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Abstract

Let G = G(k) be the k-rational points of a simple algebraic group
G over a local field k and let Γ be a lattice in G. We show that the
regular representation ρΓ\G of G on L2(Γ\G) has a spectral gap, that
is, the restriction of ρΓ\G to the orthogonal of the constants in L2(Γ\G)
has no almost invariant vectors. On the other hand, we give examples
of locally compact simple groups G and lattices Γ for which L2(Γ\G)
has no spectral gap. This answers in the negative a question asked by
Margulis [Marg91, Chapter III, 1.12]. In fact, G can be taken to be
the group of orientation preserving automorphisms of a k-regular tree
for k > 2.

1 Introduction

Let G be a locally compact group. Recall that a unitary representation π of
G on a Hilbert space H has almost invariant vectors if, for every compact
subset Q of G and every ε > 0, there exists a unit vector ξ ∈ H such that
supx∈Q ‖π(x)ξ− ξ‖ < ε. If this holds, we also say that the trivial representa-
tion 1G is weakly contained in π.

Recall that a lattice Γ in G is a discrete subgroup such that there exists
a finite G-invariant regular Borel measure µ on Γ\G. Denote by ρΓ\G the
unitary representation of G given by right translation on the Hilbert space
L2(Γ\G, µ) of the square integrable measurable functions on Γ\G. The sub-
space C1Γ\G of the constant functions on Γ\G is G-invariant as well as its
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orthogonal complement

L2
0(Γ\G) =

{
ξ ∈ L2(Γ\G) :

∫
Γ\G

ξ(x)dµ(x) = 0

}
.

Denote by ρ0
Γ\G the restriction of ρΓ\G to L2

0(Γ\G, µ). We say that ρΓ\G

(or L2(Γ\G, µ)) has a spectral gap if ρ0
Γ\G has no almost invariant vectors.

(In [Marg91, Chapter III., 1.8], Γ is then called weakly cocompact.) It is
well-known that L2(Γ\G) has a spectral gap when Γ is cocompact in G (see
[Marg91, Chapter III, 1.10]). Margulis (op.cit, 1.12) asks whether this result
holds more generally when Γ is a subgroup of finite covolume.

The goal of this note is to prove the following results:

Theorem 1 Let G be a simple algebraic group over a local field k and G =
G(k), the group of k-rational points in G . Let Γ be a lattice in G. Then
the unitary representation ρΓ\G on L2(Γ\G) has a spectral gap.

Theorem 2 For an integer k > 2, let X be the k–regular tree and G =
Aut(X). Then G contains a lattice Γ for which the unitary representation
ρΓ\G on L2(Γ\G) has no spectral gap.

So, Theorem 2 answers in the negative Margulis’ question mentioned
above.

Theorem 1 is known in case k = R ([Bekk98]). It holds, more generally,
when G is a real Lie group ([BeCo08]). Observe also that when k−rank(G) ≥
2, the group G has Kazhdan’s Property (T) (see [BHV]) and Theorem 1 is
clear in this case. When k is non-archimedean with characteristic 0, every
lattice Γ in G(k) is uniform (see [Serr, p.84]) and hence the result holds as
mentioned above. By way of contrast, G has many non uniform lattices when
the characteristic of k is non zero (see [Serr] and [Lubo91]). So, in order to
prove Theorem 1, it suffices to consider the case where the characteristic of
k is non-zero and where k− rank(G) = 1.

Recall that when k is non-archimedean and k− rank(G) = 1, the group
G(k) acts by automorphisms on the associated Bruhat-Tits tree X (see
[Serr]). This tree is either the k-regular tree Xk (in which every vertex
has constant degree k) or is the bi-partite bi-regular tree Xk0,k1 (where every
vertex has either degree k0 or degree k1 and where all neighbours of a vertex
of degree ki have degree k1−i ). The proof of Theorem 1 will use the special
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structure of a fundamental domain for the action of Γ on X as described in
[Lubo91] (see also [Ragh89] and [Baum03]).

Theorems 1 and 2 provide a further illustration of the different behaviour
of general tree lattices as compared to lattices in rank one simple Lie groups
over local fields; for more on this topic, see [Lubo95].

