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Abstract

A finitely generated group Γ is called representation rigid (briefly,
rigid) if for every n, Γ has only finitely many classes of simple C repre-
sentations in dimension n. Examples include higher rank S–arithmetic
groups. By Margulis super rigidity, the latter have a stronger property:
that are representation super rigid ; i.e., their proalgebraic completion is fi-
nite dimensional. We construct examples of non–linear rigid groups which
are not super rigid, and which exhibit every possible type of infinite di-
mensionality. The whether linear representation rigid groups are super
rigid remains an open question.

1 Introduction

Let Γ be a finitely generated group and let k be an algebrically closed field of
characteristic zero (usually k = C). Γ is said to be representation rigid (briefly,
rigid) if, for each n, Γ has only finitely many isomorphism classes of irreducible
representations of degree n.

A useful way to study the representations of Γ over k is to consider the
proalgebraic completion A(Γ) of Γ, also called the Hochschild–Mostow group of
Γ. A(Γ) is the proalgebraic (more precisely, proaffine algebraic) group with a
homomorphism P : Γ → A(Γ) such that for any representation ρ of Γ there is
unique algebraic representation ρ of A(Γ) such that ρ ◦ P = ρ.

This means that the representation theory of Γ is equivalent to the algebraic
representation theory of A(Γ).

The prounipotent radical of A(Γ) is denoted U(Γ), and Q(Γ) = A(Γ)/U(Γ)
denotes the maximal proreductive quotient. In fact, A(Γ) is the semidirect
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product of U(Γ) and any maximal proreductive subgroup [13]. The identity
component is denoted A0(Γ).

Γ is called representation super rigid (briefly, super rigid), if A(Γ) is finite
dimensional (i.e. the identity component A0(Γ) is an affine algebraic group).
Super rigid groups are rigid (Corollary (9)).

Throughout this introduction, and usually also throughout this paper, we
assume that Γ is a finitely generated residually finite group. (Note that for a
finitely generated group the finite dimensional representations of Γ separate the
points of Γ if and only if Γ is residually finite.)

Examples of residually finite super rigid groups include the finitely generated
torsion groups constructed by Golod (usually known as the groups of Golod–
Shafarevich type). For these groups Γ, A0(Γ) = {1} and so dim(A(Γ)) = 0.
More interesting examples are the S–arithmetic subgroups of higher rank semi-
simple groups, whose super rigidity was established by Margulis. Platonov
conjectured that every finitely generated linear rigid group is of arithmetic type.
A counter example to this conjecture was constructed in [5], where a rigid, even
super rigid, linear non–arithmetic group is produced.

The main result of the current paper is the construction of rigid groups which
are not super rigid. We produce examples of rigid groups where A(Γ) is infinite
dimensional in “all possible ways”. For a rigid group Γ, the identity component
Q0(Γ) is semi-simple, and is in fact a direct product of simple simply–connected
algebraic groups Si (Corollary (3). We construct examples of rigid groups of
each of the following types:

1. U(Γ) is infinite dimensional and Q(Γ) is finite dimensional.

2. U(Γ) is finite dimensional (in fact U(Γ) = {1}) and Q(Γ) is infinite dimen-
sional, infinitely many different simple factors Si occur, and each appears
with a finite multiplicity.

3. U(Γ) = {1} and Q(Γ) = S∞1 ×S2 for some simple algebraic groups S1 and
S2.

These examples are constructed in sections (5) (of type (1)) and (6) (of types
(2) and (3)).

In section (3), we give general results on the structure of the proalgebraic
completion of a rigid group and we give criteria for Γ to be rigid in terms of
properties of A(Γ). For example, we define the degree n proalgebraic completion
An(Γ) as A(Γ)/Kn(Γ), where Kn(Γ) is the intersection of the kernels of all the
n dimensional representations of A(Γ). All n dimensional representations of Γ
factor uniquely through An(Γ).

One can easily see that A(Γ) = lim←−An(Γ). We prove:

Theorem A The following are equivalent :
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1. Γ is a rigid group.

2. ∀n, An(Γ) is an affine algebraic group.

3. ∀n, dim(A(Γ)) <∞.

Thus rigidity is equivalent to An(Γ) being finite dimensional for all n, and
super rigidity means that there is a common bound for the dimensions of An(Γ)
for all n.

Here, An(Γ) can be viewed as an analogue, for groups, of the process, for
algebras, of imposing the identities of n× n matrix algebras.

For more conditions equivalent to the rigidity of Γ, see section (3). We also
show in section (4) that if Γ is super rigid, it has a finite index normal subgroup
Γ0 for which A(Γ0) = A0(Γ0)× Γ̂0 = A0(Γ)× Γ̂0.

In section (2) we prove two general results on the proalgebraic completion
of any finitely generated group Γ which are of independent interest:

Theorem B A(Γ) is simply connected (in the sense of Definition (6)

Theorem C A(Γ) has a profinite component lifting; i.e., a closed profinite
subgroup which meets every connected component.

In section (7) we make some suggestions for further research on some se-
quences of numerical invariants associated with rigid groups.
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edge support at various times from the United States Israel Binational Science
Foundation, the Israel Science Foundation, the United States National Security
Agency and National Science Foundation, Hebrew University, the University of
Oklahoma, Columbia University and the University of Michigan .

1.2 Conventions and Definitions of rigidity

For the reader’s convenience, we collect here the notations, conventions and
definitions introduced in this introduction.

Convention 1. k denotes an algebraically closed field of characteristic 0; with-
out loss of generality, k can be asumed to be C.

Convention 2. Γ denotes a discrete group, usually assumed to be finitely gen-
erated and residually finite. A proalgebraic group A is identified with its k
rational pojnts, and homomorphisms of these are assumed to be algebraic, and
continuous for the pro–Zariski topology. This applies in particular to profinite
groups. Representations are assumed to be finite k dimensional linear repre-
sentations. (Prorepresentations are projective limits of these.) We write Γab
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for the abelianization, Γ/(Γ,Γ) of Γ. Similarly for Aab = A/(A,A), except that
in the proalgebraic category we always understand commutator subgroups to be
closed, i.e. the closure of the algebraic commutator subgroup.

Notation 1. Rn(Γ) = Hom(Γ, GLn(k))

Definition 1. A discrete or proalgebraic group is n representation rigid (briefly,
n rigid) if it has only finitely many isomorphism classes of simple representa-
tions in dimension n or less. It is (representation) rigid if it is n rigid for all
n.

Definition 2. A discrete or proalgebraic group is representation reductive
(briefly, reductive) if every representation is semi-simple.

Let G be an algebraic group, U its unipotent radical and Q0 = G0/U its
connected reductive quotient. Then G is rigid if and only it Q0 is semisimple,
i.e. has finite center, and G is reductive if and only if U = {1}.

Notation 2. The profinite completion ρ̂ : Γ→ Γ̂ is universal for maps from Γ
to finite groups. It is injective if and only if Γ is residually finite.

Notation 3. A(Γ) denotes the proalgebraic completion of Γ. (See Definition
(4) below). P : Γ → A(Γ) is the canonical homomorphism, universal with
respect to maps from Γ to algebraic (or proalgebraic) groups; Ker(P ) = Ker(ρ̂)
for Γ finitely generated. A0(Γ) is the identity component of A(Γ), U(Γ) is the
prounipotnet radical of A(Γ), and Q(Γ) is the maximal proreductive quotient
A(Γ)/U(Γ). Q0(Γ) is the identity component of Q(Γ).

Definition 3. Γ is representation super rigid (briefly, super rigid) if A(Γ) is
finite dimensional.

1.3 References

We rely on and commend to the reader the following references on proalgebraic
groups in general and proalgebraic completions in particular: “Representations
and representative functions of Lie groups” [7] and “Pro–affine algebraic groups”
[8] by G. Hochschild and G. D. Mostow; “Pro-affine algebraic groups” [13] by
F. Minbashian; and [10, Chapter 4].

2 Proalgebraic completions

2.1 Basics

We begin with an arbitrary group Γ and define the proalgebraic completion of
Γ in terms of its universal property:

Definition 4. A proalgebraic completion for Γ relative to k is a pair (ρu,G)
consisting of a proalgebraic k group G and a homomorphism ρu : Γ → G such
that for any proalgebraic group G and any homomorphism ρ : Γ→ G there is a
unique morphism qρ : G → G such that ρ = ρu ◦ qρ.
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It is immediate from the definition that a proalgebraic completion for Γ is
unique up to unique isomorphism. Moreover, ρu(Γ) is Zariski dense in G. In
fact, let G denote the Zariski closure of ρu(Γ) in G. The universal property then
furnishes a retraction q : G → G ≤ G. Since q and IdG are endomorphisms of G
that agree on ρu(Γ), they are equal, hence q = IdG , i.e. G = G. We denote this
group Ak(Γ). Moreover, it is also easy to see that it is enough for a proalgebraic
completion for Γ only to satisfy the definition for the case that G is an affine k
group, and hence for the case that G = GLn(k), some n.

Our field k is usually fixed, and we generally drop the subscript k and write
A(Γ) for the proalgebraic completion. However we point out that A(Γ) depends
on the field in a crucial way, and that for base change k ⊂ K we may have
AK(Γ) 6= K ⊗k Ak(Γ).

There are two standard constructions for A(Γ): the first considers the prod-
uct P =

∏
{GLn(k) | ρ ∈ Hom(Γ, GLn(k)), n ∈ N} of all the ranges of all the

finite dimensional k representations of Γ. P is a proalgebraic group, and there
is an obvious diagonal homomorphism P : Γ → P and the pair (P,P). Then
taking the Zariski closure of P (Γ) in P produces a pair satisfying Definition (4).

The other construction begins by directly producing the ind–affine coordi-
nate ring O of a proalgebraic completion: by Zariski density, functions in O are
determined by their values on Γ, so O may be regarded as a ring of functions
on Γ. Any function in the coordinate ring of the range of any representation
of Γ pulls back via ρu to a function in O. One checks that these are precisely
the k–valued functions on Γ whose translates by Γ span a finite dimensional
vector space over k; these are termed representative functions on Γ. The set
of representative functions on γ is denoted Ok(Γ). It is seen to be a Hopf al-
gebra who associated proalgebraic group, of k algebra homomorphisms to k,
Algk(Ok(Γ), k), is a proalgebraic for Γ (Γ→ Algk(Ok(Γ), k) is given by sending
γ ∈ Γ to evaluation at γ.)

A third common construction of the proalgebraic completion is as the group
of tensor product preserving automorphisms of the forgetful functor from the
category of finite dimensional Γ modules to the category of finite dimensional k
vector spaces (“Tannaka Duality”); see [11].

As per Notation (3) above, we use (P,Ak(Γ)) to denote the (equivalent)
proalgebraic completions resulting from either construction.

The case Γ = Z is instructive:

Example 1. The Zariski closures of the representations of Z are the closures
of the cyclic subgroups of GLn(k). These are abelian, can have an (at most)
one dimensional unipotent radical, a torus of aribtrary size, and a finite cyclic
group on top. The divisibility of the first two types of subgroups shows that the
group is a direct product of the three types. Hence

A(Z) = Ga(k)× T × Ẑ

where T = T (Z) is an infinite dimensional protorus whose character group is
the divisible group Hom(Z, k×) ∼= k×. Here U(Z) = Ga(k) ∼= k and A0(Z) =
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Ga(k) × T , and Q0(Z) is isomorphic to T . Note that the groups A(Z), A0(Z),
and Q0(Z) = T (Z) are all infinite dimensional.

