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QUANTUM ERROR CORRECTING CODES

AND 4-DIMENSIONAL ARITHMETIC HYPERBOLIC

MANIFOLDS

LARRY GUTH AND ALEXANDER LUBOTZKY

Abstract. Using 4-dimensional arithmetic hyperbolic manifolds,

we construct some new homological quantum error correcting codes.

They are LDPC codes with linear rate and distance nǫ. Their rate

is evaluated via Euler characteristic arguments and their distance

using Z2-systolic geometry. This construction answers a queston

of Zémor [Z], who asked whether homological codes with such pa-

rameters could exist at all.

1. Introduction

The goal of this paper is to present homological quantum error cor-

recting codes (QECC) based on a family of finite sheeted congruence

covers of a fixed 4-dimensional arithmetic hyperbolic manifold. We

then estimate the rate and distance of these codes and show that they

answer a question of Zémir [Z], who asked if homological codes with

such parameters could exist at all.

A (classical linear) code is a subspace C of Zn
2 of dimension k. Its

rate r is, by definition, r = k
n
and its distance is defined as d = d(C) =

min{wt(α)
∣

∣0 6= α ∈ C} where wt(α) is the Hamming weight of α,

i.e., the number of non-zero entries of α. Write δ = δ(C) for d
n
- the

normalized distance. The standard terminology is that C is an [n, k, d]-

code.

The quantum codes we will consider here will all be the so called

CSS-codes (see [NC], [P], [F1] for an explanation what the following

construction has to do with quantum error correction). A quantum

CSS-code C = (W1,W2) is defined by two orthogonal subspaces W1 and

W2 in Zn
2 , i.e., for every α = (a1, . . . , an) ∈ W1 and β = (b1, . . . , bn) ∈

W2, α · β = 0 where α · β :=
n
∑

i=1

aibi. Let W⊥
1 ,W⊥

2 be the orthogonal

subspaces to W1 and W2, so: W1 ⊆ W⊥
2 and W2 ⊆ W⊥

1 . The dimension

k of C is defined as k = dim(W⊥
1 /W2) = dim(W⊥

2 /W1) = n−dimW1−
1

http://arxiv.org/abs/1310.5555v1
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dimW2 and the rate r = k
n
. The distance of the code C is defined as:

d(W1,W2) = min{wt(α)
∣

∣α ∈ (W⊥
1 \W2) ∪ (W⊥

2 \W1)}

and δ = δ(C) = d
n
. Here one writes that C is an [[n, d, c]]-code.

While studying codes, one is usually interested in a family of codes

when n → ∞. By abuse of the language we say that C (resp. C) is a
good code if r and δ are both bounded away from 0, or equivalently,

the dimension and the distance grow linearly with the length n of the

code.

The code C (resp. C) is called LDPC (= low density parity check)

if C⊥ is spanned by vectors of bounded Hamming weight (resp. Wi =

(W⊥
i )⊥ is spanned by vectors of bounded weight for i = 1 and 2).

Good LDPC classical codes have been known to exist, by random

consideration, since the fundamental work of Gallager [Ga] in the 60’s.

In 1996, Sipser and Spielman made an explicit construction of such

codes using expander graphs ([SS]). It is still an open problem if good

LDPC quantum codes exist at all.

Manifolds and simplicial complexes offer a natural construction of

quantum LDPC codes, the so called “homological codes”, in the fol-

lowing way:

Let X be a finite simplicial complex of dimension D (if M is a man-

ifold, one can replace M by a triangulation X of it), i.e., X is a set

of subsets of X(0) (the set of vertices of X) of size ≤ D + 1 with the

property that if F ∈ X and G ⊆ F then G ∈ X . Let X(i) be the set of

subsets in X of size i+1. The space of mod 2 i-chains, Ci = Ci(X,Z2),

is the Z2-vector space spanned by X(i). The space of mod 2 i-cochains,

C i = C i(X,Z2), is the space of functions from X(i) to Z2. It is conve-

nient to identify Ci and C i in the clear way.

Let ∂i : Ci → Ci−1 be the boundary map, i.e.,

∂i(F ) =
∑

G<F
|G|=i

G for F ∈ X(i)

and its adjoint δi : Ci → Ci+1 the cobounding map

δi(F ) =
∑

F<G
|G|=i+2

G

(recall that as we work in characteristic two, we can ignore the orien-

tation). It is well known and easy to prove that for all i

(1) ∂i ◦ ∂i+1 = 0 and δi ◦ δi−1 = 0.
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Hence Bi := the i-boundaries = Im∂i+1 (resp: B
i = the i-coboundaries

= Imδi−1) is contained in Zi = the i-cycles = Ker∂i (resp: Z i = the

i-cocycles = Kerδi).

Moreover, one can easily check that (1) implies the following (which

is crucial for the quantum codes application):

(2) B⊥
i = Z i and (Bi)⊥ = Zi.

One can therefore associate with X , for every i ≤ D, a quantum

CSS-code C = (Bi, B
i) whose length is n = |X(i)|, and its dimension is

k = dimZi/Bi = dimHi(X,Z2), i.e., the dimension of the homology of

X (or of M) with coefficients in Z2. The latter is also k = dimZ i/Bi =

dimH i(X,Z2), i.e., the dimension of the i-cohomology group. Finally,

the distance d = d(C) is the Hamming weight of a non-trivial homology

or cohomology class i.e., the minimum weight of an i-cycle (which is

not an i-boundary) or i-cocycle (which is not an i-coboundary).

Homological codes are attractive as if one let M varies over finite

sheeted covers of a fixed compact manifold, then the codes obtained

are automatically LDPC since Bi (resp. B
i) is generated by the images

of the cells of dimension i+1 (resp. i−1). This gives these codes great

potential, and this is what brings us to systolic geometry.