The proofs of Theorems 1 and 2 will be given in Sections 3 and 4; they
rely in a crucial way on Proposition 6 from Section 2, which relates the ex-
istence of a spectral gap with expander diagrams. In turn, Proposition 6 is
based, much in the spirit of [Broo81], on analogues for diagrams proved in
[Mokh03] and [Morg94] of the inequalities of Cheeger and Buser between the
isoperimeric constant and the bottom of the spectrum of the Laplace opera-
tor on a Riemannian manifold (see Proposition 5). This connection between
the combinatorial expanding property and representation theory is by now
a very popular theme; see [Lubo94] and the references therein. While most
applications in this monograph are from representation theory to combina-
torics, we use in the current paper this connection in the opposite direction:
the existence or absence of a spectral gap is deduced from the existence of
an expanding diagram or of a non-expanding diagram, respectively.

2 Spectral gap and expander diagrams

We first show how the existence of a spectral gap for groups acting on trees
is related with the bottom of the spectrum of the Laplacian for an associated
diagram.

A graph X consists of a set of vertices V X, a set of oriented edges EX, a
fix-point free involution − : EX → EX, and end point mappings ∂i : EX →
V X for i = 0, 1 such that ∂i(e) = ∂1−i(e) for all e ∈ EX. Assume that X
is locally finite, that is, for every x ∈ V X, the degree deg(x) of x is finite,
where deg(x) is the cardinality of the set

∂−1
0 (x) = {e ∈ EX : ∂0(e) = x}.

The group Aut(X) of automorphisms of the graph X is a locally compact
group in the topology of pointwise convergence on X, for which the stabilizers
of vertices are compact open subgroups.

We will consider infinite graphs called diagrams of finite volume. An edge-
indexed graph (D, i) is a graph D equipped with a function i : ED → R+

(see [BaLu01, Chapter 2]). A measure µ for an edge-indexed graph (D, i) is
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a function µ : V D ∪ ED → R+ with the following properties (see [Mokh03]
and [BaLu01, 2.6]):

• i(e)µ(∂0e) = µ(e)

• µ(e) = µ(e) for all e ∈ V D, and

•
∑

x∈V D µ(x) < ∞.

Following [Morg94], we will say that D = (D, i, µ) is a diagram of finite
volume. The in-degree indeg(x) of a vertex x ∈ V D is defined by

indeg(x) =
∑

e∈∂−1
0 (x)

i(e) =
∑

e∈∂−1
0 (x)

µ(e)

µ(x)
.

The diagram D is k-regular if indeg(x) = k for all x ∈ V D.
Let D = (D, i, µ) be a connected diagram of finite volume. Observe that

µ is determined, up to a multiplicative constant, by the weight function i.
Indeed, fix x0 ∈ V D and set ∆(e) = i(e)/i(e) for e ∈ ED. Then

µ(∂1e) =
µ(e)

i(e)
=

µ(e)

i(e)
= µ(∂0e)∆(e)

for every e ∈ ED. Hence µ(x) = ∆(e1)∆(e2) . . . ∆(en)µ(x0) for every path
(e1, e2, . . . , en) from x0 to x ∈ V D.

Let D = (D, i, µ) be a diagram of finite volume. An inner product is
defined for functions on V D by

〈f, g〉 =
∑

x∈V D

f(x)g(x)µ(x).

The Laplace operator ∆ on functions f on V D is defined by

∆f(x) = f(x)− 1

indeg(x)

∑
e∈∂−1

0 (x)

µ(e)

µ(x)
f(∂1(e)).

The operator ∆ is a self-adjoint positive operator on L2(V D). Let

L2
0(V D) = {f ∈ L2(V D) : 〈f, 1V D〉 = 0}
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and set
λ(D) = inf

f
〈∆f, f〉,

where f runs over the unit sphere in L2
0(V D). Observe that

λ(D) = inf{λ : λ ∈ σ(∆) \ {0}},

where σ(∆) is the spectrum of ∆.
Let now X be a locally finite tree, and let G be a closed subgroup of

