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1. Introduction.

As it is well known finite simple groups are all generated by two elements
[AG]. But when it comes to presentations, it seems that many relations
are needed. This is the case in all known presentations. For example, if
Gn(Fq) is a simple group of Lie type of rank n over a field Fq, the classical
Steinberg presentation uses O(n4q2) relations. Of course, many of them are
redundant, but still, the number of them goes to infinity with n and q.

For a finite group G, denote by r(G) the minimal number of relations
over all possible presentations of G.

Theorem 1.1. Given n ∈ N, there exists C = C(n) ∈ N such that for every
untwisted simple group of Lie type Gl(Fq) of rank l ≤ n over a finite field
Fq,

r(Gl(Fq)) ≤ C(n)

i.e., Gl(Fq) has a presentation with at most C(n) relations.

It seems likely, that a similar result holds for the twisted groups of Lie
type, but we wonder, if such C may exist which is independent of n. One
may ask:

Problem. Does there exist a constant C0 such that every finite simple group
has a presentation with at most C0 relations?

We do not know the answer even for the family of alternating groups
Alt(n), for which the smallest presentation which is known to us requires
O(n) relations ([Car], [BGKLP]).

Our interest in this question grew out from a paper of Holt ([H]), in which
he proves the following result:

Theorem (Holt [H]). There exists a constant C1 such that if G is a finite
simple group and M is a simple Fp[G]-module, then

dimFp
H2(G,M) ≤ C1 log |G|dimFp

M
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This theorem has various important applications in “counting problems”
of finite group theory (see [H1], [Lu1]). Holt conjectured that in his theorem
the log |G| factor can be dropped. Now, in [Lu2] it was shown that if G is a
finite group and if r̂(G) denotes the minimal number of relations for G in a
profinite presentation, then

r̂(G) = sup
p,M

{[[
dim H2(G,M) − dim H1(G,M)

dim M
]] + d(G) − ξM}

where p runs over all primes, and M runs over all the finite simple Fp[G]-
modules, ξM = 0 if M is trivial and ξM = 1 if M is non-trivial, and for a
real number t, [[t]] denotes the smallest integer which is at least t. (For the
notion of profinite presentation see [Lu2]). Since r̂(G) ≤ r(G), and using
[AG], one sees that Holt’s conjecture is in fact equivalent to:

Holt’s Conjecture. There exists a constant C2 such that every finite simple
group has a profinite presentation with at most C2 relations.

We doubt whether this conjecture is true. In fact, our work started with
an effort to disprove it. We ended up with a modest contribution toward a
positive solution (for some weaker results see [Lu3]). More precisely, it says
that counter examples, if exist, are probably of unbounded rank.

Anyway, our positive result also implies (cf. [H]):

Corollary 1.2. For every n ∈ N, there exists C3 = C3(n) such that if
Gl(Fq) is an untwisted finite simple group of Lie type of rank l ≤ n over a
finite field Fq, then for every p and every simple Fp[G]-module,

dimFp
H2(G,M) ≤ C3 dimFp

M

The proof of the main theorem is by reduction via a Theorem of Curtis
and Tits (Theorem 2.1 below) to the cases of rank 1 and 2. The rank 1
case is due to Campbell, Robertson and Williams [CRW] from whom we
also borrowed an elegant argument, which we name the CRW-trick, which
we use frequently (see Section 3). Most of our work is to deal with the rank
2 cases. To do this, we use a theorem of Tits (Theorem 3.4 below) which
takes us essentially to the minimal parabolic subgroups. Those we treat by
writing Chevalley relations (á la [GLS3], Theorem 1.12.1).

Finally, we mention, that our method of proof is explicit, and if one wants,
the explicit bounded presentations can be written. But they are, probably,
far from optimal. It will be of interest anyway to give some bounds on C(n)
of Theorem 1.1. Our proof shows, that C(n) = O(n2).
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most of this work was done while the first author was visiting there.

We are also grateful to Avinoam Mann who provided us with some useful
background information.
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2. Proof of the Theorem.

Let G be an untwisted group of Lie type over a finite field. We can use
the following result of Curtis and Tits ([GLS1], 27.3) to reduce the problem
to groups of rank 1 and 2.

