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Abstract. We apply spectral analysis of quotients of the Bruhat-
Tits buildings of type Ãd−1 to construct isospectral non-isomorphic
Cayley graphs of the finite simple groups PSLd(Fq) for every d ≥ 5
(d 6= 6) and prime power q > 2.

1. Introduction

Let X1 and X2 be two finite graphs on n vertices, and Ai, i = 1, 2,

the n×n adjacency matrix of Xi. The graphs X1 and X2 are isospectral

(or: cospectral), if the multi-set of eigenvalues of A1 is equal to that of

A2. There are several methods to obtain isospectral graphs, e.g. Seidel

switching method [Se], Sunada’s method [Su], [Br], [Lu] and various

others. However these methods produce isospectral graphs which are

highly non-homogeneous.

Very little seems to be known on isospectrality of Cayley graphs.

Babai [B] showed that the dihedral group D of order 2p (p a prime) has

at least p/64 pairs of generators which give isospectral (non-isomorphic)

Cayley graphs. From this one can deduce that every group G contain-

ing D has two sets of generators A and B, of size |G| − 3, for which

the Cayley graphs Cay(G; A) and Cay(G; B) are isospectral but not

isomorphic (see Proposition 5.1 below). But except for Babai’s paper

we do not know of any family of groups Gn with two sets of generators

An and Bn, of bounded size, for which Cay(Gn; An) and Cay(Gn; Bn)

are isospectral but not isomorphic. For example, is this possible for

Gn = Sn, the symmetric groups?

Here we prove the following:
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Theorem 1. For every d ≥ 5 (d 6= 6) and every prime power q

and every e ≥ 1 (such that qe > 4d2 + 1), there are two systems

A, B of generators of the group PSLd(Fqe), such that the Cayley graphs

Cay(PSLd(Fqe); A) and Cay(PSLd(Fqe); B) are isospectral and not iso-

morphic.

The number of generators in A and B can be chosen to be either

r = 2 qd−1
q−1

or r = [d1]q + [d2]q + · · ·+ [ d
d−1]q (where [di]q denotes the number

of subspaces of dimension i over Fq in the vector space Fd
q).

Several remarks are in order here. First, our method produces ϕ(d)/2

generating sets for which the Cayley graphs are isomorphic (where ϕ is

Euler’s function), which explains the exceptional case d = 6. Secondly,

if A is a symmetric set of generators for a group G, define the Cayley

complex of G with respect to A to be the clique complex induced by

the Cayley graph (namely, g0, . . . , gi ∈ G form an i-cell of the complex

iff each pair is connected in the Cayley graph). With this definition, we

prove that the Cayley complexes, rather than graphs, are isospectral,

i.e. also with respect to higher dimensional Laplacians. Finally, for

fixed d and q, we obtain infinitely many isospectral pairs which are

r-regular with the same r. This is of its own interest, since the usual

methods to construct isospectral r-regular graphs give pairs for which

r goes to infinity. For general graphs we can do something better than

for Cayley graphs.

Theorem 2. Let d ≥ 3 and let r be as in Theorem 1. Then, for every

m ∈ N, there exist m isospectral non-isomorphic r-regular graphs.

Using Sunada’s method, Brooks [Br] obtained such a result for r = 3.

Let us now outline our method. The graphs considered in Theorems

1 and 2 are in fact the 1-skeletons of Cayley complexes, or subgraphs

of them. The complexes are obtained as quotients of the Bruhat-Tits

building Bd(F ) associated with the group PGLd(F ), where F is a pos-

itive characteristic local field. In spite of the ‘finite nature’ of the

constructed objects, the proof is based on infinite dimensional repre-

sentation theory and the theory of division algebras over global fields.
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In more details, let F = Fq((t)) be the field of Laurent power series

over a finite field Fq of order q, G = PGLd(F ) and Bd(F ) the Bruhat-

Tits building associated with G (cf. [R],[T]). The vertices of B =

Bd(F ) can be identified with the cosets G/K where K = PGLd(O)

is a maximal compact subgroup, and O = Fq[[t]], the ring of integers

of F . Let A be the adjacency operator or Laplacian acting on L2(B)

(complex functions defined on the vertices). A commutes with the

action of G, hence it is well defined on Γ\B for every discrete subgroup

Γ of G. In particular, if Γ is a uniform lattice in G, i.e. a discrete

cocompact subgroup, A induces on X = Γ\B the adjacency matrix of

the 1-skeleton graph, which is an r-regular graph for r =
∑d−1

i=1 [di]q.

