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Abstract

Let I be an S-arithmetic group in a semisimple group. We show
that if I' has the congruence subgroup property then the number of
isomorphism classes of irreducible complex n-dimensional characters
of T' is polynomially bounded. In characteristic zero, the converse
is also true. We conjecture that the converse also holds in positive
characteristic, and we prove some partial results in this direction.

1 Introduction

Let ® be a group. We denote by r,(®) (respectively 7,(®)) the number
of isomorphism classes of irreducible n-dimensional complex representations
(respectively with finite image) of ®. We call r,,(®) the representation growth
function of ®. In general r,(®) may be infinite. There is no known charac-
terisation of the groups ® such that r,(®) < oo for every n; such groups are
called rigid in [BLMMO02]. For finitely generated ®, 7,,(®) < oo for every n
if and only if ® has the property FAb (that is, ®&> := ®y/[®y, Do) is finite
for every finite index subgroup ®, of ®) [BLMMO02, Proposition 2].

Definition 1.1 We say that ® has polynomial representation growth (PRG)
if the function r,(®) is polynomially bounded: that is, if there exist ¢;,co € R
such that r,(®) < ¢;n® for every n. (In particular, this implies that every
rn(®P) is finite.)



Let k£ be a global field and O its ring of integers. Write V' for the set of
(equivalence classes of) valuations of k, V for the set of finite (that is, nonar-
chimedean) valuations, and V, for the set of infinite (that is, archimedean)
valuations. Fix a finite subset S of V' containing V. Let Og := {z €
k|v(z) > 0 Vv € V-S} be the ring of S-integers. Given v € V, we write £,
for the completion of k& with respect to v and O, for the valuation ring of k,.

Let G be a semisimple simply connected and connected algebraic group
defined over k, with a fixed embedding G—GLy. Let I' = G(Ogs) := G(k) N
GLy(Og). We assume that T := {v € V|G(k,) is compact} is disjoint
from S—V,, and that G(Os) is infinite (equivalently, that ], o G (k) is
noncompact).

We say that I' has the congruence subgroup property (CSP for short) if

C := ker (@) e (@5)> is finite; here @) is the profinite completion
of G(Os) and G(Oy) = [,zs G(O,) is the congruence completion of G(Os),
where G(O,) := G(k,) N GLx(0O,). The map 7 is surjective — that is, T’
is dense in G(Og) — by the Strong Approximation Theorem (cf. [PR94,
Theorem 7.12] and [Pra77]).

The main goal of this paper is to prove the following theorem.

Theorem 1.2 Let I' = G(Ogs) be as above, and assume that if chark = 2
then G contains no factors of type A1 or of type C,, for any m. IfT" has the
congruence subgroup property then I' has polynomial representation growth.

We conjecture that the converse holds in general, but we can prove this
completely (and indeed, in a slightly stronger form) only when chark = 0
(Theorem 1.3). As in [Lub95] and [PR93], we assume for Theorem 1.3 that
the Platonov-Margulis Conjecture holds: that is, that G(k) has the standard
description of normal subgroups. This is known to hold in almost all cases
(see [PR94, Chapter 9], [Seg99]).

Theorem 1.3 Assume that chark = 0. IfT' = G(Og) is as above and 7,(T")
s polynomially bounded then I' has the congruence subgroup property.

A striking feature of the proof is that Theorem 1.2 (or rather, the closely
related result Proposition 5.1) is needed to prove Theorem 1.3.

The characterisation of the congruence subgroup property by means of
polynomial representation growth joins several previous characterisations of
the CSP by purely group-theoretic properties: for example, that the profinite
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completion I' is boundedly generated or that log s, (I') < o((logn)?) [Lub95],
[PR93], where s,(I") denotes the number of index n subgroups of I'. Unfor-
tunately, all of these characterisations so far are true only in characteristic
zero and are false in positive characteristic. We believe that the current char-
acterisation is valid in positive characteristic as well, but we were not able
to prove this. (The proof of Theorem 1.3 does, however, go a long way in
characteristic p.)

The paper is organised as follows. In Section 2 we deal with some pre-
liminary results. In Section 3 we study representations with infinite image.
In Section 4 we study representations with finite image; we finish the section
with the proof of Theorem 1.2. In Section 5 we prove some consequences of
the results in Section 4; these concern estimates for the image size (rather
than the number) of n-dimensional representations. Not only do these results
have independent interest, but also most of them are needed in Section 6,
where Theorem 1.3 is proved.

We are grateful to Nikolay Nikolov and Andrei Jaikin-Zapirain for helpful
and informative discussions.

This research was supported by the Israel Science Foundation and the
United States Israel Binational Science Foundation. The second author was
supported by a Golda Meir Post-Doctoral Fellowship at the Hebrew Univer-
sity of Jerusalem.

2 Preliminaries

All logarithms are to base 2 unless otherwise indicated. We write [z] for the
largest integer no greater than x.

Given a group ®, we write Rep,, (®) (respectively Irr,(®)) for the set of
isomorphism classes of n-dimensional complex representations (respectively
irreducible representations) of ®. All representations are complex unless
otherwise indicated. We say that a representation is finite if its image is
finite, and infinite otherwise.

When we consider subgroups of a profinite group H, we will always mean
closed subgroups. We will consider only continuous representations of H; this
implies that the kernel of a representation is open and the image is finite,
and so r,(H) = 7,(H). It also implies that if ® is a discrete group then
Pn(®) = 1, (®) = 7,(®), where ® is the profinite completion of ®.

Definition 2.1 We define R, (®) =>"" _, 7, (®).
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Note that 7,(®) is polynomially bounded if and only if R,(®) is. On the
other hand, even if r,(®) = |Irr,(®P)| is polynomially bounded, in general
|Rep,,(®)] is not.

The following result relates the representation growth of a group to that
of a finite index subgroup.