Aut(X). Assume that G acts with finitely many orbits on X. Let Γ be a
discrete subgroup of G acting without inversion on X. Then the quotient
graph Γ\X is well-defined. Since Γ is discrete, for every vertex x and every
edge e, the stabilizers Γx and Γe are finite. Moreover, Γ is a lattice in G if
and only if Γ is a lattice in Aut(X) and this happens if and only if∑

x∈D

1

|Γx|
< ∞,

where D is a fundamental domain of Γ in X (see [Serr]). The quotient graph
Γ\X ∼= D is endowed with the structure of an edge-indexed graph given by
the weight function i : ED → R+ where i(e) is the index of Γe in Γx for
x = ∂0(e). A measure µ : V D ∪ ED → R+ is defined by

µ(x) =
1

|Γx|
and µ(e) =

1

|Γe|

for x ∈ V D and e ∈ ED. Observe that µ(V D) =
∑

x∈D 1/|Γx| < ∞. So,
D = (D, i, µ) is a diagram of finite volume.

Let G be a group acting on a tree X. As in [BuMo00, 0.2], we say that the
action of G on X is locally ∞-transitive if, for every x ∈ V X and every n ≥ 1,
the stabilizer Gx of x acts transitively on the sphere {y ∈ X : d(x, y) = n}.

Proposition 3 Let X be either the k-regular tree Xk or the bi-partite bi-
regular tree Xk0,k1 for k ≥ 3 or k0 ≥ 3 and k1 ≥ 3. Let G be a closed
subgroup of Aut(X). Assume that the following conditions are both satisfied:

• G acts transitively on V X in the case X = Xk and G acts transitively
on the set of vertices of degree k0 as well as on the set of vertices of
degree k1 in the case X = Xk0,k1 ;
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• the action of G on X is locally ∞-transitive.

Let Γ be a lattice in G and let D = Γ\X be the corresponding diagram of
finite volume. The following properties are equivalent:

(i) the unitary representation ρΓ\G on L2(Γ\G) has a spectral gap;

(ii) λ(D) > 0.

For the proof of this proposition, we will need a few general facts. Let G
be a second countable locally compact group and U a compact subgroup of
G. Let Cc(U\G/U) be the space of continuous functions f : G → C which
have compact support and which are constant on the double cosets UgU for
g ∈ G.

Fix a left Haar measure µ on G. Recall that L1(G, µ) is a Banach algebra
under the convolution product, the L1-norm and the involution f ∗(g) =
f(g−1); observe that Cc(U\G/U) is a ∗-subalgebra of L1(G, µ). Let π be a
(strongly continuous) unitary representation of G on a Hilbert space H. A
continuous ∗-representation of L1(G), still denoted by π, is defined on H by

π(f)ξ =

∫
G

f(x)π(x)ξdµ(x), f ∈ L1(G), ξ ∈ H.

Assume that the closed subspace HU of U -invariant vectors in H is non-zero.
Then π(f)HU ⊂ HU for all f ∈ Cc(U\G/U). In this way, a continuous
∗-representation πU of Cc(U\G/U) is defined on HU .

Proposition 4 With the previous notation, let f ∈ Cc(U\G/U) be a func-
tion with the following properties: f(x) ≥ 0 for all x ∈ G,

∫
G

fdµ = 1,
and the subgroup generated by the support of f is dense in G. The following
conditions are equivalent:

(i) the trivial representation 1G is weakly contained in π;

(ii) 1 belongs to the spectrum of the operator πU(f).

Proof Assume that 1G is weakly contained in π. There exists a sequence
of unit vectors ξn ∈ H such that

lim
n
‖π(x)ξn − ξn‖ = 0,
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uniformly over compact subsets of G. Let

ηn =

∫
U

π(u)ξndu,

where du denotes the normalized Haar measure on U. It is easily checked
that ηn ∈ HU and that

lim
n
‖π(f)ηn − ηn‖ = 0.

Since

‖ηn − ξn‖ ≤
∫

U

‖π(u)ξn − ξn‖du,

we have ‖ηn‖ ≥ 1/2 for sufficiently large n. This shows that 1 belongs to the
spectrum of the operator πU(f).

For the converse, assume that 1 belongs to the spectrum of πU(f). Hence,
1 belongs to the spectrum of π(f), since πU(f) is the restriction of π(f) to
the invariant subspace HU . As the subgroup generated by the support of
f is dense in G, this implies that 1G is weakly contained in π (see [BHV,
Proposition G.4.2]).