Systolic geometry is a subarea of Riemannian geometry studying

volumes of non-trivial cycles and cocycles. Fairly recently, it has been

noticed that there is a connection between quantum error correcting

codes and systolic geometry with Z2 coefficients (cf. [Fr], [MFL], [Z],

[F2]).

Some of the most studied quantum codes, e.g. the toric codes and

surface codes (cf. [Z] and [F1]), can be considered as special cases of

homological codes. But, while they are LDPC they are all far from

being good.

Zémor [Z], based on the known examples and on intuition coming

from graph theory, made the following suggestion:

Question (Zémor [Z] ). Let C be an [[n, k, d]] homological quantum

code. Is it always true that kd2 ≤ n1+o(1)? (or, in the notation of r = k
n

and δ = d
n
, rδ2 ≤ n−2+o(1))

In [F2], Fetaya essentially proved that this is indeed true for codes

coming from 2-dimensional surfaces. We prove that it is not the case

for codes coming from 4-dimensional manifolds.

Theorem 1. There exist ε, ε′, ε′′ > 0 and a sequence of 4-dimensional

hyperbolic manifolds M with triangulations X such that the associated
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homological quantum codes constructed in C2(X,Z2) = C2(X,Z2) are

[[n, ε′n, nε′′]] codes and so:

kd2 ≥ n1+ε.

Theorem 1 will be deduced from the following geometric result.

Theorem 2. There is a constant ǫ > 0, a closed hyperbolic 4-manifold

M0 and a sequence of finite sheeted covers Mj → M0 with Vol4Mj → ∞
obeying the following estimates:

1. The dimension of H2(Mj ,Z2) is ≥ (1/100)Vol4Mj.

2. Every homologically non-trivial mod 2 2-cycle in Mj has area

≥ (Vol4Mj)
ǫ.

A crucial ingredient in the proof is a theorem of Anderson [A] which

says that every homologically non-trivial i-cycle in a D-dimensional

hyperbolic manifold has volume at least the volume of a hyperbolic i-

ball of radius R, where R is the injectivity radius of the manifold. Note

that when i = 1, this gives a linear bound on the volume, while for i > 1

it gives an exponential bound. So we get much better lower bounds

when i > 1. For homological quantum codes, one needs lower bounds

on both i-cycles and i-cocycles. By Poincaré duality (see Section 2),

one wants lower bounds on i-cycles and (D− i)-cycles. That is why we

chose to work with D = 4 and i = 2, which is the smallest dimension

where i and D − i are more than 1.

We should note however that the existence of LDPC quantum codes

with parameters [[n, ε′n, nε′′ ]] is not new. In [TZ], Tillich and Zémor

discovered such codes with parameters [[n, ε′n, n0.5]]. In fact, for the

codes we construct, ǫ′′ ≤ 0.3 - see Remark 20. The point of the current

work is that our codes are homological. This brings back the systolic

geometry to the race of finding good LDPC quantum codes, if such

codes really exist.

The paper is organized as follows. In Section 2, we describe the con-

nection between distance of codes and systoles. We deduce Theorem

1 from Theorem 2, postponing the proof of Theorem 2 to the next

two sections. In Section 3, we estimate the dimension of the homology

groups using Euler characteristic arguments. In Section 4, we estimate

the sizes of cycles in congruence covers. Along the way, we give lower

bounds on the injectivity radius of the congruence covers. This sec-

tion is making a crucial use of results of Anderson [A] in hyperbolic

geometry. As we expect this paper to have a diverse audience, we tried

whenever we can to elaborate a bit on some methods even when they
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are well known to experts. In particular, in Section 5 we explain the

basic idea behind Anderson’s theorem.

Acknowledgements. The authors acknowledge support from the

Sloan foundation, NSF, ERC and ISF.

2. Codes and systoles

Suppose that (Mn, g) is a closed Riemannian manifold equipped with

a triangulation X . In the introduction, we recalled the CSS code

corresponding to i-dimensional chains in X : this is the code (Bi, B
i).

We would like to understand how the distance of this code is related

to the geometry of (M, g).

The i-dimensional systole of (Mn, g) with coefficients in Z2 is the in-

fimal volume of a homologically non-trivial Lipschitz i-cycle in (Mn, g).

We denote it by Sysi(M
n, g). Below, we will briefly recall what these

words mean. The systole is a quantity from Riemannian geometry

which is analogous to the distance of a code. In particular, we recall

the following result connecting systoles and codes.

Proposition 3. Suppose that MD
0 is a closed D-dimensional manifold

equipped with a Riemannian metric g0 and a triangulation X0. Let

M → M0 be a finite sheeted cover, and let g and X be the pullbacks

of g0 and X0. Then the distance of the code (Bi(X), Bi(X)) obeys the

inequality

(3)

d(Bi(X), Bi(X)) ≥ c(M0, g0, X0)min (Sysi(M, g), SysD−i(M, g)) ,

where c(M0, g0, X0) is a constant.

Let us now recall Lipschitz chains and cycles, to clarify the definition

of the systole. A Lipschitz i-chain with coefficients in Z2 is a finite sum
∑

j ajfj where aj ∈ Z2 and fj is a Lipschitz map from the standard

i-simplex ∆i to M . A Lipschitz 1-chain is a bunch of parametrized

curves in M , and a Lipschitz i-chain is a bunch of parametrized i-

simplices. We denote the Lipschitz i-chains by Ci,Lip(M,Z2). There

is a boundary map ∂i,Lip : Ci,Lip(M,Z2) → Ci−1,Lip(M,Z2), defined

by restricting each map fj to the (i− 1)-simplices in the boundary of

∆i. The Lipschitz i-cycles form the kernel of ∂i,Lip. Each i-cycle in

Zi(X,Z2) can be considered as a Lipschitz cycle, but most Lipschitz

cycles in (Mn, g) do not come from any element of Zi(X,Z2). The

reader can visualize the i-cycles of Zi(X,Z2) as surfaces made from
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the i-faces of X , whereas Lipschitz i-cycles do not have to lie in the

i-skeleton of X .