Example 2. More generally, if Γ is abelian, then A(Γ) = U(Γ)× T × Γ̂. Here
U(Γ) is k dual to the k vector space Hom(Γ, k), (finite dimensional if Γ is finitely
generated, zero if and only if Γ is torsion). The character group X(Γ) of the
protorus T is isomorphic to the torsion free quotient of Hom(Γ, k×). The torsion
subgroup of Hom(Γ, k×) is Pontryagin dual to Γ̂. Now Hom(Γ, k×) is torsion
if and only if Γ is torsion of bounded exponent. In all other cases, Hom(Γ, k×)
has infinite torsion-free rank, as can easily be checked. Thus, either Γ is torsion
of bounded exponent, and T = {1}, or else T is infinite dimensional. Thus we
have the equivalence of the conditions:

1. Γ is torsion of bounded exponent.

2. X(Γ) is torsion.

3. T (Γ) = {1}.

4. Dim(T (Γ)) <∞.

Moreover, these conditions imply the following equivalent conditions:

5. Hom(Γ, k) = {0}, i.e. Γ is torsion.

6. U(Γ) = {1}.

Example 3. If Γ is no longer assumed to be abelian, then the above analysis de-
scribes A(Γ)ab = A(Γab)(see Remark (1) below). Namely, A(Γ)ab = U ×T ×P ,
where P = Γ̂ab, and is Pontryagin dual to the torsion subgroup of X(G) :=
Hom(Γ, k×); T is the protorus whose character module is the torsion free quo-
tient of X(Γ); and U is the k module dual of the k vector space Hom(Γ, k).

The following simple results on finite index subgroups, which we recall here
with proofs, are basic for our analysis.

Proposition 1. Let Γ be a group and let Γ0 be a finite index subgroup. Then
A(Γ0)→ A(Γ) is injective, and q : Γ/Γ0 → A(Γ)/A(Γ0) is bijective.

Proof. Every finite dimensional Γ0 module M is a Γ0 submodule of a finite
dimensional Γ module k[Γ]⊗k[Γ0]M , so every representative function on Γ0 is the
restriction of a representative function on Γ. Thus the restriction R(Γ)→ R(Γ0)
is surjective, which makes A(Γ0) → A(Γ) is injective. If γ1, . . . , γd are coset
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representatives for Γ/Γ0, then A(Γ0)γ1 ∪ · · · ∪ A(Γ0)γd is a closed subset of
A(Γ) which contains Γ, and hence A(Γ), so q is surjective. The permutation
representation of Γ on k[Γ/Γ0] extends to a representation ρ of A(Γ) such that
ρ(A(Γ)) = ρ(Γ), ρ(A(Γ0)) = ρ(Γ0), and the ρ(γi) are distinct modulo ρ(Γ0).
Hence q is also injective.

Corollary 1. Let Γ be a group and let Γ0 be a finite index subgroup. Then
A0(Γ0)→ A0(Γ) is an isomorphism.

Proof. We consider A(Γ0)→ A(Γ) an inclusion. Without loss of generality, we
may asume that Γ0 is normal in Γ, which in turn implies that A(Γ0) is normal
in A(Γ), and hence so is the characteristic subgroup A0(Γ0). A(Γ0)/A0(Γ0) is
profinite and is of finite index in A(Γ)/A0(Γ0), which implies that the latter is
profinite as well. Thus A0(Γ0) is a connected normal subgroup of A(Γ) with
profinite quotient, which implies that A0(Γ0)→ A0(Γ) is an isomorphism.

Remark 1. Let Γ0 → Γ→ Γ1 → 1 be an exact sequence of discrete groups.
(a) The sequence A(Γ0)→ A(Γ)→ A(Γ1)→ 1 is exact.
(b) Call Γ0 → Γ observable if every representation of Γ0 is Γ0 equivariantly

embeddable in a representation of Γ1. This is the case for example when Γ0 is
a finite index subgroup of Γ. From the point of view of representative functions
(see the discussion following definition (4)), we see that this is necessary and
sufficient for the injectivity of A(Γ0)→ A(Γ)¿

(c) Taking Γ0 to be the commutator subgroup of Γ, so that Gamma1 is the
abelianization Γab = Γ/(Γ,Γ), we see that

A(Γ)ab = A(Γab),

and the latter group is as described in Example (2) above. Since A(Γ) ∼= U(Γ)o
Q(Γ), we have

A(Γ)ab = U(Γab)× T (Γab × Γ̂ab,

where
U(Γab) = U(Γ)/(A(Γ), U(Γ))

(recall that commutator groups are here always understood to be the closures
of the algebraic commutator subgroups); U(Γab) is k dual to the k vector space
Hom(Γ, k). Moreover,

Q(Γab) = T (Γab)× Γ̂ab

is a proreductive abelian group with character group X(Γ) = Hom(Γ, k×), and
the character group X(T (Γab) is the torsion free quotient of X(Γ).

(d) For any group Γ we put

S(Γ) = (Q0(Γ), Q0(Γ)),

a prosemisimple group, and

T (Γ) = ZQ0(Γ)(S(Γ))0,
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the connected center of Q0(Γ), which is a protorus. (This notation is consistent
with the notation T (Γab) in (c) above). We have

Q0(Γ) = S(Γ) · T (Γ).

Remark (1) gives a necessary condition for rigidity, which we will now name
and give some equivalent formulations of:

Definition 5. We introduce the following conditions on a group Γ.

(TAb) Γab
0 = Γ0/(Γ0,Γ0) is torsion for all Γ0 of finite index in Γ

(BTAb) Γab
0 = Γ0/(Γ0,Γ0) is torsion of bounded exponent for all Γ0 of finite index in Γ

(FAb) Γab
0 = Γ0/(Γ0,Γ0) is finite for all Γ0 of finite index in Γ

Remark 2. Clearly (FAb) implies (BTAb) implies (TAb), and they are all
equivalent if Γ is finitely generated. We have

(TAb) if and only if Hom(Γ0, k) = {0} for all Γ0 of finite index in Γ; and

(BTAb) if and only if Hom(Γ0, k
×) = {1} for all Γ0 of finite index in Γ.

Γ = Q/Z satisfies (TAb) but not (BTAb). Γ = Fp[t] satisfies (BTAb) but not
(FAb). If Γ is a weak direct product of infinitely many copies of s finite simple
group, then Γ satisfies (FAb) but Γ̂ is not rigid.

Proposition 2. Let Γ be a discrete group.

1. Condition (a) implies condition (b):

(a) Γ̂ is rigid
(b) Γ has (FAb)

2. The following conditions on Γ are equivalent:

(a) Γ has (BTAb)
(b) T (Γ) = {1}
(c) Dim(T (Γ) <∞

3. The following conditions on Γ are equivalent:

(a) (TAb)

(b) U(Γ) = (A0(Γ), U(Γ))
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When Γ is finitely generated, all of the above conditions are equivalent.
From (2) it follows that if there is one representation ρ : Γ→ GLn(k) such

that ρ(A0(Γ) has a non trivial linear character, then T (Γ) is infinite dimen-
sional.

Proof. It will suffice to prove the following implications:
(1)(a) implies (1) (b):
Let Γ0 be a finite index subgroup of Γ. If Γab

0 is infinite then Γ0 has infinitely
many one dimensional representations with finite image, and these induce to
representations with finite image of Γ in dimension [Γ : Γ0] with infinitely many
distinct characters, thus violating rigidity of Γ̂.

(2)(a) implies (2) (b):
If T (Γ) 6= {1} there is an epimorphism A0(Γ) → k×. This appears in

an algebraic quotient of A(Γ), whose connected component pulls back to an
open subgroup of A(Γ) whose intersection, Γ0, with Γ is a finite index subgroup
mapping to k× with Zariski dense (i.e. infinite) image. Thus Γ0ab is not torsion
of bounded exponent, contradicting (BTAb).

(2)(c) implies (2) (a):
Let Γ0 be a finite index subgroup of Γ, and X(Γ0) = Hom(Γ0, k

×). Then
T (Γab

0 ) is a quotient of T (Γ), and hence finite dimensional, by hypothesis. By
Example (2), this can happen only if T (Γab

0 ) = {1}, i.e. if X(Γ0) is torsion, and
this happens only if Γab

0 is torsion of bounded exponent, whence (BTAb).
(3)(a) implies (3) (b):
Let W = U(Γ)/(A0(Γ), U(Γ)). If W 6= {1} then there is an algebraic quo-

tient G of A(Γ) such that (G0)ab has a non trivial unipotent radical, which is
a direct factor. This produces, as usual, a finite index subgroup Γ0 of G which
maps to k with Zariski dense (i.e. non zero) image, whence Γab

0 is not torsion,
contradicting (TAb).

(3)(b) implies (3) (a):
If (TAb) fails then Hom(Γ0, k) 6= {0} for some finite index Γ0 in Γ. This

entails a non trivial unipotent quotient of A(Γ0), and so W 6= {1}.
(1)(b) implies (1) (a) for Γ finitely generated:
If Γ̂ is not rigid then, in someGLn(k), Γ has infinitely many conjugacy classes

of representations with finite image, and therefore images of unbounded size.
Let Γn denote the intersection of all subgroups of Γ of index at most j = j(n) as
in Jordans Theorem (below). Since Γ is finitely generated, the latter are finite
in number, and so Γn itself has finite index in Γ. Moreover Jordans Theorem
implies that, for each representation ρ : Γ → GLn(k), ρ(Γn) is abelian. Since
these images have unbounded size, it follows that Γab

n is infinite, thus violating
hypothesis (FAb).

In the previous proof, and in other results below, we have used Jordan’s
Theorem. We recall its statement and some consequences:

Jordan’s Theorem There is a number j = j(n) such that each finite sub-
group of GLn(k) has an abelian normal subgroup of index at most j.

9



Consequences For an integer N > 0, call a group G N -residual if the
quotients of G of order at most N separate the points of G. For any group
G, let GN denote the intersection of the normal subgroups of index at most
N . Then G/GN is the N -residual quotient of G. If G is finitely generated
(discrete or profinite) then it is clear that G/GN is finite. If the n-dimensional
representations of G separate points, then it follows from Jordans Theorem
that Gj(n) is abelian. Thus, if G is finitely generated and its n-dimensional
representations separate points then Gj(n) is an abelian normal subgroup of
finite index (and G/Gj(n) is j(n)-residual).

If Γ is rigid, then Proposition (2) (1)(a) holds (it is a special case of rigidity).
Hence:

Corollary 2. A finitely generated rigid group has (FAb).

2.2 Simply connectivity of proalgebraic completion iden-
tity component

In this section, we observe that, for a finitely generated group Γ, the identity
component A0(Γ) of A(Γ) is simply connected, in the sense which we now define.

Definition 6. A connected proalgebraic group G is said to be simply connected
if every surjection p : G1 → G where G1 is connected proalgebraic and the kernel
of p is finite is an isomorphism. (It follows that the same property holds if we
assume only that Ker(p) is profinite.)

In terms of structure, this signifies the following. Write G = U oQ, where
U is the prounipotent radical of G, and Q is connected and proreductive. In
turn, we can write Q = S · T , where S = (Q,Q) is connected prosemisimple
and T = ZQ(S)0 is a protorus. Further we can write S as an almost direct
product of simple algebraic groups SI , in the sense that the map q :

∏
SI → S

is surjective with central kernel. Now, with this notation, G is simply connected
if and only if Q = S × T , each SI is simply connected (as algebraic group), the
map q is an isomorphism, and the character group X(T ) is divisible.