Lemma 2.2 Let ' be a finite index subgroup of ®. Then for alln € N, we

have
Rn (@) < [®: ®'|Ryje:0 (D)
and
R, (®) < [®: | R, (d).
Proof For each m € {1,...,n} and each 7 € Irr,,(®'), choose an irreducible

component t(7) of the induced representation Indg,7. This gives a map )
from (J _, Irr,,,(®') to Ufn[i:fq Irr,, (®). Let 7 € Irr,,(®') and let {7y |\ €
A} be the elements of 1~1((7)). Without loss of generality we assume
that dim7 is minimal among the dim7,. By Frobenius reciprocity, each
7y is an irreducible component of 1(7)|e/; hence, dim¢(7) > |A|dim7. But
dim ¢ (7) < [®: ®'|dim 7, which implies that |A| < [®: ®']. The first inequality
follows.

The proof of the second inequality is similar, and we leave it to the reader.

Corollary 2.3 If ®' is a finite index subgroup of ® then ® has PRG if and
only if " has PRG.

Definition 2.4 We define A,(®) = max{[®": [?', ?’]] | ' < &, [D: ?'] < n}.
We will often use the following important fact.

Lemma 2.5 FEvery irreducible representation o of a pronilpotent group H
1s induced from a one-dimensional representation of some subgroup of index
dimo.

Proof Since o is continuous by assumption, it factors through some finite
nilpotent quotient P of H. Finite nilpotent groups are monomial [CR81,
Theorem 11.3], so we have 0 = Indgx for some @ < P with [P: Q] = dimo
and some one-dimensional representation y of ). Setting M equal to the
preimage of () in H and regarding x as a representation of M, it is easily
checked that o = Indjx.



This fact allows us to compare the growth rates of A,(®) and R, (®).

Lemma 2.6 Let H be a profinite group.

(a) An(H) < nR,(H). In particular, if A,,(H) is not polynomially bounded
then H does not have PRG.

(b) If H is pronilpotent then r,(H) < A, (H)s,(H).

(c¢) If H is compact p-adic analytic then H has PRG if and only if A,(H) is
polynomially bounded.

Proof If m < n and M is an index m subgroup of H with abelianisation
of size A, (H) then M admits A, (H) one-dimensional representations, so (a)
follows from the first inequality of Lemma 2.2. If H is pronilpotent then every
irreducible n-dimensional representation is induced from a one-dimensional
representation (Lemma 2.5), so r,(H) is bounded by the number of pairs
(M, x), where M < H, [H: M] = n and Y is a one-dimensional representation
of H. Part (b) now follows immediately.

Now suppose that H is compact p-adic analytic. If H' is an open subgroup
of H then H has PRG if and only if H' does (Corollary 2.3), and it is
easy to see that A,(H) is polynomially bounded if and only if A,(H’) is.
Therefore we can assume that H is a p-adic analytic pro-p group. As s,(H)
is polynomially bounded [DASMS99, Theorem 3.19], (c¢) follows from (a) and

(b).
In fact, for compact p-adic analytic groups we can say something stronger.

Proposition 2.7 Let H be a p-adic analytic group, and let
K,(H) = ﬂ{kerp | p: H — GL,(C) is a representation}.

Suppose that the Lie algebra of H is perfect (we recall the definition of the
Lie algebra below). Then [H: K, (H)] is polynomially bounded.

Proof We need to recall some material on uniform pro-p groups and formal
group laws; see [DASMS99, Chapter 8 and Chapter 13] for details. Clearly
there is no harm in passing to an open subgroup of H. We assume, therefore,
that H is an appropriate open subgroup of a uniform pro-p group, admitting
an analytic isomorphism v: (pZ,)¢ — H, where d = dim H, such that the
group law with respect to these co-ordinates is given by x.y = F(x,y), where
F(x,y) is a d-tuple of power series each with coefficients in Z,. We have

F(x,y) =x+y+ B(x,y) + 0'(3),
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where B(x,y) is a bilinear form on (pZ,)¢ and O'(3) denotes a power series
such that each term has total degree at least three and degree at least one
in each of the variables. The commutator of a pair of elements in H is given
by

(x,y]=B(x,y) - B(y,x) + O'(3).

The map (x,y) — B(x,y) — B(x,y) gives (pZ,)? the structure of a Lie
algebra over Zj,: call this Lie algebra £. The Lie algebra of H is then given
by £(Q,) := £ ®z, Q, (this is equivalent to the usual definition of the Lie
algebra of a compact p-adic analytic group; cf. [DdSMS99, Exercise 9.13]).

We have a filtration H = H; D Hy D --- of H by normal subgroups,
where H, = w(p"Zg). Then H,,, = HP" (see [DASMS99, Theorems 3.6
and 8.3.1]), where H?" denotes the closure of the subgroup generated by the
p"-powers in H. It follows that any index p" subgroup of H contains H,, ;.

Suppose that £(Q,) is perfect. Then there exists € N such that p"L C
[£,L]. Thus for any n € N, p>"*"L C [p"L,p"L]. We claim that Hy, , <
[H,,, H,]Hy, for every n € N. To see this, observe that any z € (p*"*7Z,)*
can be written as a sum of Lie commutators [xi,y1] + - + [Xs, ys] for some
s, where the x;,y; € (p"Zp)d. Using the formula for group commutators
above, we see that the product of group commutators [x,¥y1]- - - [Xs,¥s] is
equal to z + (terms in (p*"Z,)?), and the claim follows. The claim implies
that [H,, H,] D Hs, if n > r+ 2.

Let p be an irreducible representation of H of dimension at most p",
where n > r+2. Then p is induced from a one-dimensional representation of
a subgroup M of index at most p" (Lemma 2.5). Since M D H, 1, [M, M]
contains Hsy, 3, 50 ker p O Hspy3. The index of Hs,, g in H is p?3n+2) | which
gives the required bound.

Lemma 2.8 If &, P, are groups with PRG then &, x ®5 has PRG.