A standard result of topology says that the homology of the chain

complex of Lipschitz chains is the same as the homology Hi(X,Z2). In

particular, an i-cycle in Zi(X,Z2) is homologically non-trivial if and

only if the corresponding Lipschitz cycle is homologically non-trivial.

The volume of a Lipschitz map fj : ∆i → (M, g), is defined to be

the volume of the pullback metric f ∗
j (g) on ∆i. We can also think of it

as the i-dimensional volume of fj(∆
i), counted with multiplicity if the

image covers some i-dimensional surface multiple times. The volume

of the Lipschitz chain
∑

j ajfj is
∑

j |aj |Voli fj.
Now suppose that α is a chain in Ci(X,Z2). Since we are working

with mod 2 coefficients, we can abuse notation and think of α as a

subset of the i-dimensional faces of X . The weight of α is just the

number of i-faces in α. The volume of the Lipschitz chain corresponding

to α is the sum of the volumes of the i-faces in α.

Therefore, we get the following inequalities between the weight of

α ∈ Zi(X,Z2) and the volume of α as a Lipschitz cycle.

(min
F⊂X

Voli F )wt(α) ≤ Volα ≤ (max
F⊂X

Voli F )wt(α).

In these formulas, the maximum or minimum is over all the i-faces of

X .

In Proposition 3, we start with a closed manifold (M0, g0) with a

triangulation X0. Then we consider finite sheeted covers M → M0

with pullback metric g and pullback triangulation X . The maximum

and minimum volumes of i-faces in X are the same as in X0, so they

are uniformly bounded. Therefore, the volume and weight of α agree

up to a constant factor. These observations prove the following lemma.

Lemma 4. Suppose that M → M0 is a finite sheeted cover. Suppose

that M0 is equipped with a metric g0 and a triangulation X0, and let g

and X be the pullbacks. Then for any α ∈ Zi(X,Z2), we have

wt(α) ≥ c1(M0, g0, X0) Voli α.

As a corollary, we can bound the minimal weight of a homologically

non-trivial cycle α in terms of the systole of (Mi, gi).

Lemma 5. Suppose that M → M0 is a finite sheeted cover. Suppose

that M0 is equipped with a metric g0 and a triangulation X0, and let g
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and X be the pullbacks. Then the minimal weight of any α in Zi \ Bi

is at least c2(M0, g0, X0)Sysi(M, g).

This lemma is the first half of the proof of Proposition 3. To finish

the proof, we have to give a lower bound for the weights of α in Z i \Bi.

We can do this using Poincaré duality for the manifold M .

Suppose that MD is a closed D-dimensional manifold with triangu-

lation X . Then there is a Poincaré dual polyhedral structure X ′ on M .

There is a vertex of X ′ in the center of each D-simplex of X . There

is an edge of X ′ through the center of each (D − 1)-face of X . The

(D − 1)-face borders exactly two D-faces, and the edge goes from the

center of one to the center of the other. More generally, there is an

i-face of X ′ through the center of each (D − i)-simplex in X . (For

a description of dual polyhedral structures and Poincaré duality, see

Chapter 5.2 of [Sha].)

Since each i-dimensional face of X corresponds to a unique (D− i)-

dimensional face of X ′, we get a Poincaré duality isomorphism P :

C i(X,Z2) → CD−i(X
′,Z2). The key feature of Poincaré duality is

that the coboundary map on cochains in X corresponds to the bound-

ary map on chains in X ′. In formulas, this means that for each

α ∈ C i(X,Z2),

P (δiα) = ∂D−i(Pα).

In particular, Poincaré duality maps cocycles in X to cycles in X ′

and coboundaries in X to boundaries in X ′. Therefore, the minimum

weight of any α ∈ Z i(X,Z2) \ Bi(X,Z2) is the same as the minimal

weight of any α in ZD−i(X
′,Z2) \BD−i(X

′,Z2). Therefore, we get the

following inequalities between the weight of α ∈ Z i(X,Z2) and the

volume of Pα as a Lipschitz cycle:

(min
F⊂X′

VolD−i F )wt(α) ≤ VolD−i Pα ≤ (max
F⊂X′

VolD−i F )wt(α).

In these formulas, the maximum or minimum is over all the (D−i)-faces

of X ′.

Now suppose again that M is a finite sheeted cover of a closed man-

ifold M0, where M0 is equipped with metric g0 and triangulation X0.

We let X ′
0 be the Poincaré dual polyhedral structure for X0. We let g

be the pullback of g0, X be the pullback of X0, and X ′ be the pullback

of X ′
0. Now X ′ is still Poincaré dual to X . Moreover, the maximum

and minimum volumes of faces in X ′ are the same as in X ′
0.
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Therefore, we see that the weight of any α ∈ C i(X,Z2) is at least

c(M0, g0, X0, X
′
0) VolD−i Pα. Next suppose that α ∈ Z i(X,Z2)\Bi(X,Z2).

Since Poincaré duality respects boundaries, it follows that Pα ∈ Zi(X
′,Z2)\

Bi(X
′,Z2). Therefore, the minimal weight of any α ∈ Z i(X,Z2) \

Bi(X,Z2) is at least c(M0, g0, X0, X
′
0)SysD−i(M, g).

This finishes the proof of Proposition 3. Proposition 3 is a bridge

connecting geometric properties of Riemannian manifolds and codes.

Using this bridge, we can build interesting codes from interesting towers

of Riemannian manifolds. In particular we will prove the following

result about congruence covers of hyperbolic 4-manifolds.

