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Some more non-arithmeti rigid groupsAlexander LubotzkyDediated to the memory of Bob Brooks0. IntrodutionLet � be a �nitely generated group. � is alled rigid if for every n � 1, �admits only �nitely many isomorphism lasses of irreduible representations intoGLn(C). Platonov (f. [PR℄ p. 437) onjetured that if � is a linear rigid groupthen � is of \arithmeti type" (i.e., ommensurable with a produt of S-arithmetigroups).In [BL℄, H. Bass and the author gave ounter-examples to Platonov's onje-ture. The examples � there are very speial; they are subgroups of L�L when L isa uniform (arithmeti) lattie in the rank one simple Lie group F (�20)4 . The proofthere relies on four main ingredients:(1) The super-rigidity (�a la Margulis) of L, whih was proved by Corlette [C℄and Gromov-Shoen [GS℄.(2) The Ol'shanski��-Rips theorem ([O℄) asserting that L being hyperboli hasa �nitely presented in�nite quotient H with no proper �nite index sub-group.(3) Grothendiek's theorem [GO℄ whih says that one the inlusion of � toL�L indues an isomorphism of the pro-�nite ompletions �̂ and L̂� L̂,the representation theory of � is the same as that of L� L.(4) The vanishing of the seond Betti number �2(L0) = dimH2(L0;R) = 0for every �nite index subgroup L0 of L (proved by Kumareson and Vogan-Zukerman (f. [VZ℄)).In this note we give a simpli�ed version of the proof in [BL℄. We eliminatethe use of ingredients (3) and (4). Not using (3) makes the proof more elementary,but avoiding (4) is even more signi�ant: our proof now works also when L is anyuniform lattie in Sp(n; 1) (for every n � 2), groups for whih (4) does not hold (asfollows from ([Li℄, Cor. 6.5). We thus have many new examples whih are Zariskidense in Sp(n; 1)� Sp(n; 1).2000 Mathematis Subjet Classi�ation. 22E40.The author is indebted to the Israel Siene Foundation and the U.S.-Israel Binational SieneFoundation for their support. 0000 (opyright holder)1



2 ALEXANDER LUBOTZKYJust as in [BL℄, the ounter examples to Platonov's onjeture onstruted hereare even super-rigid (see x1). In summary:Theorem. Let G be either Sp(n; 1); n � 2, or F�(20)4 and let L be a oompatlattie in G. Then L � L ontains a subgroup � of in�nite index whih is Zariskidense in G�G, super-rigid and not of arithmeti type.We end the note with two suggestive remarks to be explained in x4:We show that if L satis�es the ongruene subgroup property, then a furthersimpli�ation is possible, avoiding also the use of (1) and (2), i.e. the works ofCorlette, Gromov-Shoen, Ol'shanskii and Rips.Furthermore, if a single uniform lattie L in Sp(n; 1) or F (�20)4 satis�es theongruene subgroup property, then there exists an hyperboli group �a la Gromovwhih is not residually-�nite. Moreover, there exists a hyperboli group with noproper �nite index subgroup. So, answering the ongruene subgroup problem inthe aÆrmative, for one suh L would settle in negative the long standing openproblem on the residual-�niteness of hyperboli groups.1. FAb �bre produts of rigid groups are rigidThroughout the paper, � is a �nitely generated group. � is FAb if for every�nite index subgroup � of �, �ab := �=[�;�℄ is �nite. � is rigid if for every n � 1,it has only �nitely many non-equivalent irreduible n-dimensional omplex repre-sentations. Finally, � is super-rigid if A(�)0, the onneted omponent of A(�)is �nite-dimensional algebrai group. Here, A(�) is the pro-algebrai ompletionof �. There is a homomorphism i : � ! A(�) suh that for every representation� : �! GLn(C), there exists a unique algebrai representation ~� : A(�)! GLn(C)with ~� Æ i = �.It is not diÆult to prove:Proposition 1.1. super-rigid) rigid ) FAb.Proposition 1.2. If � is a �nite index subgroup of �, then � is super-rigid(resp. rigid, FAb) i� � is.We also have:Proposition 1.3. Assume � has FAb. Then given n, there exists a �nite indexsubgroup � = �(n) of � suh that for every n-dimensional representation� : � ! GLn(C), �(�) is a onneted group. If � is irreduible then �(�) issemisimple.Proof. Denote H = �(�), then there exists a �nite subgroup F of H suhthat H = H0 � F ([W℄ 10.10). By Jordan's Theorem ([W℄ 9.2), F has an abeliannormal subgroup of index at most J(n). Thus the same applies to H=H0. Letnow ~� be the intersetion of all the normal subgroups of � of index at most J(n)and � = [~�; ~�℄. It follows that � has �nite index in � and for every n-dimensionalrepresentation of �, �(�) � �(�) 0. This also implies that �(�) is dense in �(�) 0sine � has �nite index in � and �(�) 0 has no �nite index subgroups. Finally, if �is irreduible, then �(�) 0 is redutive, but atually semisimple as it has no abelianquotient. �



SOME MORE NON-ARITHMETIC RIGID GROUPS 3Proposition 1.4. A �nitely generated FAb group � is not rigid i� there existsa �nite index subgroup � of � and a simple algebrai group H of adjoint type(i.e., Z(H) = 1) suh that � has in�nitely many non-onjugate homomorphisms� : �! H with �(H) Zariski dense in H.Proof. Assume there are in�nitely many non-equivalent irreduiblen-dimensional representations � of � and let � = �(n) as in Proposition 1.3. Then�(�) is a onneted semisimple group for every suh �. There are only �nitelymany onjugay lasses of semisimple onneted subgroups of GLn(C), so we mayassume that H = �(�) is �xed. From Cli�ord theorem [W, Theorem 1.7℄, it followsthat there are in�nitely many non-equivalent �-representations with Zariski-denseimage in H . In�nitely many of them are still non-equivalent when H is dividedby its �nite enter. We an therefore assume H is of adjoint type and a diretprodut of its simple omponents. There are still in�nitely many non-equivalenthomomorphisms of � to one of the simple fators of H . Replaing H by this fatorgives the result. The other diretion is easy as (Aut(H) : Inn(H)) is �nite. �We now show how new rigid (resp. super-rigid) groups an be obtained as a�bre produt of rigid (resp. super-rigid) groups.For i = 1; 2, let Li be a �nitely generated group with epimorphisms �i from Lionto the same �nitely presented group D, and Ri = Ker �i. Let� = L1 �D L2 = f(x; y) 2 L1 � L2 j �1(x) = �2(y)gbe the �bre produt of L1 and L2 over D.The projetions �i of � to Li are onto with kernels (1; R2) and (R1; 1). Also,one an easily see that � is �nitely generalized sine D is �nitely presented.Proposition 1.5. If L1 and L2 are rigid and � has FAb, then � is also rigid.Proof. If not, by Proposition 1.4, there exists a �nite index subgroup � of �and a simple algebrai group H that � has in�nitely many non-equivalent homo-morphisms � : �! H with dense image. Let R01 = (R1; 1)\� and R02 = (1; R2)\�.Then [R01; R02℄ = 1 and both are normal in �. Thus �(R01) and �(R02) are ommutingnormal subgroups of H , so one of them must be trivial. Hene for in�nitely many�'s, either �(R01) is trivial or �(R02) is. In the �rst ase we have that � fators through�2, i.e., we have a representation of �=R01 = �=(R1; 1)\� ' �(R1; 1)=(R1; 1) whihis ommensurable to L2. Hene, this group is not rigid and by Proposition 1.2 alsoL2 is not rigid, a ontradition. The ase with �(R02) = 1 is treated similarly andthe Proposition is proved. �It is somewhat more diÆult to prove, but under an additional hypothesis, it isalso true that when we start with Li super-rigid and redutive, then � is super-rigid.Reall that a group is alled redutive if every representation of it is redutive.Proposition 1.6. Assume L1 and L2 are super-rigid and redutive, D has no�nite index subgroup and � is FAb then � is super-rigid and redutive, in fatA(�)0 = A(L1)0 �A(L2)0Proof. Let � : � ! GLn(C) be a representation. Replaing � by � as inProposition 1.3, we an assume H = �(�) is onneted and it is equal to its ownommutator subgroup (sine � is FAb).