Now, L2(Γ\G) is a unitary representation space for G. The following

is well known (see [Pe] and also [LSV1] or [LSV3]):

Proposition 3. Let G = PGLd(F ), K = PGLd(O) and let Γ1 and Γ2

be two discrete cocompact subgroups of G. If L2(Γ1\G) ∼= L2(Γ2\G) as

(right) G representation spaces, then the simplicial complexes Γ1\G/K

and Γ1\G/K are isospectral. In fact, they are even strongly isospectral,

i.e. with respect to the higher dimensional Laplacians.

Using representation theory (Jacquet-Langlands correspondence) and

the theory of division algebras, we prepared in [LSV3] various ex-

amples of arithmetic subgroups of PGLd(F ) which will provide the

means to prove Theorem 2. This is a discrete analog of Theorem 1

of [LSV3], claiming that for every m ∈ N and d ≥ 3, the symmet-

ric space PGLd(R)/POd(R) covers m isospectral non-isomorphic Rie-

mannian manifolds. The proof when translated to our discrete situa-

tion, gives m isospectral simplicial complexes (details can be found in

[LSV3]). Since in our situation the complex is completely determined

by its 1-skeleton, we obtain m 1-skeletons which are not isomorphic

as graphs. It should be remarked that the proof of isospectrality in

[LSV3, Theorem 3] uses the Jacquet-Langlands correspondence in pos-

itive characteristic; the details of the proof of this correspondence ap-

pear in the literature for the characteristic zero case (in general) and

for prime d in the characteristic p case. See Remark 1.6 in [LSV1] for

more discussion on this.



4 ALEXANDER LUBOTZKY, BETH SAMUELS, AND UZI VISHNE

For the proof of Theorem 1, we use a family of remarkable arith-

metic lattices constructed by Cartwright and Steger [CS], which act

simply transitively on the vertices of Bd(F ). We denote their congru-

ence subgroups by ∆(I), where I�Fq[t] is a prime ideal. We proved

in [LSV2] that the quotient complexes ∆(I)\Bd(F ) are Cayley com-

plexes for a group which lies between PGLd(Fqe) and PSLd(Fqe) (here

e = dim(Fq[t]/I)). In particular, their 1-skeletons are Cayley graphs.

We already have used similar complexes in [LSV2] to give explicit con-

structions of Ramanujan complexes (see [LSV1]). This time we sum-

mon them to provide isospectral Cayley graphs.

The paper is organized as follows: In Section 2 we recall the nota-

tion and results from [LSV3] and prove Theorem 2. In Section 3 we

recall the Cartwright-Steger lattices and their quotients, as described

in [LSV2], and prove Theorem 1. In Section 4 we present explicit ex-

amples of isospectral Cayley graphs. Section 5 explains the observation

mentioned above, how to obtain large isospectral Cayley graphs from

small ones.
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2. Proof of Theorem 2

In [LSV3, Theorem 4], we proved the following:

Theorem 4. Let F be a local field of positive characteristic, G =

PGLd(F ) where d ≥ 3, K a maximal compact subgroup and Bd(F ) =

G/K the associated Bruhat-Tits building. Then for every m ∈ N
there exists a family of m torsion free cocompact arithmetic lattices

{Γi}i=1,...,m in G, such that the finite complexes Γi\Bd(F ) are isospec-

tral and not commensurable.

The isospectrality of the Γi\Bd(F ) proved in this theorem is ‘rep-

resentation theoretic isospectrality’ i.e. L2(Γi\G) are isomorphic as

G-representation spaces, where G = PGLd(F ). As explained there,

this implies a ‘strong combinatorial isospectrality’ in the sense that
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not only the spectrum of the standard Laplacians is independent of i,

but the same goes for the spectrum of the higher dimensional or colored

Laplacians.

