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Abstract. In this note we present a very simple method of proving that some
hyperbolic manifolds M have finite sheeted covers with positive first Betti num-
ber. The method applies to the standard arithmetic subgroups of SO(n,1) (a
case which was proved previously by Millson [Mi]), to the non-arithmetic lattices
in SO(n, 1) constructed by Gromov and Piatetski-Shapiro [GPS] and to groups
generated by reflections. In all these cases we actually show that I' = 71 (M) has
a finite index subgroup which is mapped onto a nonabelian free group.

1. Introduction

Let M™ be a finite-volume hyperbolic manifold. A well known conjec-
ture of Thurston (cf. [Bo, p. 88] and [T, p. 380]) asserts that M™ has a
finite sheeted covering N with a nonzero first Betti number, 8;(N) > 0.
Various authors have applied several different techniques to prove this con-
jecture for many cases where m (M™) is an arithmetic lattice in PO(n,1).
The conjecture is known to be true for all arithmetic lattices in PO(n, 1),
provided n # 3 and 7 (see [Lu3], [Ra] and the references therein). While
w1 (M™) is always a lattice in PO(n,1), it is not necessarily an arithmetic
one. In this note we present a very simple method which proves the conjec-
ture for the known examples of nonarithmetic lattices in PO(n, 1), at least
when n # 3. When it can be applied, the method actually gives more; it
shows that I' = ;1 (M™) is mapped onto a virtually-(nonabelian)-free group.
This implies that I" has a finite index subgroup I'g which is mapped onto
a nonabelian free group. In particular, M™ has finite sheeted covers with
arbitrary large $1. Our main result says:

Theorem 3.5. Let M be an oriented n-dimensional finite-volume hyper-
bolic manifold. Assume M has a codimension one totally geodesic subman-
ifold F. Then T' = w1 (M) has a virtually (nonabelian) free quotient. In
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2 A. LUBOTZKY

particular, M has finite sheeted covers with arbitrarily large first Betti num-
bers.

Our method works for the “standard” arithmetic lattices in PO(n,1)
(see Section 3.1 below; they include all the nonuniform arithmetic lattices
for every n and all arithmetic lattices if n is even). But, it does not seem
to work for the other arithmetic hyperbolic manifolds which lack totally
geodesic hypersurfaces.

If T is mapped onto a virtually-free group then its subgroup growth is
the same as that of a free group, i.e., super exponential. Thus, the results
of this paper partially confirm a conjecture in [Lu2] which asserts that the
subgroup growth of every lattice in PO(n, 1) is super exponential.

When I' is arithmetic and mapped onto a virtually-free group, it has a
negative solution to the congruence subgroup problem. Moreover, its con-
gruence kernel contains a free pro-finite group of countable rank (see [Lul]).
This holds, therefore, for the standard arithmetic lattices in PO(n,1).

The paper is organized as follows: In Section 2, we establish two sim-
ple group theoretic lemmas which play the key role in our method. In
Section 3, we apply it first to the standard arithmetic lattices; here we sim-
plify the proof of Millson [Mi] for this case. His proof uses in an essential
way a symmetry between the two parts of the manifold (an idea which is
also reproduced in [H1]). Our proof does not use this symmetry. We can
therefore adapt it to the nonarithmetic lattices constructed by Gromov and
Piatetski-Shapiro ([GPS]) where there is no such symmetry. This plus a
common generalization is shown in Section 3. In Section 4, we bring in few
more applications to Haken 3-manifolds.

Acknowledgment. The work was supported by the Bi-National Science Foun-
dation U.S.A. - Israel. Most of the work was done while the author visited
the University of Chicago, whose warm hospitality is gratefully acknowl-
edged. I am also grateful to Shmuel Weinberger, Shahar Mozes, Peter
Shalen, and Zlil Sela for their help and insight.

2. Some simple group theoretic lemmas
Let’s start with a definition:

Definition 2.1. (i) A group A will be called virtually-free if it contains a
subgroup of finite index which is isomorphic to a nonabelian free group.
(ii) A group T has a wvirtually positive first Betti number (I’ has vB3; > 0,
for short) if I has a finite index subgroup A which is mapped onto Z — the
infinite cyclic group.

(iii) A group I' has a wvirtually-free quotient (I' has vF (@, for short) if T
is mapped onto a virtually free group. Note that vF'Q implies v3; > 0;
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moreover, it implies that for every n,I" has finite index subgroups which are
mapped onto Z", i.e., I' has finite index subgroups with arbitrary large first
Betti numbers.

