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Dedicated to Gopal Prasad on his 75th birthday

Abstract

Abert, Gelander and Nikolov [AGN17] conjectured that the num-
ber of generators d(Γ) of a lattice Γ in a high rank simple Lie group
H grows sub-linearly with v = µ(H/Γ), the co-volume of Γ in H.
We prove this for non-uniform lattices in a very strong form, show-
ing that for 2−generic such H’s, d(Γ) = OH(log v/ log log v), which is
essentially optimal. While we can not prove a new upper bound for
uniform lattices, we will show that for such lattices one can not expect
to achieve a better bound than d(Γ) = O(log v).

1 Introduction

Let H be a connected, non-compact, simple real Lie group, with a fixed Haar
measure µ. A discrete subgroup Γ of H is called a lattice if µ(H/Γ) < ∞. It
is called uniform (or co-compact) if H/Γ is compact, and non-uniform other-
wise. In [Gel11], Gelander showed that there exists a constant C1 = C1(H)
such that d(Γ) ≤ C1 µ(H/Γ) where d(Γ) is the minimal number of genera-
tors of such Γ. Recently, this was shown for other types of Lie groups [GS20].

In [AGN17, Conjecture 3], Abert, Gelander and Nikolov conjectured that
if H is of high rank, i.e., rankR(H) ≥ 2, then d(Γ) grows sub-linearly with
µ(H/Γ).

The main goal of the present paper is to prove a strong form (essentially
optimal) of this conjecture for the non-uniform lattices of H . We will make
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some remarks on the uniform case, but at this stage, we are unable to prove
the conjecture for this case. We do, however, give a lower bound on d(Γ)
for uniform lattices, demonstrating a distinction between the growth rates of
the two classes.

Following [BL19], we say that H is 2-generic if the centre of the simply
connected cover H̃ of the split form of H is a 2-group, and H̃ has no outer
automorphisms of order three. This is the case for ”most” H ’s. In fact it
holds for all H unless it is of type E6, D4 or An for n 6= 2m − 1.

For convenience, and without loss of generality, we assume from now on
that µ, the Haar measure on H , is normalized so that µ(H/Γ) > 1 for every
lattice Γ in H . This is possible since there is a lower bound on the co-volume
of lattices due to Kazhdan and Margulis [KM68]. In addition, throughout
this paper all logarithms are in base 2.

Our main result is the following.

Theorem 1.1. Let H be a simple Lie group with R-rank(H) ≥ 2. Then there
exists a constant C2 = C2(H) such that

(a) For every non-uniform lattice Γ of H we have

d(Γ) ≤ C2 log(µ(H/Γ))

(b) If H is 2-generic, then for every non-uniform lattice Γ of H we have

d(Γ) ≤ C2
log(µ(H/Γ))

log log(µ(H/Γ))

We remark that we believe that the sharper bound of (b), which is best
possible (see Section 4), holds for all H , but it depends (and actually equiv-
alent to) some delicate number-theoretic conjectures. More precisely, Gauss’
celebrated theorem [BS66, Theorem 8, p. 247] gives a very precise description
of the order of the 2-torsion of the class group Cl(k) of quadratic number
fields k. From this theorem one deduces that d2(Cl(k)) = O( logDk

log logDk
) where

d2(Cl(k)) is the number of generators of the 2−Sylow subgroup of Cl(k) and
Dk is the absolute value of the discriminant ∆k of k. Now, if we would know
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such bounds for the p−Sylow subgroups for the odd primes, then the esti-
mate of (b) would follow for all H . In fact, this is essentially equivalent (See
[BL19, Sections 3 and 7]).

However, despite much effort over the years, the current knowledge is
quite far from having such bounds (see [PTBW20]).

The intimate connection between the group-theoretic/geometric state-
ment of Theorem 1.1 and the delicate number theory is not as surprising as
it seems at first sight. By the Margulis Arithmeticity Theorem [Mar91], ev-
ery Γ in a high rank group H is an arithmetic lattice, and unlike the methods
of [Gel11] and [AGN17], our method will use this fact extensively.