We outline the construction here and refer the reader to [LSV3] for

more details. Let k be a global field contained in F , and ν0 the valuation

of k with respect to which the completion of k is F . Since F ∼= Fq((t)),

one may choose k = Fq(t) and ν0 the t-adic valuation (i.e. ν0(t
i) = i

and ν(f) = 0 for f ∈ Fq[t] prime to t). The completion of k with

respect to a valuation ν is denoted kν .

Now let T be a finite set of valuations of k not containing ν0, and let

D1, . . . , Dm be central division algebras of degree d over k, which are

split by kν for every valuation ν 6∈ T (in particular by F ), and remain

division algebras over kθ for every θ ∈ T . Moreover we require that Di

is not isomorphic as a ring to either Dj or Dop
j for i 6= j (recall that

division algebras over k are uniquely determined—as algebras—by their

local invariants, which are in {0, 1/d, . . . , (d− 1)/d}). We showed in

[LSV3] that T can be chosen to accommodate m such different division

rings if 2|T |/|T | > 2m.

Let G′
i denote the algebraic group defined as the multiplicative group

D×
i modulo its center. Our assumptions guarantee that G′

i(kθ) is a

compact group for every θ ∈ T , and that G′
i(F ) = PGLd(F ). Define

the ring

(1) R0,T = {x ∈ k : ν(x) ≥ 0 for every ν 6∈ T ∪ {ν0}}.

In [LSV3, Section 2] we give an explicit description of G′
i as an alge-

braic group defined over R0,T . Since R0,T is discrete in the product∏
ν∈T∪{ν0} kν , it follows that G′

i(R0,T ) are well defined discrete sub-

groups of PGLd(F ).

Fix an ideal I�R0,T , and let Γi = G′
i(R0,T , I) be the congruence

subgroup (namely the kernel of the map G′
i(R0,T )→G′

i(R0,T /I) induced

by the projection R0,T→R0,T /I).

We prove Theorem 4 above in [LSV3], by showing that Γi\Bd(F )

are isospectral and non-commensurable (namely they have no finite

sheeted common cover). To explain how this result implies Theorem

2, we briefly describe the Bruhat-Tits buildings associated with G =
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PGLd(F ). Let O ⊆ F be the valuation ring, then K = PGLd(O) is a

maximal compact subgroup of G.

Consider the set of O-submodules of F d of maximal rank (such as

Od), modulo the equivalence relation M ∼ cM for every c ∈ F×. The

action of GLd(F ) on bases of F d induces a transitive action of G on

the equivalence classes of modules, with K being the stabilizer of [Od].

Therefore, we can identify classes of submodules with cosets in G/K.

To define the graph structure, we take the classes of modules as vertices,

and connect two classes χ, χ′ by an edge iff there are representatives

M ∈ χ and M ′ ∈ χ′ such that tM ⊂ M ′ ⊂ M (the set of neighbors

of a vertex [M ] ∈ B(0) is in one to one correspondence with the set of

vector subspaces of M/tM ∼= Fd
q over Fq, and so the valency is [d1]q +

[d2]q + · · ·+[ d
d−1]q). The resulting graph is the 1-skeleton of the building.

For the higher dimensional structure we take the clique complex de-

fined by the 1-skeleton, namely the i-cells are the complete subgraphs

of size i + 1. Equivalently, χ0, . . . , χi form an i-cell iff there are repre-

sentatives Mj ∈ χj such that tM0 ⊂ Mi ⊂ Mi−1 ⊂ · · · ⊂ M1 ⊂ M0,

after rearrangemenet. In particular there are no d-cells. We let Bd(F )

denote the resulting complex.

If Γ ⊆ G is a cocompact lattice, then the quotient Γ\Bd(F ) is a

finite complex (the complex structure inherited from Bd(F )). In order

for the projection Bd(F )→Γ\Bd(F ) to be a local isomorphism, Γ has to

be torsion free. However a cocompact lattice of G always has a finite

index torsion-free subgroup, and for arithmetic groups we may choose

the ideal I small enough so that the Γi are all torsion free.