Proof It is well known that any irreducible n-dimensional representation p of
the product ®; X ®, is isomorphic to a representation of the form p = p; ® ps,
where p; is an irreducible n;-dimensional representation of ®; for 7 = 1,2, and
ning = n. If ®;, &y have PRG, with r,(®;) < ¢;nd, say, then

Tn((I)l X @2) S § TTL1( Tnz (1)2 E Clnl 0277’22 < C1C2 nd1+d2+1’

ninz=n nin2=n

as required.



Lemma 2.8 implies that in order to prove Theorem 1.2, it suffices to consider
simple groups G. Moreover, by changing the field we can further assume that
G is absolutely simple. We therefore assume throughout this paper that G
is absolutely simple. The same remark applies also to Theorem 1.3, as well
as to the other theorems we prove (Theorems 4.2 and 4.3).

3 Infinite Representations

Assume for now that & is a number field. Let I' = G(Og) be as in Theorem
1.2, and assume that [' has the congruence subgroup property. Let H =
Res(’é(G), where Resa denotes restriction of scalars. Then H is a connected
simply connected semisimple algebraic group defined over QQ, and we have an
embedding I'<H (Q)— H(C). A representation of a subgroup A of H(C) is
said to be algebraic if it can be extended to an algebraic representation of
H(C).

Lemma 3.1 There is a finite index subgroup A of I' such that every irre-
ducible finite-dimensional representation is isomorphic to a representation of
the form p = p1 ® po, where py 1s finite and py 1s algebraic.

Proof Let A = A(T') be the proalgebraic completion of I': that is, A(I) is
a complex proalgebraic group with an embedding i: ' A(T") characterised
by the fact that every finite-dimensional complex representation p of I' has a
unique extension to an algebraic representation p of A(T") such that poi = p
(cf. [LM85], [BLMMO02]). Let A° be the identity component of A, so that we
have a short exact sequence

15A 53 A5T 51,

Then A has a profinite subgroup P such that A°P = A [BLMMO02, Corollary
6]. As I satisfies the congruence subgroup property, it has superrigidity:
this means that every representation of I' can be extended on a finite index
subgroup to an algebraic representation of H(C) [Rag76, Theorem 7.2|. This
implies that A = H(C). In particular, A° is a finite-dimensional algebraic
group, hence its intersection Z with the profinite group P is finite. Let P;
be an open subgroup of P with P, N Z = 1, so that P; x A° has finite index
in A. Let C be the centraliser Cp, (A%). Since Aut A° = Aut H(C) is a
finite-dimensional algebraic group, C is open in P; and so D = C x A% is a



finite index open subgroup of A. It is therefore equal to A(A) for some finite
index subgroup A of T' (in fact, A = i~'(D Ni(T))). As A(A) =C x A% =
A x A%, every irreducible representation of A is a tensor product of a finite
representation and an algebraic representation, as claimed.

We postpone the treatment of the finite representations to the next sec-
tion. Here we show that the number of algebraic representations is polyno-
mially bounded.

Proposition 3.2 Let H be a semisimple linear algebraic group over C. Then
the number of isomorphism classes of irreducible n-dimensional algebraic rep-
resentations of H is polynomially bounded.

Proof Below we use standard results on the structure theory and represen-
tation theory of H; these may be found in [Hum72|. Fix a maximal torus 7’
of H, let A be the group of characters of 7" and let R C A be the set of roots
of H with respect to T. Let (—, —) be the canonical Weyl-group-invariant
bilinear form on A®zR. Choose a decomposition R = RTUR™ of R into sets
of positive and negative roots. We write AT = {A € A|(\,a) > 0Va € RT}.

We recall briefly the classification of finite-dimensional irreducible alge-
braic representations of H (that is, of irreducible rational H-modules). A
nonzero rational H-module M can be written as a direct sum of nonzero 7'-
modules M, for certain A € A; the A that appear are called the weights of M.
If M is irreducible then there is a unique weight A, which belongs to A™,
such that A,y is the maximum weight with respect to a natural ordering on
the set of weights. For any A € A there is an irreducible rational H-module
V(M) with highest weight A\, and every irreducible M is isomorphic to some
V().

By [Hum72, 24.3 Corollary], we have

[Locrr(A+0,0)
HaER+ (55 a) ’

where ¢ is half of the sum of the positive roots; moreover, the denominator
is independent of A, and each |(\ + §, )| is bounded below by (a, «)/2.

Since H is semisimple, the positive roots span A ®7 R, so we can define
anorm |- | on A ®zR by |A] = max,ecr+|(A, @)|. For |A| sufficiently large
we have max{|(A + 6,a)| |a € RT} > 1|A|. The number of weights in the
| - |-ball B(0,n) in A ®z R is polynomially bounded, so our result follows.

dimV(\) =
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We turn now to the case of positive characteristic. Recall that I' is always
a lattice (that is, a discrete subgroup of finite covolume) in H = [[,.s G (k)
[Mar91, Chapter 1, Section 3.2]. If rank(H) := }_ o rank;,G(k,) is one then
I" does not have the CSP [Lub91, Proposition B and Proposition D]. (Indeed,
in this case I' has a finite index subgroup with nonabelian free quotient, so
rn(I") = oo for infinitely many n.) On the other hand, if rank(H) > 2 then by
Margulis [Mar91, Chapter VIII, (3.8) Theorem]| (see also [Ven88, Theorem
4.10]), T has superrigidity and has no infinite complex representations.

Thus in all cases we are reduced to the study of 7, (I"), the growth function
of the finite representations. This will be the topic of the next section.

4 Finite Congruence Representations

Let k£, G, I, etc., be as in the Introduction; we assume now that G is ab-
solutely simple. For v € V}, let m, be the maximal ideal of O,. We write
F, = O,/m, for the residue field, ¢, = |F,|, p, = charF, and e, = log, g,-.
In general we denote the field with ¢ elements by F, (so that F, = F,,).
We write N3 for G(O,) Nker (GLy(0,) — GLn(O,/m2)), the nth princi-
pal congruence subgroup of G(O,). Define G(F,) to be the image of G(QO,)
in GLy (F,). Note that |G(F,)| < ¢V’.