Our second result is based on the existence of infinite class field towers
of totally real fields, due to Golod and Shafarevich [GS64], and follows the
lines of [BL12]:

Theorem 1.2. Let H be a simple Lie group of high rank. Then there exists
a constant C3 = C3(H) and a sequence of uniform lattices Γi ≤ H with
µ(H/Γi) → ∞ such that

d(Γi) ≥ C3 logµ(H/Γi)

This lower bound shows that the growth rate of d(Γ) for uniform lattices
is strictly larger than that of non-uniform ones, thus establishing a further
distinction between the two types of lattices.

As in [BL12] and [BL19], the distinction stems from the fact that non-
uniform lattices in H are defined over number fields of bounded degree over
Q, while the degrees of the number fields defining uniform lattices are un-
bounded.

Let us now describe the main line of the proof of Theorem 1.1.

Venkataramana [Ven87, Ven94] has developed a method to show that var-
ious subgroups of arithmetic groups are of finite index. This method uses
unipotent elements and hence is valid only for non-uniform arithmetic lat-
tices. This accumulates to the following result of Sharma and Venkataramana
[SV05] which is a first main ingredient of our proof:

3



Theorem 1.3 [SV05, Theorem 1]. Every high rank non-uniform arithmetic
group Γ has a subgroup of finite index which is generated by at most three
elements.

It follows that if Γ̂ is the pro-finite completion of Γ and d(Γ̂) denotes the
minimal number of topological generators of Γ̂, then

d(Γ̂) ≤ d(Γ) ≤ d(Γ̂) + 3

Thus, it suffices to prove Theorem 1.1 for d(Γ̂) rather then d(Γ). Now, by
a standard inverse limit argument, d(Γ̂) is the supremum over d(S) where S
runs over finite quotients of Γ. Moreover, by a well-known result of Raghu-
nathan [Rag76], non-uniform Γ’s satisfy the congruence subgroup property
(denoted CSP from this point onwards), so we have to deal only with quo-
tients by congruence subgroups. The proof for those will use some methods
and techniques from [BL12, BL19] which in turn use crucially the seminal
work of Prasad [Pra89]. These are valid in almost the same way for uniform
and non-uniform lattices. Thus, the obstacle that prevents us from proving
the conjecture in its full generality is the use of Theorem 1.3 and the fact
that the CSP is known only for some uniform lattices.

For simplicity of the introduction, we treated in this introduction the case
where H is simple, but similar results and methods apply to the case where
H is semi-simple and Γ runs over all irreducible lattices, see Section 4.

This paper is dedicated to Gopal Prasad with admiration and affection.
Prasad has made fundamental contributions to the arithmetic theory of alge-
braic groups. In particular, this paper is based on his seminal work on the
co-volume of arithmetic lattices.
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2 Principal Arithmetic Groups and Congru-

ence Subgroups

Let H be a high rank simple connected linear Lie group, and let G be a semi-
simple, simply connected, connected algebraic group defined over a number
field k, with an epimorphism φ : G(k ⊗Q R) → H whose kernel is com-
pact. Then φ(G(O)) and subgroups of H which are commensurable to it
are called arithmetic. All irreducible lattices in higher rank arise as such
[Mar91], and one of the key facts for our purposes is that for non-uniform
lattices, the degree of k is bounded, where the bound depends only on H .
Indeed, this follows from the well known result that H/Γ is non-compact if
and only if Γ contains non-trivial unipotent elements (see [Mor15, Chapter
5.3]). Hence, G(k ⊗Q R) has no compact factors, which implies that the
number of Archimedean completions of k is bounded by the number of sim-
ple factors of H and so [k : Q] is bounded, and when H is simple, [k : Q] ≤ 2 .

Let now Γ0 be a maximal lattice in H . It is known (see [BP89, Prop. 1.4])
that in this setting, Γ0 = N(Λ′) where Λ′ is a nice arithmetic group, namely
the principal arithmetic subgroup associated to a coherent family (Pv)v∈Vf

of
Parahoric subgroups in G(kv). More precisely,

Λ = Λ(P ) = G(k) ∩
∏

v∈Vf

Pv

where G is a k−form of H , Vf is the set of finite places of k, Pv ⊂ G(kv),
and Λ′ is the image of Λ in H , namely φ(Λ) = Λ′ ⊂ H .

