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A subset S of a group G invariably generates G if G =
〈sg(s) | s ∈ S〉 for each choice of g(s) ∈ G, s ∈ S. In 
this paper we study invariable generation of infinite groups, 
with emphasis on linear groups. Our main result shows that 
a finitely generated linear group is invariably generated by 
some finite set of elements if and only if it is virtually solvable. 
We also show that the profinite completion of an arithmetic 
group having the congruence subgroup property is invariably 
generated by a finite set of elements.
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In [10] we studied the notion of invariable generation of finite groups. The goal of 
this paper is to present some results, examples and questions towards the study of this 
notion for infinite groups.
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Following Dixon [1] we say that a group G is invariably generated by a subset S of G
if G = 〈sg(s) | s ∈ S〉 for each choice of g(s) ∈ G, s ∈ S. We also say that the group G is 
IG if it is invariably generated by some subset S ⊆ G, or equivalently, if G is invariably 
generated by G; and that G is FIG if it is invariably generated by some finite subset 
S ⊆ G.

The notion of invariable generation occurs naturally for Galois groups, where elements 
are only given up to conjugacy. IG groups were studied in a different language by Wiegold: 
a group G is IG if and only if it cannot be covered by a union of conjugates of a proper 
subgroup, which amount to saying that in every transitive permutation representation 
of G on a set with more than one element there is a fixed-point-free element. Results on 
such groups can be found in [24,25].

In [10] we show that a finite group G is invariably generated by at most log2 |G|
elements, and that every finite simple group is invariably generated by two elements (the 
latter result is also obtained in [6]).

We now turn to infinite groups. Which of them are FIG? Our main result solves this 
problem for linear groups:

Theorem 1.1. A linear group is FIG if and only if it is finitely generated and virtually 
solvable.

By a well known result of Margulis and Soifer [15], a finitely generated linear group 
is virtually solvable if and only if all its maximal subgroups are of finite index:

Corollary 1.2. A finitely generated linear group is FIG if and only if all its maximal 
subgroups have finite index.

We are not aware of a direct proof of this corollary.
The linearity assumption in Theorem 1.1 cannot be dropped: FIG groups need not 

be virtually solvable. For example, Corollary 2.7 below shows that the Grigorchuk group 
(see [5]) is FIG (in fact it is invariably generated by its three natural generators). This 
follows from the fact that the maximal subgroups of this group are all of index 2. The 
Grigorchuk group is residually finite, so we conclude that residually finite FIG groups 
need not be virtually solvable.

Ol’shanskii [17] and Rips have constructed infinite groups G in which all proper non-
trivial subgroups H have order p (for a given large prime p). It can be arranged that 
these subgroups H are not all conjugate (Rips, private communication). If H1, H2 ≤ G

are non-conjugate subgroups of order p generated by elements h1, h2 respectively, then 
G is invariably generated by h1, h2, and G is clearly not virtually solvable. Unlike the 
previous example, this example also shows that the linearity assumption in Corollary 1.2
is essential.

It is natural to ask which linear groups are IG. At the moment we are unable to solve 
this problem. Note that many linear groups are not IG. For example, let G = SLn(C). 
Then, using the Jordan form of matrices, we see that every element s ∈ G has a conjugate 
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sg(s) lying in the Borel subgroup B < G of upper triangular matrices. This shows that G
is not IG. A similar argument shows that, for n > 2, the group SLn(R) is not IG, using 
a parabolic subgroup of type (2, n − 2) instead of a Borel subgroup.

More examples of groups which are not IG are given in Section 2 below. We also show 
in Proposition 2.4 that a linear algebraic group over an algebraically closed field is IG if 
and only if it is virtually solvable.

The situation over global fields is less clear. For example, it would be nice to find out 
whether SLn(Q) is an IG group. A similar question may be asked for SLn(Z) and for 
arithmetic groups in general. In particular, is there a correlation for such groups between 
being IG and having the Congruence Subgroup Property (CSP)?