Assumption 4.1 We will always make the following assumption: if char k =
2 then G is not of type A; or of type C,, for any m. This ensures that the
Lie algebra of G is perfect.

If T has the CSP then C := ker (@) 5 G(@S)> is finite. Replacing T’

by a finite index subgroup I'y such that C NT is trivial, we can assume that
C is trivial. By Corollary 2.3, the finite representations of I'g have the same
growth as the representations of the congruence completion G(Og). The
main goal of this section is to show that r,,(G(Og)) grows polynomially. We
do not need to assume that I' has the CSP to prove this: instead we prove
that for any arithmetic group, the number of congruence representations is
polynomially bounded (where a congruence representation is a representation
the kernel of which is a congruence subgroup), since these are precisely the
representations that extend to representations of G(Os).

Theorem 4.2 Let k, O, S and G be as above. Then 1,(G(Os)) is polyno-
mially bounded.



We recall some (propertles of the graded Lie algebra associated to the
filtration N," (v) > N . of N} (v) (compare [LS03, Section 3.5]). Setting

LY = N/ N! +1’ we obtain a graded Lie algebra L") = 3" LY over F,,
where addition is given by

xNéil yN& il = a:yNéil
and the Lie bracket by

[N yNL ] = (2, YN -

Each quotient N / N is a finite p,-group, and N

the N\ /N

Let H be an open subgroup of Nl(”). Setting LY (H) = (HNN, ) HH/Nnszl,
we obtain a graded F, -subalgebra L") (H) = >0 LY)(H) of L™ (this is
not an IF,-subalgebra in general). We have

is the inverse limit of

[N": H] = [L®: LO(H)] (1)

(compare [LS94, Lemma 2.13]).

Let P; be the subset of V; consisting of all valuations v such that:
(a) G(F,) is perfect and is a central extension of a finite simple group of Lie
type H(q,), where H is of the Lie type of G (either twisted or untwisted);
(b) for every n € N, | N, T’)/ +1| dlmG,
(c) for every m,n € N, [N, N{V] =
(d) G(O,) is perfect.

m—l—na

It follows from the discussion before the proof of Theorem 2.1 of [LL]
that conditions (a), (b) and (c) hold for almost all v € V;. Our standing
hypothesis Assumption 4 1 1mphes that the L1e al%ebra of GG is perfect, which
implies that [G(0,)/N”, N /N = N for almost all v € V.
This together with conditions (a) and (c) glves condition (d). Therefore
Py := V;—Py is finite. Note that (c) implies that [L$, LY] = L), for
every m,n € N.

To prove Theorem 4.2 we need to prove, in particular, that r,(G(0,)) <
cin® for two constants ci, ¢y independent of v. In fact, we will prove a
stronger result which is of independent interest and will be needed later in
Section 6 for the converse theorem.
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Theorem 4.3 There ezists ¢ = ¢(G, k) such that for every v € V; and every
n €N, [G(O,): K,(G(O,))] < ¢n®, where for a profinite group H, K, (H) is
defined as in Proposition 2.7, namely

K,(H) = m{kerp | p: H — GL,(C) is a representation}.

Here are two immediate corollaries. Note that the second applies to all
representations, not just irreducible ones.

Corollary 4.4 r,(G(O,)) < cn® for every v € Vy, n € N.
Corollary 4.5 [p(G(0,))| < cn® for everyv € Vi, n € N, p € Rep,(G(O,)).

To prove Theorem 4.3 we need:

Proposition 4.6 There erists & > 0 such that for every v € Py, every
nontrivial irreducible representation of G(O,) is of dimension at least ¢’.

Proposition 4.6, which we will prove below, is needed in the proof of Theorem
4.3, as well as for proving Theorem 4.2.

Lemma 4.7 (a) Forn € N, define f(n) to be the number of tuples (nq, ..., n)
of integers such that n = ny---n; and each n; > 1. Then there exists > 0
such that f(n) < n* for every n € N.

(b) There exists d > 0, depending only on k, such that the number of v € V
with ¢, < n is bounded by dn, and hence also by n® for some b > 0.

Proof (a) By a result of Kalmar (see [Erd41, Theorem (1)]), we have

> f(m) = Dn’(1+0(1)),

where D is constant and f is the unique positive solution of {(5) = 2 (¢
being the Riemann zeta function). The result follows.

(b) This is a consequence of the Prime Number Theorem (see [Ros02, Theo-
rem 5.12] for the function field case).

Let us now show how Corollary 4.4, Proposition 4.6 and Lemma 4.7 imply

Theorem 4.2. We write G(Og) as A x B, where A = [l,ep, s G(O,) and
B = [l ep,_s G(O,). Now A is a finite product of groups, each of which
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has PRG (Corollary 4.4), so A has PRG by Lemma 2.8. The same lemma
implies that G(Og) has PRG, once we have shown that B has PRG.

To prove this, let p € Irr,(B) be nontrivial. Then for some t and
some vy,...,v; € P;—S, we have nontrivial p; € Irr,,(G(O,,)) such that
p=p®---Q py, where the n; are positive integers such that n = ny---n,.
Each n; is greater than 1 by condition (d) in the definition of P;. The
number of possibilities for (ni,...,n;) is bounded by n*, by Lemma 4.7
(a). Given such a t-tuple (nq,...,n;), then for any fixed ¢ between 1 and
t, the number of valuations v; € P; that are possible — that is, such that
G(0,,) admits a nontrivial n;-dimensional representation — is bounded by

nf/ % this follows from Proposition 4.6 and Lemma 4.7 (b). Thus the num-
ber of choices for (vy,...,v;) is bounded by []._, n;’/ ® = pb%. Now given
(n1,...,n¢) and (vq,...,vy), for every @ = 1,...,t, G(O,,) has at most cnf

irreducible representations of dimension n; (Corollary 4.4). Hence B has at
most n#nt?cl°82nne irreducible n-dimensional representations. Thus B has
PRG and Theorem 4.2 is proved (modulo Theorem 4.3 and Proposition 4.6).