The complexes Γi\Bd(F ) are isospectral by Theorem 4, so the un-

derlying graphs are also isospectral. On the other hand if two of these

graphs are isomorphic, then they define isomorphic clique complexes,

which again contradicts Theorem 4. This completes the proof of The-

orem 2 for r = [d1]q + [d2]q + · · ·+ [ d
d−1]q.

The determinant G/K→Z/d induces a d-coloring of the (directed)

edges: if tM ⊆ M ′ ⊆ M , the edge from M to M ′ has color dimFq(M/M ′).

It is easily seen that all edges connected to [M ] within one cell, have dis-

tinct colors. The colored Laplacian A`, ` = 1, . . . , d−1, is then defined

on L2(G/K) by summing over neighbors of color `, namely (A`f)(χ)
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is the sum of f(χ′) over all neighbors of χ for which (χ, χ′) has color

`. Of course, A1 + · · · + Ad−1 is the standard Laplacian A of Bd(F ).

If two quotients Γ1\Bd(F ) and Γ1\Bd(F ) of Bd(F ) are representation-

theoretic isospectral, namely L2(Γ1\G) ∼= L2(Γ2\G) as G-spaces, then

they are also isospectral in terms of A` for every ` (see [LSV1, Section 2]

for details).

Now let B1 denote the subgraph of Bd(F ) defined on all vertices, with

edges only of color 1. From the quotients Γi\B1 we obtain r-regular

graphs for r = 2 qd−1
q−1

, which are isospectral with respect to the stan-

dard Laplacian, in this case A1 + Ad−1. On the other hand, in [LSV2,

Proposition 2.3] we show that the color 1 part of the graph determines

the whole skeleton. Therefore if some quotients of B1 are isomorphic,

then so are the respective quotients of Bd(F ) which is impossible, by

Theorem 4. This completes the proof of Theorem 2.

3. Proof of Theorem 1

In order to prove Theorem 1 we describe remarkable lattices ∆ in

PGLd(F ), which act simply transitively on the vertices of Bd(F ). The

building can then be identified with the Cayley complex of ∆ with

respect to a certain set of generators (where the Cayley complex is

the clique complex defined by the Cayley graph). These lattice were

introduced in [CS], and used in [LSV2] to give explicit Ramanujan

complexes.

We are given a prime power q and an integer d ≥ 2. The local field

F = Fq((t)) contains k = Fq(t). Let ν0 denote the t-adic valuation, in

which F is complete, and let O = Fq[[t]] be the valuation ring. Let σ

be a fixed generator of the Galois group of Fqd/Fq, extended to Fqd(t)

by acting trivially on t, and let

(2) D(σ) = Fqd(t)[z | za = σ(a)z, zd = 1 + t],

be a central division algebra of degree d over k.

Let F1 = F⊗FqFqd = Fqd((t)), and note that F1/F is unramified in

any valuation of degree 1 of k (i.e. the minus degree valuation, denoted

henceforth by ν1/t, or a valuation induced by a linear prime p ∈ Fq[t],

denoted by νp). Since ν0(1 + t) = 0, local class field theory guarantees
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that 1 + t is a norm in F1/F [Pi, Chapter 17]. But D(σ)⊗kF = F1[z]

with zd = 1+t, so by Wedderburn’s criterion [Jac, Corollary 1.7.5], D(σ)

splits over F . There is therefore a natural embedding D(σ) ↪→ Md(F ),

which we will describe in detail later. As in the previous section, D(σ)

gives rise to the algebraic group G′(σ), defined as the multiplicative

group of D(σ) modulo its center. Then we have G′(σ)(k) ↪→ G′(σ)(F ) =

PGLd(F ).