Lemma 2.2. Let ' = A; x As be a free product with amalgam. Assume I’
has a finite quotient m:T' — S, such that C = 7(C) i m(A;) = Aji = 1,2.
Then:

(i) T has vy > 0.

(i) If ([A1:C) = 1)([A9: C] — 1) > 1 then T has vFQ.

(iii) K = Ker(m) has a quotient which is a free group of rankr = [S: C]—

2 _
-3 (8: 4] - 1),
i=1
Proof. By the universal property of a free product with amalgam, I' is
mapped onto A = A; * A,. This is a free product with amalgam of finite
c

groups, hence it is virtually free (cf. [Se2, Prop. 11, p. 120]). Moreover, a sim-
ple calculation using [Se2, Exercise 3, p. 123] shows that H = Ker(A — S)
is a free group of rank r as in (iii). This proves (iii). Now, (i) follows, since
by our assumptions [S:C] > 2[S: 4;] for ¢ = 1,2 and hence r > 1. The
assumption of (ii) implies further that r > 2 and (ii) is also proved.

It is interesting to observe that while the assumptions of the lemma are
fairly simple, they are crucial. Not every residually finite free product with
amalgam has a virtually free quotient:

Ezample 2.3. Let p be a prime and I' = SLz(Z[%]). It is well known

a b a b
that T' = A, 5A2 where Ay = SLy(Z), Ay = {(p_lc I:i) | (c d) €

“ b) € SLy(Z)|c = 0(mod p)}

SLQ(Z)}ESLQ(Z) andCzAl ﬁAg :{(C d
(see [Se2, Corollary 2, p. 80]). It is also known that every normal subgroup
of ' is either central or of finite index ([Ma, IV 4.9]). In particular, I" has no
infinite virtually free quotient. One can see that the assumptions of Lemma
2.2 do not hold here: Indeed, I' is known to have the congruence subgroup
property([Sel]), so its finite quotients are all obtained via congruence sub-
groups, I'/T'(m) where I'(m) = {y € I'|y = 1(mod m)} and m is prime to p.
For these quotients, I'/T'(m) ~ SLy(Z/mZ) and the images of A;, A> and
C are all onto and in particular are all the same!

An analogue to Lemma 2.2 holds for HNN- constructions. Let A be a
group with a subgroup B and a monomorphism ¢ : B — A. The HN N-
construction I' = A, is the group with presentation I' = (A, t|[t~1bt = (b),
for b € B).
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Lemma 2.4. LetT' = A,, be an HN N-construction as above. Assume T’
has a finite quotient m:T — S with B = w(B) ; n(A) = A. Then:

(i) T has vFQ.
(ii) H = Ker(w) is mapped onto a free group of rank r = [S:B] —
[S: A + 1.

Proof. By the universal property of the HN N-construction, I' is mapped
onto A = A, 5- This is a fundamental group of a finite graph of finite groups
and hence virtually free ([Se2, Prop. 11, p. 120]). Again [Se2, Exercise 3, p.
123] gives that H = Ker(A — S) is a free group of rank 7.

It is convenient to reformulate the above lemmas in terms of the pro-finite
topology of I'. Recall the following definitions:

Definition 2.5. Let T’ be a group.

(i) The pro-finite topology of T is the topology for which the finite index sub-
groups of I' serve as a fundamental system of neighborhoods of the identity.
(ii) If H is a subgroup of I' then H* denotes the closure of H with respect
to the pro-finite topology of I'. It is equal to the intersection of all the finite
index subgroups of I' containing H.

In this language, Lemmas 2.2 and 2.4 give:
Lemma 2.6. (i) LetT' = A, éA2 be a free product with amalgam. If C* i

A%, A% then T has vB1 > 0. If, in addition, ([A}:C*] —1)([45:C*] —-1) > 1,
then I’ has vF'Q.
(ii) Let ' = A, , be a HN N-construction. If B* ; A* then T has vFQ.

3. Virtually free quotients of hyperbolic lattices

In this section we apply the group theoretic results of the previous section
to prove nonvanishing of the first Betti number for some hyperbolic groups.

3.1 The standard arithmetic lattices

We start with reproving the result of Millson [Mi] concerning the standard
arithmetic lattices in SO(n,1).

Let us first recall the construction (see [Mi] for more details).