Proof of Proposition 3 We give the proof only in the case where X is the
bi-regular tree Xk0,k1 . The case where X is the regular tree Xk is similar and
even simpler.

Let X0 and X1 be the subsets of X consisting of the vertices of degree k0

and k1, respectively. Fix two points x0 ∈ X0 and x1 ∈ X1 with d(x0, x1) = 1.
So, X0 is the set of vertices x for which d(x0, x) is even and X1 is the set of
vertices x for which d(x0, x) is odd. Let U0 and U1 be the stabilizers of x0

and x1 in G. Since G acts transitively on X0 and on X1, we have G/U0
∼= X0

and G/U1
∼= X1.

We can view the normed ∗-algebra Cc(U0\G/U0) as a space of finitely
supported functions on X0. Since U0 acts transitively on every sphere around
x0, it is well-known that the pair (G, U0) is a Gelfand pair, that is, the
algebra Cc(U0\G/U0) is commutative (see for instance [BLRW09, Lemma
2.1]). Observe that Cc(U0\G/U0) is the linear span of the characteristic

functions δ
(0)
n (lifted to G) of spheres of even radius n around x0. Moreover,

Cc(U0\G/U0) is generated by δ
(0)
2 ; indeed, this follows from the formulas (see
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[BLRW09, Theorem 3.3])

δ
(0)
4 = δ

(0)
2 ∗ δ

(0)
2 − k0(k1 − 1)δ

(0)
0 − (k1 − 2)δ

(0)
2

δ
(0)
2n+2 = δ

(0)
2 ∗ δ

(0)
2n − (k0 − 1)(k1 − 1)δ

(0)
2n−2 − (k1 − 2)δ

(0)
2n for n ≥ 2.

Let f0 =
1

‖δ(0)
2 ‖1

δ
(0)
2 . We claim that f0 has all the properties listed in Propo-

sition 4.
Indeed, f0 is a non-negative and U0-bi-invariant function on G with∫

G
f0(x)dx = 1. Moreover, let H be the closure of the subgroup generated

by the support of f0. Assume, by contradiction, that H 6= G. Then there
exists a function in Cc(U0\G/U0) whose support is disjoint from H. This is
a contradiction, as the algebra Cc(U0\G/U0) is generated by f0. This shows
that H = G.

Let π be the unitary representation of G on L2
0(Γ\G) defined by right

translations. Observe that the space of π(U0)-invariant vectors is L2
0(Γ\X0).

So, we have a ∗-representation πU0 of Cc(U0\G/U0) on L2(Γ\X0, µ), where µ
is the measure on the diagram D = Γ\X, as defined above.

Similar facts are also true for the algebra Cc(U1\G/U1) : this is a commu-

tative normed ∗-algebra, it is generated by the characteristic function δ
(1)
2 of

the sphere of radius 2 around x1, and the representation π of G on L2
0(Γ\G)

induces a ∗-representation πU1 of Cc(U1\G/U1) on L2
0(Γ\X1, µ). Likewise, the

function f1 =
1

‖δ(1)
2 ‖1

δ
(1)
2 has all the properties listed in Proposition 4.

Let AX be the adjacency operator defined on `2(X) by

AXf(x) =
1

deg(x)

∑
e∈∂−1

0 (x)

f(∂1(e)), f ∈ `2(X).

Since AX commutes with automorphisms of X, it induces an operator AD

on L2(V D, µ) given by

ADf(x) =
1

indeg(x)

∑
e∈∂−1

0 (x)

µ(e)

µ(x)
f(∂1(e)), f ∈ L2(V D, µ),

where D is the diagram obtained from the quotient graph Γ\X. So, ∆ =
I − AD, where ∆ is the Laplace operator on D.
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Let BD denote the restriction of AD to the space L2
0(V D, µ). It follows

that λ(∆) > 0 if and only if 1 does not belong to the spectrum of BD.
Proposition 3 will be proved, once we have shown the following

Claim: 1 belongs to the spectrum of BD if and only if 1G is weakly contained
in π.

For this, we consider the squares of the operators AX and AD and compute

A2
Xf(x) =

1

k0k1

deg(x)f(x) +
1

k0k1

∑
d(x,y)=2

f(y), f ∈ `2(X).