We turn now to the proofs of Theorem 4.3 and Proposition 4.6. First we
need a result that deals with the finitely many bad primes.

Lemma 4.8 For every v € Vy, there exists ¢ > 0 such that for every n € N,
we have

([G(Oy): K (G(Oy))] < en®. (2)

Proof As in the proof of Proposition 2.7, we are free to pass to an open
subgroup of G(Q,). Since G(O,) is an O,-analytic group, it has an open
subgroup H which is O,-standard [Ser92, Part II, Chapter IV, Section 8,
Theorem]. It can be shown that the Lie algebra L(k,) over k, associated
to H (see [DASMS99, Section 13.3]) is isomorphic to the Lie algebra of the
algebraic group G(k,), which is perfect by Assumption 4.1. If chark = 0
then H can be regarded as a Z,,-standard group; the Lie algebra £(Q,,) is
just L(k,) regarded as a Lie algebra over Q, , so it is also perfect. Similarly,
if char k = p > 0 then H is an F|[[t]]-standard group with perfect Lie algebra.
The result now follows from Proposition 2.7 in characteristic zero, and from
the proof of Theorem 6 of [JZ03] in characteristic p.

We need more for the proof of Theorem 4.3: we need to prove the existence

of a ¢ in Eqn. (2) that is independent of v, and for this Proposition 4.6 is
also required.
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Interestingly enough, the proofs of both Theorem 4.3 and Proposition 4.6
need the following lemma.

Lemma 4.9 Let p be a prime and let ¢ = p¢, where e € N. Let V,W, X
be finite-dimensional vector spaces over Ky, and let T:V x W — X be an
F,-bilinear map such that T(V x W) spans X over F,. Suppose that A, B
are F,-subspaces of V,W respectively such that

[V:A|[W:B] < q. (3)
Then T(A x B) spans X over F,,.

Proof First we prove this in the special case that V = W = X = F,
and T is multiplication. Let f:IF, — IF, be any nonzero [F,-linear function.
Define an F,-bilinear form Q;:F, x F, — F, by Q(z,y) = f(zy). Then
@y is nondegenerate: for there exists z € F, such that f(z) # 0, and for
any 0 # z € F, we have Q;(x,27'2) = f(2) # 0. This implies that the
orthogonal complement A+ = {z € F,|Qs(z,a) = 0 for all a € A} has Fy-
dimension equal to the F,-codimension of A. By Eqn. (3), the sum of the
FF,-dimensions of A and B is greater than e, so B ¢ A+, whence f does not
vanish on T(A x B). But f is arbitrary, so the F,-span of 7(A x B) must be
the whole of F,.

Now consider the general case. Let Y be the F,-span of T(A x B). Eqn.
(3) implies that A, B contain F,-bases for V,W respectively, so Y spans
X over F,. To complete the proof, we therefore need only show that Y is
invariant under multiplication by F,. So let a € A,b € B,w € F,. We show
that wT(a,b) € Y.

Set A" = {z € F,|za € A}, B' = {y € F,|yb € B}, regarded as F,-
subspaces of F,. Then F,/A" = F,.a/(F,.a N A) =2 (A + F,.a)/A C V/A,
and similarly F,/B’ is isomorphic to an F,-subspace of W/B, so applying
Eqn. (3) yields [F,: A'|[F,: B'] < q. By the special case above, there exist
T1, ..., Ty € A and y1,...,yn € B’ for some m such that w = > | x;y;.
We have

as required.

We deduce:
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Lemma 4.10 Let v € Py and suppose that H < Nl(”) has index smaller than
@/*. Then [H,H| = NQ(U). In particular, H D NQ(”), H< Nl(”) and Nl(v)/H is
elementary abelian.

Proof We have [N":H] = [L®:L®(H)], where L, L®)(H) are the
graded Lie algebras defined earlier, so [L®): L®)(H)] < ¢3/%; in particular,
[LM: LY (H)] < qu/” for every i € N. Applying Lemma 4.9 to V = L,
W =LY, A= L"(H),B = LY (H) and with T the Lie bracket, we prove
by induction that L(mvzrl(H )= Lgﬁl for every m € N. Since [H, H] is closed,
we deduce that [H, H| = NQ("). The other assertions follow immediately.

Lemma 4.11 Let ® be a perfect finite central extension of a finite simple
group of Lie type H(p"), where r € N and p is prime. Then there ezists
01 > 0, depending neither on p, r nor on the Lie type, such that every
nontrivial complez projective representation of ® has dimension at least p™.
In particular, any proper subgroup ® of ® has indez at least p"'.

Proof If @' is a proper subgroup of ® then the projective representation
arising from the permutation representation of ® on the coset space &/’
is nontrivial because ® is perfect, so the second assertion follows from the
first. To prove the first assertion, let p: & — PGL,(C) be a nontrivial pro-
jective representation. Then p(®) C PGL, (K) for some number field K, and
reducing modulo a suitable prime of K gives a nontrivial projective represen-
tation p': ® — PGL,(F), where F is a field of characteristic [ # p (compare
[Lan93, Chapter XVIII, Exercise 27]). Since ®/ker p' is also a perfect central
extension of H(p"), we can assume that p' is faithful. The existence of a §;
with the required properties then follows from [KL90, Corollary 5.3.3 and
Theorem 5.3.9].

We are now ready for:

Proof of Proposition 4.6 We can assume that § < 1/2. Let v € P; and
let (V, p) be a nontrivial n-dimensional irreducible representation of G(O,).
Write p| N 85 a direct sum of irreducible representations W, @ --- & W,,.
Without loss of generality, we assume that Wy & --- @& W, is the isotypic
component of Wy, that is, that Wy, ..., W, are precisely the summands that
are isomorphic to W;. Let H be the stabiliser of W := W1 &- - -@&W, in G(O,),
and let o be the representation of H on W. By Clifford’s Theorem, p =
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Indfl(o”) (0). Now, if W is a proper subspace of V then H is a proper subgroup
of G(O,) containing N*; by Lemma 4.11, [G(O,): H] = [G(F,): H/N] is
at least ¢, and we have the required bound for dim V.

