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In recent years, there has been a considerable amount of 
interest in the stability of a finitely-generated group Γ with 
respect to a sequence of groups {Gn}∞n=1, equipped with bi-
invariant metrics {dn}∞n=1. We consider the case Gn = U(n)
(resp. Gn = Sym (n)), equipped with the normalized Hilbert-
Schmidt metric dHS

n (resp. the normalized Hamming metric 
dHamming
n ). Our main result is that if Γ is infinite, hyperlinear 

(resp. sofic) and has Property (T), then it is not stable with 
respect to 

(
U(n) , dHS

n

)
(resp. 

(
Sym (n) , dHamming

n

)
).

This answers a question of Hadwin and Shulman regarding 
the stability of SL3 (Z). We also deduce that the mapping 
class group MCG (g), g ≥ 3, and Aut (Fn), n ≥ 3, are not 
stable with respect to 

(
Sym (n) , dHamming

n

)
.

Our main result exhibits a difference between stability with 
respect to the normalized Hilbert-Schmidt metric on U(n)
and the (unnormalized) p-Schatten metrics, since many 
groups with Property (T) are stable with respect to the latter 
metrics, as shown by De Chiffre-Glebsky-Lubotzky-Thom and 
Lubotzky-Oppenheim.
We suggest a more flexible notion of stability that may repair 
this deficiency of stability with respect to 

(
U (n) , dHS

n

)
and (

Sym (n) , dHamming
n

)
.
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1. Introduction

Let G = {(Gn, dn)}∞n=1 be a family of groups Gn endowed with bi-invariant metrics 
dn, i.e., dn (ag1b, ag2b) = dn (g1, g2) for all g1, g2, a, b ∈ Gn. Here are some examples:

(1) P =
{(

Sym (n) , dHamming
n

)}∞
n=1, where dHamming

n is the normalized Hamming metric 
on Sym (n): for σ, τ ∈ Sym (n),

dHamming
n (σ, τ) = 1

n
· |{x ∈ [n] | σ (x) �= τ (x)}| ,

where [n] = {1, . . . , n}.
(2) HS =

{(
U (n) , dHS

n

)}∞
n=1, where dHS

n is the normalized Hilbert-Schmidt metric: for 
A, B ∈ U (n),

dHS
n (A,B) = ‖A−B‖HS , where ‖T‖HS =

(
Tr

(
1
n
· T ∗T

))1/2

.

(3) G(p) =
{(

U (n) , d(p)
n

)}∞

n=1
, for any fixed 1 ≤ p < ∞, where d(p)

n is the Schatten 

p-norm (see [8], Section IV.2): for A, B ∈ U (n),

d(p)
n (A,B) = ‖A−B‖p , where ‖T‖p =

(
Tr

(
(T ∗T )p/2

))1/p
.

The case p = 2 is of special interest: this is the standard L2-norm, a.k.a. the Frobenius 
norm, denoted ‖ · ‖F. Note that d(2)

n =
√
n · dHS

n . The proofs in Section 2 also make 
use of the Frobenius norm ‖ · ‖F for non-square matrices, which is defined by the 
same formula: ‖T‖F = Tr (T ∗T )1/2.

(4) G(∞) =
{(

U (n) , d(∞)
n

)}∞

n=1
, where the metric d(∞)

n is defined for A, B ∈ U (n) by 

d
(∞)
n (A,B) = ‖A −B‖∞, where ‖ · ‖∞ is the operator norm.

Let F be a free group on a finite set S. Let Γ be a quotient of F , and denote the quotient 
map by π : F → Γ. The objects S, F , Γ and π shall remain fixed throughout this paper.

From now on, for a group G, a function f : S → G and an element w ∈ F , we write 
f (w) for the element of G resulting from applying the substitution s 	→ f (s) to the word 
w.

Definition 1.1.

i) A G-stability-challenge for Γ is a sequence (fk)∞k=1 of functions fk : S → Gnk
, nk ∈ N, 

such that for every w ∈ Ker (π),

dnk

(
fk (w) ,1Gnk

)
k→∞−→ 0 .
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ii) Let (fk)∞k=1 be a G-stability-challenge for Γ. A solution for (fk)∞k=1 is a sequence of 
functions (gk)∞k=1, gk : S → Gnk

, such that for every w ∈ Ker (π), gk (w) = 1Gnk

(i.e., gk defines a homomorphism Γ → Gnk
), and

∑
s∈S

dnk
(fk (s) , gk (s)) k→∞−→ 0 .

iii) The group Γ is G-stable if every G-stability-challenge for Γ has a solution.

While the above definition of a G-stable group made use of a given presentation of Γ
as a quotient of a free group, it is in fact a group property, independent of the specific 
presentation (cf. [1]).

In recent years, there has been a considerable amount of interest in “group stability” 
(see [1], [35], [4] and the references therein). One of the main motivations is the study of 
G-approximations of Γ:

Definition 1.2. For G and Γ as above, we say that Γ is G-approximated if there is a 
sequence of integers {nk}∞k=1, and a sequence (ϕk)∞k=1 of functions ϕk : Γ → Gnk

, such 
that

∀g, h ∈ Γ lim
k→∞

dnk
(ϕk (gh) , ϕk (g)ϕk (h)) = 0

and

∀1Γ �= g ∈ Γ lim sup
k

dnk

(
ϕk (g) , 1Gnk

)
> 0

In classical terminology, P-approximated groups (for P as in Example (1) above) 
are called sofic groups, and HS-approximated groups are called hyperlinear groups (or 
Connes embeddable [35]). It is a well-known open problem, due to Gromov (resp. Connes), 
whether every group is sofic (resp. hyperlinear). Note that all sofic groups are hyper-
linear.

