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Abstract. It was shown in a previous work of the first-named author with
De Chiffre, Glebsky and Thom that there exists a finitely presented group which
cannot be approximated by almost-homomorphisms to the unitary groups U(n)
equipped with the Frobenius norms (a.k.a. as L2 norm, or the Schatten-2-norm).
In his ICM18 lecture, Andreas Thom asks if this result can be extended to general
Schatten-p-norms. We show that this is indeed the case for 1 < p <∞.

1 Introduction

LetU(n) be the group of unitary n×nmatrices equippedwith a bi-invariantmetric dn

induced by a Banach norm‖.‖ on Mn(C), as dn(g, h) = ‖g−h‖. Examples of special
interest are:
(1) The Hilbert–Schmidt norm: ‖T‖H.S. =

√
1
n tr(T∗T).

(2) For 1 ≤ p <∞, the Schatten p-norm: ‖T‖p = (tr |T|p) 1
p , where |T| =

√
T∗T .

When p = 2, this is usually called the Frobenius norm:

‖T‖2 = ‖T‖Frob =
√

n‖T‖H.S..

(3) The operator norm, ‖T‖op = max{‖Tv ‖ : ‖v ‖ = 1}, also known as the
Schatten ∞-norm.

Whatever {dn}∞n=1 are, define for G = (U(n), dn) the following:

Definition 1.1. A finitely presented group � is called G-approximated if there
exists an infinite sequence {nk}∞k=1 of integers and (set-theoretic) maps φ = (φnk),
φnk : � → U(nk) such that:
(1) ∀g, h ∈ �, lim dnk(φnk(gh), φnk(g)φnk(h)) = 0.
(2) ∀g ∈ �, g 	= 1, there is ε(g) = ε > 0 such that lim sup dnk(φnk(g), idU(nk)) ≥ ε,

where idU(nk) is the nk × nk identity matrix.
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There are two long-standing questions regarding whether there exist groups �
which are not (U(n), dn)-approximated with respect to the dn’s defined in cases (1)
and (3). The question for case (1),where dn is defined by theHilbert–Schmidt norm,
is equivalent to Alain Connes’ problemwhether every group is Connes-embeddable
(see [7] and [19] for details), while case (3) is related to Kirchberg’s question
whether any stably finite C∗-algebra is embeddable into a norm-ultraproduct of
matrix algebras (see [5] for details), which implies that any group is (U(n), dn)-
approximated with respect to the distance induced by the operator norm.

In this paper, a group � will be called p-norm approximated if it is approx-
imated with respect to G = (U(n), ‖.‖p).

A recent breakthrough [8] shows that there exist groups that are not Frobenius
approximated (i.e., groups that are not 2-norm approximated). Following this,
Andreas Thom asks in his ICM 2018 talk [24], if that result can be extended to all
Schatten p-norms. We answer this affirmatively in the case where 1 < p < ∞,
and in fact we prove a somewhat stronger result:

Theorem 1.2. There exists a finitely presented group � which is not p-norm
approximated for any 1 < p < ∞.

The case of p = 1 is left open, as well as the cases of the Hilbert–Schmidt and
the operator norms.

The method of proof follows the one implemented in [8] for p = 2, but some
further cohomology vanishing results are needed.

Let � be a finitely presented group � = 〈S|R〉, with R ⊆ FS—the free group
on S and |R| <∞. Any map φ : S → U(n) uniquely determines a homomorphism
φ : FS → U(n) which we will also denote by φ.

The group � is called G = (U(n), dn)-stable if for every ε > 0 there exists
δ > 0 such that for every n ∈ N, if φ : S → U(n) is a map with

∑
r∈R

dn(φ(r), idU(n)) < δ,

then there exists a homomorphism φ̃ : � → U(n) (or equivalently, a map
φ̃ : S → U(n) with

∑
r∈R dn(φ̃(r), idU(n)) = 0) with

∑
s∈S

dn(φ(s), φ̃(s)) < ε.

Below, we will call a group � p-norm stable if it is stable with respect to
G = (U(n), ‖.‖p).
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A well-known observation (see for instance [13], [1] and [8]) is that a
G-approximated G-stable finitely presented group must be residually finite. Thus a
non-residually-finite finitely presented group which is G-stable cannot be
G-approximated.

In [8], a general sufficient criterion for Frobenius stability was given: If
H2(�,V) = 0 for every unitary representation of � on any Hilbert space V , then �
is Frobenius stable. This was combined then with Garland’s method [12] (as ex-
tended by Ballmann and Światkowski [3] for general Hilbert spaces) to produce
some lattices �0 in some simple l-adic Lie groups satisfying the desired H2 van-
ishing for every Hilbert space. Then an l-adic analogue of a result by Deligne [9]
was implemented in order to produce some finite central extensions �̃ of �0 that
are not residually finite. These �̃ are the non-Frobenius approximated groups.

