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Some more non-arithmeti
 rigid groupsAlexander LubotzkyDedi
ated to the memory of Bob Brooks0. Introdu
tionLet � be a �nitely generated group. � is 
alled rigid if for every n � 1, �admits only �nitely many isomorphism 
lasses of irredu
ible representations intoGLn(C). Platonov (
f. [PR℄ p. 437) 
onje
tured that if � is a linear rigid groupthen � is of \arithmeti
 type" (i.e., 
ommensurable with a produ
t of S-arithmeti
groups).In [BL℄, H. Bass and the author gave 
ounter-examples to Platonov's 
onje
-ture. The examples � there are very spe
ial; they are subgroups of L�L when L isa uniform (arithmeti
) latti
e in the rank one simple Lie group F (�20)4 . The proofthere relies on four main ingredients:(1) The super-rigidity (�a la Margulis) of L, whi
h was proved by Corlette [C℄and Gromov-S
hoen [GS℄.(2) The Ol'shanski��-Rips theorem ([O℄) asserting that L being hyperboli
 hasa �nitely presented in�nite quotient H with no proper �nite index sub-group.(3) Grothendie
k's theorem [GO℄ whi
h says that on
e the in
lusion of � toL�L indu
es an isomorphism of the pro-�nite 
ompletions �̂ and L̂� L̂,the representation theory of � is the same as that of L� L.(4) The vanishing of the se
ond Betti number �2(L0) = dimH2(L0;R) = 0for every �nite index subgroup L0 of L (proved by Kumareson and Vogan-Zu
kerman (
f. [VZ℄)).In this note we give a simpli�ed version of the proof in [BL℄. We eliminatethe use of ingredients (3) and (4). Not using (3) makes the proof more elementary,but avoiding (4) is even more signi�
ant: our proof now works also when L is anyuniform latti
e in Sp(n; 1) (for every n � 2), groups for whi
h (4) does not hold (asfollows from ([Li℄, Cor. 6.5). We thus have many new examples whi
h are Zariskidense in Sp(n; 1)� Sp(n; 1).2000 Mathemati
s Subje
t Classi�
ation. 22E40.The author is indebted to the Israel S
ien
e Foundation and the U.S.-Israel Binational S
ien
eFoundation for their support. 
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2 ALEXANDER LUBOTZKYJust as in [BL℄, the 
ounter examples to Platonov's 
onje
ture 
onstru
ted hereare even super-rigid (see x1). In summary:Theorem. Let G be either Sp(n; 1); n � 2, or F�(20)4 and let L be a 
o
ompa
tlatti
e in G. Then L � L 
ontains a subgroup � of in�nite index whi
h is Zariskidense in G�G, super-rigid and not of arithmeti
 type.We end the note with two suggestive remarks to be explained in x4:We show that if L satis�es the 
ongruen
e subgroup property, then a furthersimpli�
ation is possible, avoiding also the use of (1) and (2), i.e. the works ofCorlette, Gromov-S
hoen, Ol'shanskii and Rips.Furthermore, if a single uniform latti
e L in Sp(n; 1) or F (�20)4 satis�es the
ongruen
e subgroup property, then there exists an hyperboli
 group �a la Gromovwhi
h is not residually-�nite. Moreover, there exists a hyperboli
 group with noproper �nite index subgroup. So, answering the 
ongruen
e subgroup problem inthe aÆrmative, for one su
h L would settle in negative the long standing openproblem on the residual-�niteness of hyperboli
 groups.1. FAb �bre produ
ts of rigid groups are rigidThroughout the paper, � is a �nitely generated group. � is FAb if for every�nite index subgroup � of �, �ab := �=[�;�℄ is �nite. � is rigid if for every n � 1,it has only �nitely many non-equivalent irredu
ible n-dimensional 
omplex repre-sentations. Finally, � is super-rigid if A(�)0, the 
onne
ted 
omponent of A(�)is �nite-dimensional algebrai
 group. Here, A(�) is the pro-algebrai
 
ompletionof �. There is a homomorphism i : � ! A(�) su
h that for every representation� : �! GLn(C), there exists a unique algebrai
 representation ~� : A(�)! GLn(C)with ~� Æ i = �.It is not diÆ
ult to prove:Proposition 1.1. super-rigid) rigid ) FAb.Proposition 1.2. If � is a �nite index subgroup of �, then � is super-rigid(resp. rigid, FAb) i� � is.We also have:Proposition 1.3. Assume � has FAb. Then given n, there exists a �nite indexsubgroup � = �(n) of � su