The following proposition gives a more convenient version of the simply
connected property:

Proposition 3. Let G be a connected proalgebraic group. The following are
equivalent:

1. G is simply connected

2. If H is a normal subgroup of G such that G/H is affine, and q : G→ G/H
is an eprimorphism of affine groups with finite kernel, then there is a ho-
momorphism r : G→ G such that q ◦ r is the canonical map G→ G/H.
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Proof. Suppose G is simply connected and q : G→ G/H is a map as in (2). Let
G2 = G ×G/H G, and let p1 : G2 → G be projection on the first factor. Then
p1 is surjective (since q is) and Ker(p1) ∼= Ker(q) is finite. Then, by hypothesis,
p : G0

2 → G is an isomorphism. Then r = p2 ◦ p−1, where p2 : G0
2 ≤ G2 → G is

projection on the second factor, is the desired homomorphism.
Now suppose that G satisfies (2) and that there is a surjection p : G1 → G

where G1 is connected proalgebraic and the kernel K of p is finite. Let H1 be a
connected normal subgroup ofG1 such thatG1/H1 is affine and such thatK∩H1

is the identity. Let H = p(H1). Then q : G1/H1 → G/H is a surjection of affine
groups with finite kernel K, and so there is a map f : G → G1/H1 such that
q(f(g)) = gH for g ∈ G. It follows that f(H) ≤ K, and since H is connected
and K finite, this implies that f(H) = {e}. But then f factors through G/H
and provides a section G/H → G1/H1 of q. Thus G1/H1

∼= G/H × K, and
since G1/H1 is connected this implies that K = 1 and p is an isomorphism. So
G is simply connected.

Now we show that identity components of proalgebraic completions of finitely
generated groups have this property:

Theorem 1. Let Γ be a finitely generated group. Then A0(Γ) is simply con-
nected.

Proof. We apply proposition (3). Assume that H is normal in A0(Γ) and such
that A0(Γ)/H is affine, and q : G → A0(Γ)/H is surjective with finite kernel
with G connected. SupposeH1 ≤ H is also normal in A0(Γ) with affine quotient.
Then

G1 = (G×A0(Γ)/H A0(Γ)/H1)0 → A0(Γ)/H1

by projection on the second factor is also surjective with finite kernel, and a map
A0(Γ)→ G1 will give the desired map to G when followed by projection on the
first factor. So we can replace H by smaller normal subgroups. In particular,
we can replace H by a subgroup normal in A(Γ). (If A(Γ) = lim←−A(Γ)/Hα then
A0(Γ) = lim←−A

0(Γ)/(A0(Γ) ∩Hα)).
Let ρ be the representation of Γ corresponding to A(Γ) → A(Γ)/H and

let Γ0 = ρ−1(ρ(Γ) ∩ A0(Γ)/H). Then ρ(Γ0) is Zariski dense in A0(Γ)/H. Let
Λ = q−1(ρ(Γ0)). Λ is an extension of ρ(Γ0) by the finite abelian group K. Λ
is a finitely generated linear group, and hence residually finite. Let Λ1 be a
finite index normal subgroup of Λ with Λ1 ∩ K the identity. Let Γ1 = q(Λ1).
The extension Λ of Γ0 by K is thus split over Γ1. This means that the map
Γ1 → A0(Γ)/H lifts to a map Γ1 → G. This in turn gives rise to a map
A(Γ1) → G and hence a map A0(Γ1) → G. By corollary (1), A0(Γ1) → A0(Γ)
is an isomorphism, so we have a map A0(Γ) → G as required by proposition
(3). It follows that A0(Γ) is simply connected.

As an important consequence of simple connectivity, we have the following:

Corollary 3. Let Γ be a finitely generated group. Then Q0(Γ) is the direct
product of a protorus T (Γ) with uniquely divisible character group and the closed
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commutator subgroup S(Γ) of Q0(Γ); S(Γ) is the (possibly infinite) direct product
of simply connected simple algebraic groups.

It is possible of course for T (Γ) in Corollary (3) to be trivial. From Propo-
sition (2) (2) once it is non trivial, then it is in fact infinite dimensional.

2.3 Lifting Profinite Quotients, and Projective Proalge-
braic Groups

Definition 7. Let G be a proalgebraic group. A component quotient lift (briefly,
lifting) is a profinite subgroup of G which maps onto G/G0.

The main goal of this section will be to show that all proalgebraic groups
admit component quotient lifts.

For the case of an affine algebraic group, such liftings are due to V. Platonov
[14]. We obtain the existence of liftings in the proalgebraic case by a reduction to
the case treated by Platonov: we introduce the notion of projective proalgebraic
group, and show that projectivity can be tested on affine surjections. From this,
we deduce that a projective profinite group is projective as a proalgebraic group.
It follows that free profinite groups are projective. This provides a component
lifting for the case of A(F ), F free, from which the existence of component
liftings in general then will follow,

We begin with the definition of projective proalgebraic:

Definition 8. A proalgebraic group P is projective if for every epimorphism
α : A → B of proalgebraic groups and for every homomorphism f : P → B
there is a homomorphism φ : P → A such that f = α ◦φ. We call φ a lifting of
f (through α).

Symbolically, we want to complete the diagram

A
↓

P → B

with a diagonal map

A
↗ ↓

P → B

For example, when F is a free group (possibly on an infinite set), then A(F )
is clearly a projective proalgebraic group.

The following proposition is the key step in our reduction argument.

Proposition 4. Let P be a proalgebraic group. The following are equivalent:

1. P is projective.
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2. For every (α, f) as in Definition (8) with Ker(α) algebraic f admits a
lifting through α.

3. For every (α, f) as in Definition (8) with A algebraic f admits a lifting
through α.

Proof. Clearly (1) implies (2) implies (3). We prove the converse of each.
Assume P satisfies (3) and let α : A → B, f : P → A, be such that α

has algebraic kernel K. Since K has the descending chain condition on closed
subgroups, and the closed normal subgroups of A with affine quotient have
intersection the identity, we can find such a normal subgroup N of A with
N ∩K = {e}. We can identify B with A/K and hence identify B/α(N) with
A/KN . Then A/N is algebraic and the induced maps A/N → A/KN and
P → A/KN admit an extension φ : P → A/N . Then Φ = (f, φ) maps P
to the fibre product A/K ×A/KN A/N . On the other hand, it is easy to see
that since the intersection K ∩ N is the identity, the map of A to the fibre
product induced by the canonical projections A → A/N and A → A/K is an
isomorphism (“Chinese Remainder Theorem” for groups). Thus we can regard
Φ as a map to A, and it is an extension of α and f as needed for (2).

Now assume P satisfies (2) and assume α : A → B is any surjection and
f : P → B is a morphism. It will be convenient to write B as A/L. For any
normal subgroup N of A contained in L, we will call a morphism φ : P → A/N
an N partial extension for f if the composition of φ and A/N → A/L is f . The
set N of pairs (N,φ) where φ is an N partial extension of f is partially ordered:
we say (N,φ) ≤ (N ′, φ′) if N ′ ≤ N and φ′ induces φ mod N . We claim that any
chain C = {(Ni, φi) | i ∈ I} in N has a maximal element. (Note: the indexing
set I in C is not necessary countable.) Let N0 = ∩iNi. A/N0 = lim←−A/Ni and
the maps φi induce a map φ0 : P → A/N0. (N0, φ0) is a maximal element for
C. By Zorn’s lemma, N has a maximal element (N,φ). If N = {e}, φ is an
extension of α, f as desired. If not N 6= {e}, then there is a normal subgroup
M of A with A/M affine such that M ∩ N = L is a proper subgroup of N .
The surjection A/L → A/N has algebraic kernel K = MN/M . By (2), there
is an extension ψ for A/L → A/N and φ : P → A/N , which implies that
(N,φ) < (L,ψ), contrary to the maximality of (N,φ). Thus N = {e} and (1)
follows.

As previously noted, Platonov proved component lifting for algebraic groups.
Using Proposition (4), we use this to conclude that projective profinite groups
are projective proalgebraic:

Corollary 4. A profinite group which is projective in the category of profinite
groups is projective in the category of proalgebraic groups.

Proof. Let P be a profinite group which is projective in the profinite group
category. By Proposition (4), P will be projective proalgebraic if morphisms
f : P → B and α : A → B, α onto and A and B algebraic, have an extension.
Since B is algebraic, f(P ) is finite. Let C = α−1(f(P )). By [14] there is a finite
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subgroup F ≤ C mapping onto f(P ). Since P is profinite projective, there is an
extension φ : P → F for the maps P → f(P ) and F → f(P ). Then regarding
φ as a map to A we have an extension for f and α.

It is clear that the profinite completion F̂ of a free group F is projective
profinite, and hence by Corollary (4) is projective proalgebraic.

Corollary 5. Let F be a free group. Then there is a profinite subgroup ∆ of
A(F ) which maps isomorphically onto A(F )/A0(F ).

We can regard any group Γ as a homomorphic image of a free group F ,
which makes A(Γ) a homomorphic image of A(F ) and hence A(Γ)/A0(Γ) an
image of A(F )/A0(F ). If ∆ is a profinite subgroup of A(F ) as in Corollary (5),
then its image in A(Γ) maps onto A(Γ)/A0(Γ). Hence:

Corollary 6. Let Γ be a group. Then there is a profinite subgroup of A(Γ)
which meets every coset of A0(Γ).

The argument used to establish Corollary (6) applies to any proalgebraic
group which is a homomorphic image of A(F ):

Corollary 7. Let G be a proalgebraic group. Then there is a profinite subgroup
of G which meets every coset of G0.

Proof. Let ga, a ∈ A be elements of G that generate G/G0 as a proalgebraic
group.Let F be a free group on xa, a ∈ A and define a morphism F → G by
xa 7→ ga. By the universal property of proalgebraic completions, this extends
to a morphism p : A(F )→ G which is surjective and, by construction, gives rise
to a surjection A(F )/A0(F ) → G/G0. If ∆ is a profinite subgroup of A(F ) as
in Corollary (5), then p(∆) is a profinite subgroup of G which maps onto G/G0,
as asserted.

3 The Proalgebraic n Completion and Rigidity
Criteria

There is an analogue of A(Γ) which has a corresponding universal property for
representations of dimension n or less. In this section we define it and discuss
its connection with rigidity. We begin with a definition:

Definition 9. Let Kn(Γ) be the interection of the kernels of all the algebraic
representations of A(Γ) of dimension at most n. The proalgebraic n completion
of Γ, denoted An(Γ), is the quotient A(Γ)/Kn(Γ). We let Un(Γ) and Qn(Γ)
denote the prounipotent radical and maximal reductive quotient of An(Γ). We
use Vn(Γ) for the quotient of Un(Γ) by its closed commutator subgroup.

It is clear from the definition that representations of Γ of dimension n or less
extend uniquely to representations of An(Γ) of the same dimension. Since the
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representations of Γ are assumed to separate points (of Γ and hence of A(Γ)),
the representations of dimension n or less separate the points of An(Γ).

As an application of Corollary (7) and Jordan’s Theorem, we have the fol-
lowing property for An(Γ) when Γ satisfies (FAb) groups:

Corollary 8. Let Γ be a finitely generated group and n a positive integer.

1. There exists a finite index normal subgroup Γn of Γ such that An(Γn)/A0
n(Γ) =

(Qn(Γn)/QA0
n(Γ)) is abelian.

2. If Γ satisfies (FAb) then An(Γn)/A0
n(Γ) is finite, Q0

n(Γ) is prosemisimple
and we can choose Γn in (1) so that An(Γn) = A0

n(Γ).

3. If Γ satisfies (FAb) and Dim(Qn(Γ)) < ∞, then Qn(Γ) is algebraic and
rigid.

Proof. LetD be a profinite subgroup of An(Γ) such that An(Γ) = A0
n(Γ)D.Since

Γ is finitely generated we can select D to be finitely generated as a profinite
group. The consequences of Jordans Theorem furnish an abelian normal sub-
group Dj(n) of finite index in D. Then A0

n(Γ)·Dj(n) is an open normal subgroup
of An(Γ) whose intersection Γn with Γ satisfies the condition of (1).

If Γ satisfies (FAb) then the abelian image of Γn modulo A0
n(Γ) must be

finite, so, by making Γn smaller by finite index we can put Γn inside A0
n(Γ).

From this and Proposition (2), (2) follows. Clearly (3) follows now from (2).

