberg trace
formula breaks down, and there are basically
no Maass forms to speak of (nevermind the L-
functions!). So for a long while, it seemed like
thin groups, although abundant, did not appear
particularly relevant to arithmetic problems.

About 15 years ago, a series of stunning break-
throughs led to the theory of “Super Approxi-
mation,” as described below, and for the first
time allowed a certain Diophantine analysis on
thin groups, from which many striking applica-
tions soon followed. To discuss these, we first
describe the more classical theory of Strong Ap-
proximation. In very rough terms, this the-
ory says that from a certain algebraic perspec-
tive, “thin groups are indistinguishable from their
arithmetic cousins,” by which we mean the fol-
lowing.

It is not hard5 to show that reducing SL2(Z)
modulo a prime p gives all of SL2(Z/pZ). What
happens if we reduce the group Γ in Example 5
mod p? Well, for p = 2, we clearly have a prob-
lem, since the generator A =

(
1 4
0 1

)
collapses to

the identity. But for any other prime p 6= 2, the
integer 4 is a unit (that is, invertible mod p),
so some power of A is congruent to

(
1 1
0 1

)
mod

p. Hence on reduction mod (almost) any prime,
we cannot distinguish Example 5 from Example
1! That is, even though Γ in Example 5 is thin,
the reduction map Γ → SL2(Z/pZ) is onto. The
Strong Approximation theorem [MVW84] says
that if Γ < SLn(Z) has, say, full Zariski closure
Zcl(Γ) = SLn, then Γ → SLn(Z/pZ) is onto for
all but finitely many primes p. In fact, this rea-
soning can be reversed, giving a very easy check
of Zariski density: if for a single prime p ≥ 5,
the reduction of Γ mod p is all of SLn(Z/pZ),
then the Zariski closure of Γ is automatically all
of SLn; see [Lub99] for details.

One immediate caveat is that, if one is not
careful, Strong Approximation can fail. For a
simple example, try finding a γ ∈ GL2(Z) which
mod 5 gives

(
1 2
3 4

)
. The problem is that GLn(Z)

does not map onto GLn(Z/pZ), since the only de-
terminants of the former are ±1, while the latter
has determinants in all of (Z/pZ)×. But such ob-
structions are well-understood and classical. (In
fancy language, GLn is reductive, while SLn is
semisimple.)

For Super Approximation, we study not only
whether these generators A and B in Example 5
fill out SL2(Z/pZ), but the more refined question
of how rapidly they do so. To quantify this ques-
tion, construct for each (sufficiently large) prime
p the Cayley graph, Gp, whose vertices are the ele-
ments of SL2(Z/pZ) and two vertices (i.e., matri-
ces) are connected if one is sent to the other un-
der one of the four generators A±1, B±1. When
p = 3, the graph is:6


0 1
2 0




0 1
2 2




1 0
0 1




0 1
2 1




1 0
1 1




1 0
2 1




0 2
1 0




0 2
1 1




2 0
0 2




0 2
1 2




2 0
1 2




2 0
2 2




1 1
0 1




1 1
1 2




1 1
2 0




1 2
0 1




1 2
1 0




1 2
2 2




2 2
1 0




2 2
0 2




2 2
2 1




2 1
0 2




2 1
1 1



2 1
2 0



4Without Euler products, L-functions can have zeros in the region of absolute convergence; that is, the correspond-
ing Riemann Hypothesis can fail dramatically!

5Though if you think it’s completely trivial, try finding a matrix γ ∈ SL2(Z) whose reduction mod 5 is, say,
(
2 0
1 3

)
.