h that for every n-dimensional representation� : � ! GLn(C), �(�) is a 
onne
ted group. If � is irredu
ible then �(�) issemisimple.Proof. Denote H = �(�), then there exists a �nite subgroup F of H su
hthat H = H0 � F ([W℄ 10.10). By Jordan's Theorem ([W℄ 9.2), F has an abeliannormal subgroup of index at most J(n). Thus the same applies to H=H0. Letnow ~� be the interse
tion of all the normal subgroups of � of index at most J(n)and � = [~�; ~�℄. It follows that � has �nite index in � and for every n-dimensionalrepresentation of �, �(�) � �(�) 0. This also implies that �(�) is dense in �(�) 0sin
e � has �nite index in � and �(�) 0 has no �nite index subgroups. Finally, if �is irredu
ible, then �(�) 0 is redu
tive, but a
tually semisimple as it has no abelianquotient. �



SOME MORE NON-ARITHMETIC RIGID GROUPS 3Proposition 1.4. A �nitely generated FAb group � is not rigid i� there existsa �nite index subgroup � of � and a simple algebrai
 group H of adjoint type(i.e., Z(H) = 1) su
h that � has in�nitely many non-
onjugate homomorphisms� : �! H with �(H) Zariski dense in H.Proof. Assume there are in�nitely many non-equivalent irredu
iblen-dimensional representations � of � and let � = �(n) as in Proposition 1.3. Then�(�) is a 
onne
ted semisimple group for every su
h �. There are only �nitelymany 
onjuga
y 
lasses of semisimple 
onne
ted subgroups of GLn(C), so we mayassume that H = �(�) is �xed. From Cli�ord theorem [W, Theorem 1.7℄, it followsthat there are in�nitely many non-equivalent �-representations with Zariski-denseimage in H . In�nitely many of them are still non-equivalent when H is dividedby its �nite 
enter. We 
an therefore assume H is of adjoint type and a dire
tprodu
t of its simple 
omponents. There are still in�nitely many non-equivalenthomomorphisms of � to one of the simple fa
tors of H . Repla
ing H by this fa
torgives the result. The other dire
tion is easy as (Aut(H) : Inn(H)) is �nite. �We now show how new rigid (resp. super-rigid) groups 
an be obtained as a�bre produ
t of rigid (resp. super-rigid) groups.For i = 1; 2, let Li be a �nitely generated group with epimorphisms �i from Lionto the same �nitely presented group D, and Ri = Ker �i. Let� = L1 �D L2 = f(x; y) 2 L1 � L2 j �1(x) = �2(y)gbe the �bre produ
t of L1 and L2 over D.The proje
tions �i of � to Li are onto with kernels (1; R2) and (R1; 1). Also,one 
an easily see that � is �nitely generalized sin
e D is �nitely presented.Proposition 1.5. If L1 and L2 are rigid and � has FAb, then � is also rigid.Proof. If not, by Proposition 1.4, there exists a �nite index subgroup � of �and a simple algebrai
 group H that � has in�nitely many non-equivalent homo-morphisms � : �! H with dense image. Let R01 = (R1; 1)\� and R02 = (1; R2)\�.Then [R01; R02℄ = 1 and both are normal in �. Thus �(R01) and �(R02) are 
ommutingnormal subgroups of H , so one of them must be trivial. Hen
e for in�nitely many�'s, either �(R01) is trivial or �(R02) is. In the �rst 
ase we have that � fa
tors through�2, i.e., we have a representation of �=R01 = �=(R1; 1)\� ' �(R1; 1)=(R1; 1) whi
his 
ommensurable to L2. Hen
e, this group is not rigid and by Proposition 1.2 alsoL2 is not rigid, a 
ontradi
tion. The 
ase with �(R02) = 1 is treated similarly andthe Proposition is proved. �It is somewhat more diÆ
ult to prove, but under an additional hypothesis, it isalso true that when we start with Li super-rigid and redu
tive, then � is super-rigid.Re
all that a group is 
alled redu
tive if every representation of it is redu
tive.Proposition 1.6. Assume L1 and L2 are super-rigid and redu
tive, D has no�nite index subgroup and � is FAb then � is super-rigid and redu
tive, in fa
tA(�)0 = A(L1)0 �A(L2)0Proof. Let � : � ! GLn(C) be a representation. Repla
ing � by � as inProposition 1.3, we 
an assume H = �(�) is 
onne
ted and it is equal to its own
ommutator subgroup (sin
e � is FAb).