We are going to see the connection between rigidity and the finite dimen-
sionality of the An(Γ). In this connection, we note that a proalgebraic group is
algebraic if (and only if) it is finite dimensional and has finitely many connected
components.

The main result of this section is the following theorem:

Theorem 2. The following are equivalent for the finitely generated group Γ:

1. Γ is rigid.

2. ∀n, An(Γ) is rigid.

3. ∀n, An(Γ) is an algebraic group.

4. ∀n, An(Γ) is finite dimensional

5. ∀n, Qn(Γ) is rigid.
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6. ∀n, Qn(Γ) is an algebraic group

7. ∀n, Qn(Γ) is finite dimensional

We will prove Theorem (2) by means of Theorem (3) below, which makes
more precise the connections between the various properties.

We begin by enumerating the various rigidity and finiteness conditions to be
considered:

Notation 4. n denotes a positive integer

(R)n Γ is n–rigid.

(AR)n An(Γ) is rigid.

(AA)n An(Γ) is an algebraic group.

(AD)n Dim(An(Γ)) <∞.

(QR)n Qn(Γ) is rigid.

(QA)n Qn(Γ) is an algebraic group.

(QD)n Dim(Qn(Γ)) <∞.

For each of the properties P = R,AR,AA,AD,QR,QA,QD we will write
(P)∞ to mean that (P)n holds for all n. Note that (R)∞ is equivalent to rigid.

We have some obvious implications:

1. (QR)n is equivalent to (AR)n and both imply (R)n.

2. (AA)n holds if and only if (AD)n holds and An(Γ)/A0
n(Γ) is finite.

3. (QA)n holds if and only if (QD)n holds and Qn(Γ)/Q0
n(Γ) is finite.

4. Thus (AD)n and (QA)n implies (AA)n.

5. By Corollary (8) (2) (AD)n and (FAb) implies (AA)n; and
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6. (QD)n and (FAb) implies (QA)n.

7. Finally, we note that (R)∞ implies (FAb).

The following theorem records some of the main relationships among the
properties of Notation (4).

Theorem 3. For all integers n the following implications hold:
I:

(R)n2

⇓
(AA)n ⇒ (AR)n ⇒ (AD)n

m ⇓ ⇓
[(QD)n + (FAb)] ⇒ (QA)n ⇒ (QR)n ⇒ (QD)n

II:
(AA)n ⇒ (R)n ⇒ (QR)n

III:

(R)∞, (AA)∞, (AR)∞, (AD)∞, (QA)∞, (QR)∞, (QD)∞ are all equivalent.

Proof. Assertion III follows from I and II. In the proof of I and II, the only
implications that are non obvious or are not covered by the discussion above,
are the following:

(R)n ⇒ (QA)n, whence (QR)n ⇒ (QA)n. Assume (R)n (that Γ is n-rigid).
For a representation ρ of A(Γ), we will denote by ρss the associated semisimple
representation. It is easy to see that ρss(A(Γ)) is the quotient of ρ(A(Γ)) by
its unipotent radical. It follows that the representations {ρss | ρ ∈ Rn(Γ)}
separate the points of Qn(Γ); i.e., their kernels have trivial intersection. Since
Γ is n-rigid, there are only finitely many such kernels, which implies that Qn(Γ)
is embedded in a finite product of algebraic groups, and hence is algebraic.

[(QD)n + (Fab)] ⇒ [(QR)n + (QA)n] This follows from Corollary (8) (3)
above.

(R)n2 ⇒ (AA)n. Since n2-rigidity implies n-rigidity, we already have (QA)n,
proved above, so it remains to show the finite dimensionality of Un(Γ). This
follows from Proposition (5) (2) below.

Proposition 5.

1. Let G be a group, let S be a simple G-module of dimension d, and let V
be an S-isotypic G-module generated by r elements. Then dim(V ) ≤ rd2.

2. If G = Γ is finitely generated and n2-rigid then Dim(Un(Γ)) <∞.
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Proof. We are grateful to R. Guralnick for the proof of part (1).
Proof of (1): An easy induction argument shows that it suffices to treat the

case r = 1, and in this case it suffices to show that Sd+1 cannot be G generated
by a single element v = (v0, . . . , vd) ∈ Sd+1. Since V has dimension d, the
components of v are linearly dependent: there are ai ∈ k, 0 ≤ i ≤ d not all 0
such that

∑
aivi = 0. Then v belongs to the kernel K of the non zero G linear

map λ : Sd+1 → S by (w0, . . . , wd) 7→
∑
aiwi contrary to the assumption that

v generates.
Proof of (2): Since the n-dimensional representations of the prounipotent

group Un(Γ) separate points, it is nilpotent. Thus, it suffices to show the finite
dimensionality of the semisimple G-module V = Un(Γ)ab. Since Γ is finitely gen-
erated, Un(Γ), being a normal semidirect factor of An(Γ), is finitely generated
as a normal subgroup, which implies that V is finitely generated as a G-module.
The simple submodules of V appear as subquotients of n-dimensional represen-
tations of Un(Γ) and so they have dimension < n2. Hence, by n2-rigidity of Γ,
there are only finitely many classes of them. Now the finite dimensionality of V
follows from part (1).

Note that Theorem (3) III is simply a restatement of Theorem (2), and hence
the latter is now proved.

Corollary 9. A representation super rigid group is representation rigid.

Proof. If Γ is super rigid, A(Γ) is finite dimensional by definition. Hence An(Γ)
is finite dimensional for all n, and so by Theorem (2) Γ is rigid.

The finite dimensionality of U(Γ), in fact the finite dimensionality of V (Γ),
also implies rigidity in the presence of (FAb), as we now show.

Theorem 4. Let Γ be a finitely generated group with (FAb), and suppose that
U(Γ) is finitely generated as a prounipotent group. Then Γ is rigid.

Proof. We assume that Γ has (FAb), that U(Γ) is finitely generated (which
means V (Γ) is finite dimensional) but that Γ is not rigid. It follows from The-
orem (3) that for some n, the prosemisimple group Q0

n(Γ) has infinitely many
simple factors isomorphic to some simple algebraic subgroup S ≤ GLn(k). It
follows that we have an epimorphism A0

n(Γ) → Π = SN =
∏

i≥0 Si with each
Si is isomorphic to S. Let qi : Π→ S denote projection ith factor. Choose the
finite index subgroup Γn ≤ Γ as in Corollary (8) (2) so that Γn projects onto (a
Zariski dense subgroup of) A0

n(Γ). Let pi : Γn → S be the composition of this
projection with qi. We claim that, for i 6= j, we cannot have pi = α ◦ pj for any
α ∈ Aut(S), in particular any inner automorphism. For otherwise the image
by (pi, pj) of Γn in S × S would lie in the graph of α = {(s, α(s) | s ∈ S}, a
proper algebraic subgroup of S × S, contradicting Zariski density of the image
of Γn. Let [pi] denote the class of pi in the (categorical) quotient variety X of
Hom(Γn, S) by the conjugation of S. By choosing a simple S module V , and
noting that pi makes V a simple Γn module as well, by Zariski density, it follows
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that the pi have closed S orbits in Hom(Γn, S), and so the points [pi] of X are
all distinct.

Let L = Lie(S) and Ad = AdS : S → GL(L) the adjoint representation, a
simple S representation since S is a simple algebraic group. By Zariski density of
pi(Γn), and the observation above, the representations ρi = Ad ◦ pi are pairwise
non isomorphic simple Γn representations.

It follows from a theorem of Weil [15] that the tangent space T[pi](X) em-
bedds in the chomology space H1(Γn, ρi). From [10] it follows that for any
simple Γn representation ρ we have

H1(Γn, ρ) ∼= HomΓn(V (Γn), Vρ),

and soH1(Γn, ρ) 6= 0 implies that ρ occurs in V (Γn) = V (Γ). Thus the infinitely
many ρi occur in V (Γ). Our hypothesis implies that V (Γ) is finite dimensional,
so this is a contradiction.

The proof of Theorem (4) actually shows that under the condition (FAb), if
Γ is not rigid then for some n both Un(Γ) and Vn(Γ) are infinite dimensional.
We deduce:

Corollary 10. The following are equivalent for the group Γ:

1. Γ is rigid

2. Γ has (FAb) and for every n, Un(Γ) is finite dimensional

3. Γ has (FAb) and for every n, Vn(Γ) is finite dimensional.

We further mention that if Γ has (FAb) and is not rigid, then we can deduce
that U(Γ) is not nilpotent. As in the proof of Theorem (4), there is a finite
index subgroup ∆ of Γ which has infinitely many non conjugate Zariski dense
homomorphisms into a simple algebraic group S. One can show that this implies
that there is a curve of such, and therefore that ∆ has a Zariski dense represen-
tation into the pro–affine group S(k[[t]]). (See [1] for the analogous case where
GLn replaces S.) S(k[[t]]) is isomorphic to U o S(k), where U is an infinite
dimensional prounipotent group whose associated graded group is isomorphic
to S⊗ k[[t]], where S = Lie(S). One sees, using the density of the image of ∆
in S(k) and from the simplicity of S as an S module that U(∆) maps onto U .
Hence we deuce:

Corollary 11. Suppose Γ has (FAb) and that U(Γ) is nilpotent. Then Γ is
rigid.

To summarize: we have shown that various finiteness assertions on A(Γ)
imply, or are even equivalent to, rigidity. (We are including the observation
that (FAb) is equivalent to dim(Tn(Γ) <∞.)

In particular, we have shown:
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Corollary 12. If either the solvable radical or the maximal reductive quotient
of A(Γ) are finite dimensional, then Γ is rigid.

In sections (5) and (6) we exhibit examples of rigid groups with infinite di-
mensional unipotent or reductive parts. These show that the converse of Corol-
lary (12) is not true. On the other hand, if both the unipotent and reductive
parts of A(Γ) are finite dimensional, then A(Γ) is finite dimensional. We will
see in Section (4) that in this case Γ is super rigid.

4 Finite dimensional proalgebraic completions
and super rigid groups

Let Γ be a finitely generated group. Its proalgebraic completion A(Γ) is finite
dimensional when the latter’s identity component A0(Γ) is finite dimensional
(that is, is an affine proalgebraic group). By Corollary (6), there is a profinite
subgroup ∆ of A(Γ) such that A(Γ) = A0(Γ) ·∆ (not necessarily semidirect, of
course.)

Consider the homomorphism ∆→ Aut(A0(Γ)) given by conjugation. Since
the automorphism group of an affine algebraic group is a discrete group extended
by an affine algebraic group, the image of ∆ in Aut(A0(Γ)) is finite, and hence
the kernel ∆0 is of finite index in ∆. ∆0 commutes with A0(Γ). As it is normal
in ∆, A0(Γ) ·∆0 is a finite index normal subgroup of A(Γ).

Consider the intersection F = A0(Γ)∩∆. This is a closed profinite subgroup
in the affine algebraic group A0(Γ), and hence finite. It follows that there is a
finite index normal subgroup ∆1 of ∆ such that F ∩∆1 is the identity. It follows
that A0(Γ) · ∆1 is a semidirect product and is a finite index normal subgroup
of A(Γ).

Let ∆0 = ∆0 ∩∆1. Then A0(Γ) ·∆0 = A0(Γ)×∆0 is a finite index normal
subgroup of A(Γ). Let Γ0 = Γ ∩ (A0(Γ)×∆0) (we identify Γ with its image in
A(Γ)). Γ0 is of finite index in Γ. The injective map A(Γ0) → A(Γ) has image
in A0(Γ) × ∆0 and induces an isomorphism A0(Γ0) → A0(Γ). It follows that
A(Γ0)/A0(Γ0) = Γ̂0 maps injectively to ∆0 = (A0(Γ)×∆0)/A0(Γ). We replace
∆0 by this image, and sum up the result in the first assertion of the following
theorem:

Theorem 5. let Γ be a finitely generated linear group and suppose that its
proalgebraic completion A(Γ) is finite dimensional. Then there is a normal
subgroup Γ0 of finite index in Γ such that

A(Γ0) ∼= A0(Γ0)× Γ̂0

1. Let p be the composite Γ0 → A(Γ0)→ A0(Γ0), the second map being pro-
jection. The kernel of p is finite. Γ0 may be chosen so that p is injective.