Now, for every v there exists a smooth affine group scheme Gv defined
over Ov such that Gv(Ov) = Pv and Gv(kv) is kv-isomorphic to G(kv). This
induces a congruence subgroup structure on Pv defined as:

Pv(r) = ker(Gv(Ov) → Gv(Ov/π
r
vOv))

where πv is a uniformizer of Ov. These congruence subgroups induce a con-
gruence structure on Λ, namely Λ (πr

v) = Pv(r)∩Λ. More generally, for every
ideal I of O look at its closure Ī in Ô =

∏
v Ov. Then Ī is equal to

∏l
i=1 π

ei
vi
Ô

for some Y = {v1, . . . , vl} ⊂ Vf and e1, . . . , el ∈ N. We then define the I-
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congruence subgroup of Λ,

Λ(I) = Λ ∩

(
l∏

i=1

Pvi (ei) ·
∏

v/∈Y

Pv

)

In particular, for every m ∈ N, the m−congruence subgroup is defined
as Λ(m) := Λ(mO), and any subgroup of Λ which contains Λ(I) for some
0 6= I ⊳O is called a congruence subgroup.

In the next few sections we use the congruence structure of such lattices
to prove the main theorem. We will study Λ and Λ′ interchangeably since an
upper bound on d(Γ) for Γ in Λ gives a similar bound on d(Γ′) for Γ′ = φ(Γ)
in Λ′.

2.1 Reduction to Subgroups of Principal Arithmetic

Lattices

First, we use the fact that the index of these principal arithmetic subgroups
Λ′ ≤ Γ0 is bounded by a function of the co-volume of Γ0, and so we can work
inside the principal arithmetic lattice while paying a negligible price. More
precisely, we have by [BL19, Prop. 4.1]:

Proposition 2.1. There exists a constant C4 = C4(H) such that for every
Q = Γ0/Λ

′ with µ(H/Γ0) = v as above,

(i) |Q| ≤ vC4

(ii) if Γ0 is non-uniform and H is 2-generic, then |Q| ≤ C
log v/ log log v
4 .

This enables us to reduce our main theorem to the following:

Theorem 2.2. There exists a constant C5 = C5(H) such that if Λ′ is a
non-uniform principal arithmetic group as above, and Γ ≤ Λ′ a finite index
subgroup of co-volume v, then d(Γ) ≤ C5 log(v). Furthermore, if H is 2-
generic, we have d(Γ) ≤ C5 log(v)/ log log(v).

Let us first show how Theorem 2.2 and Proposition 2.1 imply the main
Theorem 1.1.
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Proposition 2.3. Theorem 2.2 and Proposition 2.1 imply Theorem 1.1.

Proof. Assume that H is 2−generic. Let Γ be a lattice in H of co-volume v
and Γ0 a maximal lattice containing it.

Let Γ0 = N(Λ′) as above and Γ′ = Γ ∩ Λ′. By Proposition 2.1,

[Γ : Γ′] ≤ C
log v/ log log v
4 ≤ vlogC4

Now, since µ(H/Γ) ≤ v we have

µ(H/Γ′) ≤ v1+logC4

We can now use Theorem 2.2, to deduce:

d(Γ′) ≤C5((log v
1+logC4)/ log log v1+logC4)

≤C5(1 + logC4)
log v

log log v
= C6

log v

log log v

Now, Γ′ = Γ ∩ Λ′ E Γ and Γ/Γ′ ∼= Λ′Γ/Λ′. Using again Prop. 2.1 we
deduce that

d(Γ/Γ′) ≤ (logC4)
log v

log log v

Hence d(Γ) ≤ d(Γ′) + d(Γ/Γ′) ≤ (C6 + logC4)
log v

log log v
.

The case when H is not 2-generic is similar and even slightly simpler.

3 Proof of the Upper Bound

3.1 Reduction to Congruence Subgroups

We wish to use the congruence subgroup property and Theorem 1.3 to further
reduce the main theorem to a question about finite quotients of congruence
subgroups. Notice that the arguments so far did not use the fact that the lat-
tices are non-uniform. However, from now on, we are going to use Theorem
1.3, which is known only for non-uniform lattices, and the positive answer to
the congruence subgroup problem for such lattices due to [Rag76].
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First of all, we are going to pass to the pro-finite completion of Γ and Λ.
This is due to the result of Sharma-Venkataramana in Theorem 1.3, which
says that every non-uniform lattice has a finite index subgroup which is gen-
erated by at most 3 elements. It follows that for such lattices d(Γ) ≤ 3+d(Γ̂).
In other words, it is enough to bound the number of generators of all finite
quotients of Γ.