The situation is clearer for p-adic and adelic groups. We say that a profinite group 
G is invariably generated by a subset S ⊆ G if {sg(s) | s ∈ S} generates G topologically
for each choice of g(s) ∈ G, s ∈ S. It is easy to see that profinite groups are always IG, 
but they are not necessarily FIG (even if they are finitely generated). See Section 5 for 
details.

Proposition 1.3. Let G be a simply connected simple Chevalley group.

(i) The adelic group G(Ẑ) is FIG. In particular, the p-adic groups G(Zp) are all FIG.
(ii) If p > 3 then the group G(Zp) is invariably generated by two elements.

It is intriguing that, while arithmetic groups are not FIG (by Theorem 1.1), their 
profinite completions are often FIG. For example, let G be a Chevalley group and suppose 
the arithmetic group G(Z) has CSP. Then the profinite completion Ĝ(Z) is isomorphic 
to the adelic group G(Ẑ), so it is FIG by Proposition 1.3. The next result extends this 
to general arithmetic groups, also in positive characteristic.

Theorem 1.4. Let k be a global field of arbitrary characteristic, O its ring of integers, 
T a finite set of places containing all the archimedean ones. Let G ≤ GLn be a connected 
simply connected simple algebraic group defined over k, and let G(OT ) := G ∩GLn(OT ). 
Suppose G(OT ) satisfies the Congruence Subgroup Property. Then the profinite comple-
tion Ĝ(OT ) is FIG.

In [13] CSP for G(OT ) is shown to have various purely group-theoretic characteriza-
tions when char(k) = 0 (e.g. Ĝ(OT ) is boundedly generated). There is no such known 

criterion when char(k) > 0. Is the property “Ĝ(OT ) is FIG” equivalent to CSP?
To show this we need to prove that the profinite completions of arithmetic groups 

without CSP are not FIG. We can show this in some special cases, e.g. for SL2(Z). More 
generally we prove the following.

Theorem 1.5. Let G be any Fuchsian group. Then Ĝ is not FIG.

The proof uses the probabilistic solution in [12] of Higman’s conjecture, that any 
Fuchsian group maps onto all large enough alternating groups.
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Some words on the structure of this paper. In Section 2 we prove some preliminary 
results, and various examples are provided. Theorem 1.1 is proved in Section 3. Section 4
is devoted to profinite groups and contains proofs of Proposition 1.3–Theorem 1.5. In 
Section 5 we suggest some problems and directions for further research.

We are grateful to Slava Grigorchuk, Andrei Rapinchuk and Ilya Rips for valuable 
advice.

2. Preliminary results

Let G be a group and H ≤ G a subgroup. Define

H̃ =
⋃
g∈G

Hg,

the union of all conjugates of H in G.
The following is straightforward.

Lemma 2.1. A subset S ⊆ G invariably generates G if and only if S � H̃ for all proper 
subgroups H < G. If G is finitely generated then S ⊆ G invariably generates G if and 
only if S � M̃ for all maximal subgroups M < G.

This implies the following easy observation.

Lemma 2.2. The following are equivalent for a group G.

(i) G is IG.
(ii) For every proper subgroup H < G we have H̃ �= G.
(iii) If H ≤ G and H intersects every conjugacy class of G then H = G.
(iv) In every transitive action of G on a set X with more than one element there is 

g ∈ G acting on X as a fixed-point-free permutation.

It is also easy to see, more generally, that S ⊆ G generates G invariably if and only 
if in any transitive action of G on a set with more than one element there exists s ∈ S

acting fixed-point-freely.
Using Lemma 2.2 we readily see that finite groups are IG. Groups satisfying condi-

tion (iv) above were studied by Wiegold and others, see [24,25,2]. Reformulating results 
from [24,25] using Lemma 2.2 we obtain the following.

Corollary 2.3.

(i) Virtually solvable groups are IG.
(ii) Nonabelian free groups are not IG.
(iii) The class of IG groups is extension closed.
(iv) The class of IG groups is not subgroup closed.
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Other examples of non IG groups are infinite groups G all of whose nontrivial elements 
are conjugate (see [8] and [18]); indeed in such groups we have H̃ = G for every nontrivial 
subgroup H < G.

A wide class of algebraic groups is also not IG. Indeed we have the following charac-
terization.