Let K be a totally real number field of degree m over the rational num-
bers, O its ring of integers and o1, ... ,0,, the embeddings of K into R. Let
f(X1, X, ..., Xpy1) = a1 X3+ ...+ an X2 — ap41 X2, | be a diagonal qua-
dratic form with a; € O. Assume f?* has signature (n,1) and f? are posi-
tive definite for i = 2,3,... ,m. The subgroup I" of GL,,+1(9O) preserving f

m
is a lattice in _HIOR(f‘“) and so is its projection to Og(f?*) ~ O(n,1). For
1=
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an ideal P of 9, the congruence subgroup I'(P) = {A € T'|A = I(mod P)}
is a normal finite index subgroup of I and for almost all P,I'(P) is torsion
free. Fix such a P whose norm is different than 2 and let T';, = T'(P). T, is
in SOy(n,1) — the connected component of SO(n, 1) (see [Mi, p. 239]). As
explained there the reflection 7 through the plane X; = 0 normalizes ['y,;
its centralizer in I';, will be denoted I';,_1. I';,_1 is the congruence subgroup
mod P of the subgroup of SO(n—1, 1) preserving the form f, which is equal
to f restricted to the hyperplane X; = 0. It is a lattice in SOy(n — 1,1).
Moreover, Y,—1 = ;-1 \ SOo(n — 1,1)/SO(n — 1) is an embedded totally
geodesic hyperplane in the manifold Y,, = I';, \ SOqy(n,1)/SO(n) (see [Mi,
p. 240] or [GPS, 2.8. A]). Y,,_; might separate Y,, or not. (In fact, most of
the work in [Mi] is to ensure that, if P is deep enough, then Y,,_; does not
separate which gives the desired nonzero first Betti number). We can work
with both cases: In the first case I';, = A % B where A and B are the

Fn—l

fundamental groups of the two “halves” a and b, respectively, of Y,,. In the
second case I';, = A.r an HN N-construction of A over I';,_;. In either
case [',_; is a proper subgroup of infinite index in A (and in B in the first
case). Actually, A (and B) is Zariski dense in SO(n,1) ([GPS, 1.7)).

We can now prove:
Theorem 3.1. ', has vF Q.
Proof. As before either I'y = A x BorI'=A

n—1

check that we can apply Lemma 2.2 and 2.4 respectively.

We have that ', € GL,41(9) with T,y C GL,(D) and T',_; =T, N
GL,(®). Thus, I',,_ is a proper closed subgroup of I';, with its congruence
topology and I';,_; is of infinite index in A and B. It follows that for some
ideal q of O, [r(A) : 7(Tp-1)] > 3 (and [7(B) : m(T',,—1)] > 3 in the first
case) where 7 is the natural projection 7 : GL,,+1(0O) = GL,+1(0/q). We
thus have all the assumptions of Lemmas 2.2 and 2.4.

n—17

We only have to

*Fn—l'

3.2 The hybrid manifolds

In [GPS], Gromov and Piatetski-Shapiro used a method of “interbreeding”
two arithmetic groups I'), and I'}, in G = SO(n,1) to get a new lattice I'
in G. Under suitable assumptions (essentially when I';, and I'/, come from
different Q-forms of G) the resulting lattice I' is a nonarithmetic lattice of
G.

The arithmetic lattices which are suitable for this interbreeding process
are the standard ones — those we discussed in Subsection 3.1. We will also use
the notations of Subsection 3.1. Let f and f’ be two quadratic forms defined
over the same number field K and take P to be the same ideal. We assume
that the restrictions fo and f} of f and f’, respectively, to the hyperplanes



6 A. LUBOTZKY

X1 = 0 are equal to each other. Let Y;, and Y, be two manifolds as in (3.1).
By our assumptions the hypersurfaces Y,,_; and Y, _; are isometric and the
groups I';,_; and I'},_; are isomorphic and actually can be identified with
each other.

The hypersurface Y;,_; (resp. Y,/_;) can either separate Y, (resp. Y,!) or
not. Assume either both separate or both do not.

In the separating case the “hybrid manifold” is obtained by gluing one
“half” of Y,, with a “half” of Y, along Y,—1 ~ Y,_;. As explained in
[GPS], the resulting manifold V' is an oriented hyperbolic manifold whose
fundamental group I is a lattice in SO(n,1). (It can be either cocompact
or not). In group theoretical terms one sees that I' = A * A’ where A

1—‘n—l

(resp. A’) is the fundamental group of the half taken from Y,, (resp. Y,)).