Let Ω denote the set of elements u(1 − z−1)u−1 ∈ G′(σ)(k), where

u runs over F×
qd/F×

q , and let ∆(σ) be the subgroup of G′(σ)(k) gener-

ated by Ω. It is shown in [LSV2, Proposition 4.9] that the embedding

G′(σ)(k) ↪→ PGLd(F ) takes ∆(σ) into PGLd(R0) for

(3) R0 = Fq[1/t]

(and the index [G′(σ)(R0) :∆(σ)] only depends on q and d, Proposition

3.5 there). Recall that K = PGLd(O) is a maximal compact subgroup

of PGLd(F ). In [LSV2, Proposition 4.8] we show (following [CS]) that

∆(σ) acts simply transitively on the vertices PGLd(F )/K of the Bruhat-

Tits building, or equivalently that

∆(σ) ·K = PGLd(F ) and ∆(σ) ∩K = 1.

Therefore we can identify (the vertices of) B0 = G/K with (the ele-

ments of) ∆(σ): every coset gK has a unique representative δK with

δ ∈ ∆(σ).

The complex structure can also be recovered from ∆(σ), as follows.

The reduced norm of 1−z−1 and its conjugates is t/(1+t) [LSV2, Propo-

sition 4.1], which is equivalent modulo O× to the uniformizer t. It then

follows that the neighbors of color 1 of [Od] are [ωOd] for ω ∈ Ω. Define

Ω̂ to be the set of products ω1 . . . ω`, where ω1, . . . , ω` ∈ Ω, for which

there exists ω`+1, . . . , ωd ∈ Ω such that the product ω1 . . . ω`ω`+1 . . . ωd

equals 1 (in G′(σ)(k)). In Proposition 2.3 and Sections 5 and 6 of [LSV2]

we show that the neighbors (of arbitrary color) of [gOd] are [gωOd] for

ω ∈ Ω̂, and that Bd(F ) is the Cayley complex of the group ∆(σ) with

respect to the generators Ω̂.

The algebras D(σ) ramify at exactly two places, T = {ν1/t, ν1+t}.
The ring defined by Equation (1) in this situation is R = R0,T =
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Fq[t, 1/t, 1/(1 + t)]. Let I be an ideal of R, and set L = R/I. Since

∆(σ) ⊆ G′(σ)(R0) ⊆ G′(σ)(R), we can denote by ∆(σ)(I) the kernel of the

map ∆(σ)→PGLd(R/I) induced by the projection PGLd(R)→PGLd(R/I).

In [LSV2, Theorem 6.6] we prove that ∆
(σ)
I = ∆(σ)/∆(σ)(I) is a sub-

group of PGLd(L) which contains PSLd(L). Moreover, the index of

PSLd(L) in ∆
(σ)
I is equal to the order of t/(1 + t) in the group L×/L×d

([LSV2, Proposition 6.7]), and therefore is independent of σ. Choosing

the ideal I properly, we can guarantee that ∆
(σ)
I = PSLd(L) (Section 7

of [LSV2]). The explicit embedding of ∆
(σ)
I into PGLd(L) is given in

[LSV2, Section 9]. We elaborate on this in the next section.

To conclude, the set Ω̂ (viewed as elements of PGLd(L)) generate

a group ∆
(σ)
I which resides between PSLd(L) and PGLd(L), and the

resulting Cayley complex is the quotient ∆(σ)(I)\Bd(F ).

So far we merely described the Cayley complexes involved. To finish

the proof of Theorem 1, we quote again results proved in [LSV3]. Let

D1 and D2 be two central division algebras of degree d over k, with

the same set T of ramification places, but with different invariants at

each ramified place (and ν0 6∈ T ). Define the algebraic groups G′
1 and

G′
2 as in Section 2. For simplicity (and since this is all we need here),

assume |T | = 2. In [LSV3, Theorem 9] we proved that if D2 is isomor-

phic as a ring neither to D1 nor to Dop
1 , then the complexes Γ1\Bd(F )

and Γ2\Bd(F ) cannot be isomorphic for any finite index torsion-free

subgroups Γi ⊆ G′
i(R0,T ).