Theorem 6. There is a constant ǫ > 0, a closed hyperbolic 4-manifold

M0 and a sequence of finite sheeted covers Mj → M0 with Vol4Mj → ∞
obeying the following estimates.

1. The dimension of H2(Mj ,Z2) is ≥ (1/100)Vol4Mj.

2. Sys2(Mj) ≥ (Vol4Mj)
ǫ. In other words, every homologically non-

trivial mod 2 2-cycle in Mj has area ≥ (Vol4Mj)
ǫ.

(We use the hyperbolic metric on each Mj pulled back from M0.)

Using this theorem, we can quickly construct codes proving Theorem

1. We fix a triangulation X0 of M0. We let Xj be the pullback triangu-

lation ofMj . Then we consider the quantum code (B2(Xj,Z2), B
2(Xj ,Z2)).

In this code, the spaces B2, B
2 are subspaces of C2(Xj ,Z2). This is

a vector space whose dimension n is equal to the number of 2-faces in

Xj. We let Dj be the degree of the cover Mj → M0. The number of

2-faces in Xj is Dj times the number of 2-faces in X0. Up to a factor

C(M0, X0), n is equal to Dj . Also, up to a constant factor, Dj is equal

to VolMj . So n ≤ c1VolMj .

The dimension of the code is k = DimH2(Xj ,Z2) = DimH2(Mj ,Z2) ≥
1/100VolMj . Therefore, k ≥ c2n. In other words, these codes have a

linear rate.

Finally, Proposition 3 implies that the distance of the code is at least

c3Sys2(Mj) ≥ c4n
ǫ.

We will prove Theorem 6 in the next sections using hyperbolic ge-

ometry.

3. Euler characteristic of Hyperbolic manifolds

The Euler characteristic of a hyperbolic manifold can be computed

by the Gauss-Bonnet-Chern theorem.
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Theorem 7. (Allendoerfer-Weil, Chern [C]) If M2n is a closed ori-

ented manifold with Riemannian metric g, then the Euler characteris-

tic of M is given by cn
∫

M
Pf(Kg)dvolg, where cn > 0 is a dimensional

constant, and Pf(Kg) is the Pfaffian of the curvature of g.

For a hyperbolic 2n-manifold, Pf(Khyp) is a constant, and we see

that the Euler characteristic of (M2n, hyp) is c′nV ol2n(M,hyp), for some

constant c′n. We will evaluate this constant, and we will see that it is

never zero, and that the sign of c′n is (−1)n.

Corollary 8. If M2n is a closed oriented hyperbolic manifold, then the

Euler characteristic of M is (−1)n · 2VolM/VolS2n.

Proof. For the unit sphere, the Gauss-Bonnet-Chern theorem gives

2 = cnPf(KS2n) VolS2n. Therefore, cnPf(KS2n) = 2/VolS2n. The

curvature of hyperbolic space is negative the curvature of the unit

sphere: KH2n = −KS2n . From the formula for the Pfaffian in [C],

it follows that Pf(KH2n) = (−1)nPf(KS2n). For (M2n, hyp), the

Gauss-Bonnet-Chern theorem implies that the Euler characteristic is

cnPf(KH2n) Vol(M,hyp) = (−1)n2(VolS2n)−1Vol(M,hyp). �

As a corollary, we see that for a hyperbolic 4-manifold M , the di-

mension of H2(M,Z2) grows linearly with the volume of M .

Corollary 9. Suppose that M is a connected closed hyperbolic 4-

manifold with volume V . Then DimH2(M,Z2) is at least (2/VolS
4)V−

2.

Proof. By the Corollary above, the Euler characteristic ofM is (2/V olS4)V .

The Euler characteristic of M is equal to
∑4

d=0(−1)dDimHd(M,Z2).

Since M is connected, H0(Mi) and H4(Mi) have dimension 1. Since the

odd dimensions contribute negatively, we get DimH2(Mi) ≥ (2/V olS4)V−
2.

�

For all V sufficiently large, we see that DimH2(M,Z2) ≥ (1/100)V .

This proves the lower bound on the dimension of H2 in Theorem 6.

4. Congruence covers of hyperbolic manifolds

Recall that the group of orientation-preserving isometries of hyper-

bolic space HD is the connected component of the identity of SO(D, 1),

which we denote SOo(D, 1). We will make closed hyperbolic manifolds

by quotienting HD by discrete subgroups of SOo(D, 1). The discrete
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subgroups we use will be arithmetic lattices. We define arithmetic

lattices below, but let us begin with a couple of examples.

The simplest example is SO(D, 1,Z) ⊂ SO(D, 1,R). Here we define

SO(D, 1,R) ⊂ GL(D + 1,R) as the group of matrices that preserve

the quadratic form −x2
0 + x2

1 + ... + x2
D on RD+1, and SO(D, 1,Z) as

the subgroup of matrices that have integer entries. It turns out that

the quotient SO(D, 1,Z)\HD has finite volume but is not compact (cf.

Chapter 6 of [Mo]). Since we will use closed hyperbolic manifolds, we

need a trickier example.

Let f be the quadratic form −
√
2x2

0 +
∑D

i=1 x
2
i . Let SOf ⊂ GL(D+

1,R) be the subgroup of matrices that preserve f and have determinant

1. The form f has signature (D, 1) and so SOf is conjugate to SO(D, 1)

in GL(D + 1,R). We fix an isomorphism SOf → SO(D, 1) and so

we think of the component of the identity, SOo(f), as the group of

orientation-preserving isometries of HD.

Now we let SOf(Z[
√
2]) ⊂ SOf be the subgroup of matrices with

entries in Z[
√
2]. The group SOf(Z[

√
2]) is a discrete cocompact sub-

group of SOf . It is not obvious that SOf(Z[
√
2]) is either discrete or

cocompact. There is a short elegant proof that it is discrete, which we

include. For a proof that it is cocompact, see Chapter 6 of [Mo].