We can now argue in a way similar to the proof of Theorem 3.1: A and
A’ are subgroups of GL,,1(9) which contain I',,_; as a proper subgroup of
infinite index. Moreover, [',,_ is closed in the congruence topology and so,
for most congruence quotients of GL,11(9), the image of I',,_; is different
(and of index > 2) from the images of A and A’. By Lemma 2.2, T' is
mapped onto a virtually free group.

Let us consider now the nonseparating case: In this case Y;, (resp. Y,!) is
cut along Y, (resp. Y, _;) and the resulting manifold V,, (resp. V,|) has
two boundary components, each isometric to Y,,_; (resp. Y, _;). As Y, ~
Y,!_, we can glue V,, to V! to get a complete hyperbolic manifold V' (see
[GPS]) whose fundamental group we denote by I'. Here is the group theoretic
= (A,t) and
Iy =m(Y,) =4, = (4¢). By gluing one boundary component of

description of I': as explained in (3.1), '), = m(Y,,) = A

*Fn—l
n—1

Y,, with one boundary component of Y, we get a manifold U = Y, UY,

with m(U) = A ¥ A’. Then we close U by gluing its two boundary

"_1=Fn—1

components one to the other to get the resulting manifold V' with
m(V) = (m(U),t |t ~1(t ' Tport)t =t'"'T,_1t).

Note that 71 (U) is still a subgroup of GL,,1(9). This is not clearly the case
for 71 (V). Still, ¢ € 71(V) which conjugates t™'T',_1t (< A < GL, (D)) to
t71T, 1" (< A’ < GL, (D)) preserves the congruence structure. Thus if we
take all this mod g for some ideal q prime to P, we get a map from 7 (V)
onto the HN N-construction of 7, (U)(mod q) over the image of ¢t~'I",,_;¢7!
(mod ¢q). The latter is a proper subgroup of the first (for most ¢). Thus I' is
mapped onto a virtually free group (by [Se2, Prop. 11 p. 120 and Exercise
3 p. 123)).
To summarize we have:



FREE QUOTIENTS AND THE FIRST BETTI NUMBER 7

Theorem 3.2. Let M be a hyperbolic manifold obtained as the hybrid man-
ifold of two arithmetic manifolds as in [GPS]. Then w1 (M) is mapped onto
a virtually-(nonabelian) free group.

Corollary 3.3. M has finite sheeted covers with arbitrary large first Betti
number.

Remarks 3.4. (a) In case v, =Y, \v,, =Y,_1 and Y,] \ Y, _; are connected
(the nonseparating case) it is clear that the resulting hybrid manifold has
a nonzero first Betti number. It is less clear (but proved by our method)
that by passing to finite covers this number can be made arbitrary large.
For arithmetic lattices there is a general argument which ensures that once
B1 # 0, then f; is arbitrary large for some congruence subgroups (see [Bo,
2.8 and 4.2]). For nonarithmetic lattices we do not know any such general
principle (and it is clearly not true for a general manifold).

(b) One can easily generalize the construction of hybrid manifolds: it is
possible to cut few manifolds, each one in few disjoint hypersurfaces and
then to glue them together in various different ways a la [GPS] (see also
[VS, p. 228-231]). Theorem 3.3 would hold for such constructions as well.

3.3 Manifolds with totally geodesic hypersurfaces

A common generalization of Theorems 3.1 and 3.2 is:

Theorem 3.5. Let M be an oriented n-dimensional finite-volume hyper-
bolic manifold. Assume M has a codimension one totally geodesic subman-
ifold F. Then T' = w1(M) has vF'@Q and, in particular, M has finite sheeted
covers with arbitrarily large first Betti number.

Proof. T is a lattice in PO(n,1) and after conjugation we can assume that
71 (F') is mapped into PO(n — 1,1). In fact it is a lattice there. The hyper-
surface F' may cut M into two part a and b or be a nonseparating one. In

the first case I' = A TF) B where A (resp. B) is the fundamental group
1

of a (resp. b). In the second case I' = A, _ ., where this time A is the
fundamental group of the open manifold obtained by cutting M along F.
In either case 71 (F') is of infinite index in A (and B). By the Borel density
theorem 71 (F') is Zariski dense in PO(n—1,1) and as PO(n—1,1) is a max-
imal algebraic subgroup of PO(n,1), we deduce that A (and B) is Zariski
dense in PO(n,1). This implies that with respect to the pro-finite topology
of I', w1 (F)* is of infinite index in A* (and in B*). Indeed, if 71 (F)* would
be of finite index in A*, then by [MS, Proposition 3] the Zariski closure of
m1(F') would be of finite index in the Zariski closure of A. But SO(n —1,1)
is of infinite index in SO(n,1). We can now apply Lemma 2.6 to deduce
that T' has vF'Q.
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3.4 Groups generated by reflections

An easy corollary of Theorem 3.5 is:

Corollary 3.6. Let I be a torsion-free lattice in PO(n,1). Assume there
exists a reflection T € PO(n,1) normalizing T'. Then T' has vFQ.