Theorem 2.1. (Curtis− Tits [GLS1]). Let G be a finite group of Lie type.
In a Bruhat decomposition of G, let Σ be the root system and Xα (α ∈ Σ) the
corresponding root subgroups. Let Π be a fundamental system in Σ and for
each α ∈ Π, let Iα = 〈Xα,X−α〉. Assume that |Π| ≥ 3. Then the relations
among the elements of the groups Iα holding in the groups 〈Iα, Iβ〉, α, β ∈ Π,
form a set of defining relations for a central extension of G.

As 〈Iα, Iβ〉 is a semisimple group of rank 2, the proof is indeed reduced
to proving the result for the groups of rank 1 and 2. This will be done in
Section 3.

3. Groups of Ranks 1 and 2.

In this section we will deal with the presentations of untwisted groups of
Lie type of ranks 1 and 2.

Definition 3.1. Let Gl(q), q = ra, r a prime, be an untwisted group of Lie
type of rank l over a finite field of order q, and H(q) a subgroup of Gl(q). We
will call a presentation of H(q) bounded if its size is bounded independently
of q.

The results of [CRW] show that PSL2(q) has a bounded presentation.
In fact, their proof has a lovely trick that we are going to imitate. Let us
therefore review it, sending the reader to [CRW] for full details.

In [CRW] the authors start with an unbounded presentation of G =
PSL2(q) ([CRW], eq.(2.1), p.335). The unbounded part consists of com-
mutator relations whose goal is to ensure that all the elements of U , the
unipotent subgroup of the upper triangular Borel subgroup B of G, com-
mute with each other. The trick of [CRW] is to define a group K presented
by a bounded number of generators and relations which is mapped onto B.
They then show ([CRW], Theorem 2.1, p.36), that K is metabelian of expo-
nent r, and that its commutator subgroup K ′ (which is abelian) is mapped
onto U . This enables them to replace all the commutator relations men-
tioned above by the boundedly many relations of K, and still ensure that U

is abelian. This way, they replace the unbounded presentation of PSL2(q)
by a bounded one.

This method works word by word also for SL2(q). We will later refer to
their argument as the CRW-trick.

From the cases of SL2(q) and PSL2(q), we can easily deduce:
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Lemma 3.2. (1) The group GL2(q) has a bounded presentation.
(2) Any central product of two groups of type A1(q) has a bounded pre-

sentation.
(3) Any central product of A1(q) and a cyclic group has a bounded pre-

sentation.

Remark 3.3. When it is not important to specify which version (adjoint
or universal) of a group we are working with, we will use the usual Lie
notation (cf. [Ca] or [GLS3]). For example, A1(q) stands for either SL2(q)
or PSL2(q).

Proof. (1) GL2(q) has a subgroup of index at most 2, call it Y (q), which is
a central product of SL2(q) and a cyclic group T . Just like the standard
argument that a group is finitely presented if and only if a finite index
subgroup is, we see that GL2(q) is boundedly presented iff Y (q) is. Now,
SL2(q) × T is clearly boundedly presented, and quotienting out a cyclic
group keeps the presentation bounded.

(2) and (3) are clear. �

Let G be now an untwisted quasisimple group of rank 2 (with Π being its
fundamental root system). To show that G has a bounded presentation, we
will use the following theorem of Tits ([Se], p.92).

Theorem 3.4. (Tits [Se]). Let (G,B,N, S) be a Tits system; for each s ∈
S, let Gs be the corresponding standard parabolic subgroup. Then G is the
sum of N and the Gs (s ∈ S) amalgamated along their intersections.

The theorem actually says, that if G{α1} and G{α2} are the minimal (in
this particular case, also maximal) parabolic subgroups of G ({α1, α2} = Π),
a presentation for G is obtained by taking a union of presentations of G{α1},
G{α2} and N , and identifying the intersections G{αi} ∩ N for i = 1, 2 and
G{α1} ∩ G{α2}. The first two intersections are subgroups of N , and the
last one is the Borel subgroup of G. In all cases, these are generated by a
bounded number of elements. For the subgroups of N , this is obvious, as N

is an extension of an abelian group generated by two elements by a bounded
group (the Weyl group). The Borel subgroups of rank 2 groups are also
boundedly generated. So, a bounded number of relations is added by these
identifications.

Moreover, N has a bounded presentation. Finally, we will show that the
parabolic subgroups G{α1} and G{α2} are boundedly presented, which will
finish the proof.

Proving that the minimal parabolics are boundedly presented will be done
first for SL3(q) for clarity of exposition. We then treat the general case.
From now on, λ will denote a generator for F

∗
q.
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A2(q)-Case.