The invariants of D(σ) defined in Equation (2) are − t
d
, t

d
where t

is chosen so that σt is the Frobenius automorphism on Fqd . Assume

σ1, σ2 are two generators of Aut(Fqd/Fq) such that σ2 6= σ1, σ
−1
1 . This

situation is possible once φ(d) > 2, namely when d ≥ 5, d 6= 6. Since

the local invariants of the algebras Di = D(σi) defined in Equation

(2) are different, Proposition 11 of [LSV3] guarantees that D2 is not

isomorphic (as a ring) to D1, nor to Dop
1 . Since we already know that

Bd(F ) ∼= ∆(σi), the above result implies that ∆
(σ1)
I and ∆

(σ2)
I cannot

be isomorphic to each other, when viewed as Cayley complexes with

the respective sets of generators Ω̂. In fact, the results of [LSV3] show

that as complexes, they are also non-commensurable. Of course, they

are commensurable as graphs by Leighton’s result [L] that every two
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graphs with the same universal cover have a finite sheeted common

cover.

It remains to show that the ∆
(σi)
I are isospectral to each other. Let

V denote the set of valuations of Fq(t), and let A be ring of adèles over

k, namely the restricted product of the completions kν . Also let AT c be

the produce over V−T , and notice that G′
i(AT c) = G(T c) for i = 1, 2,

since both Di are split by kν for ν ∈ V−T .

For a valuation ν ∈ V , Let Oν denote the valuation ring in the

completion kν , and let Pν denote the valuation ideal. Set

(4) rν = min {ν(a) : a ∈ I},

and let

(5) U (r) =
∏

ν∈V−(T∪{ν0})

G(Oν , P
rν
ν ).

an open compact subgroup of G(AT c−ν0).

Let J0
i be the product of G′

i(kν1+t) and the pre-image of the standard

unipotent subgroup of GLd(Fq) under the map G′
i(kν1/t

)→GLd(Fq) de-

fined by taking the matrices modulo 1/t. By Definition 4.7 and Propo-

sition 4.8 in [LSV2], ∆σi = G′
i(k) ∩G(AT c)J0

i , and so

∆σi = G′
i(k) ∩G(F )U (r)J0

i .

Since [G′
i(kν1+t)G

′
i(kν1/t

) :J0
i ] is independent of i, Proposition 15 of

[LSV3] implies that

L2(∆σ1(I)\G(F )) ∼= L2(∆σ2(I)\G(F ))

as G(F )-spaces. This implies isospectrality of the complexes

∆σi(I)\G(F )/G(O) ∼= ∆σi(I)\Bd(F )

for i = 1, 2, by [LSV3, Proposition 2]. But Bd(F ) ∼= ∆(σi), so we have

the isospectrality of ∆(σi)/∆(σi)(I) (again, as Cayley complexes with re-

spect to the generators Ω̂). Choosing I suitably (see [LSV2, Section 7]),

we can assume ∆(σi)/∆(σi)(I) ∼= PSLd(R/I), as asserted.
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4. Explicit Examples of Isospectral Cayley Graphs

Let d ≥ 5 (d 6= 6) and let q be a given prime power. In Algo-

rithm 9.2 of [LSV2] we give an explicit construction of Ramanujan

Cayley complexes of PSLd(Fqe) (see [LSV2, Theorem 7.1]), which is

bound to work if qe > 4d2 + 1. (This assumption is only used in

[LSV2, Proposition 7.3], and can often be ignored. At any rate if q = 2

then we must take e > 1 since F2[t, 1/t, 1/(1 + t)] has no quotients

of dimension 1). Repeating the construction with generators σ1, σ2 of

Gal(Fqd/Fq) such that σ2 6= σ1, σ
−1
1 , this realizes the proof of Theorem

1, and provides φ(d)/2 isospectral non-isomorphic Cayley complexes

for any group PSLd(Fqe). We illustrate this construction here with

d = 5, q = 3 and e = 1 (which is the smallest case possible).

In order to view Fqd = F243 explicitly, take the irreducible polynomial

λ5−λ− 1 over Fq = F3. We may write F243 = F3[t | t5 = t + 1]. We fix

the ordered basis {1, t, t2, t3, t4}. From now on a linear transformation

of F243 (as a vector space over F3) is represented via the chosen basis

by the 5 × 5 matrix. In particular F×
243 embeds in GL5(F3) by the

regular representation, and the Frobenius automorphism φ, namely

exponentiation by 3, is represented by

ϕ1 =


1 0 0 1 0

0 0 1 1 0

0 0 1 0 1

0 1 0 0 2

0 0 0 1 1

.