Proof. The reflection 7 acts on the manifold I'\ H” and its fixed point set is
a codimension one totally geodesic submanifold. Theorem 3.5 now applies
for T'=m (I'\ H").

This in particular says that if " is generated by reflections then a finite
index subgroup of I has vF'Q). For n > 4, all known examples of nonarith-
metic groups are either “hybrid manifolds” (3.2) or are commensurable to
ones generated by reflections (cf. [VS, pp. 227-228]). So, all of them satisfy
Thurston’s conjecture, i.e., have finite covers with positive Betti number.
For n = 3, there is another kind of nonarithmetic lattices: those obtained
by (closing) knots’ complements & la Thurston. Most of them are nonar-
ithmetic and for those Thurston’s conjecture is open. Note however that
all torsion-free nonuniform lattices in PO(3,1) have positive Betti number,
so Thurston’s conjecture is open only for the cocompact ones. We do not
know, however, whether an arbitrary nonuniform lattice in PO(3,1) has a
finite index subgroup which is mapped onto a non-abelian free group. This
is the case for the arithmetic ones as we now show.

3.5 The Bianchi groups

The group PO(3,1) is locally isomorphic to SLy(C) and every arithmetic
nonuniform lattice in it is commensurable (up to conjugacy) to SLs(QO)
where O is the ring of integers in Q(v/—d) for some 0 < d € Z. The fact
that SLy(O) has a finite index subgroup with a nonabelian free quotient was
proved by Grunewald and Schwermer [GS] using number theoretical results.
It also follows from our Theorem 3.1 since SLs(O) are commensurable to
the standard arithmetic lattices discussed there. We however show here that
the proof is “constructive” allowing us to present explicit subgroups of finite
index with free quotients of explicitly calculated ranks. (In fact Theorems
3.1 and 3.2 are special cases of 3.5, we have proved them separately as the
direct proof is effective).

Theorem 3.7. Let O = Oy be the ring of integers in Q(v/—d),0 < d € Z
and T'q a finite index torsion free subgroup of SLa(O). Then 'y has vFQ.
Moreover if p € Z is a prime which does not split in O, then if p is large
enough, T'q(p) = ker(SLy(O) — SLy(O/pQ)) is mapped onto a free group
of rank p® +p — 1.

Proof. Let Ag = T4 N SLo(R) = Ty N SLy(Z). Then Ag\ SL2(R)/SO(2)
is a totally geodesic hypersurface in I'y \ SL2(C)/SU(2). Thus either I'y =
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A X B for some subgroups A and B of I'j containing Ay as a subgroup

of irfﬁnite index (see (3.1)) or I'q = A, _, an HN N-construction for some
Ay < A< Ty, where (A : Ay) is infinite. As Ay is closed in the congruence
topology of I'y, Lemma 2.6 implies that 'y has vF'Q.

Moreover, let © be the projection of 'y to SL2(O/pO) = D,, (which is
onto for almost all p). If p is large enough 7(A4) (and w(B)) is equal to
D, while 7(Ap) is equal to SLy(Z/pZ) S D,. Indeed, for large enough
p, m(A) contains w(A,) properly and SLy(p) is a maximal subgroup of
D, = SLy(p*?). We can apply Lemma 2.2 (iii) and Lemma 2.4 (ii) to

ker(m) = T'4(p), to deduce that I'4(p) is mapped onto a free group of rank

_ISLa(®®)| 1 _ .3 _
"= L) 1= tp— 1

4. Haken 3-manifolds

Throughout this section, M is a compact orientable irreducible 3-manifold
with an infinite fundamental group. M is called Haken if it contains a 2-sided
incompressible surface. A well known conjecture of Waldhausen asserts that
M is always virtually Haken, i.e., has a finite cover which is Haken. This
is a weaker conjecture than the one mentioned in the introduction asserting
that M has a finite cover with positive (1, since $1(M) > 0 implies M is
Haken.

In this section we give few results asserting that under suitable conditions,
if M is Haken it has a finite cover with positive Betti number.