Proposition 2.4. Let G be a linear algebraic group over an algebraically closed field. Then 
G is IG if and only if it is virtually solvable.

Proof. If G is virtually solvable then it is IG by Corollary 2.3.
Now suppose G is IG. By a theorem of Steinberg (see Theorem 7.2 of [21]), every 

automorphism of a linear algebraic group G fixes some Borel subgroup of G. This implies 
that if g is any element of G, then Bg = B for some Borel subgroup B of G. Thus the 
union of the normalizers NG(B) over the Borel subgroups B of G equals G. Since the 
Borel subgroups are all conjugate, it follows that

ÑG(B) = G

for any Borel subgroup B of G. Lemma 2.1 and the assumption that G is IG now imply 
that NG(B) = G. This in turn implies that G is virtually solvable. �

Let Φ(G) denote the Frattini subgroup of a finitely generated group G. Then a subset 
of G generates G if and only if its image in G/Φ(G) generates G/Φ(G). It follows that a 
subset of G invariably generates G if and only if its image in G/Φ(G) invariably generates 
G/Φ(G).

For an FIG group G, let dI(G) denote the minimal number of invariable generators 
for G.

Lemma 2.5. Let G be a finitely generated group.

(i) If G/Φ(G) is IG, then so is G.
(ii) If G/Φ(G) is FIG, then so is G.
(iii) If G/Φ(G) is finite, then G is FIG.
(iv) dI(G) = dI(G/Φ(G)).
(v) If G/Φ(G) is a finite (nonabelian) simple group, then dI(G) = 2.

Proof. Parts (i)–(iv) follow immediately from the remarks preceding the lemma. Part 
(v) follows from (iv) and a result from [10]: finite simple groups are invariably generated 
by two elements. �
Lemma 2.6. Let G be a finitely generated group.

(i) If all maximal subgroups of G have finite index then G is IG.
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(ii) Suppose that there exists an integer c such that every maximal subgroup M of G

satisfies |G : M | ≤ c. Then G is FIG.

Proof. If M < G has finite index then M̃ �= G. Part (i) now follows from Lemma 2.1.
To prove part (ii), note that it follows from the assumption on G that G has finitely 

many maximal subgroups, and since they all have bounded index we see that G/Φ(G)
is finite. The result now follows from part (iii) of Lemma 2.5. �

We now apply the lemma to the Grigorchuk group [5]:

Corollary 2.7. The Grigorchuk group G is FIG. In fact, dI(G) = 3. Thus, residually 
finite FIG groups need not be virtually solvable.

Proof. Recall that the Grigorchuk group G is an infinite 2-group generated by 3 elements 
(of order 2). It was shown by Pervova in [19] that all maximal subgroups of this group 
have finite index, hence they are of index 2. The result follows from Lemma 2.6. In fact 
G/Φ(G) is an elementary abelian group of order 8 and hence, by Lemma 2.5(iv), G is 
invariably generated by 3 elements. �

We continue with additional basic results on FIG groups.

Lemma 2.8. The class of FIG groups is extension closed.

Proof. Let N�G and suppose both N and G/N are FIG. We need to show that G is FIG. 
Suppose N is invariably generated by a finite set S, and G/N is invariably generated by 
a finite set T . Let T1 ⊆ G be a set of representatives for T in G.

We claim that G is invariably generated by the finite set S ∪ T1. To show this, let 
H ≤ G with H̃ ⊇ S ∪ T1. We need to show that H = G. Clearly H̃N/N ⊇ T , which 
implies HN/N = G/N so HN = G.

Now let s ∈ S. Then there exist h ∈ H and g ∈ G such that s = hg. Write g = h1n

where h1 ∈ H and n ∈ N . Then s = hh1n = hn
2 where h2 ∈ H. Since s ∈ N it follows 

that h2 ∈ H ∩N . Thus S is covered by the union of N -conjugates of H ∩N . This implies 
H ∩N = N , so H ⊇ N . Therefore H = G. �
Corollary 2.9. Suppose N � G has finite index, and N is FIG. Then G is FIG.