In [10], it was shown for the first time that there are finitely presented groups Γ
which are not 

(
U (n) , d(2)

n

)
-approximated (i.e., Frobenius-approximated), and this re-

sult was extended in [25] to all 1 < p < ∞. The groups Γ in those papers are finite 
central extensions of suitable lattices Γ̄ in simple Lie groups of rank r ≥ 3 over local 
non-archimedean fields. The key point there is that these groups Γ and Γ̄ are G(2)-stable 
(and even G(p)-stable). This is proved as a corollary to the vanishing result Hi (Γ, V ) = 0
for every i = 1, . . . , r − 1 and for all actions of Γ on Hilbert spaces V (and the same 
for many Banach spaces). The case i = 2 gives the stability of Γ. Vanishing for i = 1
is equivalent to Γ having Property (T), so all the groups treated there have Kazhdan’s 
Property (T).
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The goal of the present paper is to show that these examples are neither P-stable nor 
HS-stable. In fact, we prove a much more general result, which is of independent interest:

Theorem 1.3.

i) If Γ is sofic and has Property (T), then it is not P-stable, unless it is finite.
ii) If Γ is hyperlinear and has Property (T), then it is not HS-stable, unless it is finite.

As every finitely generated linear group is sofic, all lattices in higher rank simple 
algebraic groups over local fields are neither P-stable nor HS-stable. In particular, this 
holds for SLn (Z), n ≥ 3, answering a question of Hadwin and Shulman [13].

Theorem 1.3 is a corollary of the following:

Theorem 1.4. Assume that Γ has Kazhdan’s Property (T), and is either P-stable or 
HS-stable. Then, Γ has only finitely many finite-index subgroups.

Theorem 1.4 is proved in Section 2. We can already show how it implies Theorem 1.3:

Proof of Theorem 1.3. Assume that Γ is sofic and P-stable. A well-known observation 
(see Theorem 2 in [11]) says that, in this case, Γ is residually-finite. If further, Γ has 
Property (T), then by Theorem 1.4, it has only finitely many finite-index subgroups, and 
so it is finite.

Assume, instead, that Γ is hyperlinear and HS-stable. It is easy to see that in this case 
too, Γ is residually-finite. Indeed, arguing as in [11], we see that Γ is residually-linear, 
and so it is residually-finite since finitely-generated linear groups are residually-finite. 
So, as before, if, further, Γ has Property (T), it must be finite. �

In Section 3, we deduce the following:

Theorem 1.5. For g ≥ 3, the mapping class group MCG(g) of an orientable closed surface 
of genus g is not P-stable. For n ≥ 3, the (outer) automorphism group Aut (Fn) (and 
Out (Fn)) is not P-stable.

We do not know if the theorem also holds for HS-stability. Its proof uses Theorem 1.3
and Proposition 3.2, which states that if Γ is P-stable then so is its quotient by a normal 
subgroup N , provided that N is a finitely-generated group.

In Section 4, we discuss variations of Property (T) (e.g., Property (τ) and relative 
Property (T)), the stability of semidirect products and free products with amalgamation 
and a flexible notion of stability, and suggest problems for further research.

In the appendix we reprove Theorem 1.4 using the representation theory of Chevalley 
groups, under the assumption that Γ has an infinite linear quotient. In fact, we prove a 
somewhat stronger version of the theorem for such groups Γ.
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2. The proof of Theorem 1.4

Before we begin, we record a simple observation regarding P-stability. Fix formal 
elements {vi}∞i=1, and for every n ∈ N, let Bn = (v1, . . . , vn) serve as an ordered ba-
sis for a complex vector space Hn. A permutation σ ∈ Sym (n) ∼= Sym (Bn) extends 
uniquely to an element of U (Hn) ∼= U (n), giving an embedding ι : Sym (n) → U (n). 
For permutations σ, τ ∈ Sym (n),

dHS
n (ι (σ) , ι (τ)) =

√
2 · dHamming

n (σ, τ) .

Therefore, for G0 =
{(

ι (Sym (n)) , dHS
n

)}∞
n=1, the group Γ is P-stable if and only if it is 

G0-stable. We also refer to G0-stability-challenges and P-stability challenges interchange-
ably.

For a linear operator T : H → H on a finite-dimensional vector space H and a basis 
B for H, we write [T ]B for the matrix representing T with respect to B.

Lemma 2.1. Let H be a finite-dimensional complex Hilbert space with orthonormal ordered 
basis B = (v1, . . . , vn). Let B0 = (v1, . . . , vn−1) and H0 = spanC B0. Let T : H → H
be a linear operator. Write P0 : H → H0 for the orthogonal projection onto H0, and 
T0 = P0 ◦ T |H0 : H0 → H0. Then:

i) If T permutes B, then there is a linear operator A0 : H0 → H0, which permutes B0, 
such that

‖T0 −A0‖F ≤ 1

iii) If T is unitary, then there is a unitary linear operator A0 : H0 → H0, such that

‖T0 −A0‖F ≤ 1

In both cases, the inclusion map f : H0 → H satisfies

‖T−1 ◦ f ◦A0 − f‖F ≤ 2

Proof. (i) Assume that T permutes B. Denote T−1 (vn) = vi0 , 1 ≤ i0 ≤ n. Define a 
linear operator A0 : H0 → H0 on the elements of the basis B0 by

A0 (vi) =
{
T (vi) i �= i0

T (vn) = T (T (vi)) i = i0
.

Then, only the i0-th column of [T0 −A0]B0
may be nonzero, and its norm is 0 if i0 = n, 

or 1 otherwise. In any case,
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‖T0 −A0‖F ≤ 1

(ii) Assume that T is unitary. Take a polar decomposition T0 = A0 ·
√

T ∗
0 T0 of T0, 

where A0 ∈ U (H0) (see Theorem 3.1.9(c) in [15]). Note that, generally, A0 is only 
guaranteed to exist, but is not unique. Then,

‖T0 −A0‖F = ‖A−1
0 · (T0 −A0) ‖F = ‖

√
T ∗

0 T0 − In−1‖F (2.1)

Let u ∈ M1×(n−1) (C) be the bottom row of [T ]B, with the rightmost entry removed. Since 
T is unitary, we have ‖u‖ ≤ 1. Partition [T ]B as a block matrix, where [T0]B0

is the top-left 
block, and u is the bottom-left block. Since T ∗T = I, we get [T ∗