We set σ1 = φ and σ2 = φ2. The representing matrices are ϕ1 and

ϕ2 = ϕ2
1, respectively.

Define the polynomial y(λ) = (1 + λ)5 − 1 (this amounts to taking

β = 1 in Step (1) of [LSV2, Algorithm 9.2]). Take α = 1, so that

γ = y(1) = 25 − 1 = 1 in Step (2) of the Algorithm. The minimal

polynomials of these elements are p(λ) = g(λ) = λ − 1. (Here g(t)

must not be invertible in R0,T , namely g(λ) 6= λ, λ + 1). It is possible

to construct the Cayley complexes over the local ring F3[t]/〈g(t)s〉 for

every s ≥ 1. We continue with s = 1, so in the notation of Step (3) in

the Algorithm, L̄ = F3 and x = 1. For i = 1, 2, let zi be the matrix
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(1 + βx)ϕi = (1 + 1 · 1)ϕi = 2ϕi = −ϕi (since ϕia = a3i
ϕi for a ∈ F243,

conjugation by zi induces the automorphism σi, as in the definition of

Di in Equation (2). Moreover z5
i = −ϕ5

i = −1 = 1 + α).

Now we define the elements of Ω(σi). Let b(i) = 1 − z−1
i = 1 + ϕ4

i ,

namely

b(1) =


2 1 2 0 1

0 2 2 1 2

0 2 0 0 1

0 2 1 1 2

0 1 2 0 0

, b(2) =


2 1 1 1 1

0 1 2 1 1

0 1 2 2 2

0 0 1 0 0

0 1 1 1 0

.

Notice that (b(1))3 = (1 + ϕ4
1)

3 = 1 + ϕ12
1 = 1 + ϕ2

1 = 1 + ϕ2 = b(2), and

(b(2))3 = (1 + ϕ2
1)

3 = 1 + ϕ6
1 = b(1).

Rather than ranging over all u ∈ F×
243/F×

3 , we take a generator. One

can check that t121 = 1 in F243, while t11 = t3− t2 + t 6= 1. In our basis,

multiplication by t corresponds to the matrix

θ =


0 0 0 0 1

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

.

For i = 1, 2 and j = 0, . . . , 120, let b
(i)
j = θjb(i)θ−j, and set Ω(σi) =

{b(i)
0 , . . . , b

(i)
120}. Let Ω̄(i) denote the union of Ω(σi) and its inverses.

Let Ω̂(i) denote the products b
(i)
j1

. . . b
(i)
jk

, k = 1, . . . , 4, which can be

completed to a product of 5 matrices from Ω(i) which equals 1. These

products correspond to the [51]3 + [52]3 + [53]3 + [54]3 = 121 + 1210 + 1210 +

121 = 2662 vector subspaces of F5
3, and Ω̂(i) constitute symmetric sets

of generators for PSL5(F3).

Corollary 5. Let b(1) and θ be the 5× 5 matrices over F3 given above,

and let Ω̄(1), Ω̂(1) be the sets of 242 and 2662 matrices, respectively,

defined above. Let Ω̄(2) and Ω̂(2) be the sets of matrices obtained by

raising every matrix in Ω̄(1), respectively Ω̂(1), to the third power.

Then Ω̄(1) and Ω̄(2) are two symmetric sets of 242 generators of

PSL5(F3), which define isospectral non-isomorphic Cayley complexes.
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Likewise Ω̂(1) and Ω̂(2) are symmetric sets of 2662 generators with the

same properties.

Notice that PSL5(F3) is a group of size ≈ 2.3·1011. Therefore, storing

its Cayley graphs in a computer is a difficult task, and computing the

eigenvalues directly is nearly impossible.

More generally, we can carry out a similar construction whenever q

and d are odd and co-prime, and e = 1. Following the above mentioned

algorithm, take β = 1, then y(λ) = (1 + λ)d − 1. Take α = −2, then

γ = y(α) = −2 and the minimal polynomials are p(λ) = g(λ) = λ + 2.