The proof in [8] actually shows more (see Theorem 5.1 and Remark 5.2 there):
If ‖.‖ is any unitarily invariant and submultiplicative norm on Mn(C) (and so is the
Schatten p-norm for every 1 ≤ p ≤ ∞) and if H2(�,V) = 0 for any � isometric
representation on a Banach space of the form V =

∏
k→U(Mnk(C), ‖.‖), where V is

the Banach ultraproduct of Mnk (C) with respect to the norm ‖.‖ and with respect
to any ultrafilter U (see [8] and §2 below for more), then � is G-stable. To get non-
p-norm approximated groups we need an H2-vanishing result which will work for
spaces of the form V =

∏
k→U(Mnk(C), ‖.‖p), where ‖.‖p is the Schatten p-norm.

The technology to extend Garland’s method (or more precisly the method of
Dymara and Januszkiewicz [10]) to a wide class of Banach spaces was developed
by the second-named author in [18]. More precisely, it is shown there that for
certain classes of Banach spaces, vanishing of cohomology can be deduced for an
l-adic Lie group G, given a large enough thickness of the affine building on which
it acts. Using (a suitable version of) Shapiro’s Lemma, these vanishing results
pass to cocompact lattices of G. In our context, these methods yield the following
theorem:

Theorem 1.3. Let G = G(K), where G is a simple K-algebraic group of

K-rank d over a non-archimedean local field K with residue field of order q and
�0 < G a cocompact lattice of G. For any 1 < p1 ≤ 2 ≤ p2 < ∞, there exists a

natural number Q = Q(p1, p2, d) such that if q > Q, then Hi(�0,V) = 0 for every
i = 1, . . . , d − 1 and every Banach space of the form V =

∏
k→U(Mnk (C), ‖.‖p)

where U is any ultrafilter on N and p1 ≤ p ≤ p2.

Most of the paper will be devoted to the proof of Theorem 1.3. Let us now
show how it implies Theorem 1.2.

Applying Deligne’s method as in [8], we get a non-residually finite, finite
central extension �̃ = �p1,p2 of such a cocompact lattice �0 in a suitable l-adic
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Lie group G. Assuming that the dimension of the affine building associated to G

is greater than or equal to 3, a standard spectral sequence argument yields that
H2(�̃,V) = 0 for any V as in Theorem 1.3. Therefore �̃ is p-norm stable for any
p1 ≤ p ≤ p2 and, since it is not residually finite, we deduce by the observation
stated above that �̃ is not p-norm approximated for any p1 ≤ p ≤ p2.

Recall now Higman’s Theorem (see [14, Theorem 7.3, page 215]) which as-
serts that there exists a finitely presented group � that contains all finitely pre-
sented groups. By taking p1 → 1 and p2 → ∞ and noting that if a group is
G-approximated, so is every subgroup of it, we deduce that such � is not p-norm
approximated for any 1 < p < ∞ and Theorem 1.2 is proved.

As mentioned above, the cases of p = 1 and p = ∞ are left open. In both cases
(unlike the Hilbert–Schmidt norm) the norms are submultiplicative (see [8] for an
explanation of the importance of this property), but at least for p = ∞ (which is
the case of the operator norm), the method of this paper cannot work: the method
applied below shows vanishing of Hi(�0,V) = 0 for every i = 1, . . . , d − 1, based
on the geometric properties of V . Therefore, if the vanishing of cohomology is
proved for p = ∞, it will be proven for every �∞ Banach space, but it is known
that for every discrete group �, H1(�, �∞(�)) 	= 0 (see for instance [8, Section 4]).
We note that this type of reasoning excluding p = ∞ does not hold in the case of
p = 1: in [2], Bader, Gelander and Monod showed that for every group � with
property (T), H1(�,L1(�)) = 0 for every measure space �. The methods of [2]
are very different from those applied in this paper (and in [17]), but one can ask it
those methods can be extended to show the vanishing of the second cohomology
for the case p = 1.

The rest of this paper is devoted to the proof of Theorem 1.3. As noted above,
in [18], the second-named author proved a similar vanishing of cohomology, but
for an l-adic Lie group G instead of a lattice. Below, we will show how to use the
results of [18] together with a version of Shapiro’s Lemma to deduce Theorem 1.3.
The paper [18] was not written with this application in mind and therefore in order
to adapt the results of [18] to our setting, a somewhat lengthy exposition regarding
the general theory of Banach spaces and group representations on them is needed.

This paper is organized as follows: In §2, we give a number of definitions
and results needed to state the results regarding group cohomology with Banach
coefficients. In §4, we deduce Theorem 1.3 from the results of [18] that apply
to G, using Shapiro’s Lemma that relates the cohomology of G to that of �0.
Unfortunately, it seems that the version of Shapiro’s Lemma we need (for Banach
spaces rather than Hilbert spaces) is not proved in the literature and therefore we
will provide a proof in §3.
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2 Preliminaries

2.1 Strictly θ-Hilbertian spaces and Schatten norms. Two Banach
spaces V0,V1 form a compatible pair (V0,V1) if they are continuously linearly
embedded in the same topological vector space. The idea of complex interpolation
is that given a compatible pair (V0,V1) and a constant 0 ≤ θ ≤ 1, there is a method
to produce a new Banach space [V0,V1]θ as a “combination” of V0 and V1. We will
not review this method here, and the interested reader can find more information
on interpolation in [4].