0 T0]B0
+ u∗u = In−1, 

i.e., [T ∗
0 T0]B0

= In−1 − u∗u. The eigenvalues of u∗u are 0 (with multiplicity n − 2), and 
〈u, u〉 = ‖u‖2 (with multiplicity 1, corresponding to the right eigenvector u∗). So, 

√
T ∗

0 T0
is a unitarily diagonalizable operator whose eigenvalues are 1, with multiplicity n − 2, 
and 

√
1 − ‖u‖2, with multiplicity 1. Hence,

‖
√

T ∗
0 T0 − In−1‖F =

∣∣∣√1 − ‖u‖2 − 1
∣∣∣ ≤ 1

which, together with (2.1), implies the desired result.
As for the last claim,

‖T−1 ◦ f ◦A0 − f‖F = ‖f ◦A0 − T ◦ f‖F

= ‖f ◦A0 − T |H0 ‖F

≤ ‖f ◦ (A0 − T0) ‖F + ‖f ◦ T0 − T |H0 ‖F

= ‖T0 −A0‖F + ‖ [(f ◦ P0 ◦ T − T ) |H0 ]
B
B0

‖F

= ‖T0 −A0‖F + ‖u‖F

≤ 1 + 1 = 2

where u is, again, the bottom-left row of [T ]B, with the rightmost entry removed. �
Lemma 2.2. Let H be a finite-dimensional complex Hilbert space. Let U1, . . . , Ul ∈ U (H)
and E1, . . . , El ∈ EndC (H). Let c ≥ 0, and assume that ‖Ei‖F ≤ c for all 1 ≤ i ≤ l. 
Then,

‖
l∏

i=1
(Ui + Ei) −

l∏
i=1

Ui‖F ≤ (c + 1)l

Proof. Let ∅ �= A0 ⊂ [l] (where [l] = {1, . . . , l}). For each 1 ≤ i ≤ l, denote Mi ={
Ei i ∈ A0

Ui i /∈ A0
. Let 1 ≤ k ≤ l, and consider the product 

∏k
i=1 Mi. On one hand, if k /∈ A0, 

then
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‖
k∏

i=1
Mi‖F = ‖

(
k−1∏
i=1

Mi

)
· Uk‖F = ‖

(
k−1∏
i=1

Mi

)
‖F

since the Frobenius norm ‖ · ‖F is invariant under multiplication by unitary operators. 
On the other hand, if k ∈ A0, then

‖
k∏

i=1
Mi‖F = ‖

(
k−1∏
i=1

Mi

)
· Ek‖F ≤ ‖

k−1∏
i=1

Mi‖F · ‖Ek‖F

since ‖ · ‖F is submultiplicative. So, we conclude by induction that

‖
k∏

i=1
Mi‖F ≤

∏
i∈A0

‖Ei‖F ≤ c|A0| .

Together with the triangle inequality, this implies that

‖
l∏

i=1
(Ui + Ei) −

l∏
i=1

Ui‖F ≤
∑

∅�=A⊂[l]

c|A|

=
l∑

i=1

(
l

i

)
· ci

≤ (c + 1)l . �
For a word w ∈ F , write |w| for the length of w, i.e., the length of w when written as 

a reduced word over S±. Recall that we write π for the fixed quotient map π : F → Γ.

Proposition 2.3. Let (H, α) be a finite-dimensional unitary representation of Γ. Let 
H0 ⊂ H be a subspace of co-dimension 1. Let B0 ⊂ B be orthonormal bases for H0, H, 
respectively. Then:

i) There is a function ρ : S → U (H0), such that ‖ρ (w) − I‖F ≤ 3|w| for every w ∈
Ker (π), and the inclusion map f : H0 → H satisfies

‖α
(
s−1) ◦ f ◦ ρ (s) − f‖F ≤ 2

for each s ∈ S.
ii) If, furthermore, each α (s) permutes B, then ρ above can be chosen such that each 

ρ (s) permutes B0.

Proof. Define α0 : S → EndC H by α0 (s) = P0 ◦ α (s) |H0 , where P0 : H → H0 is the 
orthogonal projection. By Lemma 2.1, applied to α (s) for each s ∈ S separately, there 
is a function ρ : S → U (H0), such that
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‖α0 (s) − ρ (s) ‖F ≤ 1 (2.2)

and if each α (s) permutes B, then ρ can be chosen so that each ρ (s) permutes B0. In 
any case, Lemma 2.1 guarantees that

‖α
(
s−1) ◦ f ◦ ρ (s) − f‖F ≤ 2

for each s ∈ S. Let s ∈ S. By considering the matrix representations of ρ (s) ⊕ 1H⊥
0

and 
α (s), and using the fact that α (s) is unitary, we see that

‖ρ (s) ⊕ 1H⊥
0
− α (s) ‖2

F ≤ ‖ρ (s) − α0 (s) ‖2
F + 3 .

Hence, from (2.2), we conclude that

‖ρ (s) ⊕ 1H⊥
0
− α (s) ‖F ≤

(
‖ρ (s) − α0 (s) ‖2

F + 3
)1/2 ≤ 2

We would like to bound ‖ρ (·)⊕1H⊥
0
−α (·) ‖F, evaluated at a word w ∈ F , and so we also 

need to bound ‖ρ (s)−1 ⊕ 1H⊥
0
− α (s)−1 ‖F. But, in general ‖A−1 −B−1‖F = ‖A −B‖F

for A, B ∈ U (H), and so

‖ρ (s)−1 ⊕ 1H⊥
0
− α

(
s−1) ‖F ≤ 2 .

Let w ∈ F . By Lemma 2.2, the above implies that

‖ρ (w) ⊕ 1H⊥
0
− α (w) ‖F ≤ (2 + 1)|w| = 3|w| .

Assume further that w ∈ Ker (π). Then α (w) = I, and so,

‖ρ (w) − I‖F = ‖ρ (w) ⊕ 1H⊥
0
− I‖F

≤ ‖ρ (w) ⊕ 1H⊥
0
− α (w) ‖F + ‖α (w) − I‖F

≤ 3|w| �
Henceforth, given representations H1 and H2 of Γ, we treat HomC (H1,H2) as 

a Γ-representation with the action given by g · f = g ◦ f ◦ g−1 for g ∈ Γ and 
f ∈ HomC (H1,H2).