2. Let ρ : Γ0 → GLn(k) be any representation of Γ0. Then there is a rep-
resentation ρa : A0(Γ0) → GLn(k) and a finite index subgroup Γ0

1 of Γ0
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such that ρ = ρa ◦ p on Γ0
1.

3. Let ρ : Γ → GLn(k) be any representation of Γ. Then there is a repre-
sentation ρa : A0(Γ0)→ GLn(k) and a finite index subgroup Γ1 of Γ such
that ρ = ρa ◦ p on Γ1.

Proof. As noted, the isomorphism A(Γ0) ∼= A0(Γ0)× Γ̂0 is a consequence of the
analysis preceding the theorem.

The kernel of p is N = Γ0∩∆0 (we identify Γ0 with its image in A(Γ0)). The
profinite subgroup ∆0 of A(Γ0) has finite image in every affine quotinet of A(Γ0),
which means that N has finite image in every representation of Γ0, including
a faithful one. So N is finite and there is a finite index normal subgroup of Γ
contained in Γ0 and meeting N in the identity. Replacing Γ0 by this subgroup
makes p injective. This proves (2).

Now suppose ρ is a representation of Γ0, and let G denote the Zariski closure
of the image of ρ. Let ρa denote the map A(Γ0) → G induced from ρ. ρa(∆0)
is finite. ρ, and ρa, factor as

Γ0 → A0(Γ0)× ρa(∆0)→ G.

We take Γ0
1 to be the inverse image of A0(Γ0) under the first map; it has the

properties claimed in (2).
Finally, (3) is an obvious consequence of (2).

5 Rigid groups with large prounipotent radical

5.1 Construction

Let
Γi ≤ Gi (i = 0, 1) (1)

be super–rigid embeddings of finitely generated infinite groups. Let

M = a Z[Γ0]−module, free of finite rank overZ. (2)

and satisfying

M/(Γ′0,M) is finite for all Γ′0 of finite index in Γ0. (3)

Here M/(Γ′0,M) = H0(Γ′0) = M/JM , where J is the augmentation ideal in
Z[Γ′0]. The commutator notation applies inside M o Γ0.

Now put

Γ+ = Γ0 × Γ1

U = M ⊗Z Z[Γ1], a finitely generatedZ[Γ+]−module, and
Γ = U o Γ+, a finitely generated group. (4)
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We will show that Γ is rigid, that Q0(Γ) = G0 ×G1 (so finite dimensional)
and that U(Γ) is infinite dimensional. (See Theorem (5.2) below for a precise
statement.)

Lemma 1. (FAb) If Γ′ <F Γ then (Γ′)ab = 1.

Proof. We are at liberty to replace Γ′ by a smaller finite index subgroup. First
replace Γ′ by U ′ o Γ′+, where Γ′+ = Γ′ ∩ Γ+ <F Γ+ and U ′ = Γ′ ∩ U <F U , a
Γ′+ – invariant subgroup. We can then further reduce to the case Γ′+ = Γ′0×Γ′1
where Γ′i = Γ′+ ∩ Γi for i = 0, 1. Then we have

(Γ′)ab = (U ′ o Γ′+)ab = (U ′/(Γ′+, U
′))× (Γ′+)ab.

Since the Γi are rigid, so is Γ+ = Γ0 × Γ1. Thus it satisfies FAb, and so (Γ′+)ab

is finite.
It remains to show that (U ′/(Γ′+, U

′)) is finite. The finite group U/U ′ is a
Γ′+ module and so is annihilated by a finite index two sided ideal K of Z[Γ′+],
whence

K · U ≤ U ′ ≤ U.

Since U = M ⊗Z Z[Γ1], and Z[Γ1] is a finitely generated (free) Z[Γ′1] module,
U/KU = M ⊗Z (Z[Γ1]/KZ[Γ1]) is the tensor product over Z of a finitely gener-
ated and a finite abelian group, and hence is itself finite. Thus K · U <F U , so
it suffices to show that KU/(Γ′+,KU) is finite.

Let J ′i denote the augmentation ideal of Z[Γ′i]. Z[Γ′+] = Z[Γ′0] ⊗Z Z[Γ′1] has
augementation ideal J ′ = J ′0 ⊗ Z[Γ′1] + Z[Γ′0]⊗ J ′1. Since KU = M ⊗Z KZ[Γ1],
we have

KU

(Γ′+,KU)
=

KU

JKU
=

M ⊗KZ[Γ1]
J ′0M ⊗KZ[Γ1] +M ⊗ J ′1KZ[Γ1]

= (M/J ′0)⊗Z (KZ[Γ1]/J ′1KZ[Γ1]).

By assumption, M/J ′0M = M/(Γ′0,M) is finite. Since K/Z[Γ′1] is finite
and Γ′1 <F Γ1, KZ[Γ1] is a finitely generated Γ′1 module. It follows that
KZ[Γ1]/J ′1KZ[Γ1] is a finitely generated abelian group, and therefor its ten-
sor product with the finite group M/J ′0 is finite as well. This proves that
KU/(Γ′+,KU) is finite, as required.

5.2 Representations

Let ρ : Γ → GLn(C) be a finite C–dimensional representation of Γ and let G,
H, and W denote the Zariski closures of the images under ρ of Γ, Γ+, and W ,
respectively. Then W is an abelian normal subgroup of G and G = WH. W ,
being abelian, is a product W = V × T × S where V is a vector group (the
unipotent radical of W ), T is a torus (the unique maximnal torus of W × T
so that V × T is the identity component W 0 of W , and S is a finite group.
Both W 0 and T are characteristic in W and hence normalized by G. Since the
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automorphism group of T is discrete, T is centralized by the identity component
G0. Thus T is a central torus in G0. Suppose that T 6= 1. Then G0 has a non
trivial character χ : G0 → Gm. Let Γ0 = ρ−1(G0). Then χ(ρ(Γ0)) is Zariski
dense in Gm, and in particular infinite abelian. Since Γ0 is of finite index in Γ,
which is FAb by Lemma (5.1), this is impossible, so in fact T = 1 and

W = V × S (5)

where V is a vector group and S is finite. (Note that S, being the torsion
subgroup of W , is also characteristic in W and hence normalized by G and
centralized by G0.

H , and hence Γ+, is represented on the vector space V . In the proof of
Lemma (5.1), it was shown that for Γ′+ <F Γ+ and U ′ <F U , U ′/(Γ′+, U

′) is
finite. It follows that

(H0, V ) = V. (6)

The action of C[Γ1] on V factors through some ideal K of finite codimension
so that there is a C[Γ+] module surjection

(C⊗Z M)⊗C (C[Γ1]/K)→ V. (7)

Let

MC = C⊗Z M and
UC = C⊗Z U = MC ⊗C C[Γ1]. (8)

Finally, let
C[Γ1] = lim←−

K

(C[Γ1]/K) (9)

where K varies over two sided ideals of finite codimension in C[Γ1].
Since the representation ρ here is arbitrary, we draw the following conclusions

about proalgebraic completions:

A(Γ) = A∗(U) oA(Γ+)
A∗(Γ) = Image(A(U)→ A(Γ))

A(Γ+) = A0(Γ+)× Γ̂+

A0(Γ+) = G0 ×G1

Γ̂+ = Γ̂0 × Γ̂1. (10)

Further,

A∗(U) = A0
∗(U)× U ∗̂, where

A0
(U)∗ = MC ⊗C C[[Γ1]] ≤ U(Γ)

U ∗̂ = lim←−U/U
′, U ′ ranging over finite index sub Γ+–modules of U. (11)
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If U/U ′ is a finite Γ+ module as above, then as in the proof of Lemma (5.1)
above, the Γ1 action factors through a finite quotient Γ1/Γ′1, and hence U/U ′ is
a quotient of M ⊗Z Z[Γ1/Γ′1], and hence, for some integer N > 0, of the finite
Γ+ module (M/NM)⊗Z Z[Γ1/Γ′1]. Taking the inverse limit of these gives

U ∗̂ = M̂ ⊗Ẑ Ẑ[[Γ̂1]], where

Ẑ[[Γ̂1]] = lim←−(Z/NZ)[Γ1/Γ′1] as N →∞ and Γ′1 → 1. (12)

Summarizing this section’s discussion, then, we have the following class of
examples of finitely generated rigid groups with infinite dimensional prounipo-
tent radical.

Theorem 6. Let Γi ≤ Gi, (i = 0, 1), be super rigid embeddings, and let Γ+ =
Γ0 × Γ1 ≤ G0 × G1 = G+. Let M be a Z[Γ0] module, Z free of finite rank
such that for all Γ′0 <F Γ0, M/(Γ′0,M) is finite. Finally, let U = M ⊗Z Z[Γ1]
regarded as a Γ+ module, and define

Γ = U o Γ+.

Then Γ is a finitely generated rigid group, whose prounipotent radical U(Γ) is
infinite dimensional, and whose maximal connected reductive quotient Q0(Γ) is
finite dimensional. If moreover G+ is reductive, then U(Γ) is abelian.

5.3 Additional examples

We conclude this section with a short discussion without details of another type
of example of a rigid group with an infinite dimensional prounipotent radical.

Let L ∼= Zr be the free abelian group on t1, . . . , tr, and let A = Z[L] =
Z[t1, t−1

1 , . . . , tr, t
−1
r ] be its integral group algebra. Γ0 = SLr(Z) acts as a group

of automorphisms of L and hence of A, and L acts on A by multiplication.
These actions are compatible and lead to an action of Γ1 = Lo Γ0 on A. This
action preserves the augmentation ideal A′ on A, and we can form the semidirect
product

Γ = A′ o Γ1 = Aprimeo (Zr o SLr(Z).

For r ≥ 3, Γ1 is a rigid group [2], and it follows from [2] as well that Γ will
be rigid as long as its finite index subgroups have finite abelianization. We omit
that calculation.

The prounipotent radical of A(Γ) maps onto a prounipotent group containing
A′ o Zr Zariski densely.
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6 Representation reductive groups with finite or
infinite multiplicity of simple factors in their
proalgebraic completions

6.1 Weak products

Let {Γn}, n ≥ 1, be a sequence of groups. In the product

Π =
∏
n≥1

Γn

we identify each Γn as a subgroup, in the nth component as usual. Then the
weak direct product

Π′ =
weak∏
n≥1

Γn ≤ Π

= 〈
⋃
n≥1

Γn〉

is the subgroup generated by these component subgroups.
We also consider the condition

Γab
n = 1 for all n >> 1. (Ab1)

Proposition 6. Assume Ab1. Then we have natural isomorphisms

A(Π′)→
∏
n≥1

A(Γn) (A)

A0(Π′)→
∏
n≥1

A0(Γn) ,and (A0)

Π̂′ →
∏
n≥1

Γ̂n. ((̂ ))

If each Γn is connected split, then so is Π′.

Proof. (A) easily implies the other two assertions. To prove (A), we introduce
the notation

Π′
n+1 =

weak∏
m>n

Γn = 〈
⋃

m>n

Γn〉

and make the observation that (A) will follow if, for ρ : Π′ → L = GL(V ) any
finite dimensional C representation, ρ must vanish on Π′

n+1 for some n, or in
other words, that ρ must factor through a projection

Π′ → Γ1 × . . .Γn (13)
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with kernel Π′
n+1.

For U ≤ L, let U denote Zariski closure, and let H = ρ(Π′) and Hn =
ρ(Γ1 × . . .Γn) for n ≥ 1, so H = ∪nHn. By (Ab1), we can choose n0 so that

Γab
n = 1 for n > n0. (14)

On centralizers, we have

Z(H) =
⋂
n

ZH(Hn) = ZH(Hn1)

for some n1. Let
N = max(n0, n1).