Proposition 3.5. Let P = U.L where U = F1 × F2
∼= Fq × Fq = F

2
q,

L ∼= GL2(q), and L acts on U as on the natural module. Then P is boundedly
presented.

Proof. The group P is clearly boundedly generated. One can write a pre-
sentation for it consisting of

(a) a bounded presentation for L ∼= GL2(q),
(b) unbounded number of relations expressing the fact that every

element of U is of order r,
(c) unbounded number of relations ensuring that U ∼= F

2
q is abelian,

and
(d) relations expressing the action of L ∼= GL2(q) on U ∼= F

2
q.

The relations in (b) can be replaced by one relation: indeed, all the non-
trivial elements of U are conjugate to each other in P , and so, it suffices to
declare one of them to be of order r.

For the relations in (c), we can use first the CRW-trick in the following
way: for each Fi, we have a cyclic diagonal subgroup Ti of L acting on it
with at most two orbits such that Fi.Ti is isomorphic to a Borel subgroup
of SL2(q). We can then use the metabelian group K described above (fol-
lowing Theorem 2.1 of [CRW]) to make Fi abelian with a bounded number
of relations.

At this point we still need to ensure that F1 commutes with F2. In order
to do this, we claim:

Lemma 3.6. For {i, j} = {1, 2}, there exist diagonal elements ti, tj in L

such that

(1) 〈ti〉 centralizes Fj , and
(2) 〈ti〉 has boundedly many orbits in its action on Fi.

Proof. Since P is isomorphic to a maximal parabolic subgroup P{α1} of A2(q)
(cf. [Ca] or [GLS3]), it will be convenient to do all the calculations inside
G = SL3(q).

The group L can identified with a subgroup of G:

L ∼=

[

L 0
0 ∗

]

≤ G

and F1 and F2 with:

F1
∼=





1 0 F1

0 1 0
0 0 1



 and F2
∼=





1 0 0
0 1 F2

0 0 1




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Now, take

t1 =





λ 0 0
0 λ−2 0
0 0 λ



 and t2 =





λ−2 0 0
0 λ 0
0 0 λ





Clearly, the desired conclusions hold. �

Assuming the lemma, let {xi, yi, ...} be representatives of the orbits of
〈ti〉 on Fi, i = 1, 2. Then for i 6= j, the relations 1 = [xi, xj ] = [yi, yj ] =

[xi, yj] = ... imply all the relations [x
tr
i

i , x
tsj
j ], [y

tr
i

i , y
tsj
j ], [x

tr
i

i , y
tsj
j ], etc., for all

r and s, since ti commutes with tj and also with xj and yj, etc. This shows
that all the relations in (c) can be replaced by boundedly many.

Finally, the action of L on U = F1 × F2 given by relations (d) is also

bounded. Indeed, if g ∈ L, and u = x
ts
i

i as before, then conjugating by g

amounts to give

g−1t−s
i xit

s
ig = (g−1t−s

i g)(g−1xig)(g−1tsig)

The factors g−1t±s
i g are defined by the relations in (a) defining L, so to

define the action we need only to specify the way the generators of L act on
x1, y1, x2, y2, etc., again a bounded number of relations. The proposition
is now proved. �

Proposition 3.7. A2(q) has a bounded presentation.

Proof. The result follows immediately for SL3(q) as the minimal parabol-
ics of it are isomorphic to P of Proposition 3.5. To obtain it for PSL3(q), one
can simply quotient out the appropriate central elements. Since |Z(SL3(q))| ≤
3, the result follows. �

General Case.

Again, for general facts about the structure of parabolic subgroups, we
refer a reader to either [Ca] or [GLS3].

Let G be a universal version of a rank 2 untwisted quasisimple group,
G 6∼= A2(q). If P is its minimal parabolic, then P = MHU ([GLS3], 2.6.5),
where MH is a Levi complement of P , and H is a Cartan subgroup of G

(see p. 41, 50 of [GLS3]). Then MH is isomorphic either to GL2(q), or
to a central product of SL2(q) and a cyclic group. So, in any case, it is
boundedly presented by Lemma 3.2. Now, U is the unipotent radical of P ,
and thus is a product of at most 5 root subgroups:

U = Πe
i=1Xi with e ≤ 5.

As in A2(q)-case, P has a presentation with boundedly many generators and
unboundedly many relations of the following types:

(a) Boundedly many relations giving a presentation for MH.
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(b) For every i ≤ e, unboundedly many relations expressing the fact
that Xi is abelian of exponent r.