4.1 Haken nonhyperbolic 3-manifolds

Proposition 4.1. If M is Haken and nonhyperbolic then mi (M) is
either virtually-solvable or has vF'@Q. In any case it has a finite cover with
a positive first Betti number.

Proof. The Jaco-Shalen-Johanson decomposition Theorem gives a splitting
of M by incompressible tori into pieces which are either Seifert fibered, solv
or, by the work of Thurston, have hyperbolic structure (see [H2] and [T]).
If this set of tori is non empty then 71 (M) is decomposed as a free prod-
uct with amalgam or HN N- construction where the edge group is abelian
(isomorphic to Z @ Z — the fundamental group of a torus). The edge group
cannot be dense in the vertex groups (with the pro finite topology) as the
vertex groups are non abelian and 7 (M) is residually finite ([H]). Thus
Lemma 2.6 implies that I has vF'Q. If this set of tori is empty then, as M
is not hyperbolic, M is Seifert fibered or a solv manifold. In case it is solv,
its fundamental group is solvable. In case it is Seifert fibered, it is either
nil or Euclidean in which case its fundamental group is virtually nilpotent,
otherwise 71 (M) is mapped onto a nonabelian free group.
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The last proposition is a slight improvement of the main result of [Ko]
(see also [LN, Corollary on page 212]).

Anyway, the conjecture Haken = vf3; > 0 has to be proven only for
hyperbolic manifolds.

4.2 Haken manifold where (M) is LERF

A group T is called LERF (or: subgroup separable) if for every finitely gen-
erated subgroup H and every g € I'\H, there exists a homomorphism ¢
from T to a finite group such that ¢(g) ¢ ¢(H). It is widely believed that
fundamental groups of hyperbolic (3-)manifolds are LERF. It is therefore of
interest to observe:

Proposition 4.2. If M is Haken and w1 (M) is LERF but not virtually
solvable, then T' = w1 (M) has vFQ.

Proof. LERF means that for every finitely generated subgroup H of I', H* =

H. Thus, if M is HakenT = A TF)B orI'= A, ., where(F)isaproper
T

subgroup of A (and B). By LERF-ness, 71 (F')* i A* (and m (F)* i B*)
and hence by Lemma 2.6, I has vF'Q. (It is impossible that (A*: 7 (F)*) =
(B*:m1(F)*) = 2 as in such a case 71 (F") would be normal in I" which is
impossible).

4.3 Some remarks on Haken = v35; >0

Assume M is a closed hyperbolic Haken 3-manifold. So there exists a cocom-
pact torsion free lattice T' is PSLo(C) s.t. M = I'\H3. M has an incompress-
ible surface F'. If F' does not separate M, then 8;(M) > 0. So we assume
F separates M into two parts 2; and 2. Denote A; = m;(;),i = 1,2 and
C = m(F). Then C is a subgroup (of infinite index) in A4;(i = 1,2) and
I'= A é As. To prove that I" has v38; > 0, it suffices to show that in the
pro-finite topology of T, the closure of C is a proper subgroup of the closure
of A;(i =1,2), (see Lemma 2.6 (i)). An elegant argument of Long and Niblo
[LN] shows that C' is closed in the pro-finite topology of A;. Indeed, let B;
be the double of A; along its boundary F'. Then B; is a hyperbolic manifold.
Hence I'; = A; 2 A; is a residually finite group. There is an involution 7; of

I'; sending one copy of A4; to the other and fixing C. Moreover, C' is exactly
the set of fixed points of 7;. It is easy to see that such a set is closed in the
pro-finite topology of I'; and hence in that of 4; (for i = 1 and 2).

This argument plus our methods gives:

Proposition 4.3. If 2 is an irreducible, orientable 3-manifold with an in-
compressible boundary F, and M is a double of A along F. Then w1 (M)
has vFQ.
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But, by no means the above argument shows that in our original M, C
is closed in the pro-finite topology of I'. Look for example at Example 2.3
above. There, C is closed (in fact of finite index) in A; for i« = 1,2, but,
C isdense inI' = A; % As. The topology induces from T' to A; may be

weaker than the pro finite topology of A;! An interesting test case is the
following: Assume M is a double of a manifold 2 with a boundary F' such
that the identification of the two halves is done after twisting the F' by an

automorphism ¢. Algebraically, this means I' = A c T(c) A where ¢ is the
=¢

automorphism of C' = 71 (F') induced by ¢. Even in this case we do not
know how to prove that v3; > 0.
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