The ring Z[
√
2] ⊂ R is not discrete. There are two group homomor-

phisms from Z[
√
2] to R. One sends

√
2 to

√
2, the other sends

√
2 to

−
√
2. Let φ1, φ2 be the two homomorphisms, where φ1(

√
2) =

√
2 and

φ2(
√
2) = −

√
2. Now the image (φ1, φ2)Z[

√
2] ⊂ R2 is discrete.

If we apply the map φ2 to each coefficient of a matrixm ∈ SOf(Z[
√
2]),

we do not get an element of SOf . Instead we get an element of SOf̃

where f̃ is the quadratic form +
√
2x2

0+
∑D

i=1 x
2
i . So φ2 induces a group

homomorphism φ2 : SOf(Z[
√
2]) → SOf̃ . Combining φ1 and φ2, we get

an injective homomorphism SOf(Z[
√
2]) → SOf × SOf̃ . The image of

this homomorphism is discrete. Moreover, f̃ has signature (D + 1, 0),

and so SOf̃ is conjugate to SO(D + 1) and is compact. Therefore,

SOf(Z[
√
2]) is a discrete subgroup of SOf .

We let Γ1 = SOf(Z[
√
2]) ⊂ SOf , and we think of SO(f) acting on

hyperbolic space. Next we define subgroups ΓN ⊂ Γ1 as follows. A

matrix in SOf(Z[
√
2]) can be written (uniquely) in the form A+B

√
2,

where A,B are matrices with integer coefficients. Such a matrix lies

in ΓN if and only if A = Id modulo N and B = 0 modulo N . The

subgroups ΓN are called principal congruence subgroups of Γ1. The
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groups ΓN is a normal subgroup of Γ1, because it is the kernel of the

reduction mod N map from SOf(Z[
√
2]) to SOf((Z/NZ)[

√
2]).

For all sufficiently large N , ΓN acts without fixed points on HD,

which we will prove below. Therefore, we can define the hyperbolic

manifolds MN = ΓN\HD for all sufficiently large N . Taking D = 4,

these hyperbolic manifolds are the examples in Theorem 6.

The index of ΓN in Γ1 is equal to the cardinality of the image of

SOf(Z[
√
2]) in SOf((Z/NZ)[

√
2]). This cardinality is at most the car-

dinality of the set of (D + 1) × (D + 1) matrices with coefficients in

the ring (Z/NZ)[
√
2], and so it is at most N2(D+1)2 . A more accurate

estimate is N2DimSOf , but we do not need it.

4.1. Injectivity radius estimates. Let M be a closed hyperbolic D-

manifold. The injectivity radius of M is at least R if and only if, for

every point p ∈ M , the metric ball around p with radius R is isometric

to the hyperbolic D-ball of radius R. Next we need a lower bound

for the injectivity radius of our hyperbolic manifolds MN = ΓN\HD.

Similar estimates have appeared before in some particular cases in [BS]

and [KSV], and more generally in Section 3.C.6 of [Gr]). Let us prove

it now directly for our concrete examples. Later we give a very general

estimate.

Proposition 10. Let D, Γ1,ΓN be as above. Then there are constants

c1, c2 > 0 so that the injectivity radius of MN is at least c1 logN − c2.

Since the volume of MN grows like the index of ΓN in Γ1, which

grows polynomially in N we get the following corollary.

Corollary 11. Let D, Γ1,ΓN be as above. The there is a constant

c > 0 so that the injectivity radius of MN is at least c log VolMN for

all N sufficiently large.

Proof. Let π : HD → MN = ΓN\HD be the quotient map. Let R be

the injectivity radius of MN . Since the injectivity radius of MN is less

than 2R, there is some p ∈ M so that the ball of radius 2R around p

is not isometric to a ball of radius 2R in HD. Let p′ be a preimage of p

in HD. Let BHD(p′, 2R) denote the ball around p′ of radius 2R in HD.

The map π : BHD(p′, 2R) → BM(p, 2R) must not be an isometry. The

only way it can fail to be an isometry is that two points of BHD(p′, 2R)

lie in the same ΓN orbit. The distance between these two points must

be < 4R. Therefore, there exists a non-identity element n ∈ ΓN and a

point x ∈ HD so that d(x, nx) < 4R. (Here d denotes the distance in

HD.)
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Let F be a fundamental domain for Γ1. Using the symmetries of the

situation, we will show that we can arrange for the point x above to

lie in F . There exists some γ ∈ Γ1 so that γx ∈ F . Since γ acts by

isometries, we have

d(x, nx) = d(γx, γ(nx)) = d
(

γx, (γnγ−1)(γx)
)

.

Now we define x′ = γx ∈ F and n′ = γnγ−1 ∈ ΓN , and we see that

d(x′, n′x′) < 4R. (Here we used that ΓN is normal.)

Next we use the fact that Γ1 is cocompact. This implies that the fun-

damental domain has finite diameter Diam(F ). We fix a point x0 ∈ F ,

and we are guaranteed that d(x0, x
′) ≤ Diam(F ). Since n′ acts isomet-

rically, d(n′x0, n
′x′) ≤ Diam(F ) as well. By the triangle inequality we

get a bound on d(x0, n
′x0):

d(x0, n
′x0) ≤ 4R + 2Diam(F ). (1)

Everything we said so far makes sense for any fundamental domain.