Proof. This follows from Lemma 2.8 above, since G/N is finite, hence FIG. �
Lemma 2.10. Let A � G be an abelian normal subgroup. Suppose G/A is FIG, and A is 
finitely generated as a G/A-module. Then G is FIG.
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Proof. Let S ⊆ A be a finite set generating A as a G/A-module. Let T ⊆ G/A be a 
finite set which invariably generates G/A, and let T1 be a set of representatives for T

in G. We claim that the finite set S ∪ T1 invariably generates G.
Indeed, let H ≤ G with H̃ ⊇ S ∪ T1. We have to show that H = G. As in the proof 

of Lemma 2.8, we obtain HA = G. Let s ∈ S and g ∈ G. Then s = hg0
0 for some g0 ∈ G

and g0g = h1a1 for some h1 ∈ H and a1 ∈ A. Hence sg = hg0g
0 = hh1a1

0 = ha1
2 for some 

h2 ∈ H. But sg ∈ A, so h2 ∈ H∩A and since A is abelian we have sg = h
a−1
1

2 = h2 ∈ H∩A.
However, the elements sg (s ∈ S, g ∈ G) generate A. It follows that H ∩ A = A, so 

H ⊇ A and G = H as required. �
We can now derive some consequences.

Proposition 2.11. Let G be a finitely generated group.

(i) If G is a solvable Max-n group then G is FIG.
(ii) If G is polycyclic then G is FIG.
(iii) If G is abelian-by-polycyclic then G is FIG.
(iv) If G is abelian-by-nilpotent then G is FIG.
(v) If A1, . . . , Am are finitely generated abelian groups, then the iterated wreath product 

A1 � (A2 � (A3 � · · · �Am)) is FIG. In particular, the lamplighter group C2 �Z is FIG.

Proof. Recall that a group G is a Max-n group if it satisfies the maximal condition 
on normal subgroups. This is equivalent to every normal subgroup of G being finitely 
generated as a normal subgroup.

We prove part (i) by induction on the derived length d of G. The result is clear for 
abelian groups, so suppose d > 1. Let A = G(d−1). Then A � G is abelian and finitely 
generated as a normal subgroup. By induction hypothesis, G/A is FIG, so G is FIG by 
Lemma 2.10.

It is well known (see [7]) that polycyclic groups and finitely generated abelian-by-
polycyclic groups – and in particular abelian-by-nilpotent groups – are Max-n. Thus 
parts (ii)–(iv) follow.

Part (v) is proved by induction on m using Lemma 2.10. �
Of course if G has a finite index subgroup satisfying one of the above conditions (i)–(v) 

then it is also FIG.
It is known that a finitely generated center-by-metabelian group need not be Max-n, 

indeed its center need not be finitely generated [7].

Proposition 2.12.

(i) Let G be a group and N �G a nilpotent normal subgroup. Suppose G/N is FIG and 
N is finitely generated as a normal subgroup. Then G is FIG.

(ii) A finitely generated metanilpotent-by-finite group is FIG.
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Proof. We need the following.

Claim. Let G be a group, N � G a nilpotent normal subgroup. If G/N ′ is FIG then so 
is G.

To show this suppose G/N ′ is invariably generated by the finite subset S, and let 
S1 ⊆ G be a set of representatives for S in G. We claim that S1 invariably generates G. 
To show this, let H ≤ G such that H̃ ⊇ S1 and conclude that H = G.

Since HN ′/N ′ ⊇ S we have HN ′ = G. If n ∈ N then n = hn′ for some h ∈ H and 
n′ ∈ N ′. Thus h = nn′ −1 so h ∈ H ∩N . It follows that (H ∩N)N ′ = N .

It is well know that if L is a subgroup of a nilpotent group N satisfying LN ′ = N

then L = N . Applying this for L = H ∩ N we obtain H ∩ N = N , so H ⊇ N . But 
HN = G, hence H = G, proving the claim.

Next, we prove part (i). By Lemma 2.10, G/N ′ is FIG. Hence, by the claim above, 
G is FIG.