This brings us to consider the following definition due to Pisier [20]: a Banach
space V is called strictly θ-Hilbertian for 0 < θ ≤ 1, if there is a compatible
pair (V0,V1), with V1 a Hilbert space, such that V = [V0,V1]θ. Examples of strictly
θ-Hilbertian spaces are Lp space and non-commutative Lp spaces (see [21] for
definitions and properties of non-commutative Lp spaces), where in these cases
θ = 2

p if 2 ≤ p < ∞ and θ = 2 − 2
p if 1 < p ≤ 2. We are interested in a very

basic case of non-commutative Lp spaces—namely finite matrices with p-Schatten
norms:

Definition 2.1 (Schatten norm for matrices). Let d ∈ N and let Md(C) be the
space of d × d complex matrices. For A ∈ Md(C), recall that A∗A is always a
positive semidefinite matrix and denote |A| =

√
A∗A. For 1 ≤ p < ∞, define the

Schatten p-norm on Md(C) by ‖A‖p = (tr(|A|p)) 1
p .

2.2 Vector valued L2 spaces. Given a measure space � with a finite
measureμ (a.k.a a finite measure space) and Banach spaceV , a function s : � → V
is called simple if it is of the form

s(ω) =
n∑

i=1

χEi(ω)vi,

where {E1, . . . ,En} is a partition of �, each Ei is a measurable set and χEi is the
indicator function on Ei and vi ∈ V .
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A function f : � → V is called Bochner measurable if it is almost every-
where the limit of simple functions, i.e., if there is a sequence of simple func-
tions sn : � → V such that for almost everyω, f (ω) = limn sn(ω). Denote L2(�;V)
to be the space of Bochner measurable functions satisfying

‖f‖L2(�;V) =
(∫

�
‖f (ω)‖2

Vdμ(ω)
) 1

2

< ∞.

Given a bounded linear operator T ∈ B(L2(�,μ)), we can define a bounded
linear operator T ⊗ idV ∈ B(L2(�;V)) by defining it first on simple functions and
extending it to the whole space L2(�;V).

We will also be interested in how T ⊗ idV behaves under some operations—this
is summed up in the following lemma:

Lemma2.2. Let (�,μ) be a measure spacewith a finite measure, T a bounded

operator on L2(�,μ) and C > 0 a constant. Let B = B(C) be the class of Banach
spaces defined as

B = {V : ‖T ⊗ idV‖B(L2(�;V)) ≤ C}.
Then this class is closed under quotients, subspaces, l2-sums, and ultraproducts
of Banach spaces, i.e., performing any of these operations on Banach spaces in B

yields a Banach space in B. Also, for any finite measure space (�, ν) and every
V ∈ B, we have that L2(�;V) ∈ B.

Proof. The fact that B is closed under quotients, subspaces and ultraproducts
of Banach spaces was shown in [22, Lemma 3.1]. The fact that B is closed under
�2-sums is straightforward and left for the reader (we will not make any use of it
in this paper).

Let (�, ν) be a measure space with a finite measure and V ∈ B. By our
definition of vector valued spaces using simple functions, it is enough to check that
the inequality holds for simple functions s : � → L2(�;V). Moreover, it is enough
to check for simple functions s : � → L2(�;V) whose values are simple functions
in L2(�;V). In other words, if we identify L2(�;L2(�;V)) with L2(�×�;V), we
need to show that the needed inequality holds for functions of the form

s(ω, λ) =
n∑

i=1

m∑
j=1

χEi(ω)χFj(λ)vi,j,

where {E1, . . . ,En} is a measurable partition of �, {F1, . . . ,Fm} is a measurable
partition of �, and vi,j ∈ V . Let s be as above; then

‖s‖2 =
n∑

i=1

m∑
j=1

μ(Ei)ν(Fj)‖vi,j‖2
V .
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We recall that for every measurable set E ⊆ � and every v ∈ V , the action of
T ⊗ idV on χEv is defined by

(T ⊗ idV )(χEv ) = T(χE)v.

Similarly, for every function f ∈ L2(�;V), the action of T ⊗ idL2(�;V) on χEf is
defined by

(T ⊗ idL2(�;V))(χEf ) = T(χE)f.