Proposition 2.4. Let H0 � H be finite-dimensional complex Hilbert spaces, and write 
f : H0 → H for the inclusion map. Let α : Γ → U (H) and β : Γ → U (H0) be unitary 
representations. Then:

i) If (H, α) is irreducible, then ‖f−h‖F = ‖f‖F for every morphism of Γ-representations 
h : H0 → H.
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ii) If B0 ⊂ B are orthonormal bases for H0, H, respectively, each β (s) permutes B0, 
each α (s) permutes B, and the action Γ�αB of Γ on B through α is transitive, then 
‖f − h‖F ≥ 1√

2 · ‖f‖F for every morphism of Γ-representations h : H0 → H.

Proof. (i) Since dimC H0 < dimC H and (H, α) is irreducible, Schur’s Lemma implies 
the only morphism of representations H0 → H is the zero morphism, and so the result 
follows.

(ii) For b0 ∈ B0 and b ∈ B, let Eb0,b : H0 → H be the linear map sending b0 	→ b, 
and sending every other element of B0 to zero. Then, {Eb0,b}(b0,b)∈B0×B is a basis for 
HomC (H0,H). The inner product for which {Eb0,b}(b0,b)∈B0×B is an orthonormal basis 
makes the Γ-representation HomC (H0,H) unitary. The group Γ acts on B0 × B by γ ·
(b0, b) = (γ · b0, γ · b). A map T ∈ HomC (H0,H), represented as T =

∑
(b0,b)∈B0×B λb0,b ·

Eb0,b, is a morphism of representations if and only if the mapping (b0, b) 	→ λb0,b is 
constant on each Γ-orbit of B0 × B.

Let OB0
1 , . . . , OB0

k be the orbits of the action Γ � B0. Take an orbit O of the action 
Γ � B0 ×B. Then, there is a unique 1 ≤ i ≤ k such that O is contained in OB0

i ×B. We 

claim that |O| ≥ 2 ·
∣∣∣OB0

i

∣∣∣. Indeed, let (b0, b) ∈ O. Then,

StabΓ ((b0, b)) = StabΓ (b0) ∩ StabΓ (b) ≤ StabΓ (b0) . (2.3)

The action Γ�αB is transitive, and so |B| = [Γ : StabΓ (b)]. Thus,

[Γ : StabΓ (b0)] ≤ |B0| < |B| = [Γ : StabΓ (b)] .

In particular, StabΓ (b0) is not a subgroup of StabΓ (b), and so the inclusion in (2.3) is 
strict. Hence,

|O| = [Γ : StabΓ ((b0, b))]

= [Γ : StabΓ (b0)] · [StabΓ (b0) : StabΓ ((b0, b))]

≥ 2 · [Γ : StabΓ (b0)]

= 2 ·
∣∣∣OB0

i

∣∣∣ , (2.4)

as claimed.
For each Γ-orbit O of B0 × B, let c (O) be the number of elements (b0, b) ∈ O for 

which f (b0) = b, i.e., c (O) = |O ∩ {(b0, b0) | b0 ∈ B0} |. Then, 
∑

O c (O) = |B0|, and for 
each 1 ≤ i ≤ k, 

∑
O⊂OB0

i ×B c (O) =
∣∣∣OB0

i

∣∣∣. Let h : H0 → H be the result of applying 

the orthogonal projection HomC (H0,H) −→ HomCΓ (H0,H) to the given inclusion map 
f : H0 → H. Then, h is the morphism of representations which is closest to f under ‖ ·‖F. 
The {Eb0,b}(b0,b)∈B0×B-coefficients of h, which are constant on each Γ-orbit of B0×B, are 
obtained by taking the average of the coefficients of f in each Γ-orbit separately. Write 
f =

∑
(b ,b)∈B ×B λb0,b · Eb0,b and h =

∑
(b ,b)∈B ×B μb0,b · Eb0,b. Then, for each Γ-orbit 
0 0 0 0
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O of B0 ×B, the map λ : O → C, defined by λ (b0, b) = λb0,b, has, in its image, c (O) 1-s 
and (|O| − c (O)) 0-s, while the map μ : O → C, defined by μ (b0, b) = μb0,b, is constant, 
mapping all elements to c(O)

|O| . So, writing 
∑

O for a sum that runs over all Γ-orbits O of 
B0 × B, we deduce that

‖f − h‖2
F =

∑
O

(
c (O) ·

(
1 − c (O)

|O|

)2

+ (|O| − c (O)) ·
(

0 − c (O)
|O|

)2
)

=
∑
O

c (O) −
∑
O

c (O)2

|O| = |B0| −
∑
O

c (O)2

|O|

But, using Inequality (2.4), we deduce that

∑
O

c (O)2

|O| =
k∑

i=1

∑
O⊂OB0

i ×B

c (O)2

|O| ≤
k∑

i=1

∑
O⊂OB0

i ×B

c (O)2

2 ·
∣∣∣OB0

i

∣∣∣
≤1

2 ·
k∑

i=1

1∣∣∣OB0
i

∣∣∣ ·
⎛⎝ ∑

O⊂OB0
i ×B

c (O)

⎞⎠2

=1
2 ·

k∑
i=1

∣∣∣OB0
i

∣∣∣ = 1
2 · |B0|

Thus,

‖f − h‖2
F ≥1

2 · |B0| = 1
2 · ‖f‖2

F ,

and so, taking square roots finishes the proof. �
We recall the definition of Kazhdan’s Property (T) (see Section 1.1 of [6]). Let Q ⊂ Γ

and κ > 0. Recall that for a unitary representation (H, ρ) of Γ and a nonzero vector 
v ∈ H, we say that v is (Q, κ)-invariant if supx∈Q ‖ρ (x) · v − v‖ < κ · ‖v‖. We say that 
(Q, κ) is a Kazhdan pair for Γ if every unitary representation (H, ρ) of Γ satisfies:

if H contains a (Q, κ)-invariant vector,

then it also contains a Γ-invariant nonzero vector. (2.5)