To prove part (ii) apply Corollary 2.9 to reduce to the case when G is metanilpotent. 
Let N � G such that N and G/N are nilpotent. Then G/N ′ is abelian-by-nilpotent, 
hence it is FIG by Proposition 2.11(iv). It now follows from the claim above that G is 
FIG. �

We see from Proposition 2.12 and the remark preceding it that finitely generated 
solvable groups which are FIG need not satisfy Max-n. It is also easy to see using the 
arguments above that an iterated wreath product of finitely generated nilpotent groups 
is FIG.

3. Finitely generated linear groups

In this section we prove Theorem 1.1.
Let G be a linear group. If G is finitely generated and virtually solvable, then, by the 

Lie Kolchin Theorem, G contains a finite index subgroup represented (up to conjugacy) 
by upper triangular matrices. Hence G is nilpotent-by-abelian-by-finite, so it is FIG by 
Proposition 2.12.

To prove the other direction we will assume G is a subgroup of GLn(F ) for some 
field F , and that it is FIG but not virtually solvable. We will derive a contradiction by 
using the Strong Approximation Theorem (see [23,20,16] and p. 406 in [14]).

Since G is finitely generated, it is contained in GLn(A) for some finitely generated 
subring A of F . By Theorem 4.1 of [11] there exists a specialization, namely a ring 
homomorphism φ : A → k, where k is a global field, such that the image of G under the 
induced map φ1 : GLn(A) → GLn(k) is not virtually solvable. Replacing G by φ1(G) we 
shall assume F = k (and G is still FIG as a quotient of an FIG group).

Let H be the Zariski closure of G in GLn(k), where k is the algebraic closure of k. Then 
H is a linear algebraic group (over an algebraically closed field) which is not virtually 
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solvable. Dividing H by its maximal solvable normal subgroup we can assume that H is 
semisimple. Furthermore, by factoring out a suitable normal subgroup we may assume 
that H is homogeneous of the form Lm�Δ where L is a simple algebraic group of adjoint 
type and Δ is a finite group (permuting the copies of L transitively and possibly acting 
as outer automorphisms on each copy). The image of G in this process is still FIG, not 
virtually solvable, and Zariski dense. We replace G by this image.

Let L1 be the simply connected cover of L and let ψ : L1 → L be the covering map. 
The finite group Δ acts also on Lm

1 and we obtain an epimorphism ψ1 : H1 := Lm
1 �Δ →

H = Lm � Δ. The group ψ−1
1 (G) is a central extension of G with a finite center, and 

hence is also FIG by Lemma 2.8. Replacing H by H1 and G by G1 we can assume that G
is an FIG dense subgroup of an algebraic group H ≤ GLn1 whose connected component 
H0 is simply connected. Furthermore, by restriction of scalars we can even assume that 
G is inside GLn(k) for some n, where k = Q or Fp(t). Moreover, G is inside H(OT ), 
where O is the ring of integers of k and T is a finite set of primes.

We are now in a position to apply the Strong Approximation Theorem. According to 
this theorem there exists a finitely generated subring R of OT such that k is the field 
of fractions of R (in characteristic p this may require replacing the original field k by a 
smaller subfield), G is inside H(R) and, for almost every prime ideal P of R, the image 
of G0 = G ∩H0 in H0(R/P ) is onto. Note that for almost every prime P , H0(R/P ) and 
H(R/P ) are well defined, as k is the ring of fractions of R, and H, H0 are both defined 
over k, since G ≤ H(R) is Zariski dense in H. Moreover, H0(R/P ) � Δ is also well 
defined. Since G0 is mapped onto H(R/P ) and G is mapped onto H/H0, G is mapped 
onto H0(R/P ) � Δ.

Now let S ⊂ G be a finite set which invariably generates G. By Proposition 2.4 and its 
proof, for each s ∈ S there exists an element h(s) ∈ H such that sh(s) ∈ B1 = NH(B), 
where B is a Borel subgroup of H0. Note that B1 is virtually solvable. The finitely many 
elements h(s), s ∈ S, all belong to H(k1), where k1 is a finite extension of k. In fact they 
are even in H(O1

T1
) where O1 is the ring of integers of k1 and T1 is a finite set of primes. 