Therefore, the action of T ⊗ idL2(�;V) on s is as follows (we are abusing the
notation; formally, the action of T ⊗ idL2(�;V) is defined on L2(�;L2(�;V)) and not
on L2(�×�;V)):

(T ⊗ idL2(�;V))s =
n∑

i=1

T(χEi)
m∑
j=1

χFjvi,j =
m∑
j=1

χFj

n∑
i=1

T(χEi)vi,j

=
m∑
j=1

χFj

n∑
i=1

(T ⊗ idV )(χEivi,j) =
m∑
j=1

χFj(T ⊗ idV )
( n∑

i=1

χEivi,j

)
.

Note that written as above, for every j,
∑n

i=1(χEi)vi,j ∈ L2(�;V) and therefore
since V ∈ E, we have for every j that∥∥∥∥(T ⊗ idV)

( n∑
i=1

(χEi)vi,j

)∥∥∥∥2

≤ C2
∥∥∥∥

n∑
i=1

(χEi)vi,j

∥∥∥∥2

.

This yields that

‖(T⊗idL2(�;V))s‖2

=
m∑
j=1

ν(Fj)
∥∥∥∥(T ⊗ idV)

( n∑
i=1

(χEi)vi,j

)∥∥∥∥2

≤
m∑
j=1

ν(Fj)C
2

∥∥∥∥
n∑

i=1

(χEi)vi,j

∥∥∥∥2

= C2
m∑
j=1

ν(Fj)
n∑

i=1

μ(Ei)‖vi,j‖2 = C2‖s‖2,

as needed. �

2.3 Group representations on Banach spaces. Let G be a locally
compact group and V a Banach space. Let π be a representation π : G → B(V),
where B(V) are the bounded linear operators on V . Throughout this paper we
shall always assume π is continuous with respect to the strong operator topology
without explicitly mentioning it. We recall that given π, the dual representation
π∗ : G → B(V∗) is defined as

〈v, π∗(g)u〉 = 〈π(g−1).v, u〉, ∀g ∈ G, v ∈ V, u ∈ V∗.
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We remark that π∗ might not be continuous for a general Banach space, but it
is continuous for a large class of Banach spaces, called Asplund spaces, defined
below.

2.4 Asplund spaces.

Definition 2.3. A Banach space V is said to be an Asplund space if every
separable subspace of V has a separable dual.

There are many examples of Asplund spaces—for instance, every reflexive
space is Asplund (see [25] for an exposition on Asplund spaces). The reason we
are interested in Asplund spaces is the following theorem of Megrelishvili:

Theorem 2.4 ([16, Corollary 6.9]). Let G be a topological group and let π be

a continuous representation of G on a Banach space V. If V is an Asplund space,
then the dual representation π∗ is also continuous.

Asplund spaces can be alternatively characterized as Banach spaces that have
the Radon–Nikodym property (see definition in [25]). Using this characterization
it follows from a result of Sundaresan [23] that the property of being Asplund is
preserved when considering vector valued L2-spaces:

Theorem 2.5 ([23, Theorem 1]). Let V be a Banach space and let (�,μ) be

a measure space with a finite measure. Then V is Asplund if and only if L2(�;V)
is Asplund.

2.5 Group cohomology for groups acting on simplicial complexes.
Let X be an n-dimensional simplicial complex and let G be a group acting on X.
Denote X(k) to be the set of k-faces of X and �X(k) to be the set of ordered k-
simplices of X. Let V be a vector space and π a representation of G on V . Let
0 ≤ k ≤ n and let φ : �X(k) → V . Recall the following definitions:

• φ is anti-symmetric, if for every permutation τ ∈ Sym{0, . . . , k} and every
(vi0, . . . , vik), φ((viτ(0), viτ(k) )) = sgn(τ)φ((vi0, . . . , vik)).

• φ is twisted by π, if for every (vi0, . . . , vik) and every g ∈ G,

π(g)φ((vi0, . . . , vik)) = φ(g.(vi0, . . . , vik)).

For 0≤k≤n, denote Ck(X, π) to be the space of maps φ : �X(k)→V that are anti-
symmetric and twisted by π. Define the differential map dk : Ck(X, π)→Ck+1(X, π)
in the usual way:

(dkφ)((v0, . . . , vk+1)) =
k+1∑
i=0

(−1)iφ((v0, . . . , v̂i, . . . , vk+1)).
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As in the case of a simplicial (untwisted) cohomology, we have that dk+1 ◦ dk = 0
and Hk(X, π) = Ker(dk)/ Im(dk−1). The next theorem states that under certain
conditions, this cohomology is isomorphic to the group cohomology of G with
respect to the representation π:

Theorem2.6 ([6, X.1.12]). LetG be a topological group andX a contractible,
locally finite simplicial complex. Assume that G acts simplicially on X and that

this action is cocompact and proper. Assume further that V is a Banach space

and π is a continuous representation of G on V. Then H∗(G, π) = H∗(X, π).