The subspaces `2(X0) and `2(X1) of `2(X) are invariant under A2
X and the

restrictions of A2
X to `2(X0) and `2(X1) are given by right convolution with

the functions

g0 =
1

k0k1

δe + (1− 1

k0k1

)f0

g1 =
1

k0k1

δe + (1− 1

k0k1

)f1,

where δe is the Dirac function at the group unit e of G.
It follows that the restrictions of B2

D to the subspaces L2
0(Γ\X0, µ) and

L2
0(Γ\X1, µ) coincide with the operators πU0(g0) and πU1(g1), respectively.

For i = 0, 1, the spectrum σ(πUi
(gi)) of πUi

(gi) is the set

σ(πUi
(gi)) =

{
1

k0k1

+ (1− 1

k0k1

)λ : λ ∈ σ(πUi
(fi))

}
.

Thus, 1 belongs to the spectrum of πU0(fi) if and only if 1 belongs to the
spectrum of πU0(gi).

To prove the claim above, assume that 1 belongs to the spectrum of BD.
Then 1 belongs to the spectrum of B2

D. Hence 1 belongs to the spectrum of
either πU0(g0) or πU1(g1) and therefore 1 belongs to the spectrum of either
πU0(f0) or πU1(f1). It follows from Proposition 4 that 1G is weakly contained
in π.

Conversely, suppose that 1G is weakly contained in π. Then, again by
Proposition 4, 1 belongs to the spectra of πU0(f0) and πU1(f1). Hence, 1
belongs to the spectra of πU0(g0) and πU1(g1). We claim that 1 belongs to the
spectrum of BD.
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Indeed, assume by contradiction that 1 does not belong to the spectrum
of BD, that is, BD − I has a bounded inverse on L2

0(V D, µ). Since 1 belongs
to the spectrum of the self-adjoint operator πU0(g0), there exists a sequence

of unit vectors ξ
(0)
n in L2

0(Γ\X0, µ) with

lim
n
‖πU0(g0)ξ

(0)
n − ξ(0)

n ‖ = 0.

As the restriction of B2
D to L2

0(Γ\X0, µ) coincides with πU0(g0), we have

‖πU0(g0)ξ
(0)
n − ξ(0)

n ‖ = ‖(B2
D − I)ξ(0)

n ‖
= ‖(BD − I)(BD + I)ξ(0)

n ‖

≥ 1

‖(BD − I)−1‖
‖(BD + I)ξ(0)

n ‖

So, limn ‖BDξ
(0)
n + ξ

(0)
n ‖ = 0. On the other hand, observe that BD maps

L2
0(Γ\X0, µ) to the subspace L2(Γ\X1, µ) and that these subspaces are or-

thogonal to each other. Hence,

‖BDξ(0)
n + ξ(0)

n ‖2 = ‖BDξ(0)
n ‖2 + ‖ξ(0)

n ‖2

This is a contradiction since ‖ξ(0)
n ‖ = 1 for all n. The proof of Proposition 3

is now complete.�

Next, we rephrase Proposition 3 in terms of expander diagrams. Let
(D, i, w) be a diagram with finite volume. For a subset S of V D, set

E(S, Sc) = {e ∈ ED : ∂0(e) ∈ S, ∂1(e) /∈ S}.

We say that D is an expander diagram if there exists ε > 0 such that

µ(E(S, Sc))

µ(S)
≥ ε

for all S ⊂ V D with µ(S) ≤ µ(D)/2. The motivation for this definition
comes from expander graphs (see [Lubo94]).

We quote from [Mokh03] and [Morg94] the following result which is stan-
dard in the case of finite graphs.

Proposition 5 ([Mokh03], [Morg94]) Let (D, i, w) be a diagram with fi-
nite volume. Assume that supe∈ED i(e)/i(e) < ∞ and that supx∈V D indeg(x) <
∞ The following conditions are equivalent:
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(i) D is an expander diagram;

(ii) λ(D) > 0.

As an immediate consequence of Propositions 3 and 5, we obtain the following
result which relates the existence of a spectral gap to an expanding property
of the corresponding diagram.