4 ALEXANDER LUBOTZKYWe 
laim that H is semi-simple. If not, it has a non-trivial unipotent radi
alU . Dividing by [U;U ℄ and further if needed, we 
an assume that U is a simpleH-module. So H = U � S, a semi-dire
t produ
t when S is semisimple and U asimple S-module. Clearly, this is not the trivial module, sin
e H has no abelianquotient.As in the proof of (1.5), �(R01) and �(R02) are 
ommuting normal subgroups.Moreover, �=R01 � R02 ' D and D has no �nite index subgroups, hen
e no �nitedimensional representations. It follows that �(R01 �R02) = �(R01) � �(R02) = H .If �(R01) does not 
ontain U , then H=�(R01) has non-trivial unipotent radi
aland so �=R01, whi
h is 
ommensurable to L2 is not redu
tive, a 
ontradi
tion. Hen
e�(R01), and similarly �(R02), 
ontains U . But [�(R1); �(R02)℄ = 1, sin
e [R01; R02℄ = 1.This implies that [U; �(R02)℄ = [�(R01); U ℄ = 1 and hen
e H a
ts trivially on U , a
ontradi
tion. Hen
e U is trivial and H is semisimple. Again �(R01) and �(R02)are normal and 
ommuting. This implies that (after dividing by the 
enter of H)H = �(R01)� �(R02) but then H=�(R0i) is an homomorphi
 image of A(L3�i)0. Thisproves that A(�)0 = A(L1)0 �A(L2)0. �2. When a �bre produ
t is FAbIn this se
tion we show some suÆ
ient 
onditions for a �bre produ
t to be FAb.Let L be a �nitely generated group, � : L! D a homomorphism onto a �nitelypresented group D with kernel R, and � = L�D L the �bre produ
t of L over D,� = f(x; y) 2 L� L j �(x) = �(y)g:Note that � = (R; 1)�(L) = (1; R)�(L) when �(L) is the diagonal embedding ofL into �, �(L) = f(x; x) j x 2 Lg.Lemma 2.1. If L is FAb and if for every �nite index normal subgroup L0 of L,and every �nite index subgroup R0 of R whi
h is normal in L, [L0; R0℄ is of �niteindex in R0, then � is FAb.Proof. Let �0 be a �nite index normal subgroup of �, L0 = �0 \�(L) andR0 = (R; 1)\�0. By abuse of notation we will 
onsider R0 as a subgroup of L andat the same time a subgroup of (L; 1). From our assumption, it follows that [R0; L0℄is of �nite index in R0 and hen
e in (R; 1). As L is FAb, [L0; L0℄ is of �nite indexin �(L). This implies that [R0L0; R0L0℄ is of �nite index in �. As �0 � R0L0, weget that [�0;�0℄ is of �nite index in �. �Let now L be a �nitely generated group with FAb. Assume L has an in�nite�nitely presented quotient D with kernel R, su
h that D̂ = f1g when D̂ is thepro�nite 
ompletion of D, i.e., D has no proper �nite index subgroup. ClearlyDab = f1g, i.e, D is a perfe
t group. It has therefore a universal 
entral extension(�) 1! H2(D)! �D ! D ! 1(
f. [M℄ x5).Lemma 2.2. Let(��) 1! C ! E ! D ! 1be a 
entral extension of D su
h that Eab is �nite. Then rk(C) � rk(H2(D)). (Foran abelian group A we denote rk(A) = dimQ(A
Z Q)).