The latter is indeed an element of SL2(Z/5Z), since it has determinant 6 ≡ 1(mod 5).
6This graph is begging us to identify each node γ with −γ(mod p), that is, work in PSL2.
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This is a k-regular graph with k = 4, that is,
every vertex γ ∈ SL2(Z/pZ) has four neigh-
bors. The “graph Laplacian” of Gp is the matrix
∆ := I − 1

kA, where A is the adjacency matrix
of the graph. By the spectrum of Gp, we mean
the eigenvalues

λ
(p)
0 ≤ λ(p)1 ≤ · · ·

of ∆. In the case of the graph above, the spec-
trum is:{

0,
1

2
,

1

2
,

1

2
,

1

2
,

3

4
,

3

4
,

5

4
, · · · , 1

8

(
7 +
√

17
)
≈ 1.39

}
Notice that the bottom eigenvalue λ0 is 0 (cor-
responding to the constant function), and has
multiplicity 1; this is due to Strong Approxima-
tion – the graph is connected! (In general, the
multiplicity of the bottom eigenvalue is the num-
ber of connected components.) Hence the first

eigenvalue above the bottom, λ
(p)
1 , is strictly pos-

itive, which by standard techniques implies that
a random walk on the graph is “rapidly mixing”
(see, e.g., [DSV03]). But we have infinitely many
graphs Gp, one for each prime, and a priori, it
might be the case that the mixing rate deterio-

rates as p increases. Indeed, λ
(p)
1 goes from 1

2

when p = 3 down to λ
(p)
1 ≈ 0.038 when p = 23,

for which the graph has about 12, 000 vertices.
Super Approximation is precisely the statement
that this deterioration does not continue indefi-
nitely: there exists some ε > 0 so that, for all
p,

λ
(p)
1 ≥ ε.

That is, the rate of mixing is uniform over the en-
tire family of Cayley graphs Gp. (This is what’s
called an expander family, see [Sar04, Lub12].)

For congruence groups, Super Approximation
is now a classical fact: it is a consequence of
“Kazhdan’s Property T” in higher rank (e.g.
for groups like SLn(Z) n ≥ 3), and of non-
trivial bounds towards the “Generalized Ra-
manujan Conjectures” in rank one (for example,
isometry groups of hyperbolic spaces); see, e.g.,
[Lub10, Sar05] for an exposition. A version of Su-
per Approximation for some more general (arith-
metic but not necessarily congruence) lattices was
established by Sarnak-Xue [SX91].

For thin subgroups Γ < SLn(Z), ma-
jor progress was made by Bourgain-Gamburd
[BG08], who established Super Approximation
(as formulated above) for SL2. This built on
a sequence of striking results in Additive Com-
binatorics, namely the Sum-Product Theorem
[BKT04] and Helfgott’s Triple Product Theorem

[Hel08], and prompted a slew of activity by many
people (e.g. [Var12, PS16, BGT11]), culminating
in an (almost) general Super Approximation the-
orem of Salehi-Golsefidy and Varju [SGV12].

Simultaneously, it was realized that many
natural problems in number theory, groups,
and geometry require one to treat these as-
pects of thin (as opposed to arithmetic) groups.
Two quintessential such, discussed at length
in [Kon13], are the Local-Global Problem
for integral Apollonian packings [BK14b], and
Zaremba’s conjecture on “badly approximable”
rational numbers [BK14a]. Other related prob-
lems subsequently connected to thin groups (see
the exposition in [Kon16]) include McMullen’s
Arithmetic Chaos Conjecture and a problem
of Einsiedler-Lindenstrauss-Michel-Venkatesh on
low-lying fundamental geodesics on the modu-
lar surface. The latter problem, eventually re-
solved in [BK17], was the catalyst for the de-
velopment of the Affine Sieve [BGS10, SGS13];
see more discussion in [Kon14]. Yet a further di-
rection was opened by the realization that the
Affine Sieve can be extended to what may be
called the “Group Sieve,” used to great effect
on problems in Group Theory and Geometry in,
e.g., [Riv08, Kow08, LLR08, LM12]. We will not
rehash these topics, choosing instead to end by
highlighting the difficulty of answering the slight
rewording of the title:

Can you tell... whether a given group is Thin?