4 ALEXANDER LUBOTZKYWe laim that H is semi-simple. If not, it has a non-trivial unipotent radialU . Dividing by [U;U ℄ and further if needed, we an assume that U is a simpleH-module. So H = U � S, a semi-diret produt when S is semisimple and U asimple S-module. Clearly, this is not the trivial module, sine H has no abelianquotient.As in the proof of (1.5), �(R01) and �(R02) are ommuting normal subgroups.Moreover, �=R01 � R02 ' D and D has no �nite index subgroups, hene no �nitedimensional representations. It follows that �(R01 �R02) = �(R01) � �(R02) = H .If �(R01) does not ontain U , then H=�(R01) has non-trivial unipotent radialand so �=R01, whih is ommensurable to L2 is not redutive, a ontradition. Hene�(R01), and similarly �(R02), ontains U . But [�(R1); �(R02)℄ = 1, sine [R01; R02℄ = 1.This implies that [U; �(R02)℄ = [�(R01); U ℄ = 1 and hene H ats trivially on U , aontradition. Hene U is trivial and H is semisimple. Again �(R01) and �(R02)are normal and ommuting. This implies that (after dividing by the enter of H)H = �(R01)� �(R02) but then H=�(R0i) is an homomorphi image of A(L3�i)0. Thisproves that A(�)0 = A(L1)0 �A(L2)0. �2. When a �bre produt is FAbIn this setion we show some suÆient onditions for a �bre produt to be FAb.Let L be a �nitely generated group, � : L! D a homomorphism onto a �nitelypresented group D with kernel R, and � = L�D L the �bre produt of L over D,� = f(x; y) 2 L� L j �(x) = �(y)g:Note that � = (R; 1)�(L) = (1; R)�(L) when �(L) is the diagonal embedding ofL into �, �(L) = f(x; x) j x 2 Lg.Lemma 2.1. If L is FAb and if for every �nite index normal subgroup L0 of L,and every �nite index subgroup R0 of R whih is normal in L, [L0; R0℄ is of �niteindex in R0, then � is FAb.Proof. Let �0 be a �nite index normal subgroup of �, L0 = �0 \�(L) andR0 = (R; 1)\�0. By abuse of notation we will onsider R0 as a subgroup of L andat the same time a subgroup of (L; 1). From our assumption, it follows that [R0; L0℄is of �nite index in R0 and hene in (R; 1). As L is FAb, [L0; L0℄ is of �nite indexin �(L). This implies that [R0L0; R0L0℄ is of �nite index in �. As �0 � R0L0, weget that [�0;�0℄ is of �nite index in �. �Let now L be a �nitely generated group with FAb. Assume L has an in�nite�nitely presented quotient D with kernel R, suh that D̂ = f1g when D̂ is thepro�nite ompletion of D, i.e., D has no proper �nite index subgroup. ClearlyDab = f1g, i.e, D is a perfet group. It has therefore a universal entral extension(�) 1! H2(D)! �D ! D ! 1(f. [M℄ x5).Lemma 2.2. Let(��) 1! C ! E ! D ! 1be a entral extension of D suh that Eab is �nite. Then rk(C) � rk(H2(D)). (Foran abelian group A we denote rk(A) = dimQ(A
Z Q)).



SOME MORE NON-ARITHMETIC RIGID GROUPS 5Proof. There is a homomorphism  from the universal entral extension (�)to (��). We laim that  ( �D) is of �nite index in E. Indeed, C ( �D) = E and Cis entral. Hene  ( �D) C E and the quotient is abelian. But Eab is �nite, hene(E :  ( �D)) < 1. This implies that  (H2(D)) is of �nite index in C and henerk(C) � rk(H2(D)). �Lemma 2.3. For a �nite index normal subgroup L0 of L denote R0 = R \ L0.Then rk(R0=[L0; R0℄) � rk(H2(D)) for every L0 C L of �nite index.Proof. The map L0 ! D is onto sine D̂ = 1 and so:1! R0=[L0; R0℄! L0=[L0; R0℄! D ! 1is a entral extension of D. As L is FAb, Lab0 is �nite and our Lemma follows fromLemma 2.2. �Given L and � : L ! D with R = Ker � as before, hoose now L0 of �niteindex with R0 = R \ L0 and rk(R0=[L0; R0℄) maximal among all possible suh L0.As D̂ = f1g, it follows that L0=R0 ' D and we have a entral extension(2.1) 1! R0=[L0; R0℄! D0 := L0=[L0; R0℄! D = L0=R0 ! 