3 Shapiro’s Lemma

3.1 Framework. The aim of this section is to prove a version of Shapiro’s
Lemma.

We fix the following notations: X will denote an n-dimensional pure (i.e., every
maximal cell is n-dimensional) contractible simplicial complex that is (n + 1)-
colorable (i.e., the vertices of X can be colored by n + 1 colors and every n-
dimensional cell ofX has a vertex of every color) and locally finite (i.e., every vertex
of X is contained in a finite number of simplices). Throughout this section, G will
denote a locally compact, unimodular topological group with a Haar measure μ,
acting properly and cocompactly on X such that the action preserves the coloring
and G acts transitively on the n-dimensional simplices of X (note that this implies
that G is compactly generated). We denote by � a fixed n-dimensional simplex
of X that serves as the fundamental domain for the action of G. We denote
by � a countable subgroup of G that also acts properly and cocompactly on X.
So � is a discrete cocompact subgroup of G. The case of interest for us is when
G = G(K)—the K-points of a simple, K-rank n, K-algebraic group G when K is
a non-archimedean local field with a residue field of order q. In this case, G acts
properly on the Bruhat–Tits building X associated with it, which is a contractible,
pure n-dimensional, locally finite, (n + 1)-colorable simplicial complex and the
fundamental domain of the action of G on X is a single n-dimensional simplex.
The thickness of X is the minimal degree of all its 1-dimensional links and it tends
to infinity as q tends to infinity. In this case, � is a uniform (=cocompact) lattice,
and by the Margulis arithmeticity theorem (see [26, Chapter 6]), if n ≥ 2, it is an
arithmetic lattice.

3.2 Shapiro’s Lemma.

Definition 3.1. Let G and � be as above and V be a Banach space. Denote
by ν the invariant measure on G/� induced by the Haar measure of G. Define
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the Banach space L2(G/�;V) to be the space of Bochner measurable functions
f : G/� → V with the norm

(1) ‖f‖ =
(∫

G/�
‖f (g)‖2

Vdν(g)
) 1

2

.

By choosing a fundamental domain D for the action of � on G, we can identify
functions L2(G/�;V) with L2(D;V), where D is taken with the restriction of the
measure μ.

Let π be an isometric representation of � on V . The induced representation
of π from � to G, denoted IndG

� (π)L2 , is defined as follows:

IndG
� (π)L2

= {f : G → V : ∀g ∈ G, h ∈ �, f (gh−1) = π(h)f (g) and f ∈ L2(G/�)},

where f ∈ L2(G/�) means that f is Bochner measurable when restricted to D and
with the norm defined in (1) above. The reader should note that ‖f (g)‖ is well
defined on G/�, because π is isometric and therefore for every h ∈ �, g ∈ G,
‖f (gh−1)‖ = ‖π(h)f (g)‖ = ‖f (g)‖.

Also, G acts on IndG
�(π)L2 by left translation, denoted λIndG

� (π)L2
, as

λIndG
� (π)L2

(g)f (g′) = f (g−1g′), ∀g, g′ ∈ G.

Remark 3.2. The induced representation can also be defined as follows:
define IndG

� (π) to be the vector space

IndG
� (π) = {f : G → V continuous : ∀g ∈ G, h ∈ �, f (gh−1) = π(h)f (g)},

and complete the vector space with respect to the L2 norm as in the definition of
IndG

�(π)L2 . The equivalence between these definitions is proven in [11, Chapter 4]
in the setting of isometric actions on Hilbert spaces, but the proof can be generalized
to our setting. We will not make any use of this equivalent definition.

Proposition 3.3. Let G, �, V and π be as above. Then IndG
�(π)L2 is a Banach

space and the action of G on IndG
�(π)L2 by left translation, denoted λIndG

� (π)L2
, is an

isometric continuous representation of G on IndG
� (π)L2.

Proof. The fact that λIndG
� (π)L2

is isometric and continuous when π is isometric
is straightforward and left for the reader. �

Classically, Shapiro’s Lemma is the equality H∗(�,π) = H∗(G, λIndG
� (π)). This

equality is proven in [6] for IndG
�(π) defined in Remark 3.2, but not for IndG

� (π)L2
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which is a larger space (see Remark 3.2). Below, we will prove the equality
H∗(�,π) = H∗(G, λIndG

� (π)L2
) under the assumptions on G and � that are stated in

the beginning of this section. We suspect that this equality is true even without our
added assumptions, but in the case we are interested in, the proof that we give for
this equality is direct and elementary.

Theorem 3.4 (L2-Shapiro’s Lemma with coefficients in Banach representa-
tions). Let X, G, � be as above, V a Banach space and π an isometric represen-

tation of � on V. Then

H∗(�,π) = H∗(G, λIndG
� (π)L2

).

Lemma 3.5. Let X, G, � be as above, V a Banach space and π an isometric
representation of � on V. Given φ ∈ Ck(X, π) and σ ∈ �X(k), define fφ,σ : G → V

by
fφ,σ(g) = φ(g−1.σ).

Then fφ,σ ∈ IndG
�(π)L2 and if for some g ∈ G, φ(g−1.σ) 	= 0, then ‖fφ,σ‖ > 0.