By extending T1 further if needed we may assume R1 := O1
T1

⊇ R.
By the Chebotarev density theorem there exist infinitely many prime ideals P of R

that split completely in k1; in particular for such P , there exists a prime ideal P1 of R1 for 
which the inclusion R ⊆ R1 induces an isomorphism R/P ∼= R1/P1. For almost all such 
primes P the image of G in H(R1/P1) ∼= H(R/P ) is onto, while the image B2 of G ∩B1

there is a proper subgroup, since this image is solvable-by-bounded. The image of h(s)
there conjugates s into B2. Therefore H(R/P ), the finite quotient of G, is not invariably 
generated by the image of S. This contradiction completes the proof of Theorem 1.1. �
Remark. Our proof in fact shows something stronger: for every non-virtually solvable 
linear group G and every finite subset S of it, there exists a proper finite index subgroup 
H < G such that H̃ ⊇ S. Clearly, for such H, H̃ �= G. It is possible that there exists 
an infinite index subgroup H with H̃ = G. For example, this happens in (nonabelian) 
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free groups G. But we do not know if this is the case for all non-virtually solvable linear 
groups, i.e., whether there exists a linear IG group which is not virtually solvable.

4. Profinite groups

Let G be a profinite group. Then generation and invariable generation in G are inter-
preted topologically, and by subgroups we mean closed subgroups. It is then easy to see 
that the basic results in Section 2 also hold in the category of profinite groups.

Just as every finite group is IG, every profinite group G is also IG. Indeed every proper 
subgroup of a profinite group G is contained in a maximal open subgroup M , and since 
M has finite index we have M̃ �= G. Hence G is IG.

On the other hand, finitely generated profinite groups are not necessarily FIG. In fact 
in Proposition 2.5 of [10] we showed that there exist 2-generated finite groups H with 
dI(H) (the minimal number of invariable generators) arbitrarily large. This implies that 
the free profinite group F̂d on d ≥ 2 generators is not FIG.

On the other hand, the free pro-p group on d < ∞ generators is FIG, since its Frattini 
subgroup is of finite index (see Lemma 2.5(iii) above). Since free pronilpotent groups 
are direct products of free pro-p groups, we easily deduce that every finitely generated 
pronilpotent group is FIG. Compare this with Problem 4 in Section 5 below regarding 
prosolvable groups.

The following lemma is useful in the proofs of Proposition 1.3.

Lemma 4.1. Let G be a simply connected simple Chevalley group.

(i) Φ(G(Zp)) contains the second congruence subgroup.
(ii) If p > 3 then Φ(G(Zp)) is the first congruence subgroup.
(iii) For a prime power q (with finitely many possible exceptions), Φ(G(Fq[[t]])) is the 

second congruence subgroup.

Proof. See [22] and [11]. �
Proof of Proposition 1.3. Recall that G is a simply connected simple Chevalley group. 
It is well known that the profinite group G(Zp) has an open finitely generated pro-p
subgroup. This implies that its Frattini subgroup N is open. Using part (iii) of Lemma 2.5
we see that G(Zp) is FIG. Moreover, by Lemma 4.1(i) we see that the Frattini quotient 
Q of G(Zp) is a finite simple group, or an extension of an abelian group A by a finite 
(quasi-)simple group T . Moreover, in the latter case, A is generated as a normal subgroup 
by a single element.

Thus, in the first case we have dI(G(Zp)) = dI(Q) = 2 by Lemma 2.5(v), while in the 
second case we have dI(G) = dI(Q) ≤ 3 by Lemma 2.8 and its proof.

Hence in any case G(Zp) is invariably generated by 3 elements, which we denote by 
g1(p), g2(p), g3(p).
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Now, the adelic group G(Ẑ) is isomorphic to the direct product 
∏

p G(Zp). For i =
1, 2, 3 let gi denote the sequence (gi(p)) where p ranges over the primes. Then it is easy 
to see that g1, g2, g3 generate G(Ẑ) invariably. This proves part (i) of the proposition.

Next, if p > 3, then by part (ii) of Lemma 4.1, the Frattini quotient of G(Zp) is a 
finite simple group, so (as argued above) G(Zp) is invariably generated by two elements. 
This proves part (ii). �

We next generalize Proposition 1.3 and deal with groups over arbitrary global fields. 
This requires some preparations.