It is convenient to choose a particular fundamental domain. We fix a

point x0, and we consider the Dirichlet fundamental domain defined by

F := {x ∈ HD|d(x, x0) ≤ d(γx, x0) for all 1 6= γ ∈ Γ1}.
Clearly x0 ∈ F . Since Γ1 is cocompact, F is compact. The boundary

of F is defined to be the set of points x ∈ F so that d(x, x0) = d(γx, x0)

for some 1 6= γ ∈ Γ1. We consider the translates γF for γ ∈ Γ1. Two

such translates can intersect only at points in the boundary. We say

that γ1F and γ2F are adjacent if they intersect.

We can now prove that Γ1 is finitely generated and describe a set

of generators. We let S ⊂ Γ1 be the set of γ ∈ Γ1 so that γF ∩ F

is non-empty. Since Γ1 acts properly discontinuously, there are only

finitely many points of Γ1x0 in any ball in HD. Since F is compact,

we see that any compact set intersects only finitely many cells γF . In

particular, it follows that S is finite. Also, γF ∩F = γ(F ∩γ−1F ), and

so γ ∈ S if and only if γ−1 ∈ S. Let s1, s2, ..., sT be the elements of S.

The set S generates Γ1. Indeed, let γ ∈ Γ1. Consider a path from

x0 to γx0. This path is compact, so it intersects only finitely many

cells γF . Using the path, we can choose a finite sequence of cells

F, γ1F, γ2F, ..., where consecutive cells are adjacent and the last cell is

γF . By the definition of S, γ is a finite product si1 ◦ ... ◦ siw , with

sij ∈ S.
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Recall that for each γ ∈ Γ1, the word length wS(γ) is the shortest

length of a product si1 ◦ ... ◦ siw which is equal to γ, with the si ∈ S.

We showed above that wS(γ) < ∞ for any γ ∈ Γ1. By making the

argument more quantitative, we can give an upper bound for wS(γ) in

terms of d(x0, γx0).

Lemma 12. Let Γ1, S be as above. For any γ ∈ Γ1, wS(γ) ≤
c1(d(x0, γx0) + 1).

Proof. Since Γ1 acts properly discontinuously, any unit ball contains a

finite number of points of Γ1x0. Since F is compact, any unit ball inter-

sects a finite number of cells γF , γ ∈ Γ1. Now since Γ1 is cocompact,

this upper bound is uniform over all unit balls. So we may assume that

each unit ball in HD intersects at most c1 cells γF .

Now take a path from x0 to γx0 of length d(x0, γx0). Divide this

path into d(x0, γx0) + 1 segments of length at most 1. Each of these

segments intersects at most c1 cells γF . So we can make a sequence of

adjacent cells from F to γF using at most c1(d(x0, γx0) + 1) cells. By

the definition of S, we see that wS(γ) ≤ c1(d(x0, γx0) + 1). �

This lemma is all that we will use in the proof of the injectivity

radius estimate, but for context it is useful to be aware of the following

more general result.

Lemma 13. (See Theorem 3.6 in [Bo]) Suppose that Γ0 is a finitely

generated group that acts isometrically, properly discontinuously, and

cocompactly on a Riemannian manifold X. Let S be a (symmetric)

generating set for Γ0. Let x0 ∈ X. Then there are constants 0 < c < C

so that

cdX(x0, gx0) ≤ wS(g) ≤ CdX(x0, gx0) + C.

Applying Lemma 12 to equation (1), we see that

wS(n
′) ≤ C1R + C2.

Rearranging the formula, we get a lower bound

R ≥ c1wS(n
′)− C3. (2)

Next we prove a lower bound on the word length wS(n
′).

Lemma 14. Let D, Γ1,ΓN , and S be as above. Then there is a constant

c > 0 so that any non-identity element n′ ∈ ΓN has wS(n
′) ≥ c logN .
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Proof. Let n′ be a non-identity element of ΓN . Write n′ = A′ + B′
√
2

where A′, B′ are matrices with integer coefficients. Since n′ is not just

the identity, one of the entries of A′ or B′ must have norm at least

N − 1.

Let M1 = A1+B1

√
2 and M2 = A2+B2

√
2 be matrices, where A,B

have integer coefficients. Write the product as M = A + B
√
2. We

write |M1| for the maximum of the entries in A1 or B1, and |M2| and
|M | similarly. Then a direct computation gives |M | ≤ C|M1||M2|.

Now let s1, s2, ...sT be the matrices in S. Write si = Ai + Bi

√
2

where Ai, Bi are integer matrices. Consider a product of w elements of

S: g = si1 ◦ ... ◦ siw . Using the product estimate in the last paragraph

repeatedly, we get |g| ≤ Cw−1(maxsi∈S |si|)w ≤ Cw
2 . Applying this

argument to n′, we see that N−1 ≤ C
wS(n

′)
2 . Taking logarithms finishes

the proof. �

Plugging into equation (2), we get R ≥ c1 logN − C2. This finishes

the proof of the Proposition. �

Remark 15. The proof of Proposition 10 also shows that ΓN acts

without fixed points for allN large enough. During the proof we showed

that for any x ∈ HD and any γ ∈ ΓN , the distance from x to γ(x) is at

least c1 logN − c2. If N is sufficiently large, this distance is positive,

and so ΓN has no fixed points.

For what is needed for our construction of quantum codes, the above

example SOf(Z[
√
2]) and Proposition 10 suffices. But let us take the

opportunity to put on record a general result of this kind which is valid

for all simple Lie groups.