Proposition 6 Let X be either the k-regular tree Xk or the bi-partite bi-
regular tree Xk0,k1 for k ≥ 3 or k0 ≥ 3 and k1 ≥ 3. Let G be a closed
subgroup of Aut(X) satisfiying both conditions from Proposition 3. Let Γ
be a lattice in G and let D = Γ\X be the corresponding diagram of finite
volume. The following properties are equivalent.

(i) The unitary representation ρΓ\G on L2(Γ\G) has a spectral gap;

(ii) D is an expander diagram.

.

3 Proof of Theorem 1

Let G = G(k) be the k-rational points of a simple algebraic group G over a
local field k and let Γ be a lattice in G. As explained in the Introduction, we
may assume that k is non-archimedean and that k − rank(G) = 1. By the
Bruhat-Tits theory, G acts on a regular or bi-partite bi-regular tree X with
one or two orbits. Moreover, the action of G on X is locally ∞-transitive
(see [Chou94, p.33]).

Passing to the subgroup G+ of index at most two consisting of orientation
preserving automorphisms, we can assume that G acts without inversion.
Indeed, assume that L2(Γ∩G+\G+) has a spectral gap. If Γ is contained in
G+, then L2(Γ\G) has a spectral gap since G+ has finite index (see [BeCo08,
Proposition 6]). If Γ is not contained in G+, then Γ∩G+\G+ may be identified
as a G+-space with Γ\ΓG+ = Γ\G. Hence, 1G+ is not weakly contained in
the G+-representation defined on L2

0(Γ\G).
Let X be the Bruhat-Tits tree associated to G. It is shown in [Lubo91,

Theorem 6.1] (see also [Baum03]) that Γ has fundamental domain D in X of
the following form: there exists a finite set F ⊂ D such that D \F is a union
of finitely many disjoint rays r1, . . . , rs. (Recall that a ray in X is an infinite
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path beginning at some vertex and without backtracking.) Moreover, for
every ray rj = {xj

0, x
j
1, x

j
2, . . . } in D \ F , the stabilizer Γxj

i
of xj

i is contained

in the stabilizer Γxj
i+1

of xj
i+1 for all i.

To prove Theorem 1, we apply Proposition 6. So, we have to prove that
D is an expander diagram.

Choose i ∈ {0, 1, . . . } such that, with

D1 = F ∪
s⋃

j=1

{xj
0, . . . , x

j
i},

we have µ(D1) > 1/2.
Let S be a subset of D with µ(S) ≤ µ(D)/2. Then D1 * S. Two cases

can occur.
•First case: S ∩D1 = ∅. Thus, S is contained in

s⋃
j=1

{xj
i+1, x

j
i+2, . . . }.

Fix j ∈ {1, . . . , s}. Let i(j) ∈ {0, 1, . . . } be minimal with the property that
xj

i(j)+1 ∈ S. Then ej := (xj
i(j)+1, x

j
i(j)) ∈ E(S, Sc). Observe that |Γxj

l+1
| =

deg(xj
l )|Γxj

l
| for all l ≥ 0. Let k be the minimal degree for vertices in X (so,

k = min{k0, k1} if X = Xk0,k1).Then µ(xj
l+1) ≤ µ(xj

l )/k for all l and

µ(ej) =
1

|Γej
|
≥ k

|Γxj
i(j)
|

= kµ(xj
i(j)).
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Therefore, we have

µ(E(S, Sc))

µ(S)
≥

∑s
j=1 µ(ej)∑s

j=1 µ({xj
i(j)+1, x

j
i(j)+1, . . . , })

≥ k

∑s
j=1 µ(xj

i(j))∑s
j=1

∑∞
l=0 µ(xj

i(j)+l)

≥ k

∑s
j=1 µ(xj

i(j))∑s
j=1 µ(xj

i(j))
∑∞

l=0 k−l

= k

∑s
j=1 µ(xj

i(j))

1
1−k−1

∑s
j=1 µ(xj

i(j))

= k
1
1

1−k−1

= k − 1.

•Second case: S ∩ D1 6= ∅. Then there exist x ∈ S ∩ D1 and y ∈ D1 \ S.
Since D1 is a connected subgraph, there exists a path (e1, e2, . . . , en) in ED1

from x to y. Let l ∈ {1, . . . , n} be minimal with the property ∂0(el) ∈ S and
∂1(el) /∈ S. Then el ∈ E(S, Sc). Hence, with C = min{µ(e) : e ∈ ED1} > 0,
we have

µ(E(S, Sc))

µ(S)
≥ C

µ(D)
.