The second important assumption is the Congruence Subgroup Property.

Recall that Λ = G(k)∩
∏

v∈Vf
Pv. By the CSP, its pro-finite completion Λ̂

is essentially equal to its congruence completion. To be more precise, the con-
gruence kernel, C = ker(Λ̂ →

∏
v∈Vf

Pv) is finite, hence, d(Λ̂) ≤ d(C) + d(Λ)

where Λ is the congruence completion of Λ.

Now, the result of [PR96] shows that the Margulis-Platonov conjecture

and the CSP conjecture imply that C is cyclic. Thus, d(Λ̂) ≤ 1+d(Λ). In the
non-uniform case, both the Margulis-Platonov and the CSP conjecture are
known, see [Rag76, PR10]. In addition, the same inequality holds for every

finite index subgroup Γ of Λ. Hence altogether d(Γ) ≤ d(Γ̂) + 3 ≤ d(Γ) + 4,
where Γ is the congruence completion of Γ, which is in fact equal to the
closure of Γ in

∏
v∈Vf

Pv, by strong approximation [PR94, Thm 7.12].

Working now with the congruence completion and congruence subgroups,
we use a quantitative version of the ”level versus index” lemma, in order to
pass to principal congruence subgroups.

Recall the classical lemma asserting that in SL2(Z), every congruence
subgroup of index n contains ∆(m) = ker(SL2(Z) → SL2(Z/mZ)) for some
m ≤ n. This lemma was later generalized in a quantitative manner in [BL12,
Lemma 4.3, Remark 4.4]:

Lemma 3.1. Let Λ be a principal arithmetic group in H with µ(H/Λ) ≤ v,
then if Λ1 is a congruence subgroup of Λ of index n, then Λ(mO) ⊂ Λ1 where
m ≤ vC7n, C7 depends only on H, and Λ(mO) is the principal congruence
subgroup of level m.
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In addition, if we restrict to non-uniform lattices, we have that

[Λ : Λ(mO)] ≤ (vn)C8

Let now Γ ≤ Λ be a congruence subgroup with µ(G/Γ) ≤ v. By our
assumption on µ we have that µ(G/Λ) ≥ 1, thus the index of Γ in Λ is also
bounded by v, and using 3.1 we have

d(Γ) ≤ d(Λ(mO)) + d(Γ/Λ(mO))

where m ≤ vC7+1. We shall now analyse the number of generators of these
two factors.

3.2 Rank of Principal Congruence Subgroups and of

Finite Congruence Quotients

So far, we have reduced the problem to bounding:

(i) d(Λ(mO)), and (ii) d(Γ/Λ(mO))

In order to do so we will need the following definition and proposition:

Definition 3.2. Let G be a pro-finite group, then the Prüfer rank or sub-
group rank of G is defined as:

rank(G) := sup{d(H) | H ≤ G}

where H runs over the closed subgroups of G and d(H) denotes the minimal
number of topological generators of H.

It is easy to see that if H ≤ G and K is a quotient of H then rank(K) ≤
rank(G). Also, if 1 → G1 → G2 → G3 → 1 is an exact sequence of pro-finite
groups then rank(G2) ≤ rank(G1) + rank(G3).

The following proposition will be used several times later on:

Proposition 3.3. Let d, s ∈ N, then ∃ C9 = c(d, s) ≤ 3d2s2 such that if k/Q
is a number field of degree d and O its ring of integers, then
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(a) For every finite place v ∈ Vf of k,

rank (SLs(Ov)) ≤ C9

(b) For every rational prime p,

rank (
∏

v|p

SLs(Ov)) ≤ d · C9

Proof. Denote the first congruence subgroup by Γv(1) := ker(SLs(Ov) →
SLs(Fqv)) where Fqv is the residue field of Ov. Since Ov is the integral closure
of Zp in kv, we can embed SLs(Ov) in SLsd(Zp). The congruence subgroup
Γv(1) is thus a subgroup of ker(SLsd(Zp) → SLsd(Fp)) which is powerful pro-
p of rank ≤ s2d2 [DdSMS99, Theorem 5.2, and Theorem 3.8], thus d(Γv(1)) ≤
s2d2. Now, since rank (SLs(Ov)) ≤ rank (Γv(1)) + rank (SLs(Ov)/Γv(1)), it
remains to bound the rank of the finite quotient SLs(Ov)/Γv(1). By the same
argument above, this is a subgroup of SLsd(Fp). By [LS03, Cor. 24, p. 326],
rank(GLsd(Fp)) ≤ 2s2d2, and so we get the bound in (a) with c(d, s) = 3d2s2.
The second part follows immediately as the number of finite places above p
is at most d, the degree of the field extension.