(c) For every 1 ≤ i 6= j ≤ e, commutator relations giving the
commutators of elements of Xi and Xj .

(d) The relations expressing the action of MH on U .

Now, we can find for every i ≤ e, an element hi ∈ H such that Xi.〈hi〉 is
isomorphic to a Borel subgroup of SL2(q), and use the CRW-trick to deduce
that the relations of type (b) can be replaced by boundedly many.

Lemma 3.8. For 1 ≤ i 6= j ≤ e, we can find elements ti, tj ∈ H such that
the following conditions hold:

(1) 〈ti〉 acts trivially on Xj , and
(2) 〈ti〉 has boundedly many orbits in its action on Xi.

Proof. Let us say that Xi = Xα and Xj = Xβ where α, β ∈ Σ+, α 6= β.

Proof 1: The roots α and β being linearly independent generate a sub-
group of finite index in the group of all algebraic characters of the torus
of Ḡ (the algebraic group corresponding to G) which is isomorphic to Z

2.
This index is bounded independently of the type of the group or the char-
acteristic. This implies that ker(χα) ∩ ker(χβ) is of bounded order and so
ker(χα) + ker(χβ) is of bounded index. Thus ker(χα) acts with boundedly
many orbits on Xβ.

It now follows that ker(χα) acts trivially on Xα and with boundedly many
orbits on Xβ. The same holds also over every finite field F. We can take
there hi to be an element which generates a bounded index subgroup in the
F-points of ker(χα).

Proof 2: Consider K := 〈Xα,X−α,Xβ ,X−β〉. Let us show that K is
centralized by boundedly many elements of H. Assume there exists a non-
identity element h ∈ CH(K). Let m be such that o(hm) is a prime. Then
Theorem 4.1.9 of [GLS3] implies that o(hm) = s ∈ {2, 3}, and in fact,
|CG(K)| ≤ s · |Z(G)| ≤ 6.

Consider CH(Xi). Using Theorems 1.12.7 and 2.2.6 of [GLS3], we ob-
tain that CH(Xi) ≥ Hi where Hi = 〈ti〉 ∼= F∗

q. Now, using the previous
paragraph, we see that the number of orbits of Hi on Xj is bounded. �

Assuming the lemma, let {xi, yi, ...} be representatives of the orbits of 〈ti〉
on Xi, 1 ≤ i ≤ e. Since ti commutes with tj and also with xj and yj , etc.,
for i 6= j and for all r and s, we have

[x
tri
i , x

ts
j

j ] = [x
tr
i
ts
j

i , x
ts
j
tr
i

j ] = [xi, xj ]
tri tsj

[y
tri
i , y

ts
j

j ] = [y
tr
i
ts
j

i , y
ts
j
tr
i

j ] = [yi, yj ]
tri tsj , etc.

Thus the relations [xi, xj ], [yi, yj ], [xi, yj ], etc., imply all the relations

[x
tri
i , x

ts
j

j ], [y
tri
i , y

ts
j

j ], [x
tri
i , y

ts
j

j ], etc., provided that the action of H on U is
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defined. We define [xi, xj ], [yi, yj], [xi, yj ], etc., appropriately, i.e., to look
like the appropriate Chevalley relations of Theorem 1.12.1(b) of [GLS3]. In
particular, [xi, xj ], [yi, yj, ], ... ∈ {1, xk, yk, zk, ...} for some k ∈ {1, ..., e} −
{i, j}. This shows that all the relations in (c) can be replaced by boundedly
many, provided that (d) can be done using boundedly many relations.

Therefore, consider the action of MH on U = Πe
i=1Xi. If g ∈ MH, and

u = x
ts
i

i as before, then conjugating by g amounts to giving

g−1t−s
i xit

s
ig = (g−1t−s

i g)(g−1xig)(g−1tsig)

The factors g−1t±s
i g are defined by the relations in (a) defining MH, so to

define the action we need only to specify the way the generators of LH act
on x1, y1, x2, y2, etc., again a bounded number of relations. Hence, we can
now prove:

Proposition 3.9. If G is an untwisted group of rank 2, G has a bounded
presentation.

Proof. Let Gu be the universal version of G. We have shown above that
a minimal parabolic of Gu has a bounded presentation. Thus, by Theo-
rem 3.4, Gu is boundedly presented. Now, a bounded presentation of G

follows immediately, since |Z(Gu)| is bounded. �
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