1Now, R0=[L0; R0℄ is dense in the pro�nite topology of D0 sine D̂ = f1g, hene D̂0is abelian. But, L0 is FAb, so D̂0 is �nite. Replae L0 by a �nite index subgroupL00 so that D1 = L00=([L0; R0℄\L00) satis�es D̂1 = f1g and in partiular Dab1 = f1g.Let us now rename and all L := L00, ~D := D1 and ~R = Ker(L ! ~D). So ~D is aentral (possibly in�nite!) extension of the original D and ~̂D = f1g. We get theexat sequene:(2.2) 1! ~R! L! ~D ! 1:The ruial point is:Claim: For every normal subgroup L1 of �nite index in L and every R1 of�nite index in ~R whih is normal in L, [L1; R1℄ is of �nite index in R1.Proof. The group ~R=[L1; R1℄ is a �nitely generated virtually abelian group.Hene L=[L1; R1℄ is an extension of the form 1! C ! L=[L1; R1℄! D ! 1 whereC is virtually abelian and D̂ = f1g. Moreover, L is FAb. So, all this implies that\(L=[L1; R1℄) is �nite. Hene, whenever L=[L1; R1℄ is mapped into a residually-�nitegroup, its image is �nite. This applies, in partiular, to the image of L=[L1; R1℄in its ation (by onjugation) on the �nitely generated virtually abelian group~R=[L1; R1℄. Thus for some �nite index subgroup L2 of L1, [L2; ~R℄ � [L1; R1℄. Bythe maximality hoie of L0, it follows that [L2; ~R℄ is of �nite index in ~R and hene[L1; R1℄ is also of �nite index there. �To summarize, by replaing D by ~D (and the original L by a subgroup of �niteindex), we get an exat sequene:(2.3) 1! ~R! L! ~D ! 1whih satis�es the laim. Hene by Lemma 2.1, we have:Corollary 2.4. The �bre produt � = L� ~D L is FAb.



6 ALEXANDER LUBOTZKY3. The main resultIn this setion, we pik the fruits of the preparations in the previous two setionsand onstrut non-arithmeti super-rigid groups.Propositions 1.5 and 1.6 show how to get new (super) rigid groups from oldones. The standard examples of rigid groups are irreduible latties in semisimplegroups of higher rank, but these do not have in�nite quotients, so �bre produtsof them are ommensurable to other arithmeti groups. This leads us to latties inSp(n; 1) and F (�20)4 . They are super-rigid ([C℄,[GS℄) and at the same time havemany in�nite quotients.So, from now on in this setion, let L be a torsion-free uniform (=oompat)lattie in one of the groups Sp(n; 1) or F (�20)4 . It is a hyperboli group and heneby a result proved independently by Ol'shanskii and Rips (see [O℄), it has a �nitelypresented in�nite quotient � : L! D whereD has no proper �nite index subgroups.Replae D now by ~D (and L by a �nite index subgroup, also alled L) as in x2. Let~� : L ! ~D be the new map and � = L � ~D L the �bre produt. (The reader maynote that at this point our method di�ers from the one in [BL℄, where L�D L wasused).Theorem 3.1. � is a super-rigid group. In fat, A(�)0 = A(L)0 �A(L)0.Proof. By Corollary 2.4, � is FAb. Hene Proposition 1.6 an be applied todedue that � is super-rigid (and hene rigid) and A(�)0 = A(L)0 �A(L). �The proof atually shows that every representation of � an be extended, ona �nite index subgroup, to a representation of L � L. One an now repeat thestandard argument given in ([BL℄, pp. 1171{1172) to show that � is not (virtually)isomorphi to any lattie in a produt of linear algebrai groups (over arhimedeanor non-arhimedean �elds). So � is not \of arithmeti type" giving the desiredounter-example to Platonov's onjeture.4. Remarks on the ongruene subgroup propertyLet L be a uniform lattie in Sp(n; 1) or F (�20)4 as in setion 3. Suh an Lis an arithmeti lattie ([GS℄). The question whether L satis�es the ongruenesubgroup property (CSP, for short) is still open. Serre's onjeture, posed in [S℄,suggests that latties in rank one groups do not have CSP, while latties in higherrank simple groups do. So by this onjeture, L is not expeted to have the CSP.But this onjeture was made in 1970. Sine then, it has been shown that in spiteof Sp(n; 1) and F (�20)4 being rank one groups, latties