Let us note that the proposition immediately implies the bound needed
in (ii), i.e., a bound on d(Γ/Λ(mO)). Indeed, Γ/Λ(mO) = Γ/Λ(mO) is
a quotient of an open subgroup of

∏
p|m

∏
v|p Pv. By the prime number

theorem, the number of primes dividing m is bounded by logm
log logm

, and as

Pv ⊂ SLs(Ov) where s is some fixed number such that H ⊂ SLs(−),
Proposition 3.3 implies that rank(

∏
v|p Pv) ≤ dC9. Altogether, we have that

d(Γ/Λ(mO)) ≤ C10
logm

log logm
, as needed.

In order to bound d(Λ(mO)) we need a more delicate argument. Let us
formulate it as a Lemma:

Lemma 3.4. Let H be a simple Lie group of higher rank, and Λ(mO) a
principal congruence subgroup of a non-uniform principal arithmetic group Λ
in H as above, then there exists a constant C10 = C10(H) such that

d(Λ(mO)) ≤ C10
logm

log logm

.
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Proof. Following the discussion in Section 3.1, d(Λ(mO)) ≤ d(Λ(mO)) + 4
where Λ(mO) is the congruence completion of Λ(mO). If m =

∏l
i=1 p

ei
i , then

by the strong approximation theorem, Λ(mO) = A× B × C where:

• A =
∏l

i=1Api, where each Api is a product of pro-pi groups, one for
each v dividing pi.

• B =
∏

v∈T Pv where T = {Pv is not hyper-special, and v ∤ m}

• C =
∏

v∈T ′ Pv where T ′ = {Pv is hyper-special, and v ∤ m}.

We have to bound each of d(A), d(B), and d(C).

For A: this is a product of (finitely many) pro-p groups, for different
p’s, each of rank at most dC9 by Proposition 3.3, so its rank, being a pro-
nilpotent group, is also bounded by dC9. For bounding B, we recall [BL12,
Prop. 4.1] and the discussion in [Bel07, Section 6.2], which implies that
|T | = OH(logm/ log logm). Using again Proposition 3.3, we deduce that
d(B) ≤ rank(B) ≤ C11 logm/ log logm. Finally, let us deal with C. First, a
warning: C is a product of infinitely many Pv’s and its rank is not bounded.
Still, d(C) is bounded. To see this, let us recall the local structure of hyper-
special Parahoric subgroups.

Let G be an absolutely almost-simple simply connected algebraic group
over a non-archimedean local field Kv, and let Pv ⊂ G(Kv) be a hyper-special
parahoric subgroup. Then Pv = G(Ov), where G is a reductive group scheme
over the valuation ring Ov ⊂ Kv with generic fiber G (cf. [Tit79, 3.8]). It
is known (cf. [SGA70, Exp. XXII, Proposition 2.8]) that the reduction G
is also an absolutely almost-simple simply connected algebraic group over
the residue field kv, which is in fact quasi-split by Lang’s theorem. The
group G(kv) is then quasi-simple group provided |kv| ≥ 5 (cf. [Ste16, §4, 11],
[Tit64]). On the other hand, there is the reduction map G(Ov) → G(kv),
the kernel of which (the congruence subgroup modulo the valuation ideal
pv ⊂ Ov) is a pro-p group for p = char kv. Thus, Pv has a normal subgroup
which is a pro-p group, with the quotient being a quasi-simple group.