Proof. We note that for every h ∈ � and every g ∈ G, we have that

fφ,σ(gh−1) = φ(hg−1.σ) = π(h)φ(g−1.σ) = π(h)fφ,σ(g).

Hence, we are left to show that fφ,σ ∈ IndG
� (π)L2 and that if for some g ∈ G,

φ(g−1.σ) 	= 0, then ‖fφ,σ‖ > 0. Most of the work in the rest of this proof is
choosing a convenient fundamental domain D for the action of � on G.

By our assumptions, � acts cocompactly on X and therefore � \ �X(k) is finite.
In particular, there are σ1, . . . , σm ∈ �X(k) such that

{g.σ : g ∈ G} =
m⋃
i=1

{h.σi : h ∈ �},

and the union above is disjoint. Fix gi ∈ G, i = 1, . . . ,m, such that gi.σ = σi

(such gi’s exist, because we assumed that G \ X is a single colored n-dimensional
simplex). It follows that for every g ∈ G, there are h ∈ � and a unique i such that

g−1.σ = h.σi = hgi.σ,

i.e., g−1
i h−1g−1.σ = σ. If we denote the stabilizer of σ in G by Gσ, we deduce that

there is gσ ∈ Gσ such that g−1 = hgigσ and so

G =
m⋃
i=1

Gσg
−1
i � =

m⋃
i=1

g−1
i (giGσg

−1
i )� =

m⋃
i=1

g−1
i (Ggi.σ)� =

m⋃
i=1

g−1
i (Gσi)�

and this is a disjoint union.
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For every i, denote �σi = Gσi ∩ � and choose Dσi to be a fundamental domain
for the action of �σi on Gσi . We claim that D =

⋃m
i=1 g−1

i (Dσi) is a fundamental
domain for the action of � on G. Indeed, Dσi ⊆ Gσi and therefore D is defined by
a disjoint union and( m⋃

i=1

g−1
i Dσi

)
� =

m⋃
i=1

g−1
i Dσi�σi� =

m⋃
i=1

g−1
i Gσi� = G,

as needed.
With this choice of fundamental domain, it follows that∫

G/�
‖fφ,σ(g)‖2

Vdν(g) =
∫

D
‖fφ,σ(g)‖2

Vdμ(g) =
m∑
i=1

∫
g−1

i Dσi

‖fφ,σ(g)‖2
Vdμ(g)

=
m∑
i=1

∫
Dσi

‖fφ,σ(g
−1
i g)‖2

Vdμ(g) =
m∑
i=1

∫
Dσi

‖φ(g−1gi.σ)‖2
Vdμ(g)

=
m∑
i=1

∫
Dσi

‖φ(g−1.σi)‖2
Vdμ(g) =

m∑
i=1

∫
Dσi

‖φ(σi)‖2
Vdμ(g)

=
m∑
i=1

μ(Dσi)‖φ(σi)‖2
V .

Note that by the assumption of proper action of G and of � on X, we have for every
1 ≤ i ≤ m, that 0 < μ(Gσi) <∞ and�σi is a finite group. Hence, 0 < μ(Dσi) < ∞
and fφ,σ ∈ IndG

�(π)L2 . Also note that if for some g ∈ G, φ(g−1.σ) 	= 0, then there is
1 ≤ i0 ≤ m, φ(σi0) 	= 0 and therefore∫

G/�
‖fφ,σ(g)‖2

Vdν(g) ≥ μ(Gσi0
/�σi0

)‖φ(σi0)‖2
V > 0. �

We can now prove Shapiro’s Lemma in our setting:

Proof. By Theorem2.6, it is enough to prove that H∗(X, π) = H∗(X, λIndG
� (π)L2

).
We will prove this by finding bijective linear maps�k : Ck(X, π)→Ck(X, λIndG

� (π)L2
)

for k = 0, . . . , n such that for every φ ∈ Ck(X, π), dk�k(φ) = �k+1(dkφ). The
existence of such maps shows that H∗(X, π) = H∗(X, λIndG

� (π)L2
) as needed.

Define �k : Ck(X, π) → Ck(X, λIndG
� (π)L2

) by

(�k(φ))(σ) = fφ,σ,

where fφ,σ is defined as in Lemma 3.5.
There are several things we need to check. First, we need to check that for

every φ ∈ Ck(X, π), we have that �(φ) ∈ Ck(X, λIndG
� (π)L2

). By Lemma 3.5, we

have that fφ,σ ∈ IndG
� (π)L2 . By the definition of fφ,σ, it is also clear that �(φ)
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is anti-symmetric since φ is anti-symmetric. Moreover, �k(φ) is also twisted by
λIndG

� (π)L2
: let g, g′ ∈ G; then

λIndG
� (π)L2

(g).((�(φ))(σ))(g′) = ((�(φ))(σ))(g−1g′) = fφ,σ(g
−1g′)

= φ((g−1g′)−1.σ) = φ((g′)−1.(g.σ))