SOME MORE NON-ARITHMETIC RIGID GROUPS 5Proof. There is a homomorphism  from the universal 
entral extension (�)to (��). We 
laim that  ( �D) is of �nite index in E. Indeed, C ( �D) = E and Cis 
entral. Hen
e  ( �D) C E and the quotient is abelian. But Eab is �nite, hen
e(E :  ( �D)) < 1. This implies that  (H2(D)) is of �nite index in C and hen
erk(C) � rk(H2(D)). �Lemma 2.3. For a �nite index normal subgroup L0 of L denote R0 = R \ L0.Then rk(R0=[L0; R0℄) � rk(H2(D)) for every L0 C L of �nite index.Proof. The map L0 ! D is onto sin
e D̂ = 1 and so:1! R0=[L0; R0℄! L0=[L0; R0℄! D ! 1is a 
entral extension of D. As L is FAb, Lab0 is �nite and our Lemma follows fromLemma 2.2. �Given L and � : L ! D with R = Ker � as before, 
hoose now L0 of �niteindex with R0 = R \ L0 and rk(R0=[L0; R0℄) maximal among all possible su
h L0.As D̂ = f1g, it follows that L0=R0 ' D and we have a 
entral extension(2.1) 1! R0=[L0; R0℄! D0 := L0=[L0; R0℄! D = L0=R0 ! 1Now, R0=[L0; R0℄ is dense in the pro�nite topology of D0 sin
e D̂ = f1g, hen
e D̂0is abelian. But, L0 is FAb, so D̂0 is �nite. Repla
e L0 by a �nite index subgroupL00 so that D1 = L00=([L0; R0℄\L00) satis�es D̂1 = f1g and in parti
ular Dab1 = f1g.Let us now rename and 
all L := L00, ~D := D1 and ~R = Ker(L ! ~D). So ~D is a
entral (possibly in�nite!) extension of the original D and ~̂D = f1g. We get theexa
t sequen
e:(2.2) 1! ~R! L! ~D ! 1:The 
ru
ial point is:Claim: For every normal subgroup L1 of �nite index in L and every R1 of�nite index in ~R whi
h is normal in L, [L1; R1℄ is of �nite index in R1.Proof. The group ~R=[L1; R1℄ is a �nitely generated virtually abelian group.Hen
e L=[L1; R1℄ is an extension of the form 1! C ! L=[L1; R1℄! D ! 1 whereC is virtually abelian and D̂ = f1g. Moreover, L is FAb. So, all this implies that\(L=[L1; R1℄) is �nite. Hen
e, whenever L=[L1; R1℄ is mapped into a residually-�nitegroup, its image is �nite. This applies, in parti
ular, to the image of L=[L1; R1℄in its a
tion (by 
onjugation) on the �nitely generated virtually abelian group~R=[L1; R1℄. Thus for some �nite index subgroup L2 of L1, [L2; ~R℄ � [L1; R1℄. Bythe maximality 
hoi
e of L0, it follows that [L2; ~R℄ is of �nite index in ~R and hen
e[L1; R1℄ is also of �nite index there. �To summarize, by repla
ing D by ~D (and the original L by a subgroup of �niteindex), we get an exa
t sequen
e:(2.3) 1! ~R! L! ~D ! 1whi
h satis�es the 
laim. Hen
e by Lemma 2.1, we have:Corollary 2.4. The �bre produ
t � = L� ~D L is FAb.