Example 7. To ease us into a higher rank ex-
ample, consider the group Γ < SL3(Z) generated
by

A =

1 1 0
0 1 0
0 0 1

 and B =

 0 1 0
−1 0 0
0 0 1

 .

A moment’s inspection reveals that Γ is just a
copy of SL2(Z) (see Example 1) in the upper left
2 × 2 block of SL3. This Γ has Zariski closure
isomorphic to SL2, and is hence not thin.

Example 8. Here’s a much more subtle exam-
ple. Set

A =

 0 0 1
1 0 0
0 1 0


and

B =

 1 2 4
0 −1 −1
0 1 0

 .

It is not hard to show that group Γ = 〈A,B〉 has
full Zariski closure, Zcl(Γ) = SL3. Much more
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striking (see [LRT11]) is that Γ is a faithful rep-
resentation of the “(3, 3, 4) hyperbolic triangle”
group

T =
〈
A,B : A3 = B3 = (AB)4 = 1

〉
into SL3(Z); that is, the generators have these
relations and no others. It then follows that Γ
is necessarily of infinite index in SL3(Z), that is,
thin.

Example 9. The matrices

A =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

 , B =


1 0 0 5
0 1 0 −5
0 0 1 5
0 0 0 1


generate a group Γ < SL4(Z) whose Zariski clo-
sure turns out to be the symplectic group Sp(4).
The interest in these particular matrices is that
they generate the “monodromy group” of a cer-
tain (Dwork) hypergeometric equation. It was
shown in [BT14] that this group is thin. For gen-
eral monodromy groups, determining who is thin
or not is wide open; see related work in [Ven14]
and [FMS14], as well as the discussion in [Sar14,
§3.5].

Example 10. The four matrices
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ,


1 0 0 0
1 1 1 0
−2 0 −1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


3 2 0 1
2 3 0 1
0 0 1 0
−12 −12 0 −5


generate a group Γ < GL4(Z). Its Zariski closure
turns out to be the “automorphism group” of a
certain quadratic form of signature (3, 1). By a
standard process (see, e.g., [Kon13, p. 210]), such
a Γ acts on hyperbolic 3-space

H3 = {(x1, x2, y) : xj ∈ R, y > 0},
and in this action, each matrix represents inver-
sion in a hemisphere. These inversions are shown
in red in the figure below, as is the set of limit

points of a Γ orbit (viewed in the boundary plane
R2 = {(x1, x2, 0)}); the latter turns out to be a
fractal circle packing:

Here circles are labeled with the reciprocal of
their radii (notice these are all integers!). This
limit set is an example of a “crystallographic
packing,” introduced (and partially classified) in
[KN18] as a vast generalization of integral Apol-
lonian circle packings. It follows from the fractal
nature of this limit set that Γ is indeed a thin
group.

In a sense that can be made precise (see
[LM12, Aou11, Riv10, FR17]), random subgroups
of arithmetic groups are thin. But lest we leave
the reader with the false impression that the the-
ory is truly well-developed and on solid ground,
we demonstrate our ignorance with the following
basic challenge.

Example 11. The following group arises natu-
rally through certain geometric considerations in
[LRT11]: let Γ = 〈A,B〉 < SL3(Z) with

A =

 1 1 2
0 1 1
0 −3 −2

 , B =

 −2 0 −1
−5 1 −1
3 0 1

 .

Reduced mod 7, this Γ is all of SL3(Z/7Z), so
its Zariski closure is SL3. Is it thin? As of this
writing, nobody knows!

References

[Aou11] Richard Aoun. Random subgroups of linear groups are free. Duke Math. J., 160(1):117–173, 2011. 5
[BG08] Jean Bourgain and Alex Gamburd. Uniform expansion bounds for Cayley graphs of SL2(Fp). Ann. of Math.