Assume, therefore, that W = V. Then V is a sum of m isomorphic
Nl(”)-simp]e modules, each of dimension s, say. If s > qé/ ? then we are
done. If not then s < qi/ 2, and Wi, being an irreducible representation of
the pro-p, group Nl(v), is induced from a one-dimensional representation of
a subgroup M of Nl(”), of index s < g3/ (Lemma 2.5). By Lemma 4.10, M
contains N3 and [M, M] = N, which implies that the simple N\")-module
W is actually a module for the abelian group N\*)/N{”, and hence is one-
dimensional. It follows that p(Nl(”)) is central in p(G(0O,)). Hence p gives
rise to an n-dimensional projective representation of the quasisimple group
G(TF,), nontrivial because p is nontrivial and G(O,) is perfect. Lemma 4.11
implies that n > ¢°!, so the proof of Proposition 4.6 is complete.

Proof of Theorem 4.3 For v € Py, we give a precise estimate for [G(O,): K,(G(O,))].
We claim that for every nontrivial n-dimensional irreducible representation

log,, n

p of G(O,), we have kerp D Ngl& where r = [ 2 ] This will fin-

ish the proof of Theorem 4.3, since [G(O,): N\"\¢] = |G(F,)|[[NY: N ] <
(4ev bge%n +5ev) dim G

) 2Q1(J4T+5)dimG < q “po = pidimG5dimG+N *. But since p
is nontrivial, by Proposition 4.6 we have ¢, < n'/%, hence the index of

K,(G(0,)) is bounded by n(*+5/0)dimG+N?/b g yequired.

To prove that indeed ker p D Ngle, we first restrict p to Nl(”) and decom-
pose it into Nl(v)—irreducible representations, each of dimension no greater
than n. Fix one of these representations and call it o. As Nl(”) is a pro-p
group, o is induced from a one-dimensional representation of a subgroup H

of index at most n (Lemma 2.5). Therefore it suffices to prove:
Proposition 4.12 Letv € Py and let H < Nl(") have index at most n. Then
HD> NQ(:ZFEE, where r = [bg(z%n]} and [H, H] D Ngz%.

Note that Proposition 4.12 is a stronger version of the standard “index versus

level” formula; the usual argument proves only that H > Nl(ovgp i1 [LSO3,

Proposition 4.3.1]. (Of course, if char k¥ = 0 then the usual argument suffices.)

Proof of Proposition 4.12 We have [N\”: H] = [L®): L®)(H)]. Now let
s > 2r + 3. Consider the r + 1 pairs of distinct integers (i,s — ) with
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1 <4 < r+ 1. By our hypothesis on the index of H, there must exist at
least one such pair (i, s — i) such that [L: L ()] [LY.: L. (H)] < ¢,. By

s—i° s

Lemma 4.9 we have [L” (H), L. (H)] = [L”, L] = L. As H is closed,

we deduce that H D N{*,,. It follows from condition (c) in the definition of

Py that [H, H] D [N3)s, Nivys] = Nifs.

This completes the proof of Theorem 4.3 for v € P;. For each of the finitely
many valuations v € Py, Lemma 4.8 gives the result we need, so we have
proved Theorem 4.3.

Theorem 1.2 is now proved. Indeed, let I' = G(Og) be as in Theorem 1.2
and suppose that I' has the congruence subgroup property. By Lemma 2.8
and the arguments in Section 3, passing to a finite index subgroup of I' if
necessary, it suffices to show that 7, (") is polynomially bounded and that if
char £ = 0 then the number of algebraic representations of I is polynomially
bounded. This follows from Theorem 4.2 and Proposition 3.2.

5 Image Growth of Congruence Representa-
tions

While proving Theorem 1.2 we showed that the local group G(O,) has a
normal subgroup K,(G(O,)) of polynomial index which is in the kernel of
every finite n-dimensional representation. This is not true for the global
group G(Ogs): a weaker property holds, namely that the image size of every
finite irreducible representation of dimension n is polynomial in n. For
future use (Section 6), we prove a bound for the image size of general finite
representations.

Proposition 5.1 There exists v € (0,1) such that if n is large enough then
for every p € Rep,,(G(O5s)), we have |p(G(Os))| < .

We need two lemmas. In the first lemma, the second inequality is obvious,
while the first is proved using induction on d and the Binomial Theorem (we
leave the details to the reader).

a d s a
Lemma 5.2 Let d,a € N. Then ﬁd Ty it < dvth
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Let t € N, let Hy,..., H; be profinite groups and set H = H; X .-+ X Hj.
Given p € Rep,,(H), let n;(p) denote the maximal dimension of an irreducible
component of the restriction of p to H;.

Lemma 5.3 .. ni(p) < n.

Proof We use induction on n. First we suppose that p is irreducible. We
can write p = p; ® -+ ® p;, where each p; € Rep, (H;) and n;---ny = n.
Clearly p|y, is a direct sum of copies of p;, so we have n;(p) = n;. Then
Zni(p)>1 nl(p) = Zn¢>1 ng SNy =M.

If p is reducible, say p = p; @ po, then for each i we have n;(p) =
max{n;(p1), ni(p2)}. Applying the induction hypothesis we have

ni(p) < D nmilp)+ Y milpy) < dimp +dimpy = m,
ni(p)>1 ni(p1)>1 n;i(p2)>1

as required.

Proof of Proposition 5.1 Let p € Repn(G(@)). We can regard p as a
representation of G(O,,) X - - - x G(O,,) for some t € N and some vy, ...,v; €
V;—S, such that each restriction p|g(o,,) is nontrivial. Since the set of bad
primes Ps is finite, we can assume (using Theorem 4.3) that each v; belongs
to P1; compare the beginning of the proof of Theorem 4.2. This implies that
ni(p), ..., ni(p) > 1. We start by finding an upper bound for ¢ in terms of n.