6 ALEXANDER LUBOTZKY3. The main resultIn this se
tion, we pi
k the fruits of the preparations in the previous two se
tionsand 
onstru
t non-arithmeti
 super-rigid groups.Propositions 1.5 and 1.6 show how to get new (super) rigid groups from oldones. The standard examples of rigid groups are irredu
ible latti
es in semisimplegroups of higher rank, but these do not have in�nite quotients, so �bre produ
tsof them are 
ommensurable to other arithmeti
 groups. This leads us to latti
es inSp(n; 1) and F (�20)4 . They are super-rigid ([C℄,[GS℄) and at the same time havemany in�nite quotients.So, from now on in this se
tion, let L be a torsion-free uniform (=
o
ompa
t)latti
e in one of the groups Sp(n; 1) or F (�20)4 . It is a hyperboli
 group and hen
eby a result proved independently by Ol'shanskii and Rips (see [O℄), it has a �nitelypresented in�nite quotient � : L! D whereD has no proper �nite index subgroups.Repla
e D now by ~D (and L by a �nite index subgroup, also 
alled L) as in x2. Let~� : L ! ~D be the new map and � = L � ~D L the �bre produ
t. (The reader maynote that at this point our method di�ers from the one in [BL℄, where L�D L wasused).Theorem 3.1. � is a super-rigid group. In fa
t, A(�)0 = A(L)0 �A(L)0.Proof. By Corollary 2.4, � is FAb. Hen
e Proposition 1.6 
an be applied todedu
e that � is super-rigid (and hen
e rigid) and A(�)0 = A(L)0 �A(L). �The proof a
tually shows that every representation of � 
an be extended, ona �nite index subgroup, to a representation of L � L. One 
an now repeat thestandard argument given in ([BL℄, pp. 1171{1172) to show that � is not (virtually)isomorphi
 to any latti
e in a produ
t of linear algebrai
 groups (over ar
himedeanor non-ar
himedean �elds). So � is not \of arithmeti
 type" giving the desired
ounter-example to Platonov's 
onje
ture.4. Remarks on the 
ongruen
e subgroup propertyLet L be a uniform latti
e in Sp(n; 1) or F (�20)4 as in se
tion 3. Su
h an Lis an arithmeti
 latti
e ([GS℄). The question whether L satis�es the 
ongruen
esubgroup property (CSP, for short) is still open. Serre's 
onje
ture, posed in [S℄,suggests that latti
es in rank one groups do not have CSP, while latti
es in higherrank simple groups do. So by this 
onje
ture, L is not expe
ted to have the CSP.But this 
onje
ture was made in 1970. Sin
e then, it has been shown that in spiteof Sp(n; 1) and F (�20)4 being rank one groups, latti
es in them behave in many ways(property T , super-rigidity, arithmeti
ity, et
.) like higher rank latti
es. One may,therefore, suggest that they do have the CSP. As of now, the answer is not knownfor any single su
h L.We make here two short remarks showing that an aÆrmative answer for theCSP for L would have two interesting 
orollaries:Remark 4.1. If L has the CSP, then the above 
onstru
tion (in x3) of D (andhen
e of �) 
an be done without appealing to the work of Ol'shanskii and Rips. Infa
t, if N is any in�nite normal subgroup of L (whi
h is �nitely generated as normalsubgroup) of in�nite index, then D = L=N has only �nitely many �nite indexsubgroups. Indeed, if not, it has in�nitely many �nite index normal subgroups.Pulling them ba
k to L, we get in�nitely many normal 
ongruen
e subgroups of



SOME MORE NON-ARITHMETIC RIGID GROUPS 7L all 
ontaining N . But it is not diÆ
ult to prove that for L being an arithmeti
subgroup of a simple algebrai
 group, the interse
tion of any in�nite 
olle
tion ofnormal 
ongruen
e subgroups must be �nite and 
entral. This shows that D =L=N has only �nitely many �nite index subgroups. We 
an repla
e D by theirinterse
tion (and L by the preimage) to get the desired �nitely presented quotientwithout any �nite index subgroup.It is of interest to re
all that the CSP implies super-rigidity. Hen
e, if L hasCSP, we 
an produ
e a 
ounter-example without appealing to the work of [C℄ and[GS℄. So the proof would not use any of the four ingredients (1)-(4) listed in theintrodu
tion.Remark 4.2. If there is one su
h uniform latti
e L satisfying CSP, then thereexists a hyperboli
 group without any �nite index subgroup and in parti
ular, anon-residually-�nite hyperboli
 group.Indeed, L is hyperboli
 (but residually �nite). For \many" g 2 L, the normal
losure N of g in L is an in�nite subgroup of in�nite index and D = L=N is alsohyperboli
 (see [D℄). Repeating the argument from remark 4.1, we dedu
e that Dhas a �nite index subgroup (hen
e also hyperboli
) with no �nite index subgroup.Thus answering the 
ongruen
e subgroup problem in the aÆrmative for one uniformlatti
e in Sp(n; 1) or F (�20)4 , would solve the long standing problem of the existen
eof a non-residually �nite hyperboli
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