In our situation, this means that if Pv is hyper-special, then Pv is an
extension of Pv(1), a pro-p group of bounded rank (actually bounded by
d2s2), by a quasi-simple group of the form Gv(Fqv) where Fqv is the residue
field of v. Now,

∏
v∈T ′ Pv(1) is a product of infinitely many pro-p groups (at
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most d for every p) each of rank at most s2d2, so rank(
∏

v∈T ′ Pv(1)) ≤ s2d3.
At the same time C/

∏
v∈T ′ Pv(1) =

∏
v∈T ′ Gv(Fqv) is a product of infinitely

many quasi-simple finite groups, in which the multiplicity of every simple
quotient is bounded by at most d. An elementary argument, keeping in mind
that every finite quasi-simple group is generated by two elements, implies that
the product is generated by at most 2d elements and thus d(C) ≤ d3s2 +2d.

Recall that in Section 3.1 we had m ≤ vC7+1, so the proof of Theorem
2.2, and hence also the proof of our main result, Theorem 1.1, is now com-
plete.

The proof of Lemma 3.4 yields the following interesting observation: The
bounds on d(A) and d(C) there were absolute (depending on H , but not on
m). Thus, if T = ∅, i.e., if for all v ∈ Vf Pv is hyper-special, as it is for
example if we take a Cehvalley group scheme, there is an absolute bound on
the number of generators of principal congruence subgroups. One can even
work out the bounds to deduce:

Corollary 3.5. Let G be a Chevalley group scheme and O the ring of integers
in a number field k with [k : Q] = d. Then for every I �⊳ O,

d(GO(I)) ≤ d · dim(G) + 4

where GO(I) = ker(G(O) → G(O/I)).

This is a pretty sharp estimate, as one can see that d(GO(I)) ≥ d·dim(G).

Let us just stress that the absolute bound is valid only for the principal
congruence subgroups, but not for all congruence subgroups. In fact, a resid-
ually finite group with an absolute bound on the number of generators of its
finite index subgroups must be virtually solvable ([LM89]). See Section 4 for
more.

4 Between Uniform and Non-Uniform Lat-

tices

The bound d(Γ) = OH(
log v

log log v
) with v = µ(H/Γ) which was proved in The-

orem 1.1 for non-uniform lattices Γ in 2-generic simple Lie groups H is best
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possible. In fact, even if we take any lattice Λ in H and look only on its
finite index subgroups we can not do better. Moreover, this is true for every
non virtually solvable group. More precisely:

Proposition 4.1. Let n ∈ N, F a field of characteristic p ≥ 0, and Γ a
finitely generated infinite subgroup of GLn(F ) which is not virtually solvable.
Then there exists a constant c > 0 and finite index subgroups Γi of Γ with
ni := [Γ : Γi] → ∞, such that

(a) If p = 0,

d(Γi) ≥ c
log ni

log logni

(b) If p > 0,
d(Γi) ≥ c logni

Proof. As Γ is finitely generated and not virtually solvable, it has a special-
ization ϕ : Γ → GLn(k) for some global field k of characteristic p, where
ϕ(Γ) is also not virtually solvable ([LL04, Thm 4.1]). As proving the result
for ϕ(Γ) implies it for Γ, we can assume that Γ ⊂ GLn(k). Furthermore, if
G is the Zariski closure of Γ, it is not virtually solvable, and so we can divide
by its radical in order to assure that G is semi-simple. We are also allowed to
replace Γ by a group commensurable to it. Hence we can assume altogether
that G is simple, connected and even simply connected, defined over k. As Γ
is finitely generated, it is inside the OS-points of G, i.e., Γ is a Zariski dense
subgroup of an S−arithmetic subgroup Λ of G.
Assume now that p = char(F ) = 0. By the Strong Approximation Theorem
for linear groups [LS03, P. 391], Γ is dense in the S−arithmetic group Λ with

respect to the congruence topology of Λ. More precisely, it implies that Γ̂
is mapped onto Λ0, where Λ0 is a finite index subgroup of Λ, and Λ0 is its
congruence completion. So, it suffices to prove the result for Λ0. From now
on, d(H) denotes the minimal number of topological generators of a group
H . Again, we can replace Λ0 by a principal arithmetic group Λ, defined sim-
ilarly to the one defined in Section 2, and so Λ = G(k) ∩

∏
v∈Vf\S

Pv where
this time v runs over the finite valuations which are not in the finite set S,
and Λ =

∏
v∈Vf \S

Pv by the Strong Approximation Theorem.