in them behave in many ways(property T , super-rigidity, arithmetiity, et.) like higher rank latties. One may,therefore, suggest that they do have the CSP. As of now, the answer is not knownfor any single suh L.We make here two short remarks showing that an aÆrmative answer for theCSP for L would have two interesting orollaries:Remark 4.1. If L has the CSP, then the above onstrution (in x3) of D (andhene of �) an be done without appealing to the work of Ol'shanskii and Rips. Infat, if N is any in�nite normal subgroup of L (whih is �nitely generated as normalsubgroup) of in�nite index, then D = L=N has only �nitely many �nite indexsubgroups. Indeed, if not, it has in�nitely many �nite index normal subgroups.Pulling them bak to L, we get in�nitely many normal ongruene subgroups of



SOME MORE NON-ARITHMETIC RIGID GROUPS 7L all ontaining N . But it is not diÆult to prove that for L being an arithmetisubgroup of a simple algebrai group, the intersetion of any in�nite olletion ofnormal ongruene subgroups must be �nite and entral. This shows that D =L=N has only �nitely many �nite index subgroups. We an replae D by theirintersetion (and L by the preimage) to get the desired �nitely presented quotientwithout any �nite index subgroup.It is of interest to reall that the CSP implies super-rigidity. Hene, if L hasCSP, we an produe a ounter-example without appealing to the work of [C℄ and[GS℄. So the proof would not use any of the four ingredients (1)-(4) listed in theintrodution.Remark 4.2. If there is one suh uniform lattie L satisfying CSP, then thereexists a hyperboli group without any �nite index subgroup and in partiular, anon-residually-�nite hyperboli group.Indeed, L is hyperboli (but residually �nite). For \many" g 2 L, the normallosure N of g in L is an in�nite subgroup of in�nite index and D = L=N is alsohyperboli (see [D℄). Repeating the argument from remark 4.1, we dedue that Dhas a �nite index subgroup (hene also hyperboli) with no �nite index subgroup.Thus answering the ongruene subgroup problem in the aÆrmative for one uniformlattie in Sp(n; 1) or F (�20)4 , would solve the long standing problem of the existeneof a non-residually �nite hyperboli group.Referenes[BL℄ H. Bass and A. Lubotzky, Nonarithmeti superrigid groups: ounterexamples to Platonov'sonjeture, Ann. of Math. 151 (2000), 1151{1173.[C℄ K. Corlette, Arhimedean superrigidity and hyperboli geometry, Ann. of Math. 135 (1992),165{182.[D℄ T. Delzant, Sous-groupes distingue�es et quotients des groupes hyperboliques, Duke Math J.83 (1996), 661{682.[GS℄ M. Gromov and R. Shoen, Harmoni maps into singular spaes and p-adi superrigidityfor latties in groups of rank one, Inst. Hautes �Etudes Si. Publ. Math. 76 (1992), 165{246.[GO℄ A. Grothendiek, Repr�esentations lin�eaires et ompati�ation pro�nie des groupes disrets,Manusripta Math. 2 (1970), 375{396.[Li℄ Li, Jian-Shu, Nonvanishing theorems for the ohomology of ertain arithmeti quotients, J.Reine Angew. Math. 428 (1992), 177{217.[M℄ J. Milnor, Introdution to Algebrai-K-Theory, Prineton University Press, Prineton, NJ1971.[O℄ Ol'shanski��, A. Yu., On the Bass-Lubotzky question about quotients of hyperboli groups, J.Algebra 226 (2000), 807{817.[PR℄ V. Platonov and A. Rapinhuk, Algebrai Groups and Number Theory, Pure and AppliedMathematis, Aademi Press In., Boston, MA (1994), xii+614.[S℄ J.-P. Serre, Le probl�eme des groupes de ongruene pour SL2, Ann. of Math 92 (1970),489{527.[VZ℄ D.A. Vogan Jr. and G.J. Zukerman, Unitary representations with nonzero ohomology,Compositio Math. 53 (1984), 51{90.[W℄ B.A.F. Wehrfritz, In�nite Linear Groups, Springer Berlin, 1973.Institute of Mathematis, Hebrew University, Jerusalem 91904, ISRAELE-mail address: alexlub�math.huji.a.il