Lemma 4.2. Let G = Tm for a nonabelian finite simple group T . Let S = {s1, . . . , sr} ⊂G, 
so that si = (ti1, . . . , tim), tij ∈ T . Form the matrix

A =

⎛
⎝ t11 · · · t1m

· · ·
tr1 · · · trm

⎞
⎠ .

Then S invariably generates G if and only if the following both hold:

(a) If 1 ≤ j ≤ m then {t1j , . . . , trj} generates T invariably.
(b) The columns of A are in different Aut(T )-orbits for the diagonal action of Aut(T )

on T r.

Proof. This follows immediately from the generation criterion for Tm in [9, Proposi-
tion 6]. �

The number of conjugacy classes of a finite group T is denoted by k(T ). The next 
result shows that rather large powers of finite simple groups are still invariably generated 
by few elements.

Proposition 4.3. Let T be a finite simple group. Given r ≥ 2, let m(T, r) denote the 
maximal integer m such that dI(Tm) ≤ r. Then

k(T )r−2/
∣∣Out(T )

∣∣− 1 < m(T, r) ≤ k(T )r.

Proof. Suppose T is invariably generated by a, b ∈ T . Let A, B ⊂ T be the conjugacy 
classes of a, b respectively. Consider all r-tuples (A, B, C3, . . . , Cr) where each Ci ranges 
over all conjugacy classes of T . There are k(T )r−2 such tuples, and they split into at least 
x := k(T )r−2/|Out(T )| different orbits under the action of Out(T ). Therefore if m is the 
greatest integer in x then it follows from Lemma 4.2 that Tm is invariably generated by 
r elements, two of which are (a, a, . . . , a), (b, b, . . . , b). This proves the lower bound on 
m(T, r).

The upper bound follows immediately from Lemma 4.2. �
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Note that |Out(T )| ≤ log |T |, whereas k(T ) is much larger: it is roughly c
√
n if T = An

and ql if T = G(q), a Lie type group of rank l over the field with q elements (see [4]). 
This shows that the lower and upper bounds in Proposition 4.3 are of rather similar 
orders of magnitude.

Corollary 4.4.

(i) If m ∈ N satisfies m ≤ k(T )/|Out(T )| then dI(Tm) ≤ 3.
(ii) For every m ∈ N and almost all finite simple groups T we have dI(Tm) ≤ 3.
(iii) Let G be a Chevalley group and c ∈ N a given constant. Then for all sufficiently 

large prime powers q we have dI(G(q)cq) ≤ 4.
(iv) Let an ∈ N be such that log an/

√
n → ∞ as n → ∞. Then dI(Aan

n ) → ∞ as n → ∞.

Proof. Part (i) follows immediately from Proposition 4.3.
Part (ii) follows from (i) and the remark above, implying that k(T )/|Out(T )| → ∞

as T ranges over the finite simple groups.
For part (iii), we easily verify using [4] that k(G(q))2/|Out(G(q))| ≥ cq if q is suffi-

ciently large (given c). Using Proposition 4.3 with r = 4 yields the result.
Part (iv) follows from the upper bound in Proposition 4.3. �
We can now prove the main result leading to Theorem 1.4.

Theorem 4.5. Let k be a global field and T a finite set of places of k containing all the 
archimedean ones. Let G be a connected simply connected simple algebraic k-subgroup 
of GLn. Let AT =

∏∗
v/∈T kv be the ring of T -adeles of k, and let H be an open compact 

subgroup of G(AT ). Then H is an FIG profinite group.

Proof. The structure of the proof is similar to that of Proposition 1.3, but there are 
more technicalities to handle. As shown in the proof of Theorem 3.1 in [11], after passing 
to a finite index subgroup, H is the product of infinitely many groups Hv, where Hv is 
a virtually pro-p open subgroup of G(kv) for the various completions kv, v /∈ T , of k.