For any m € Nwith m > 1, Lemma 4.7 (b) and Proposition 4.6 imply that
the number of v € P; such that G(O,) admits an irreducible representation
of dimension m is at most m®, for some constant a € N. In particular, at
most m® of the n;(p) can take the value m. We therefore have

ni(p) +---+mn(p) >2°24+3°3+---+d"d, (4)

for any d € N such that 2° + 3%+ --- + d* < t. Applying Lemma 5.2 and
Lemma 5.3 to the RHS and LHS respectively of Eqn. (4) yields a—i2d“+2 <n.

By Lemma 5.2, we can take d = [t}/(**D]. Setting v, = % and choosing
suitable b > 0, we therefore have

t<bn. (5)

Consider the function f(zq,...,2;) = x1---x; defined on the bounded

convex domain D = {(z,...2;) € R'|z1,...,2 > 0,3, 2; < n}. Ele-
mentary calculus shows that the maximum value of f on D is (n/t)". Now
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consider the function g(y) = (n/y)Y on [1,a]. By elementary calculus, if
log,n — log,a > 1 then the maximum value of g(y) is (n/a)®.
It follows that for large enough n and for any v € (7, 1), we have

0(G(Os))| < ¢ (ni(p)---n4(p))° by Theorem 4.3
te
< ¢ (%) by the bound for f(zq,...,x;)

IN

b0 n cbn70
¢ (1)717) by Eqn. (5) and the bound for g(y)

(b—bccb)nm n(l—'yo)cbn70

nY
€ )

IN

as required.

To finish the section we prove another “polynomial image growth” result
for local groups, this time for representations over a field of positive char-
acteristic. Only case (i) of the following proposition will be needed in the
sequel.

Proposition 5.4 Let F' be a field of characteristic | # 0, let v € Vy and let
p:G(O,) — GL,(F) be a representation. Set p = p,. Assume that at least
one of the following holds:

(i) L #p

(ii) chark = 0.

Then |p(G(Oy))| < en® for some constant ¢ > 0, depending only on G, k and
v.

Proof By assumption, p is continuous and has finite image. Assume that
[ # p, and let o = p|N1(v). Let b = [G(O,): N”]. Since o(N\*)) is a finite p-
group, o can be lifted to a complex representation o of Nl(v) (compare [Lan93,
Chapter XVIII, Exercise 27]). Inducing o gives a complex representation p
of G(O,), with kerp D Kp,(G(O,)). We have kerp D kero = kero D
Kin(G(0,)) N N, By Theorem 4.3, Ky (G(O,)) N N has polynomial
index in G(O,), so |p(G(O,))| is polynomially bounded. This proves (i).
Assume now that [ = p and chark = 0. Then Nl(”) is a p-adic analytic
pro-p group, so Nl(v) is boundedly generated: that is, there exist x1,...,x4 €
Nl(”) such that every g € Nl(”) can be written as g = z* ---25¢ for some
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ai,...,aq € Zy, [DASMS99, Theorem 3.17]. Now every element of GL,(F')
of p-power order must be of order at most pn. (Indeed, if p™ > n and
y?" =1 then (y — 1)?" =0, so y — 1 is a nilpotent element in M,,,(F) and
(y — 1) = 0. This implies that y**" —1 = (y — 1)?”" = 0 where a = [log,n],
so y has order at most pn.) This implies now that |p(N{"))| < (pn)¢, so
|p(G(O,))| is polynomially bounded.

6 Arithmetic Groups with Polynomial Rep-
resentation Growth

In this section we analyse groups I' = G(Ogs) with polynomial representation
growth. The goal is to prove Theorem 1.3.

Recall that the profinite and congruence topologies on G(Os) can be ex-
tended to topologies on G(k); these are called the arithmetic and congruence
topologies respectively. The congruence subgroup problem is to study the
kernel o

1—-C—Gk)— Gk)—1,

—— —~—

where G(k) (respectively G(k)) is the completion of G(k) with respect to the
arithmetic (respectively congruence) topology (see [Ser70], [Rag76]).

Let Cy = [C, @] By the solution to the metaplectic problem (cf.
[PRI6]), Cy is open in C. Note that G(Og) has the congruence subgroup
property if and only if Cy = 1, so to prove Theorem 1.3, we need to show

that C is trivial.

Proposition 6.1 Suppose that Cy has an open normal subgroup M with
F :=Cy/M a nonabelian finite simple group. Then for some € > 0,

Rn(G(@)) > peloglogn
for infinitely many n. In particular, I' = G(Og) does not have PRG.

Proof Let N = (,cqy M?. It was shown in [Lub95, (2.4)] that N has
infinite index in Cp, and since W := Cy/N is a subdirect product of copies
of F', we have W = [, F. Thus f, after passing to a subgroup of finite
index if necessary, is mapped onto a group E of the following type:

(%) 1-W—=ESH-—1,
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where H is an open subgroup of G ((/9;) To finish, it is enough to prove the
following lemma.

Lemma 6.2 Let E be a profinite group of the form (x), where F' and H are
as above. Then for some € > 0, we have

log R,(E) > elognloglogn
for infinitely many n.

Proof Since F is simple, we can regard F' as a subgroup of Aut F'. Fix an
irreducible representation (V, o) of Aut F' such that o|r is nontrivial. We can
write o|r as a sum of irreducibles 71 @ - - - @ 7, for some s. Note that no 7;
is trivial (otherwise, as F' < Aut F, the F-fixed points of V' form a nonzero
invariant subspace, contradicting the irreducibility of o). Let ¢ > 1 be the
dimension of o. Clearly there is no harm in taking logarithms to base ¢ in
what follows.