This completes the proof of Theorem 1.�

4 Proof of Theorem 2

Let (D, i, µ) be a k-regular diagram. By the “inverse Bass–Serre theory” of
groups acting on trees, there exists a lattice Γ in G = Aut(Xk) for which
D = Γ\Xk. Indeed, we can find a finite grouping of (D, i), that is, a graph
of finite groups D = (D,D) such that i(e) is the index of De in D∂0e for all
e ∈ ED. Fix an origin x0. Let Γ = π1(D, x0) be the fundamental group of
(D, x0). The universal covering of (D, x0) is the k-regular tree Xk and the
diagram D can identified with the diagram associated to Γ\Xk. For all this,
see (2.5), (2.6) and (4.13) in [BaLu01].

In view of Proposition 6, Theorem 2 will be proved once we present ex-
amples of k-regular diagrams with finite volume which are not expanders.
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An example of such a diagram appears in [Mokh03, Example 3.4]. For the
convenience of the reader, we review the construction.

Fix k ≥ 3 and let q = k − 1. For every integer n ≥ 1, let Dn be the finite
graph with 2n + 1 vertices:

◦
x
(n)
1

− ◦
x
(n)
2

− ◦ − · · · ◦ − ◦
x
(n)
2n

− ◦
x
(n)
2n+1

Let D be the following infinite ray:

◦
x0

− ◦
x1

−D1 − ◦
x2

− ◦
x3

−D2 − ◦ − ◦ − · · · − − ◦
x2n−2

− ◦
x2n−1

−Dn − ◦ − ◦ · · ·

We first define a weight function in on EDn as follows:

• in(e) = 1 if e = (x
(n)
1 , x

(n)
2 ) or e = (x

(n)
2 , x

(n)
1 )

• in(e) = q if e = (x
(n)
m , x

(n)
m+1) for m even

• in(e) = 1 if e = (x
(n)
m , x

(n)
m+1) for m odd

• in(e) = q if e = (x
(n)
m+1, x

(n)
m ) for m even

• in(e) = 1 if e = (x
(n)
m+1, x

(n)
m ) for m odd.

Observe that in(e)/in(e) = 1 for all e ∈ EDn. Define now a weight function
i on ED as follows:

• i(e) = q + 1 if e = (x0, x1)

• i(e) = q if e = (x1, x0)

• i(e) = 1 if e = (xm, xm+1) for m ≥ 1

• i(e) = q if e = (xm+1, xm) for m ≥ 1

• i(e) = in(e) if e ∈ EDn.

One readily checks that, for every vertex x ∈ D,∑
e∈∂−1

0 (x)

i(e) = q + 1 = k,

that is, (D, i) is k-regular. The measure µ : V D → R+ corresponding to i
(see the remark at the beginning of Section 2) is given by
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• µ(x0) = 1/(q + 1)

• µ(x2m−2) = 1/qm−1 for m ≥ 2

• µ(x2m−1) = 1/qm for m ≥ 1

• µ(x) = 1/qn if x ∈ Dn.

One checks that, if we define µ(e) = i(e)µ(∂0e) for all e ∈ ED, we have
µ(e) = µ(e). Moreover,

µ(Dn) = (2n + 1)
1

qn

and hence

µ(D) ≤ 1

q + 1
+ 2

∑
n≥0

1

qn
+

∑
n≥1

µ(Dn) < ∞.

We have also

E(Dn, D
c
n) = {(x2n−1, x2n−2), (x2n, x2n+1)},

so that

µ (E(Dn, D
c
n)) = q

1

qn
+

1

qn
=

q + 1

qn
.

Hence
µ (E(Dn, D

c
n))

µ(Dn)
=

q+1
qn

(2n + 1) 1
qn

=
q + 1

2n + 1

and

lim
n

µ (E(Dn, D
c
n))

µ(Dn)
= 0.

Observe that, since limn µ(Dn) = 0, we have µ(Dn) ≤ µ(D)/2 for sufficiently
large n. This completes the proof of Theorem 2.�.
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