Factoring out the Frattini subgroup of H, we are left with an infinite product of finite 
groups. For almost every v, Hv/Φ(Hv) is an extension of a finite elementary abelian 
group Mv generated as a normal subgroup by boundedly many elements by a finite 
(quasi)simple group Tv of the same type as G over Fv := Ov/mv, the residue field 
of kv. In fact, with the exception of finitely many group types and characteristics, Mv is 
abelian and simple as a Tv-module, hence generated as a normal subgroup by one element; 
moreover if char(k) = 0 then Mv = 0. See the proof of [11, Theorem 3.1] and especially 
properties (a), (b), (c) there. We may ignore finitely many factors.

Now, a simple group of Lie type G over a finite field of order q occurs in this product 
with bounded multiplicity if char(k) = 0 and with multiplicity ≤ cq (for some constant c) 
if char(k) > 0. So, in any case, T :=

∏
Tv is FIG by Corollary 4.4(iii). Moreover, 
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M =
∏

Mv is generated by boundedly many elements as a normal subgroup. Hence, by 
part (i) of Proposition 2.12, H/Φ(H) is FIG, and so is H by Lemma 2.5(ii). �
Proof of Theorem 1.4. Since G(OT ) has CSP, its profinite completion is an extension 
of a finite center by a group H as in Theorem 4.5. The result follows from Theorem 4.5
and Lemma 2.8. �

We now make preparations for the proof of Theorem 1.5. For background on Fuchsian 
groups, see [12] and the references therein.

Higman conjectured that if G is any Fuchsian group, then every large enough alter-
nating group An is a quotient of G. This was proved in [3] (in the oriented case) and [12]
provides a probabilistic proof of the conjecture (also in the non-oriented case). In fact 
the following strengthening of Higman’s conjecture also holds.

Proposition 4.6. Let G be a Fuchsian group (oriented or non-oriented). If n is sufficiently 
large, and an is the integral part of (n!)1/43, then Aan

n is a quotient of G.

Proof. Let μ(G) denote the measure of G, namely −χ(G), where χ(G) is the Euler 
characteristic of G. It is known that μ(G) ≥ 1/42. By Theorem 1.1 of [12] and the 
remark following it we have

∣∣Hom(G,An)
∣∣ ≥ (n!)μ(G)+1+o(1) ≥ (n!)43/42+o(1).

By Theorem 1.7 of [12], most of the homomorphisms from G to An are epimorphisms, 
and so

∣∣Epi(G,An)
∣∣ ≥ (n!)43/42+o(1),

where Epi(G, An) is the set of epimorphisms from G to An.
Suppose G is generated by g1, . . . , gr. Every epimorphism φ : G → An gives rise to 

an r-tuple (φ(g1), . . . , φ(gr)) ∈ Ar
n which generates An. Form a matrix whose columns 

are these r-tuples for all φ ∈ Epi(G, An). Let Sn = Aut(An) act on these r-tuples 
diagonally. Then there are at least |Epi(G, An)|/|Sn| ≥ (n!)1/42+o(1) different orbits 
under this action. Since an ≤ (n!)1/43 it follows using [9, Proposition 6] that Aan

n is a 
quotient of G. �
Lemma 4.7. Let an be as above. Then dI(Aan

n ) → ∞ as n → ∞.

Proof. This follows from part (iv) of Corollary 4.4. �
Proof of Theorem 1.5. The theorem follows immediately from Proposition 4.6 and 
Lemma 4.7. �
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5. Open problems

We conclude this paper by posing some natural problems which may inspire further 
research.

1. Is a finite index subgroup of an IG group necessarily IG?
2. Is a finite index subgroup of an FIG group necessarily FIG?
3. Are finitely generated solvable groups FIG?
4. Are finitely generated prosolvable groups FIG?
5. Are finitely generated solvable profinite groups FIG?
6. Is SLn(Z) (n ≥ 3) IG?
7. Is SLn(Q) IG?
8. Is every IG linear group virtually solvable?
9. Is every (non-elementary) word hyperbolic group non IG?

10. Is the profinite completion of every (non-elementary) word hyperbolic group non 
FIG?

6. Added in proofs

Problem 9 has been solved by Tzachik Gelander (arXiv:1407.7226).
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