We say that the group Γ has Kazhdan’s Property (T) if it has a Kazhdan pair (Q, κ) for 
which Q is finite (and κ > 0). Every discrete group with Property (T) is finitely-generated 
[6,19]. If Γ has Property (T), then for every finite generating set Q of Γ, there is κ > 0
for which (Q, κ) is a Kazhdan pair for Γ, and we call such κ a Kazhdan constant for 
(Γ, Q).
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Lemma 2.5. Assume that Γ has Property (T) with Kazhdan constant κ > 0 for (Γ, S±). 
Let (H1, α) and (H2, β) be finite-dimensional unitary representations of Γ. Let ε > 0, 
and let f : H1 → H2 be a nonzero linear map, such that for each s ∈ S,

‖α
(
s−1) ◦ f ◦ β (s) − f‖ < ε · ‖f‖

Then, there is a morphism h : H1 → H2 of Γ-representations, such that

‖f − h‖ <
ε

κ
· ‖f‖

Proof. The map f is an (S, ε)-invariant vector in the representation HomC (H1,H2) of 
Γ. So, there is a Γ-invariant linear map h ∈ HomC (H1,H2) such that ‖f − h‖ < ε

κ · ‖f‖
(see Remark 1.1.10 of [6]). The invariance of h is equivalent to h being a morphism of 
Γ-representations. �

We are now ready to prove the main theorem:

Proof of Theorem 1.4. Before we begin, note that for each n ∈ N, the group Γ has only 
finitely many finite-index subgroups of index n because Γ is finitely-generated. Since, in 
addition, Γ has Property (T), it has only finitely many irreducible unitary representations 
of any given dimension n ∈ N (up to isomorphism). For the last assertion, see Theo-
rem 2.6 of [36], or Corollary 3 of [37] for a more quantitative proof, or Proposition IV of 
[14] for an explicit upper bound on the number of representations. In any case, it can be 
proved by a simple application of Lemma 2.5, together with the compactness of U(n)|S|

and Schur’s Lemma.
Let κ > 0 be a Kazhdan constant for Γ with respect to S±. First, assume that Γ is 

P-stable. Assume, for the sake of contradiction, that Γ has infinitely many finite-index 
subgroups, and let {Λn}∞n=1 be a sequence of such subgroups for which [Γ : Λn] → ∞. 
Fix n ∈ N. Denote Bn = Γ/Λn = {x1, . . . , xk}, where k = [Γ : Λn]. Write αn : Γ →
U (C [Bn]) for the permutation representation produced by the action of Γ on Bn by 
multiplication from the left. Write B0

n = {x1, . . . , xk−1}, and let fn : C
[
B0
n

]
→ C [Bn]

be the inclusion map. By Proposition 2.3(ii), there is a function ρn : S → U
(
C
[
B0
n

])
, 

such that:

∀s ∈ S ρn (s) permutes B0
n (2.6)

∀w ∈ Ker (π) ‖ρn (w) − I‖F ≤ 3|w| (2.7)

∀s ∈ S ‖αn

(
s−1) ◦ fn ◦ ρn (s) − fn‖F ≤ 2 (2.8)

Inequality (2.7) is equivalent to

∀w ∈ Ker (π) ‖ρn (w) − I‖HS ≤ 3|w|

|B0
n|

1/2 . (2.9)
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From (2.6) and (2.9), we see that (ρn)∞n=1 is a P-stability-challenge for Γ. Since Γ is 
P-stable, there is a solution (ρ̃n)∞n=1 for (ρn)∞n=1, where ρ̃n : S → U

(
C
[
B0
n

])
and ρ̃n (s)

is a permutation matrix for each s ∈ S. We may extend each ρ̃n : S → U
(
C
[
B0
n

])
to a 

representation ρ̃n : Γ → U
(
C
[
B0
n

])
. Now, for each s ∈ S,

1
‖fn‖F

· ‖αn

(
s−1) ◦ fn ◦ ρ̃n (s) − fn‖F

≤
∣∣B0

n

∣∣−1/2 · ‖αn

(
s−1) ◦ fn ◦ ρn (s) − fn‖F

+
∣∣B0

n

∣∣−1/2 · ‖αn

(
s−1) ◦ fn ◦ (ρ̃n (s) − ρn (s)) ‖F

≤
∣∣B0

n

∣∣−1/2 · 2 + ‖ρ̃n (s) − ρn (s) ‖HS ,

where the last inequality follows from (2.8) and the fact that αn

(
s−1) and fn are unitary. 

Since (ρ̃n)∞n=1 is a solution for (ρn)∞n=1, we deduce that

1
‖fn‖F

· ‖αn

(
s−1) ◦ fn ◦ ρ̃n (s) − fn‖F

n→∞−→ 0 .

Thus, by Lemma 2.5, there are morphisms of representations (hn)∞n=1, hn : C
[
B0
n

]
→

C [Bn], such that

1
‖fn‖F

· ‖fn − hn‖F → 0 ,

in contradiction with Proposition 2.4(ii). This finishes the proof under the assumption 
that Γ is P-stable.

Now, assume that Γ is HS-stable rather than P-stable. Arguing as above, using Propo-
sitions 2.3(i) and 2.4(i) instead of Propositions 2.3(ii) and 2.4(ii), respectively, we deduce 
that Γ has only finitely many irreducible finite-dimensional representations up to isomor-
phism. Assume, for the sake of contradiction, that Γ has infinitely many subgroups of 
finite-index, and let {Λn}∞n=1 be a sequence of such subgroups, for which [Γ : Λn] → ∞. 
Write Λ0 = Γ. We may assume, without loss of generality, that the subgroups {Λn}∞n=1
are normal in Γ, and that Λn � Λn−1 for all n ∈ N. Fix n ∈ N. Take γn ∈ Λn−1\Λn. The 
regular representation C [Γ/Λn] of the finite group Γ/Λn is faithful, and it decomposes 
as a direct sum of irreducible representations of Γ. So, for at least one of these irreducible 
representations, call it Vn, γn does not act on Vn as the identity. But γn ∈ Λn−1, and 
so it acts as the identity on Vi for each 1 ≤ i < n. Therefore, we produced a sequence 
{Vn}∞n=1 of pairwise non-isomorphic finite-dimensional irreducible representations of Γ, 
a contradiction. �
3. The non-P-stability of Aut(Fn), Out(Fn) and MCG(g)

In this section, we focus on P-stability, and write dn for dHamming
n .
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Theorem 3.1.

i) For n ≥ 3, both Aut (Fn) and Out (Fn) are not P-stable.
ii) For g ≥ 3, the mapping class group MCG(g) of a closed orientable surface Σg of 

genus g is not P-stable.