Recall that if G is a simple Lie group and Γ is a discrete subgroup,

then Γ is an arithmetic subgroup if there exists a number field k, a

k-algebraic group H , and an epimorphism φ : H(k ⊗Q R) → G with

compact kernel such that φ(H(O)) is commensurable to Γ where H(O)

is the O-points of H with respect to some fixed embedding of H into

GL(m). (H(O) depends on this embedding only up to commensura-

bility.) If I is a non-zero ideal of O, then H(O)I is the kernel of the

homomorphism from H(O) to H(O/I). Then Γ(I) is defined to be

φ(H(O)I) ∩ Γ. A subgroup of Γ is called a congruence subgroup if

it contains Γ(I) for some (non-zero) ideal I ⊂ O. The collection of

congruence subgroups of Γ does not depend on the embedding of H in

GL(m). We can now state:



QUANTUM CODES 15

Proposition 16. Let G be a simple Lie group with maximal compact

subgroup K, and let X be the symmetric space G/K. Let Γ be an

arithmetic subgroup of G. Then there exists a constant c1 > 0 so that

for every normal congruence subgroup N ⊂ Γ, the injectivity radius of

N\X is at least c1 log Vol(N\X)− c2.

For principal congruence subgroups, the proof is essentially the same

as the proof of Proposition 10. For arbitrary normal congruence sub-

groups, one should use the argument given in [LL], page 459, which

shows that every normal congruence subgroup is “very close” to being

a principal congruence subgroup. It is worth noting that in Proposi-

tion 16, we need the group N to be both normal and a congruence

subgroup.

Suppose that N is normal but not congruence. For every D, there

exists an arithmetic lattice in SO(D, 1) which is mapped onto Z (cf.

[Mi] or [L2]). Taking finite cyclic covers induced by the maps Z →
Z/NZ will give normal covers with a bounded injectivity radius.

Now we consider examples that are congruence subgroups but not

normal. Fix γ ∈ Γ, an element of infinite order. We consider a

sequence of smaller and smaller ideals I ⊂ O. For each I, we let

πI : H(O) → H(O/I). Then we let ΛI be π−1
I (〈πI(γ)〉). In words,

ΛI is the preimage of the subgroup generated by πI(γ). Clearly ΛI

contains γ for all I. Therefore, ΛI\X contains a non-contractible loop

of length independent of I. But the ΛI are all congruence subgroups

of Γ, and the index of ΛI in Γ goes to infinity like a power of [O : I].

4.2. Anderson’s systolic bound. Finally, we need an important re-

sult from hyperbolic geometry that connects the systoles of a hyperbolic

manifold and its injectivity radius.

Theorem 17. (Anderson, [A]) Let (MD, hyp) be a closed manifold

with a hyperbolic metric. Let Z i ⊂ M be a homologically non-trivial i-

cycle with coefficients in Z2. Let R be the injectivity radius of (M,hyp).

Then the volume of Z is at least the volume of a ball of radius R in the

i-dimensional hyperbolic space. In particular, if i ≥ 2 and R ≥ 1, then

V oli(Z) ≥ c(i)e(i−1)R.

Remark 18. This theorem holds for any dimension i in the range

1 ≤ i ≤ D − 1. But the main interest is in the range 2 ≤ i ≤ D − 1.

If i = 1, then a 1-dimensional hyperbolic ball of radius R is just an

interval [−R,R], and it has 1-dimensional volume 2R. But for each
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i ≥ 2, the i-volume of an i-dimensional hyperbolic ball of radius R

grows exponentially in R, roughly like e(i−1)R.

Remark 19. Anderson’s original results are stated for integral cycles,

but essentially the same proof works also with coefficients in Z2 - see

Section 5 where we discuss some of the main ideas of the proof.

Now we have all the tools to prove Theorem 6.

Proof. Let M1 and MN be as above. By Proposition 10 the injectivity

radius of MN is RN ≥ c logVolMN . By Anderson’s theorem, every

homologically non-trivial mod 2 2-cycle in MN has area ≥ ceRN ≥
cVolM ǫ

N .

On the other hand, using the Gauss-Bonnet-Chern theorem, we al-

ready proved that DimH2(MN) ≥ (2/V olS4) VolMN − 2. By taking

N sufficiently large, we get DimH2(MN) ≥ (1/100)VolMN as desired.

�

Remark 20. The proof shows that the distance of our code is at least

nǫ′′ for some ǫ′′ > 0. On the other hand, the distance is at most

O(n0.3). This is because our lattice ΓN contains an arithmetic lattice

ΛN of SO(2, 1). (In fact, every arithmetic lattice in SO(4, 1) contains

an arithmetic lattice of SO(2, 1) - see [L1].) Hence every MN = ΓN\H4

contains the surface ΛN\H2. While the volume of ΓN\H4 grows like

N20, the area of ΛN\H2 grows like N6. See Proposition 3.2 in [B] for

more details of a similar argument.

5. On Anderson’s Theorem

The proof uses minimal surface theory. A complete proof (including

all the underlying results from minimal surface theory) is somewhat

long, but we can explain the basic ideas behind the proof. We will

explain first the original proof with Z coefficients, and at the end we

discuss what to do in the Z2 case.

The first main idea is to replace Z with a surface of minimal area Zmin

in its homology class. A serious result from minimal surface theory is

that there is a kind of generalized surface - a stationary integral current

- in the homology class of Z with minimal volume. An integral current

is a generalization of an integral chain which can be somewhat more

singular. It suffices to prove a lower bound for V olkZmin. Since Z is

homologically non-trivial, Zmin is not empty. Minimal surfaces have

special geometric properties that can be used to estimate the volume

of Zmin.
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The proof is based on the hyperbolic generalization of the mono-

tonicity theorem for minimal surfaces. For context we first recall the

standard monotonicity theorem for minimal surfaces in Rn.

Theorem 21. (Monotonicity) Let X be an integral k-chain in Rn.

Suppose that X has the smallest volume of any chain with boundary

∂X. Suppose that ∂X lies in ∂Bn(R). Then the ratio

Volk(X ∩ Bn(r))

Volk Bk(r)

is non-decreasing for 0 < r ≤ R.