With s = 1 we then have L̄ = Fq and x = −2. Now let ϕ1 denote the

matrix representing the Frobenius automorphism (in any chosen basis

of Fqd over Fq). For every i = 1, . . . , d− 1, let zi = (1 + βx)ϕi
1 = −ϕi

1,

and b(i) = 1− z−1
i = 1 + ϕ−i

1 . Finally fix a generator θ of F×
qd/F×

q , and

define the sets Ω̄(i) and Ω̂(i) as above. Notice that (b(i))q = 1 + ϕ−qi
1 =

b(qi) where the upper index here is modulo d, and so the elements of

Ω(qi) are obtained by exponentiating the elements of Ω(i) to the power

q.

Corollary 4.1. Let q, d be odd and co-prime, and let m denote the

order of q in Z/dZ×/〈±1〉. Let ϕ1 denote the Frobenius automorphism

of Fqd/Fq, and let θ be an element of Fqd which generates F×
qd/F×

q . Let

Ω̄(1) be the set of 2 qd−1
q−1

elements of PSLd(Fq) defined as above. Let

Ω̄(qi) denote the set obtained from Ω̂(1) by element-wise exponentiation

to the power qi, for i = 1, . . . ,m− 1.

Then the Cayley graphs of PSLd(Fq) with respect to Ω̄(qi) are isospec-

tral (even as complexes) and non-isomorphic.

A similar result holds for the sets Ω̂(qi).

5. Dense isospectral Cayley graphs out of sparse ones

Two Cayley graphs Cay(G; A) and Cay(G; B) of G are equivalent ,

if there is an automorphism σ of G such that B = σ(A). A standard

techniques in graph theory shows that if a subgroup D ≤ G has two
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non-equivalent isomorphic Cayley graphs, then G also has this prop-

erty. In the language of [B], it means that if D is not a CI group and

D embeds in G, then G too is not a CI group.

We learned this method from Joy Morris and Dave Witte Morris, to

whom we are very grateful. This method can be imitated to give:

Proposition 5.1. Assume G′ is a finite group with two symmetric sets

of generators A′ and B′ of size r, such that Cay(G′; A′) and Cay(G′; B′)

are isospectral but not isomorphic. Assume G′ is a proper subgroup of

a finite group G. Then G has two generating sets A and B of size

|G| − r− 1 such that Cay(G; A) and Cay(G; B) are isospectral but not

isomorphic.

Proof. Let CA (resp. CB) be the Cayley graphs of G with respect to A′

(resp. B′). Note that A′ (resp. B′) does not generate G, so CA (resp.

CB) is not connected. In fact, CA (resp. CB) is a union of [G :G′]

disjoint copies of Cay(G′; A′) (resp. Cay(G′; B′)).

Let C̄A (resp. C̄B) denote the complement of CA (resp. CB) in

the complete graph on the vertex set G. It is easy to see that C̄A

(resp. C̄B) is the Cayley graph of G with respect to the generating set

G−(A′ ∪ {e}) (resp. G−(B′ ∪ {e})). They are connected as clearly

these sets generate G. We claim that C̄A and C̄B are isospectral but

not isomorphic.

The graphs are isospectral since CA and CB (being disjoint union of

the same number of isomorphic graphs) are isospectral to each other,

and complements of isospectral regular graphs are also isospectral.

But C̄A and C̄B are not isomorphic since otherwise the complements

CA and CB are isomorphic, implying that the connected components

Cay(G′; A′) and Cay(G′; B′) are isomorphic, contrary to our assump-

tion. �

As mentioned in the introduction, Babai showed that the Dihedral

group D of order 2p has at least p/64 pairs of generators, which give

isospectral non-isomorphic Cayley graphs.
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Corollary 5.2. For large enough n, each of the groups G = Sn or

G = PSLn(Fq) has two subsets A and B of size |G| − 3 such that

Cay(G; A) and Cay(G; B) are isospectral and not isomorphic.

In Theorem 1 we proved that for G = PSLn(Fqe) (for n and q fixed)

there are subsets A and B of bounded size as in the corollary. It will

be interesting to find such sets of bounded size for all n. Likewise for

the groups G = Sn.
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