Let x be a large real number, P (x) the set of rational primes less than x
and m their product. By the prime number theorem |P (x)| ∼ x

log x
and m ∼

ex. For all large enough p ∈ P (x), Λ/Λ(p) is a product of finite quasi-simple
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groups and hence its order is divisible by 2. As Λ/Λ(m) =
∏

p∈Px
Λ/Λ(p), the

group Λ/Λ(m) contains a subgroup isomorphic to Fl
2 with l ∼ |P (x)|. Let

Γ′ be the pre-image of this subgroup in Λ. Then [Λ : Γ′] ≤ |Λ/Λ(m)| ≤ mC′

for some constant C ′, while d(Γ′) ≥ l ∼ x
log x

∼ logm
log logm

and the proposition
is proved for the first case. The reader may recognize the last argument is a
quantitative use of the general ”Lubotzky Alternative”, see [LS03, P. 400].

We turn now to the positive characteristic case. Here our lower bound
is stronger, and despite that, the proof is easier. The lower bound follows
already from any local completion: As Γ is Zariski dense in G, the closure of
Γ is open in the v−adic topology of G(kv), namely, it is commensurable with
G(Ov). Now, Ov

∼= Fq[[t]] for some q = pe (where e depends on the choice
of v). If we denote K = G(Ov) = G(Fq[[t]]), and look at the congruence
subgroup K(i) = ker(G(Fq[[t]]) → G(Fq[t]/(ti))), then K(i) is a subgroup of
K of index approximately qi dimG. At the same time, [K(i), K(i)] ⊂ K(2i),
and K(i)p ⊂ K(pi) ⊂ K(2i). Hence d(K(i)) is at least iev. (see [LS94] for
more detailed arguments of this fact, and in particular Prop. 4.3 there which
shows that this estimate is sharp). This proves (b).

The proposition shows that, in particular, in every lattice Λ in a non-
compact simple Lie group H , there exists a sequence Λi of co-volumes vi
going to infinity with d(Λi) ≥ c log vi

log log vi
. Theorem 1.1 shows that this is sharp

even if we consider all the non-uniform lattices in H (at least when H is
2−generic). On the other hand, Theorem 1.2 tells us that this bound can
never be true if we take all the uniform lattices together. Let us recall its
formulation again here:

Theorem 4.2. Let H be a connected simple Lie group of rank ≥ 1. Then
there exist c > 0 and a sequence Γi of uniform lattices in H such that
µ(H/Γi) → ∞ and d(Γi) ≥ c log(µ(H/Γi))

This theorem is essentially proved in [BL12, Thm 1(i)] for a different goal.
Let us therefore only sketch the proof.

Proof. It is shown there, based on the Golod-Shafarevich [GS64] construction
of infinite class field towers that there exists an infinite sequence of field
extensions ki of Q of degree di = dki → ∞ and rdi := D1/di

ki
bounded, where

Dki is the absolute value of the discriminant of ki. Moreover, using a result
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of Prasad and Rapinchuk [PR06], these ki can be chosen in such a way that
they give rise to principal arithmetic lattices Λi of H of co-volume at most
cdi1 (for a constant c1 > 0 depending only on H), and such that for some
fixed rational prime p, Λi/Λi(p) is a quasi-semi-simple finite group of the
form Gi(p

ei) of order at most pdi dim(H). This finite group contains a (root)
subgroup isomorphic to Fpdi

∼= (Fp)
di and the pre-image of it, Γi, satisfies

therefore d(Γi) ≥ di while µ(H/Γi) ≤ pdi dimH · cdi1 = (c1p
dimH)di , which

proves the Theorem.

We end the paper by a remark on semi-simple groups H . Essentially, the
proof of Theorem 1.1 works for irreducible non-uniform lattices in such H , ex-
cept that for a general semi-simple group, the degree of the field of definition
of non-uniform lattices can be larger than 2, although still bounded. Thus,
Gauss’ Theorem which was used in Proposition 2.1 is not known. Therefore,
for such (high rank) H , we can prove only the weaker statement, namely:
for every irreducible non-uniform lattice Γ, d(Γ) ≤ OH(log µ(H/Γ)), while
we still believe that the right bound is OH(log(µ(H/Γ))/ log log(µ(H/Γ))).
The reader is referred to [BL19, Section 7] for a discussion of the connection
between such group theoretic/geometric conjectures and number theoretic
open problems.
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