In this formula, Bk(r) is the Euclidean k-ball of radius r. If X

contains 0, and if X is a smooth manifold in a small neighborhood of

0, then the volume ratio goes to 1 as r → 0. Then the monotonicity

theorem guarantees that the volume ratio is ≥ 1 for all r. So we see

that if 0 is a smooth point of X , then Volk X is at least the volume of

the Euclidean k-ball of radius R.

We will explain the idea of the proof of the monotonicity theorem

below. Now we give the hyperbolic analogue.

Theorem 22. (Anderson [A]) Let X be an integral k-chain in the

hyperbolic space Hn. Suppose that X has the smallest volume of any

chain with boundary ∂X. Let Bn
hyp(R) ⊂ Hn denote the hyperbolic ball

of radius R. Suppose that ∂X lies in ∂Bn(R). Then the ratio

V olk(X ∩ Bn
hyp(r))

V olkBk
hyp(r)

is non-decreasing for 0 < r ≤ R.

In particular, if X contains the center of the ball Bn
hyp(R) and X is

a smooth manifold near that point, then V olkX is at least the volume

of a k-dimensional hyperbolic ball of radius R.

Anderson’s theorem is deduced quickly from Theorem 22. The sta-

tionary integral current Zmin as before can have singularities, but a

fundamental result of geometric measure theory says that almost every

point is regular, i.e. it has a neighborhood where Zmin is a smooth sub-

manifold. We pick one such point x. We consider the intersection of

Zmin with the ball around x of radius R equal to the injectivity radius

of (M,hyp). This ball is isometric to the ball of radius R in Hn. By

the monotonicity theorem, the volume of Zmin in this ball is at least

the volume of a k-dimensional hyperbolic ball of radius R.
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Let us now give the main idea of the proof of Theorems 21 and 22.

The monotonicity theorem is based on the formula for the volume

of a cone. Let Y k−1 be a surface in ∂Bn(r) ⊂ Rn. We let CY denote

the cone over Y with vertex at the origin. This is the union of all the

line segments with one endpoint at the origin (the center of Bn(r)) and

the other endpoint on Y . The formula for the volume of a cone is as

follows:

Volk CY = (r/k) Volk−1(Y ).

Here is one way of thinking about this formula. Because of the

symmetry of the sphere and the ball, we must have a formula of the type

Volk CY = Const(r, k) Volk−1 Y . Then we can evaluate Const(r, k) by

looking at the simplest example: when CY is a k-dimensional ball of

radius r and Y is a (k-1)-dimensional sphere of radius r. Let V Bk(r)

be the volume of a k-dimensional ball of radius r and V Sk−1(r) be the

volume of a (k-1)-sphere of radius r. We get

V olkCY =
V Bk(r)

V Sk−1(r)
V olk−1Y. (1)

The ratio V Bk(r)/V Sk−1(r) is equal to r/k because the volume of a k-

dimenional cone is (1/k) times the volume of the base times the height.

But in fact Equation (1) is more useful than the formulation with r/k.

We return to the monotonicity formula. We let X ⊂ Bn(R) be our

minimal chain. We let Xr := X ∩ Bn(r) and we let Yr = ∂Xr. Since

X is minimal, Xr must also be minimal, and so

V olkXr ≤ V olkCYr =
V Bk(r)

V Sk−1(r)
V olk−1Yr. (2)

The coarea inequality says that d
dr
V olkXr ≥ V olk−1Yr (for almost

every r). We let V (r) := V olkXr, and the last equation becomes the

following differential inequality.

V ′(r) ≥ V Sk−1(r)

V Bk(r)
V (r). (3)

Since d
dr
V Bk(r) = V Sk−1(r), Equation (3) implies:

d

dr

(

V (r)

V Bk(r)

)

≥ 0. (4)

Indeed, by expanding the left hand side of (4) and plugging in (3), (4)

is proven. Equation (4) is the monotonicity formula of Theorem 21.
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The story above generalizes in a straightforward way to hyperbolic

space. If Y is a (k-1)-dimensional surface in the boundary of the

hyperbolic ball of radius r, then by symmetry we get V olkCY =

const(r, k)V olk−1Y for all Y . We can evaluate const(r, k) by looking

at the example when CY is a hyperbolic k-dimensional ball of radius

r. We let V HBk(r) denote the volume of a hyperbolic k-dimensional

ball of radius r, and we let V HSk−1(r) denote the (k-1)-volume of the

boundary of the ball. We get

V olkCY =
V HBk(r)

V HSk−1(r)
V olk−1Y. (1H)

We let X be our minimal chain in Bn
hyp(R), with ∂X ⊂ ∂Bn

hyp(R).

We let Xr := X ∩ Bn
hyp(r), and we let Yr = ∂Xr. By minimality, we

get:

V olkXr ≤ V olkCYr =
V HBk(r)

V HSk−1(r)
V olk−1Yr. (2H)

As before, d
dr
V olkXr ≥ V olk−1Yr. We let V (r) := V olkXr. The last

equation becomes the following differential inequality:

V ′(r) ≥ V HSk−1(r)

V HBk(r)
V (r). (3H)

Since d
dr
V HBk(r) = V HSk−1(r), Equation (3H) implies the hyper-

bolic monotonicity formula from Theorem 22:

d

dr

(

V (r)

V HBk(r)

)

≥ 0. (4H)

This concludes our description of some of the geometric ideas in the

proof of Anderson’s inequalities. What is missing is to prove that Zmin

exists, and that Zmin is smooth at almost every point, and that Zmin is

a sufficiently nice geometric object so that the reasoning above applies

to it. This is a standard topic in geometric measure theory, and it

takes a substantial amount of work. One can prove that Zmin exists for

cycles with coefficients in either Z or Z2, but the arguments are slightly

different. Working over Z2 one can use mod 2 flat cycles instead of

integral currents. After proving the existence and some regularity of

Zmin, the argument above will give the version of Anderson’s theorem

needed in the current paper.
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