Fix constants 7,71, 72,73 suchthat 0 < 7y < 13 < 1,0 <1 <71, <1—13
and 7 is as in Proposition 5.1. Choose an open subgroup U < E, and define
E' =FE/U W =W/(WnU), H = H/x(U). Then W’ is the product of
a finite number of copies of F', say m copies. We can make m arbitrarily
large by an appropriate choice of U. Replacing U by the preimage in E of
the centraliser Cr(W'), we can assume that Cr (W') is trivial (this does
not change m, because Cg(W') N W' = 1). We can identify Aut F™ with
Gy X (Aut )™, where &,, is the symmetric group. Thus the action of E’
on W' gives rise to a homomorphism p: E' — &,,. Let K be the kernel of
this homomorphism. Since E’ acts faithfully on W', we can identify K with
a subgroup of (Aut F)™, and we have F < K < (Aut F)™. As &,, embeds
into GL,,(C), Proposition 5.1 implies that

[E": K] <e™ (6)

for sufficiently large m.

Forany S C {1,...,m}, define an irreducible representation o’ of (Aut F')™
by taking o to be o on the ith factor of (Aut F')™ for every i € S and trivial
on the other factors. Choose og to be some irreducible component of the
restriction of o’ to K. The dimension of oy is at most c/*. We claim that
if S; # Sy then og, # 0g,: in fact, og,|pm # 0g,|Fm. To see this, observe
that any irreducible component of og|Fm can be written as a tensor product
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01 ® -+ dm, where each ¢; is either trivial or equal to one of 7, ..., 7, and
S is precisely the set of indices 7 such that ¢; is nontrivial.
Now let f: N — N be any nondecreasing function such that lim,, ,, f(m)/m” =
oo and lim,,, o f(m)/m” = 0 (for example, if v < 8 < 73 then f(m) = [m”]
will do). For the rest of the proof, assume that m is sufficiently large. We

have

AV

v

AV | I AVAR

m!
(m — f(m))!f(m)!
(m — f(m))7t™
Flm) T

f (m)(logem—log,. f(m)—1)
f (m)(logem—log,m?3—1)
o/ (m)((1—73)logem—1)
2 f(m)logem

m2f (m)

Thus we have at least m2/(™ isomorphism classes of representations of K of
the form og with |S| = f(m), each of dimension at most ¢/(™. This implies

that Rcf(m)(K) > m2f(m)

Set n = [E": K]c/(™. We have

Ry (E)

Taking logarithms gives

v

\Y

VARV,

R, ) (K) by the first inequality of Lemma 2.2

™ m™/ (M by Eqn. (6)

log Rn(E) > 71 f(m)logem > v f(m)log, f(m).
Fix x > 1. Using Eqn. (6), we have n < e™ /(™ < ¢#/(™) which gives

log.n < kf(m)
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and
log.log.n < log.k + log.f(m) < klog.f(m).

Combining the previous three equations gives
logcRn(E) > ,Y_;logcn logclogcna
K
and we have our required bound.

For the rest of the section, assume that chark = 0. Assume that I' =
G(Os) does not have the congruence subgroup property. By Rapinchuk’s
Lemma (see [Lub95, (2.6)] or [LS03, Section 7.1]), I has a finite index sub-
group ['y such that f; has a quotient F with the following property: there
exists a short exact sequence of profinite groups

(%) 1-W—ESH-—1,

where W is the product of countably many copies of a fixed finite simple
group F' and one of the following three possibilities occurs:
(a) F is nonabelian and H is an open subgroup of G(QOg);
(b) F is abelian, say F' = C}, the cyclic group of order [, and H is an open
pro-p, subgroup of G(0O,) for some v € V;—S, with either:

(b1) I # py; or

(b2) I = py.
Thus, to prove Theorem 1.3 it suffices to show by Corollary 2.3 that in each
of these three cases, r,,(E) does not grow polynomially. Case (a) was exactly
the case treated in Lemma 6.2.

Let us now treat case (bl). In this case the sequence (x) splits by the
Schur-Zassenhaus Theorem and £ = H x W. Choose U open and normal
in F, and let E' = E/U, W' = W/(W NnU) and H' = H/n(U), so that
E' = H' x W'. Then W' = C" for some m, and m can be made arbitrarily
large by a suitable choice of U. Now the centraliser Cy:(W') is a normal
subgroup of E' which has trivial intersection with W’. Replacing U by the
inverse image of Cy/(W') in E, we can assume that H' acts faithfully on C/™,
so that we have a faithful representation of H' into GL,,(F;). We deduce
from Proposition 5.4 (i) that |H'| < e¢m® for some constant ¢. This implies
that Agpe (E) > ™. Lemma 2.6 (a) now implies that for any v € (0,1/¢),
R,(E) > eV for infinitely many n; in particular, E does not have PRG, and
case (bl) is proved.
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We haven’t proven Rapinchuk’s Lemma in positive characteristic, but if
it is true then the proof of case (b1l) works there as well. On the other hand,
the following argument, which settles case (b2), works only if char k£ = 0.

Assume now that we are in case (b2). Set p := p, =[. Then E is a pro-p
group. Let EP" be the closed subgroup of E generated by the p”-powers in
E and let ¢,(E) = [E: E”"]. Set E' = E/E”", H' = H/H" = H/=(E"").
In [DASMS99, Corollary 11.6] it is shown that if M is a finitely generated
pro-p group and ¢, (M) < p?" for some n > 1 then M is p-adic analytic. Our
group E is not p-adic analytic, so g,(E) > p?" for every n. On the other
hand, H is p-adic analytic and so is boundedly generated, and ¢,(H) grows
polynomially in n [DASMS99, Theorem 3.16]: say g,(H) < (p")? for some
fixed d. Putting these two facts together we deduce that there is a short
exact sequence

1—-W - E' — H —1,
where |E'| > pP" and |H'| < (p™)%. We conclude that |[W'| > pP" . As W'
is abelian, we deduce that Ay (E) > pP" % which, again by Lemma 2.6 (a),
implies that for any v € (0,1/d), R,(E) > e, this time for all sufficiently
large n. So E does not have PRG. Thus Theorem 1.3 is proved.

We thank A. Jaikin-Zapirain for the main idea in the proof of case (b2).
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