= fφ,g.σ(g
′) = ((�(φ))(g.σ))(g′),

as needed. Thus �k : Ck(X, π) → Ck(X, λIndG
� (π)L2

) as claimed above.
Second, we note that if φ 	≡ 0, then for some σ, φ(σ) 	= 0 and therefore by

Lemma 3.5, �(φ) 	≡ 0 and therefore� is injective.
Third, we will check that � is surjective. Let ψ ∈ Ck(X, λIndG

� (π)L2
); then for

every σ ∈ �X(k), ψ(σ) ∈ IndG
� (π)L2 . Since ψ is twisted by λIndG

� (π)L2
, we have that

for every g ∈ Gσ,
ψ(σ) = ψ(g.σ) = λIndG

� (π)L2
(g)ψ(σ).

The above equality is an equality in IndG
�(π)L2 , i.e., for almost every g′ ∈ G,

ψ(σ)(g′) = λIndG
� (π)L2

(g)ψ(σ)(g′) = ψ(σ)(g−1g′). In particular, there is xσ ∈ V such

that for almost every g ∈ Gσ, ψ(σ)(g) = xσ. Define φψ : �X(k) → V , by φψ(σ) = xσ,
where xσ is as above.

We will show that φψ ∈ Ck(X, π) and that �(φψ) = ψ. The fact that φψ is anti-
symmetric follows directly from the fact that ψ is anti-symmetric. To see that φψ
is twisted by π, we note that for every h ∈ � and every σ ∈ �X(k), xh.σ was defined
such that for almost every g′ ∈ Gh.σ, ψ(h.σ)(g′) = xh.σ. Note that Gh.σ = hGσh−1,
and therefore, for almost every g ∈ Gσ, ψ(h.σ)(hgh−1) = xh.σ. Thus,

xh.σ = ψ(h.σ)(hgh−1) = λIndG
� (π)L2

(h)ψ(σ)(hgh−1) =ψ(σ)(gh−1) = π(h)ψ(σ)(g),

and since this holds for almost every g ∈ Gσ, it follows that

φψ(h.σ) = xh.σ = π(h)xσ = π(h)φψ(σ),

as needed. To see that �(φψ) = ψ, we will show that for almost every g ∈ G

and every σ ∈ �X(k), �(φψ)(σ)(g) = ψ(σ)(g). We note that for almost every g ∈ G
and almost every g′ ∈ Gσ, xg−1.σ = ψ(g−1.σ)(g−1g′g). Therefore, for almost every
g ∈ G and almost every g′ ∈ Gσ,

�(φψ)(σ)(g) = fφψ,σ(g) = φψ(g−1.σ) = xg−1.σ = ψ(g−1.σ)(g−1g′g)

= λIndG
� (π)L2

((g′)−1g)ψ(g−1.σ)(g) = ψ(σ)(g).

Finally, one can easily see that � is linear and direct computation shows that
for φ ∈ Ck(X, π), dk�k(φ) = �k+1(dkφ). �
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4 Proof of Theorem 1.3

Let G = G(K) be the K-points of a simple, K-rank n, K-algebraic group G when K

is a non-archimedean local field with a residue field of order q. The group G acts
on a Bruhat–Tits building X and, as noted above, the conditions of §3.1 for the
action are fulfilled.

Below, we will describe the main theorem of [18] (stated in §1.2 of [18]) in the
setting above. The setup of this theorem is as follows:

(1) The class of Banach spaces E′ = E3(E2(E1(r,C1), θ2),C3) is derived by dif-
ferent types of deformations of Hilbert spaces with respect to any chosen
constants r > 20, C1 ≥ 1, 1 ≥ θ2 > 0,C3 ≥ 1 (the constants determine the
extent of the deformations)—for an exact definition see in [18, §1.1].

(2) The class of Banach spaces E = E′ is the closure of E′ under quotients,
subspaces, l2-sums and ultraproducts.

Under this setup, the main theorem of [18] can be stated as follows:

Theorem 4.1. For every choice of constants r > 20, C1 ≥ 1, 1 ≥ θ2 > 0,

C3 ≥ 1, there is a constant Q = Q(r,C1, θ2,C3, n) such that if q > Q, then for
every V ∈ E = E′ and every continuous isometric representation ρ of G on V such

that ρ∗ is also continuous, Hi(G, ρ) = 0 for i = 1, . . . , n − 1.

The idea behind the proof of this Theorem is as follows. One fixes an n-
dimensional simplex � in X and defines a family of operators Tτ ∈ B(L2(Gτ)),
where τ runs over the (n − 2)-faces of �. It is shown there that there is a constant
ε0 > 0, such that for a given Banach space V , if ‖Tτ ⊗ idV‖B(L2(Gτ;V)) ≤ ε0, then for
every isometric representationρ of G on V , such that ρ∗ is continuous, Hi(G, ρ) = 0
for i = 1, . . . , n − 1. The class of Banach spaces E′ is then defined in such a way
that for a large enough q, ‖Tτ ⊗ idV‖ ≤ ε0 for every V ∈ E′ and every τ. By [18,
Lemma 2.24], passing to the closure does not change the bounds on ‖Tτ ⊗ idV‖
and therefore the cohomologies also vanish for V ∈ E = E′.