The proof uses the following proposition, which is a special case of Proposition A.3 
of [5].

Proposition 3.2. Assume that Γ is finitely-presented and P-stable, and let N be a normal 
subgroup of Γ. If N is a finitely-generated group, then Γ/N is P-stable.

Remark 3.3. Proposition 3.2 is true also in a stronger form, where Γ is only assumed 
to be finitely-generated rather than finitely-presented [3]. We do not need this stronger 
form here.

Proof of Theorem 3.1. Let n ≥ 3 and g ≥ 3. The action of Aut (Fn) on the abelianization 
of Fn and the action of MCG(g) on H1 (Σg) give rise to epimorphisms:

MCG(g) −→ Sp2g (Z)

Aut(Fn) −→ GLn (Z)

Out(Fn) −→ GLn (Z)

The groups GLn (Z) and Sp2g (Z) are infinite, residually-finite (hence sofic) and have 
Property (T). Hence, by Theorem 1.4, they are not P-stable. Moreover, the kernels of 
all three epimorphisms are the Torelli groups, which are known to be finitely-generated 
(as g ≥ 3) [18,30] (cf. [7]). Therefore, Aut(Fn), Out(Fn) and MCG(g) are not P-stable 
by virtue of Proposition 3.2. �
4. Remarks and suggestions for further research

4.1. Stability of hyperbolic groups

It is clear that free groups are both P-stable and HS-stable. On the other hand, 
lattices in the rank one simple Lie groups Sp (n, 1) (n ≥ 2) have Property (T) (see [20]
or [6]), and so they are neither P-stable nor HS-stable by Theorem 1.3. However both 
free groups and the cocompact lattices among the aforementioned lattices are hyperbolic 
[12]. So, hyperbolicity by itself does not suffice to determine whether a group is stable. An 
interesting question is whether surface groups of genus g ≥ 2 are P-stable or HS-stable.

Proposition 3.2 provides an additional method, which does not have to use Property 
(T), to construct hyperbolic groups which are not P-stable. This can be done through 
the Rips construction [31]: Let Λ be a finitely-presented group which is not P-stable. For 
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example, take the Baumslag-Solitar group Λ = BS (2, 3), which is not residually-finite 
[2], but is free-by-solvable [21], hence residually-solvable, and thus sofic. Then, the Rips 
construction provides a hyperbolic group Ω which admits Λ as a quotient with a finitely-
generated kernel. Proposition 3.2 implies that Ω is not P-stable. In Section 4.4, we define 
a more flexible notion of P-stability. We remark that if Λ is sofic and not residually-finite, 
then it is not P-stable even in the flexible sense. Hence, the same is true for the hyperbolic 
group Ω (as the proof of Proposition 3.2 works for flexible P-stability as well).

4.2. Property (τ) and Property (T; FD)

The arguments presented in Section 2 do not require the full strength of Property 
(T) in the sense that they only go through finite-dimensional unitary representations 
of Γ. Focusing on P-stability (rather than HS-stability), even more is true: only finite-
dimensional unitary representations that factor through finite quotients of Γ are relevant. 
Recall that a discrete group Δ has Property (τ) if it has a pair (Q, κ), |Q| < ∞, 
κ > 0, such that Condition (2.5) from the definition of Property (T) holds for all finite-
dimensional representations of Δ that factor through finite quotients, and it has Property 
(T; FD) (see [29]) if the same holds for all finite-dimensional representations of Δ. We 
get the following more general result:

Theorem 4.1. Let Γ be a finitely generated group.

i) If Γ has Property (τ) and is P-stable, then Γ has only finitely many finite-index 
subgroups. Hence, a sofic group with Property (τ) is not P-stable, unless it is finite.

ii) If Γ has Property (T; FD) and is HS-stable, then Γ has only finitely many finite-index 
subgroups. Hence, a hyperlinear group with Property (T; FD) is not HS-stable, unless 
it is finite.

Warning: The weaker notion of Property (τ) with respect to a family of finite-index 
subgroups {Ni}∞i=1 does not suffice to deduce the conclusion of Theorem 4.1(i), even if the 

family is separating (i.e. ∩Ni = {1}). For example, the group Γ = 〈
(

1 2
0 1

)
, 

(
1 0
2 1

)
〉

is free, so it is clearly P-stable, and has Property (τ) with respect to the family of con-
gruence subgroups {Γ ∩ Ker (SL2 (Z) → SL2 (Z/mZ))}∞m=1 (it has the so called Selberg 
property [28]).

Note that it is easy to see that a free product of stable groups is stable (for all 
versions of stability). An interesting corollary of Theorem 4.1(i) is that a free product 
of two P-stable groups, amalgamated along a finite-index subgroup, is not necessarily 
P-stable. Indeed, for p an odd prime, look at

Γ (2) = Ker
(

SL2

(
Z

[
1
])

→ SL2

(
Z

[
1
]
/2Z

[
1
]))

.

p p p
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This is an amalgamated product of two free groups along a finite index subgroup (see 
[33], Chapter II, Section 1.4, Corollary 2), and, as with the example of SL2 (Z) above, it 
has the Selberg property [28]. However, unlike SL2 (Z), the group SL2

(
Z
[

1
p

])
satisfies 

the congruence subgroup property [32], and so from the Selberg property we deduce that 
it has Property (τ), and so the same is true for Γ (2), hence the latter is not P-stable.