We claim that
ρ(Π′

N+1) = 1. (15)

and hence (13) and (A). For (15), it suffices to show

ρ(Γm) = 1 for m > N. (16)

But for m > N , Γm centralizies Γ1 × . . .ΓN , so

ρ(Γm) ≤ ZH(ρ(Γ1 × . . .ΓN )) = ZH(HN ). (17)

Since N ≥ n1, ZH(HN ) = Z(H), so ρ(Γm) is abelian. Since m > n0, by (14)
Γab

m = 1. Thus ρ(Γm) = 1. Thus (16), and hence (A), follows.

6.2 Group towers

In this section we consider an ascending chain (“tower”) of groups

Γ1 < Γ2 < Γ3 . . . (18)

and put
Γ∞ =

⋃
n≥1

Γn.

As in section (6.1) above, we have the weak products

Π′ =
weak∏
n≥1

Γn ≤ Π =
∏
n≥1

Γn (19)

Let x = (xn)n≥1 ∈
∏

; xn ∈ Γn. We call x eventually constant if, for some
n0 = n0(x), xn = xn0 for all n ≥ n0. In this case we put

p∞(x) = xn (∀n ≥ n0). (20)

Put
∆ = {x ∈ Π | x is eventually constant}. (21)
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Then ∆ is a group and we have an exact sequence

1→ Π′ → ∆→ Γ∞ → 1 (22)

where the second map is inclusion and the third is given by p∞.
For n ≥ 1, we can write Π = (Γ1 × . . .Γn)× Πn+1 with Πn+1 =

∏
m>n Γm.

We put Π′
n+1 = Π′ ∩Πn+1 and ∆n+1 = ∆ ∩

∏
n+1. Then we have

∆ = (Γ1 × · · · × Γn)×∆n+1; and
p∞ : ∆n+1/Π′

n+1 → Γ∞ is an isomorphism. (23)

6.3 Γ0 actions

We retain the notion of the preceding sections.
Let Γ0 be a group an suppose there is an action

σn : Γ0 → Aut(Γn) (24)

for each n ≥ 1. We denote the actions

s ·n x = σn(s)(x) for s ∈ Γ0, x ∈ Γn.

We do not assume that the inclusions Γn < Γn+1 are Γ0 equivariant. However,
we will need the following “stable equivariance condition”:

For s ∈ Γ0 and x ∈ Γn there is an N = N(s, x) ≥ n such that

s ·m x = s ·N x for all m ≥ N. (25)

We then write
s ·∞ x = s ·m x for all m ≥ N(s, x). (26)

It is then easily seen that (26) defines the unique action of Γ0 on Γ∞ so that

(22) is an exact sequence of Γ0 groups. (27)

We can thus form the semi–direct direct product sequence

1→ Π′ → ∆ o Γ0 → Γ∞ o Γ0 → 1 (28)

In our next result, we will use the following hypotheses:

For all finite dimensional C representationsρ of ∆∞ o Γ0,
we have ρ(Γ∞) = 1. (ρΓ∞ = 1)

For all n ≥ 1, the action of Γ0 on Γn factors
through a finite quotient of Γ0. (|σnΓ0| <∞)
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Proposition 7. Assume (Ab1) and (ρΓ∞ = 1). Then any finite dimensional
C representation of Γ = ∆×Γ0 factors through some quotient Γ/∆n+1 = (Γ1×
· · · × Γn) o Γ0. Hence we have a natural isomorphism

A(Γ)→ lim←−
n

A((Γ1 × · · · × Γn) o Γ0). (A)

Further assume (|σnΓ0| <∞). Then we have a natural isomorphism

A0(Γ)→
∏
n≥0

A0(Γn) (A0)

and a natural isomorphism

Γ̂→ (
∏
n≥1

Γ̂n)× Γ̂0, (̂·)

where the action of Γ̂0 on each Γ̂n is defined because of (|σnΓ0| <∞).

Proof. Let ρ : Γ → GL(V ) be a finite dimensional C representation. Be-
cause of (Ab1) and (.2) (A), on Π′ ≤ ∆ the restriction of ρ factors through
a projection Π′ → Γ1 × · · · × Γn, with kernel Π′

n+1. So ρ factors through
Γ/Π′

n+1 = (∆/Π′
n+1)oΓ0. Because of (.3)(7),(∆/Π′

n+1) = (Γ1×· · ·×Γn)×Γ∞.
The hypothesis (ρΓ∞) applied to (Γ∞) o Γ0) ≤ (∆/Π′

n+1) implies that ρ van-
ishes on Γ∞, so that ρ factors through Γ/∆n+1 = (Γ1 × · · · × Γn) o Γ0. This
establishes assertion (A).

Now assume (|σnΓ0| < ∞). Then the Γ0 action on Γ1 × · · · × Γn factors
through some finite quotient Γ0/Γ

(n)
0 . So the (direct) product (Γ1× · · · ×Γn)×

Γ(n)
0 has finite index in the semidirect product (Γ1×· · ·×Γn)oΓ0, which implies

that they have the same A0:

A0((Γ1 × · · · × Γn) o Γ0) = A0(Γ1)× · · · ×A0(Γn)×A0(Γ0). (29)

Passing to the inverse limit over n in (29) we obtain assertion (A0).
Next, we observe that the action of the finite group Γ0/Γ

(n)
0 on Γn extends to

an action on Γ̂n (every finite index subgroup of Γn contains a Γ0 invariant finite
index subgroup). It follows easily from this that there is a natural isomorphism

[(Γ1 × · · · × Γn) o Γ0 ]̂ = (Γ̂1 × · · · × Γ̂n) o Γ̂0. (30)

Passing to the inverse limit over n in (30) we obtain assertion (̂·).

6.4 Filtering Γ0

Let Γ0 be a finitely generated residually finite infinite group with a finite gen-
erating set S′1 such that

Γ0 = 〈S′1〉, 1 ∈ S′1, S′1 = (S′1)
−1, |S′1| ≥ 3. (31)
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We inductively construct finite sets

S′1 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Γ0 (32)

and normal subgroups of Γ0

Γ0 > Γ(1)
0 > Γ(2)

0 > . . . (33)

such that for all n ≥ 1 we have

Sn → Γ0/Γ
(n)
0 is bijective (34)

and
S′n+1 ⊂ Sn+1 where S′n+1 = S1 · Sn. (35)

It will follow from (35) that (S′1)
n ⊂ Sn, and so, in view of (31), we have

Γ0 =
⋃
n≥1

Sn. (36)

It then further follows from (36) and (34) that⋂
n≥1

Γ(n)
0 = 1. (37)

The construction proceeds as follows: for n ≥ 1, we first choose Γ(1)
0 < Γ0

normal and of finite index, and so that S′1 → Γ0/Γ
(1)
0 is injective (the later is

possible because Γ0 is residually finite). The we enlarge S′1 to a set of coset
representatives of Γ0/Γ

(1)
0 .

Now assume, inductively, that S1, . . . , Sn and Γ(1)
0 , . . .Γ(n)

0 have been chosen
as above. Then let S′n+1 = S′1 · Sn and, using residual finiteness again, choose
Γ(n+1)

0 < Γ(n)
0 normal of finite index in Γ0 such that S′n+1 → Γ0/Γ

(n+1)
0 is

injective. Finally, enlarge s′n+1 to a set of representatives of Γ0/Γ
(n+1)
0 .

We will use the following notation:

For s ∈ Γ0, define s(n) ∈ Sn by s−1s(n) ∈ Γ(n)
0 . (38)

6.5 The case Γn = ΛSn

We fix a group Λ and consider the set of Λ valued functions on Γ:

ΛΓ0 = {x : Γ0 → Λ}. (39)

For x ∈ ΛΓ0 , we define support by

supp(x) = {s ∈ Γ0 | s(x) 6= 1}. (40)
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For a subset S ⊂ Γ0, we define

ΛS = {x : ΛΓ0 | supp(x) ∈ S}. (41)

From the sequence (32)

S1 ⊂ S2 ⊂ · · · ⊂ Γ0 (42)

we obtain the tower of groups

Γ1 < Γ2 < · · · < ΛΓ0 where Γn = ΛSn (43)

and the group
Γ∞ =

⋃
n≥1

Γn = Λ(Γ0) (44)

where
Λ(Γ0) = {x ∈ ΛΓ0 | supp(x) is finite}.

Γ0 acts on ΛΓ0 via left translations on Γ0. We denote this action as follows:

For s ∈ Γ0, x ∈ ΛΓ0 and t ∈ Γ0, (s ·∞ x)(t) = x(s−1t) (45)

Under this action Γ∞ is Γ0 invariant (and the groups Γn are not). However, the
bijection Sn → Γ0/Γ

(n)
0 defines an isomorphism

Λ(Γ0/Γ
(n))
0 → ΛSn = Γn

so by transport of structure a Γ0 action on Γn. To describe the action, we make
the convention that for u ∈ Γ0, u(n) ∈ Sn denotes its representative modulo
Γ(0)

0 . Then s ∈ Γ0 acts on x ∈ Γn by

(s ·n x)(t) =

{
x((s−1t)(n)) for t ∈ Sn;
1 for t /∈ Sn.

(46)

Now let s ∈ Γ0 and x ∈ Γn. Choose N = N(s, n) large enough so that
sSn ⊂ SN . Then we claim that

s ·m x = s ·∞ x for m ≥ N. (47)

By definition, for t ∈ Γ0, (s ·∞ x)(t) = x(s−1t), and this is 6= 1 only for
t ∈ sSn ⊂ Sm. On the other hand, (s ·m x)(t) = 1 for t /∈ Sm and, for
t ∈ Sm, (s ·m x)(t) = x((s−1t)(m)). If t ∈ sSn, (s−1t)(m) = s−1t. It remains to
consider t ∈ Sm−sSn. Then (s−1t)(m) ≡ s−1t (mod Γ(m)

0 ) so s((s−1t)(m)) ≡ t
(mod Γ(m)

0 ). If (s−1t)(m) ∈ Sn, then s((s−1t)(m)) ∈ sSn ⊂ Sm. Since t ∈ Sm,
the congruence implies that t = s((s−1t)(m)) ∈ sSm, contrary to assumption.
Thus (s−1t)(m) /∈ Sn, so (s ·m x)(t) = 1 = (s ·∞ x)(t), and (47) is proven.
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6.6 The group Γ(Λ, Γ0)

We retain the notation of 6.4 and 6.5. For n ≥ 1, λ ∈ Λ, and s ∈ Γ0, we define
λn,s ∈ Γn = ΛSn by

λn,s(t) =

{
λ if t = s(n);
1 otherwise.

(48)

Similarly, we let Λn,s denote the s(n) factor Λ in ΛSn . Define

δ(n),s : Λ→ Πn =
∏

m≥n

Γn (≤ Π = Π1) (49)

δ(n),s(λ) = (λm,s)m≥n.