(2), 167(2):625–642, 2008. 4

[BGS10] Jean Bourgain, Alex Gamburd, and Peter Sarnak. Affine linear sieve, expanders, and sum-product. Invent.
Math., 179(3):559–644, 2010. 4

[BGT11] Emmanuel Breuillard, Ben Green, and Terence Tao. Approximate subgroups of linear groups. Geom. Funct.
Anal., 21(4):774–819, 2011. 4

[BK14a] J. Bourgain and A. Kontorovich. On Zaremba’s conjecture. Annals Math., 180(1):137–196, 2014. 4



6

[BK14b] Jean Bourgain and Alex Kontorovich. On the local-global conjecture for integral Apollonian gaskets. Invent.

Math., 196(3):589–650, 2014. 4

[BK17] Jean Bourgain and Alex Kontorovich. Beyond expansion II: low-lying fundamental geodesics. J. Eur. Math.
Soc. (JEMS), 19(5):1331–1359, 2017. 4

[BKT04] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in finite fields, and applications. Geom. Funct.

Anal., 14(1):27–57, 2004. 4
[BT14] Christopher Brav and Hugh Thomas. Thin monodromy in Sp(4). Compos. Math., 150(3):333–343, 2014. 5

[DSV03] G. Davidoff, P. Sarnak, and A. Valette. Elementary Number Theory, Group Theory and Ramanujan Graphs,

volume 55 of London Math. Soc., Student Text. Cambridge University Press, 2003. 4
[FMS14] Elena Fuchs, Chen Meiri, and Peter Sarnak. Hyperbolic monodromy groups for the hypergeometric equation

and Cartan involutions. J. Eur. Math. Soc. (JEMS), 16(8):1617–1671, 2014. 5

[FR17] Elena Fuchs and Igor Rivin. Generic thinness in finitely generated subgroups of SLn(Z). Int. Math. Res.
Not. IMRN, (17):5385–5414, 2017. 5

[Hel08] H. A. Helfgott. Growth and generation in SL2(Z/pZ). Ann. of Math. (2), 167(2):601–623, 2008. 4
[KN18] A. Kontorovich and K. Nakamura. Geometry and arithmetic of crystallographic packings, 2018. To appear,

Proc. Natl. Acad. Sci. https://arxiv.org/abs/1712.00147. 5

[Kon13] Alex Kontorovich. From Apollonius to Zaremba: local-global phenomena in thin orbits. Bull. Amer. Math.
Soc. (N.S.), 50(2):187–228, 2013. 2, 4, 5

[Kon14] Alex Kontorovich. Levels of distribution and the affine sieve. Ann. Fac. Sci. Toulouse Math. (6), 23(5):933–

966, 2014. 4
[Kon16] Alex Kontorovich. Applications of thin orbits. In Dynamics and analytic number theory, volume 437 of

London Math. Soc. Lecture Note Ser., pages 289–317. Cambridge Univ. Press, Cambridge, 2016. 4

[Kow08] E. Kowalski. The large sieve and its applications, volume 175 of Cambridge Tracts in Mathematics. Cam-
bridge University Press, Cambridge, 2008. Arithmetic geometry, random walks and discrete groups. 4

[LLR08] D. D. Long, A. Lubotzky, and A. W. Reid. Heegaard genus and property τ for hyperbolic 3-manifolds. J.

Topol., 1(1):152–158, 2008. 4
[LM12] Alexander Lubotzky and Chen Meiri. Sieve methods in group theory I: Powers in linear groups. J. Amer.

Math. Soc., 25(4):1119–1148, 2012. 4, 5

[LRT11] Darren D. Long, Alan W. Reid, and Morwen Thistlethwaite. Zariski dense surface subgroups in SL(3,Z).
Geom. Topol., 15(1):1–9, 2011. 5

[Lub99] Alexander Lubotzky. One for almost all: generation of SL(n, p) by subsets of SL(n,Z). In Algebra, K-
theory, groups, and education (New York, 1997), volume 243 of Contemp. Math., pages 125–128. Amer.

Math. Soc., Providence, RI, 1999. 3

[Lub10] Alexander Lubotzky. Discrete groups, expanding graphs and invariant measures. Modern Birkhäuser Clas-
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