4.3. Relative Property (T)

Recall that the group Γ, generated by the finite set S, has relative Property (T) with 
respect to a subgroup N ≤ Γ if there is κ > 0, such that every unitary representation 
(H, ρ) of Γ that has an (S, κ)-invariant vector v ∈ H, also has an N -invariant nonzero 
vector. If Γ has relative Property (T) with respect to a subgroup N ≤ Γ, rather than 
Property (T), we may deduce a weak form of Lemma 2.5, where the constructed mor-
phism h is merely a morphism of N -representations. Using this variant of the lemma, 
and arguing as in the proof of Theorem 1.4, we deduce the following:

Theorem 4.2. Assume that Γ is P-stable and has relative Property (T) with respect to a 
subgroup N ≤ Γ. Then, the collection

{L ≤ Γ | [Γ : L] < ∞ and Γ = NL}

is finite.

We exhibit an application of Theorem 4.2. The group SL2 (Z) acts on Z2 by matrix 
multiplication, giving rise to a semi-direct product Z2 � SL2 (Z). It is well-known that 
this semi-direct product has relative Property (T) with respect to the subgroup Z2�{1}. 
So, the infinite collection 

{(
nZ2)� SL2 (Z)

}∞
n=1, of finite-index subgroups, exhibits the 

non-P-stability of Z2�SL2 (Z). More interestingly, letting H be the finite-index subgroup 

of SL2 (Z) generated by 

(
1 2
0 1

)
and 

(
1 0
2 1

)
, we may deduce in the same manner 

that Z2�H is not P-stable as well. Note that since Z2 is abelian and H is free, we know 
that both are stable [1]! We conclude:

Corollary 4.3. A semidirect product of finitely-presented P-stable groups is not necessarily 
P-stable.

4.4. A flexible variant of P-stability

Finally, let us make a remark and a suggestion for further research. Our proof of 
non-P-stability of groups with Property (T) starts with a true action of Γ on a set X of 
n points, which is then deformed a bit into an almost action on a set of n −1 points. For 
Γ to be P-stable, this almost action must be close to an actual action on n −1 points. We 
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proved that it is never the case if Γ has Property (T) and the action Γ � X is transitive. 
However, the action on n − 1 points is clearly close to a true action on a set of n points 
since we started with such an action.

One may suggest a notion of “flexible P-stability”, which requires that every almost 
action can be corrected to an action by allowing to add points to the set before correcting 
it. One then needs to decide how to measure the distance between permutations of 
different sizes. For σ ∈ Sym (n) and τ ∈ Sym (m), n ≤ m, we generalize dHamming

n by 
defining

dflex
n (σ, τ) = 1

n
· (|{x ∈ [n] | σ (x) �= τ (x)}| + (m− n)) .

For a P-stability-challenge (fk : S → Sym (nk))∞k=1, we define a “flexible solution” 
to be a sequence of homomorphisms (gk : Γ → Sym (tk))∞k=1, tk ≥ nk, for which 

dflex
nk

(fk (s) , gk (s)) k→∞−→ 0 for each s ∈ S. We say that Γ is P-flexibly-stable if every 
P-stability-challenge for Γ has a flexible solution.

One may consider an even more flexible notion of P-stability by replacing dflex
n with

dvery-flex
n (σ, τ) = 1

n
· |{x ∈ [n] | σ (x) �= τ (x)}| .

The flexible notions of stability suggest a path towards finding a non-sofic group: a 
non-residually-finite group which is P-flexibly-stable, or even just P-very-flexibly-stable, 
is non-sofic. In fact, there is a possibly more accessible path which requires less. A sofic 
approximation for Γ is a sequence (fk : S → Sym (nk))∞k=1, nk ∈ N, such that

∀w ∈ Ker (π) dnk

(
fk (w) ,1Gnk

)
k→∞−→ 0

∀w /∈ Ker (π) dnk

(
fk (w) ,1Gnk

)
k→∞−→ 1 .

Note that every sofic approximation is a P-stability-challenge. Now, if a finitely-generated 
group Γ is not residually-finite, then Γ must be non-sofic if it satisfies the following con-
dition: For every sofic approximation (fk : S → Sym (nk))∞k=1 for Γ, there is a sequence 
of homomorphisms (gk : Γ → Sym (tk))∞k=1, tk ≥ nk, such that

lim inf
k→∞

∑
s∈S

dvery-flex
nk

(fk (s) , gk (s)) = 0 .

In fact, it is enough to require that the above lim inf is smaller than some small 
enough constant depending on |S| and on the length of the shortest word exhibiting 
the non-residual-finiteness of Γ. This strategy generalizes the observation [11] that a 
non-residually-finite P-stable group is non-sofic, and its strengthening [1] which says 
the same with respect to the notion of weak-stability, i.e., stability with respect to sofic 
approximations only, rather than general P-stability-challenges.
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One may hope that this path would make it easier to find a non-sofic group. Note 
that it is still an open problem whether surface groups are P-stable, but in response to 
an earlier version of the present paper, Lazarovich, Levit and Minsky proved that they 
are P-flexibly-stable [23].
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Appendix A. Non-stability through almost-irreducible actions

In this appendix, we give an alternative proof of Theorem 1.3 under the assumption 
that Γ has an infinite linear quotient. In fact, we prove a stronger statement (recall that 
every discrete group with Property (T) is finitely generated):

Theorem A.1. Let Γ be a discrete group with Property (T). Assume that Γ has an infinite 
linear quotient. Then Γ has a P-stability-challenge which has no solution, even when 
thought of as an HS-stability-challenge. In particular, Γ is neither P-stable nor HS-stable.

The main ingredient in the proof of Theorem A.1 is the following result, proved below:

Theorem A.2. Let Γ be a finitely generated group having a non-virtually-solvable in-
finite linear quotient. Then it has an infinite sequence of finite permutational repre-
sentations ρn : Γ → Sym (Xn) such that the corresponding unitary representations 
ρ̄n : Γ → U

(
L2 (Xn)

)
are almost irreducible in the following sense: ρ̄n has an irreducible 

subrepresentation χn such that dim χn

dim ρ̄n

n→∞−→ 1.