Note that, with respect to the inclusion

Γn = ΛSn < Γ∞ = Λ(Γ0),

the formula in (48) is valid for all t ∈ Γ0. Moreover, in case that s ∈ Sn,
then s(n) = s, so that the formula no longer involves n. Thus relative to
Γn < Γn+1 < · · · < Γ∞

If s ∈ Sn, then λn,s = λm,s for all m ≥ n. (50)

For any s ∈ Γ0 we have s ∈ Sm for m sufficiently large. Hence

δ(n),s(Λ) consists of eventually constant sequences in Πn. (51)

Let u ∈ Γ0 then (u ·n λn,s)(t) = 1 if t /∈ Sn. If t ∈ Sn, then (u ·n λn,s)(t) =
λn,s(u−1t), and this equals 1 unless u−1t = s(n); that is, unless t = u · s(n).
Since t ∈ Sn, this latter means that t = (u · s(n))(n) = (us)(n). Thus we have:

u ·n λn,s = λn,us, and (52)
u · δ(n),s(λ) = δ(n),us(λ)

where, in the latter, u acts on Πn by the product action on factors.
Now let

δ = δ(1),1 : Λ→ Π = Π1 (53)

and put
Γ = 〈δ(Λ),Γ0〉 ≤ Π o Γ0. (54)

Clearly

Γ = ∆′ o Γ0, where (55)

∆′ = Γ
⋂

Π

= the Γ0 subgroup of Π generated by δ(Λ)

In (6.2) (21) we defined the group

∆ = { eventually constant sequences in Π}. (56)
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In view of the Γ0 invariance of ∆ and (51), we have

∆′ ≤ ∆. (57)

Now assume that Λ satisfies (AB1):

Λab = 1. (58)

Then we claim:
∆′ = ∆. (59)

We begin the proof of (59) by showing that

Π′(=
weak∏

Γn) ≤ ∆′. (60)

For λ ∈ Λ and s ∈ Γ0 we have s · δ(λ) = (s ·n λn,1)n≥1 = (λn,s)n≥1. Choose
s ∈ Γ(1)

0 − Γ(2)
0 , so s(1) = 1 and s(n) 6= 1 for n ≥ 1. Then, for n > 1 λ′ ∈ Λ,

λ′n,1 and λn,s belong to different factors of Γn = ΛSn , and thus commute. Thus

(λn,s, λ
′
n,1) =

{
(λ, λ′)1,1 for n = 1
1 for n > 1.

Since Λ = (Λ,Λ) by (58), it follows that ∆′ contains Λ1,1 ≤ Γ1 ≤ ΛS1 . Since
Λ1,1 generates Γ1 as a Γ0 group, this implies that Γ1 ≤ ∆′.

Now suppose that we have shown that Γ1, . . . ,Γn ≤ ∆′. Modulo Γ1 ×
· · · × Γn−1, we can modify δ(Λ) = δ(1),1(Λ) to obtain δ(n),1(Λ) ≤ ∆′. Choose
s ∈ Γ(n)

0 − Γ(n+1)
0 . Then, arguing as above, for λ, λ′ ∈ Λ and m ≥ n we have

(λm,s, λ
′
m,1) =

{
(λ, λ′)n,1 for m = n

1 for m > n.

As before, since Λ = (Λ,Λ) we then have that ∆′ contains Λn,1, and it follows
by Γ0 invariance that Γn ≤ ∆′. Thus (60) follows by induction.

To complete the proof of the claim (59), we recall the exact sequence of Γ0

groups (6.2) (22):
1→ Π′ → ∆

p∞−→ Γ∞ → 1.

In view of (60), it suffices to show that p∞(∆′) = Γ∞. We have

p∞(δ(Λ)) ≤ Γ∞ = ΛΓ0

where

p∞(δ(λ))(t) =

{
λ for t = 1
1 for t 6= 1.

Thus p∞(δ(Λ)) is the copy of Λ in the 1-coordinate of Λ(Γ0). Since this clearly
generates Γ∞ as a Γ0 group, p∞(∆′) = Γ∞, as required, and (59) follows.

32



From (54) and (55), combined with (59), we have

Γ = 〈δ(Λ),Γ0〉 = ∆ o Γ0. (61)

We will sometimes write
Γ = Γ(Λ,Γ0).

Note that its construction depends on the group Λ (which is required to satisfy
(Ab1) (58) and on the residually finite group Γ0, as well as on the filtrations
(Sn)n≥1 and (Γ(n)

0 )n≥1 of (6.4).
From (61), we note that

If Λ is finitely generated, so is Γ. (62)

6.7 A(Γ(Λ, Γ0))

We are going to describe the proalgebraic completion A(Γ) for the group Γ =
Γ(Λ,Γ0) defined in (6.6) (61), using the Proposition (7). We begin by verifying
the hypotheses (Ab1), (ρΓ∞ = 1), and (|σnΓ0| <∞) of that proposition.

Condition (Ab1) requires that Γab
n = 1 for all n sufficiently large. This follows

here because Γn = ΛSn and because Λab = 1 by assumption.
Condition (|σnΓ0| <∞) means that Γ0 acts on Γn through a finite quotient

for each n. This holds here since Γ0 acts on Γn = ΛSn through the permutation
action on Sn

∼= Γ0/Γ
(n)
0 .

Finally, the condition (ρΓ∞ = 1) requires that for any finite dimensional
C representation ρ : Γ∞ o Γ0 → L = GL(V ) we have ρ(Γ∞) = 1. Since
Γ∞ = Λ(Γ0), it follows from the fact that Λab = 1 and from Proposition (6) that
ρ(Λ(Γ0−Sn) = 1 for some n. Since Ker(ρ) ∩ Γ∞ is a Γ0 invariant subgroup, and
since ρ(Λ(Γ0−Sn) clearly generates Γ∞ = Λ(Γ0) as a Γ0 group, we conclude that
ρΓ∞ = 1 as required.

We now state the conclusions of Proposition (7) as a theorem:

Theorem 7. Let Γ0 be a finitely generated residually finite group, filtered as in
(6.4), and let Λ be a group satisfying Λab = 1. Let Γ = Γ(Λ,Γ0) = 〈δ(Λ),Γ0〉.

Then there are natural isomorphisms

A(Γ) ∼= lim←−
n

A((Γ1 × · · · × Γn) o Γ0). (A)

A0(Γ) ∼=
∏
n≥0

A0(Γn) (A0)

Γ̂ ∼= (
∏
n≥1

Γ̂n)× Γ̂0, (̂·)

If Λ is finitely generated, then so is Γ.
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6.8 Remarks

1. For Γn = ΛSn , we have

A(Γn) = A(Λ)Sn , , A0(Γn) = A0(Λ)Sn , and Γ̂n = Λ̂Sn . (63)

Thus, putting
S = S1 q S2 q S3 q . . . (64)

we have, from Theorem (7) (A0) and (̂·),

A0(Γ) ∼= A0(Λ)S ×A0(Γ0) (65)

and
Γ̂ ∼= Λ̂S o Γ̂0. (66)

From (65) we see that, for suitable choice of Λ, simple groups can occur with
infinite multiplicity in Q(Γ). It follows that, if Γ is rigid, it is not connected
split. (Otherwise, it would have infinitely many irreducible representations in a
single dimension.)

2. To illustrate this last point, we could take Λ = Γ0 = SLd(Z) with d ≥ 3.
Then

A(Λ) = A0(Λ)× Λ̂,

A0(Λ) = SLd(C),

Λ̂ = SLd(Ẑ).

Hence A0(Γ) is an infinite product of copies of SLd(C). It follows that Γ is not
rigid.

3. If Λ and Γ0 are rigid, then so is Γ, since representations of Γ factor through
a quotient (Γ1× · · · ×Γn) o Γ0, and (Γ1× · · · ×Γn)×Γ(n)

0 is a rigid finite index
subgroup of this quotient.

6.9 The groups Ln = ZSn

We now make a construction like that of (6.5), but now with Λ = Z (in contrast
with (6.6) where we assumed from (59) on that Λab = 1). We recall the notation
and results of (6.5) in this context. We have the additive group

ZΓ0 = {x : Γ0 → Z}. (67)

For x ∈ ZΓ0 ,
supp (x) = {s ∈ Γ0 | x(s) 6= 0}. (68)

For S ⊂ Γ0 we identify

ZS = {x ∈ ZΓ0 | supp (x) ⊂ S}, and (69)

Z(S) = {x ∈ ZS | supp (x) is finite}
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From the sequence (6.4) (32) of finite sets

S1 ⊂ S2 ⊂ S3 ⊂ . . . (70)

we obtain the tower of finitely generated free modules Z modules

L1 ⊂ L2 ⊂ L3 ⊂ . . . , Ln = ZSn (71)

and

L∞ =
⋃
n≥1

Ln = Z(Γ) (72)

= {x ∈ ZΓ0 | supp (x) is finite}.

Γ0 acts on ZΓ0 by

(s ·∞ x)(t) = x(s−1t) for s, t ∈ Γ0, x ∈ ZΓ0 (73)

and L∞ is Γ0 invariant in this action.
Γ0 acts on Ln by

(s ·n x)(t) =

{
x((s−1t)(n)) if t ∈ Sn

0 if t /∈ Sn

(74)

As before, the inclusions Ln ⊂ Lm ⊂ L∞ are not Γ0 invariant. Nonetheless,
if s ∈ Γ0, x ∈ Ln, and N = N(s, n) is large enough so that sSn ⊂ SN , then

s ·m x = s ·∞ for m ≥ N. (75)

6.10 The groups Γn = SL(Ln)

The free abelian group L∞ = Z(Γ0) has an evident basis indexed by Γ0. We
write

GL(L∞) = Aut(L∞), and (76)

GLf (L∞) = {g ∈ GL(L∞) | g fixes all but finitely many basis elements }

The determinant is defined on GLf (L∞), and we have the exact sequence

1→ SLf (L∞)→ GLf (L∞)→ {±1} → 1. (77)

For S ⊂ Γ0, we can write

L∞ = Z(S) ⊕ Z(Γ0−S) (78)

and we identify g ∈ GLf (Z(S)) with

g ⊕ IdZ(Γ0−S) ∈ GLf (L∞). (79)
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When S is finite, Z(S) = ZS , GLf (Z(S)) = GL(ZS), and SLf (Z(S)) = SL(ZS).
We have the tower of groups

Γ1 < Γ2 < Γ3 . . . , (80)

Γn = SL(Ln) = SL(ZSn), and

Γ∞ :=
⋃
n≥1

Γn = SLf (L∞).

The actions (6.9) (73) and (74) of Γ0 on Ln and L∞ (permuting bases)
correspond to homomorphisms σ0 : Γ0 → GL(L∞), 1 ≤ n ≤ ∞. These define
actions of Γ0 on Γn as follows: for s ∈ Γ0 and g ∈ Γn, define

s ·n g = σn(s)gσn(s)−1 (1 ≤ n ≤ ∞). (81)

For n <∞, this action factors through Γ0/Γ
(n)
0 .

Here g operates only on Ln = ZSn and is the identity on Z(Γ0−s). In L∞ = Z(Γ)),
s ·∞ g is like g, but transferred from the basis Sn of Ln to the basis sSn of ZsSn .
Choose N = N(s, n) large enough so that sSn ∪ Sn ⊂ SN . Then:

s ·m g = s ·∞ g for all m ≥ N . (82)

Lemma 2. (Γ0 generation of Γn) For 1 ≤ n ≤ ∞, Γn is generated by Γ1 as a
Γ0 group.

Proof. We have Γn = SLf (Z(Sn)), where we can identify Sn with Γ0/Γ
(n)
0 ,

taking Γ∞)
0 = 1 when n =∞, and the action of Γ0 on Γn is via the translation

action of Sn on itself. Now Γ1 = SL(ZS1), so the Γ0 group generated by Γ1 is
the group generated by all SL(ZsS1) (s ∈ Sn).

Consider the graph with vertex set Sn and edges the pairs {s, t} such that
sS1 ∩ tS1 6= ∅. It is easily seen that the connected component of 1 ∈ Sn in this
graph is 〈S1〉Sn; that is, the graph is connected. The lemma now follows from
the following:

Lemma 3. Let S = U ∪ V be finite sets with U ∩ V 6= ∅. Then SL(ZS) is
generated by its subgroups SL(ZU ) and SL(ZV ).

Proof. SL(ZS) is generated by the matrices xs,t = I + es,t (s 6= t) where es,t

has a single nonzero entry, 1 in the (s, t) position. Moreover, we have the
commutator formula:

xs,u = (xs,t, xt,u) for s, t, u distinct.