We observe that if in the proof of Theorem 4.1 in [18], we use Lemma 2.2 of
the current paper (instead of [18, Lemma 2.24]), we can extend the definition of
the closure of E′ in Theorem 4.1. Define Ẽ = Ẽ′ to be the smallest class of Banach
spaces that contains E′, such that Ẽ is closed under quotients, subspaces, l2-sums,
ultraproducts, and such that for every finite measure space (�, ν), if V ∈ Ẽ, then
L2(�;V) ∈ Ẽ. By Lemma 2.2, if ‖Tτ ⊗ idV‖ ≤ ε0 for every V ∈ E′ and every τ,
then for every V ∈ Ẽ′, ‖Tτ ⊗ idV‖ ≤ ε0 for every τ and the rest of the proof of
Theorem 4.1 is verbatim as in [18]. This yields the following:
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Theorem 4.2. For every choice of constants r > 20, C1 ≥ 1, 1 ≥ θ2 > 0,

C3 ≥ 1, there is a constant Q = Q(r,C1, θ2,C3, n) such that if q > Q, then for
every V ∈ Ẽ = Ẽ′ and every continuous isometric representation ρ of G on V such

that ρ∗ is also continuous, Hi(G, ρ) = 0 for i = 1, . . . , n − 1.

Next, we fix some constants r′,C′
1,C

′
3 such that r′ > 20, C′

1 ≥ 1, C′
3 ≥ 1 (for ex-

ample, we can take r′ = 21,C′
1 = C′

3 = 1). Given constants 1 < p1 ≤ 2 ≤ p2 <∞,
we denote θp1,p2 = min{2 − 2

p1
, 2

p2
}. With these notations, we define E(p1, p2) to

be the class of Banach spaces E(p1, p2) = E3(E2(E1(r′,C′
1), θp1,p2 ),C

′
3). We will

not repeat the definitions of the E1,E2,E3 here, but only recall that for such a
choice, E(p1, p2) contains all θp1,p2 -strictly Hilbertian spaces (see [18, §1.1.2]). In
particular, for every p1 ≤ p ≤ p2, (Mk(C), ‖.‖p) ∈ E(p1, p2). With this notation,
we can prove Theorem 1.3:

Theorem 4.3. Let G = G(K) be a simple, K-rank n, K-algebraic group over
a non-archimedean local field K with a residue field of order q and � < G a

cocompact lattice. For any 1 < p1 ≤ 2 ≤ p2 < ∞, there exists a natural number
Q = Q(p1, p2, n) such that if q > Q, then Hi(�,V) = 0 for every i = 1, . . . , n−1 and

every Banach space of the form V =
∏

l→U(Mkl(C), ‖.‖p) where U is any ultrafilter

on N and p1 ≤ p ≤ p2.

Proof. For 1<p1 ≤2≤p2<∞, applying Theorem 4.2 on E(p1, p2), there is a
constant Q = Q(p1, p2, n) such that if q > Q, then for every V ∈ ˜E(p1, p2) and
every isometric representation ρ of G on V , if ρ∗ is continuous, then Hi(G, ρ) = 0
for i = 1, . . . , n − 1.

As noted above, for every k∈N and every p1 ≤p≤p2, (Mk(C), ‖.‖p) ∈ E(p1, p2).
Therefore for any choice of ultrafilter U on N, V =

∏
l→U(Mkl (C), ‖.‖p) is in

˜E(p1, p2). By [21, Corollary 5.3], every space (Mk(C), ‖.‖p) is uniformly convex
and the bound on the modulus of convexity depends only on p. As a result,
V =

∏
l→U(Mkl (C), ‖.‖p) is uniformly convex and, by the Milman–Pettis theorem

(see for instance [15, Theorem 5.2.15]), V is reflexive and thus Asplund.
Given an isomeric representation π of � on V , V ′ = IndG

�(π)L2 is isometrically
isomorphic to the Banach space L2(D, μ;V) where D is a fundamental domain
of G/�. Thus, V ′ ∈ ˜E(p1, p2) and by Theorem 2.5, V ′ is Asplund. The induced
representation λIndG

� (π)L2
is a continuous isometric representation on V ′ (which is

Asplund) and therefore by Theorem 2.4, λ∗
IndG

� (π)L2
is continuous and the conditions

of Theorem 4.2 hold. As a result, Hi(G, λIndG
� (π)L2

) = 0 for i = 1, . . . , n − 1, and by
Theorem3.4 (which is our version of Shapiro’s Lemma) it follows that Hi(�,π) = 0
for every i = 1, . . . , n − 1. �
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