We begin by explaining how Theorem A.1 follows from Theorem A.2. Let Γ be a 
finitely generated group that has Property (T) and an infinite linear quotient. This 
linear quotient is not virtually solvable by virtue of Property (T), hence Theorem A.2
is applicable to Γ. As usual, we think of Γ as a quotient of a free group F , generated 
by a finite set S. Take ρn : Γ → Sym (Xn) and χn as in Theorem A.2. Choose a subset 
Yn of Xn whose cardinality is |Yn| = dimχn. Choose one action F � Yn satisfying the 
following: for every s ∈ S and x ∈ Xn, if s takes x to x′ under the action F � Xn

and both x and x′ belong to Yn, then s takes x to x′ under the action F � Yn as 
well. Let ϕ̄n : S → U

(
L2 (Yn)

)
be the unitary representation corresponding to the 
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action F � Yn. The sequence (ϕ̄n)∞n=1 is an HS-stability-challenge for Γ, and can also 
be thought of as a P-stability-challenge. Assume, for the sake of contradiction, that 
this HS-stability-challenge has a solution. Then, for large enough n, the map ϕ̄n is very 
close to a map ϕ̃n : S → U

(
L2 (Yn)

)
which extends to a homomorphism ϕ̃n : Γ →

U
(
L2 (Yn)

)
. Composing the canonical inclusion L2 (Yn) → L2 (Xn) with a projection of 

Γ-representations L2 (Xn) → χn produces a linear map f : L2 (Yn) → χn. The map f is 
an almost invariant non-zero vector in the Γ-representation HomC

((
L2 (Yn) , ϕ̃n

)
, χn

)
. 

Hence, since Γ has Property (T), there is a non-zero morphism of Γ-representations (
L2 (Yn) , ϕ̃n

)
→ χn. This contradicts Schur’s Lemma since |Yn| = dimχn and so every 

irreducible subrepresentation of 
(
L2 (Yn) , ϕ̃n

)
is of dimension smaller or equal to |Yn| −

1 = dimχn − 1.

Our proof of Theorem A.2 makes use of the following claim. Thanks are due to Bob 
Guralnick for useful discussions of it.

Proposition A.3. Let G˜ be a semisimple Chevalley group scheme and B˜ its Borel subgroup. 
Write G = G˜ (Fq) and B = B˜ (Fq), where Fq is a finite field of order q. Then, there is 
an irreducible G-subrepresentation V of L2 (G/B) such that limq→∞

dim V
dim L2(G/B) = 1.

Proof. Let p = charFq. Assume first that G˜ is a simple Chevalley group. Denote r =
rank

(
G˜) and write R for the number of positive roots of G. The Steinberg representation 

St of G is a subrepresentation of L2 (G/B) (see Section 1.3 of [16]). By Theorem 6.4.7(ii) 
of [9], dim St is equal to the cardinality of the p-Sylow subgroup Sp of G. By Lemma 54 
and its corollary in [34], |Sp| = qR, |B| = qR · (q − 1)r and

|G| = qR (q − 1)r ·
∑
w∈W

qN(w) (A.1)

where the sum runs over the elements of the Weyl group W associated with G˜ , and N (w)
is the number of positive roots taken by w to negative roots. Exactly one element w0 of 
W , the longest element, takes all positive roots to the negative ones ([17], Section 1.8). 
Hence, the sum in Equation (A.1) is equal to

qR +
∑

w0 �=w∈W

qN(w), N (w) < R .

This sum is the index of B in G, which is equal to dimL2 (G/B). Hence,
limq→∞

dim St
dim L2(G/B) = 1.

Now, consider the general case where G˜ is a semisimple Chevalley group. We can 
assume that G˜ =

∏s
i=1 G˜ i with G˜ i simple. Hence, G˜ (Fq) /B˜ (Fq) =

∏s
i=1 G˜ i (Fq) /B˜ i (Fq)

and the tensor product of the Steinberg representations of the G˜ i (Fq) is an irreducible 
subrepresentation of L2 (G/B) of almost full dimension by what we proved in the case 
of a simple Chevalley group. �
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In the notation of the claim, the G-set G/B can be identified with the set ConjG (B)
of conjugates of B in G since B is self-normalizing in G.

Proof of Theorem A.2. Assume w.l.o.g. that Γ is an infinite linear group which is not 
virtually solvable. Dividing its Zariski closure H by the solvable radical, we can assume 
that H is non-trivial and semisimple (though maybe not connected). Moreover, we can 
assume (cf. [27], Lemma 3.6) that H0, the identity component of H, is simply connected, 
and H0 is of the form 

∏s
i=1 G˜ i where G˜ i are simple Chevalley groups.

By Section 4 of [22], we can replace Γ with a specialization of Γ, and assume that 
Γ ⊂ GLn (k), where k is a global field, and still the Zariski closure of Γ is a k-algebraic 
group which is isomorphic to H over the algebraic closure k̄ of k, and we replace H by 
this new Zariski closure. As Γ is finitely-generated, it lies in H (OS) where O is the ring 
of integers of k and OS is its localization at a finite set S of primes.

We now apply Nori-Weisfeiler strong approximation (cf. [26], Window: Strong approx-
imation for linear groups) to Γ0 = H0 ∩ Γ to deduce that for almost every prime ideal 
p of OS , Γ0 is mapped onto H0 (OS/p). Moreover, applying the Chebotarev Density 
Theorem (as in [24], Section 4), we deduce that if G˜ is the Chevalley (split) form of H0, 
then for infinitely many p (in fact, a subset of positive density), H0 (OS/p) ∼= G˜ (OS/p). 
To summarize, Γ0 surjects onto G = G˜ (Fq) for infinitely many finite fields Fq. Fixing 
one such field Fq and letting B be the Borel subgroup of G, the action Γ0 � ConjG (B)
extends to an action Γ � ConjG (B) since Γ0 is a normal subgroup of Γ. The desired 
conclusion now follows from Proposition A.3, the identification of G/B with ConjG (B)
and the fact that the largest dimension of a subrepresentation of L2 (G/B) does not 
decrease when extending the Γ0-representation to a Γ-representation. �
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