If s, t ∈ U then xs,t ∈ SL(ZU ). If s, t ∈ V then xs,t ∈ SL(ZV ). If neither is
the case, say s ∈ U and t ∈ V , we can choose u ∈ U ∩ V (6= ∅, by assumption).
Then s, t, u are distinct, so

xs,t = (xs,u, xu,v) ∈ (SL(ZU ), SL(ZV )),

and the lemma follows.
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The next proposition affirms the hypotheses of Preposition (7), in prepara-
tion for its application, and also prepares for the proof of the finite generation
of ∆ o Γ0. We also find it convenient to introduce some additional terminology.

Definition 10. We call two groups A and B estranged if they have no non–
trivial isomorphic quotient groups. In other words, if A � Q � B are epimor-
phisms, then Q = 1.

Proposition 8. The groups Γn, 1 ≤ n ≤ ∞ satisfy:

(Ab1)
Γab

n = 1.

(|σnΓ0| <∞)

the action of Γ0 on Γn factors through the finite quotient Γ0/Γ
(n)
0 , (n <∞).

(ρΓ∞ = 1)

For any finite dimensional C representation ρ of Γ∞, ρ(Γ∞) = 1.

(Est)
For 1 ≤ n < m ≤ ∞, Γn and Γm are estranged.

Proof. (Ab1) follows since SL(ZS)ab = 1 whenever |S| > 2. The condition
(|σnΓ0| <∞) follows from our construction.

Since |Sn| ≥ 3 for all n, it follows from the Congruence Subgroup Theorem
that the quotients of Γn = SLf (Z(Sn)) are all of the form SL|Sn|(Z/qZ)/Z, for
some integer q ≥ 0, and where Z is a central subgroup. It is immediate that such
groups cannot be isomorphic for n < m (since |Sn| < |Sm|), and so condition
(Est)follows.

Finally, we note that, for m =∞, SL∞(Z/qZ) has trivial center, and cannot
be embedded in anyGLN (C) (which implies condition (ρΓ∞ = 1)). When q = 0,
this follows since SLd(Z) (d <∞) has no faithful representations of dimension
less than d. When q > 0, SL∞(Z/qZ) is an infinite, locally finite group. If
it were linear, by Jordan’s Theorem it would have a normal abelian subgroup
of finite index. This is obviously not the case for SL∞(Z/pZ) for p prime,
and the the case for SL∞(Z/qZ), q, reduces to the prime case by passage to a
quotient.

6.11 Finite generation of Γ = ∆ o Γ0

Recall from (6.2) that ∆ is the group of eventually constant sequences in Π =∏
n≥1 Γn, and it is generated by the groups δn(Γn), where δn is the diagonal

embedding of Γn into Πn =
∏

m≥n Γn.
Put

Γ′ = 〈δ1(Γ1),Γ0〉 ≤ Π o Γ0. (83)
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We show that Γ = ∆ o Γ0 is finitely generated by showing that Γ′ = Γ. Clearly

Γ′ = D o Γ0, where (84)
D = the Γ0 group generated by δ1(Γ1).

We must show that:

the inclusion D ≤ ∆ is an equality. (Claim)

For 1 ≤ n ≤ ∞, the projection pn : ∆→ Γn maps D to the Γ0-group generated
by pn(δ1(Γ1)) = Γ1 in Γn. From Lemma (2) we can conclude that

pn(D) = Γn for 1 ≤ n ≤ ∞. (85)

In view of the above discussion and Proposition (8), the next proposition
will imply that (Claim) obtains, and hence that

Γ := ∆ o Γ0 = 〈δ1(Γ1),Γ0〉, a finitely generated group. (86)

Proposition 9. Let D ≤ ∆ be a subgroup such that pn(D) = Γn for 1 ≤ n ≤ ∞.
Assume that

(Ab1)
Γab

n = 1.

and

(Est)
For 1 ≤ n < m ≤ ∞, Γn and Γm are estranged.

Then D = ∆.

Before starting the proof, we first establish a lemma:

Lemma 4. Assume (Est).

1. For 1 < n <∞, Γ1 × · · · × Γn−1 and Γn are estranged.

2. If E ≤ Γ1×· · ·×Γn and pi(E) = Γi for each projection pi, 1 ≤ i ≤ n then
E ≤ Γ1 × · · · × Γn.

Proof. Let p : Γ1×· · ·×Γn−1 → Q← Γn : q be epimorphisms. For (1), we must
show that Q = 1. If p(Γ1) = Q, this follows because Γ1 and Γn are estranged.
In general, since Γ1 is normal in Γ1 × · · · × Γn−1, p(Γ1) is normal in Q, so that
Q/p(Γ1) is a common quotient of Γ2 × · · · × Γn−1 and Γn, so Q/p(Γ1) = 1 by
induction on n.

To prove (2), we also argue by induction on n, the case n = 1 being trivial.
For n = 2, put Ei = E ∩ Γi = Ker(p2−i|E), which is a normal subgroup of
E for i = 1, 2. We have E/Ei

∼= Γ2−i since pi(E) = Γi. Thus E/(E1 · E2) is
a common quotient of Γ1 and Γ2, and hence trivial by (Est), so E = E1 · E2.
Clearly E1∩E2 = 1, so E = E1×E2. Since Ei = pi(E) = Γi (i = 1, 2), we have
E = Γ1 × Γ2.

For n > 2, Γ1×· · ·×Γn−1 and Γn are estranged by (1), and E projects onto
Γ1 × · · · × Γn−1 by induction. Hence E = (Γ1 × · · · × Γn−1) × Γn by the case
n = 2.
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Now we prove Proposition (9)

Proof. We have a commutative diagram with exact rows (see (6.2))

1 → Π′ → ∆ → Γ∞ → 1
∪ ∪ ‖

1 → D′ → D → Γ∞ → 1
(1)

where D′ = D ∩ Π′, and D → Γ∞ is onto since p∞(D) = Γ∞ by hypothesis.
Moreover, by hypothesis pn(D) = Γn for 1 ≤ n <∞, so it follows from Lemma
(4) that

D projects onto Γ1 × · · · × Γn for 1 ≤ n <∞. (2)

Since D′ is normal in D, it follows from (2) that

D′ C Π′ =
weak∏

Γn,

and hence that D′ is normal in Π, since all normal subgroups of Π′ are. In
particular,

D′ C ∆ (3)

Next put

Dn = D ∩ Γn (= D′ ∩ Γn) 1 ≤ n <∞ (4)

D∗ =
weak∏
n≥1

≤ D′.

In view of (3),
Dn, D

∗ C ∆. (5)

Put ∆ = ∆/D∗; for H ≤ ∆, let H denote the image of H in ∆. Thus Γn =
Γn/Dn and Π′ =

∏weak
n≥1 Γn. We claim that

D ∩ Γn = 1 for 1 ≤ n <∞. (6)

For if g ∈ Γn and g ∈ D ∩ Γn, then gd ∈ D for some d = (dm)m≥1 ∈ D∗.
It follows from the definition of D∗ that dn ∈ Dn and gdn ∈ D, whence g ∈
D ∩ Γn = Dn, so g = 1.

Now from (6) and the fact thatD′ C Π′, we have

(Γn, D′) ≤ D′ ∩ Γn = 1,

hence D′ centralizes Γn for all n, and so

D′ ≤ Z ′ : =
weak∏

Zn, Zn = Z(Γn) (7)

= Z(Π′ C ∆.
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The inverse image Z ′ of Z
′
modulo D∗ has the form

Z ′ : =
weak∏

Zn, Dn ≤ Zn ≤ Γn (8)

D′ ≤ Z ′ ≤ Π′.

Put

∆̃ = ∆/Z ′ = ∆/Z
′
, and (9)

H̃ = the image of H in ∆̃ for H ≤ ∆.

From (1), (8), and (9), we have

D̃ ∼= D/D ∩ Z ′ = D/D′ ∼= Γ∞ (10)

For 1 ≤ n < ∞, the projection pn : ∆ → Γn induces a projection p̃n :
∆̃→ Γn/pn(Z ′) = Γn/Zn. Restricting to D̃ ∼= Γ∞ (see (10)) and recalling that
pn(D) = Γn by hypothesis, we obtain an epimorphism Γ∞ → Γn/Zn. Since Γ∞
and Γn are estranged by assumption, we have Γn = Zn. Now Γn = Zn/Dn =
Zn = Z(Γn), so Γn is abelian. By assumption, Γab

n = 1. Thus Γn = 1; that is,
Γn = Dn. Hence

D∗ =
weak∏

Dn =
weak∏

Γn = Π′ ≤ D.

In view of (1), this implies that D = ∆, as claimed. This completes the proof
of Proposition (9).

Now we combine (86), Proposition (8), Proposition (7) to obtain the follow-
ing theorem.

Theorem 8. Let Γ0 be a finitely generated, residually finite, and filtered as in
(6.4). Let

Γ1 < Γ2 < Γ3 . . .

Γn = SL(ZSn), S < S2 < S3 < <̇Γ0,

Sn → Γ0/Γ
(0)
)

be as in (6.10), with Γ0 acting on Γn via translation on Sn (identified with
Γ0/Γ

(n)
0 ), hence also on Π =

∏
n≥1 Γn. Let

δ : Γ1 → Π, δ(q) = (q, q, q, . . . )

be diagonally embedding, and put

Γ = 〈δ(Γ1),Γ0〉 ≤ Π o Γ0.

Then Γ is finitely generated, and

Γ = ∆ o Γ0,
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where ∆ is the group of eventually constant sequences in Π.
Every finite dimensional C representation ρ of Γ factors through some quo-

tient
Γ/∆n+1 = (Γ1 × · · · × Γn) o Γ0.

We have

A(Γ) = lim←−
n

A((Γ1 × · · · × Γn) o Γ0). (A)

A0(Γ) =
∏
n≥0

A0(Γn); and (A0)

Γ̂→ (
∏
n≥1

Γ̂n)× Γ̂0, (̂·)

Put d(n) = |Sn| for n ≥ 3. Then for n ≥ 1, we have

A(Γn) = A0(Γn)× Γ̂n,

A0(Γn) = SLd(n)(C),

Γ̂n = SLd(n)(Ẑ)

(The final assertions, aboutA(Γ), for n ≥ 1, follow from the strict congruence
subgroup theorem and rigidity properties of SLd(Z) for d ≥ 3; see [4].)

7 Concluding Remarks

The results of this paper show that a number of sets associated to a finitely
generated residually finite representation rigid group Γ are finite or finite di-
mensional, for example Sn(Γ) (the isomorphism classes of simple n dimensional
representations of Γ), or An(Γ). Thus we have a number of numeric sequences
associated to Γ. We list them in this section. It should be of interest to re-
late these numer–theoretic functions to each other, and to consider their growth
and/or other structural properties.

In addition to the objects previously defined, we also refer in the definition of
the sequences to SSn(Γ), the isomorphism classes of semi–simple n dimensional
representations of Γ; and to Vn(Γ), the commutator quotient of Un(Γ).

Definition 11. Let Γ be a finitely generated residually finite rigid group. As-
socited to Γ are the following numeric sequences:

1. sn(Γ) = |Sn(Γ)|

2. ssn(Γ) = |SSn(Γ)|

3. an(Γ) = dim(An(Γ))
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4. pn(Γ) = |An(Γ)/An(Γ)0|

5. qn(Γ) = dim(Qn(Γ))

6. un(Γ) = dim(Un(Γ))

7. vn(Γ) = dim(Vn(Γ))

One may also speculate about the relation of these sequences to the sequence
αn(Γ) which counts the number of subgroups of Γ of index n. If Γ has (FAb),
αn(Γ) grows strictly slower than nlog n, for example, one can conclude that Γ
is super rigid: for this condition implies that that for every prime p the pro–p
completion of every finite index subgroup of Γ is p–adic analytic, and this latter
condition implies dim(Q(Γ)) <∞.
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