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Abstract. In this note we show that various (geometric/homological)
finiteness properties are not profinite properties. For example for
every 1 ≤ k, ℓ ≤ N, there exist two finitely generated residually fi-
nite groups Γ1 and Γ2 with isomorphic profinite completions, such
that Γ1 is strictly of type Fk and Γ2 of type Fℓ.

1. Introduction

Let Γ be a finitely generated group. What properties of Γ can be

deduced from its finite quotients? The question makes sense only for

residually finite groups. Moreover, two finitely generated groups Γ1

and Γ2 have the same set of (isomorphism classes of) finite quotients

if and only if they have isomorphic profinite completion Γ̂1 ≃ Γ̂2 (cf.

[DFPR]). Let us therefore define:

Definition 1.1. A property of groups P is called a profinite prop-

erty if whenever Γ1 and Γ2 are finitely generated residually finite

groups with Γ̂1 ≃ Γ̂2 and Γ1 has property P , so does Γ2.

In recent years there has been a growing interest in understanding

what properties are profinite properties (cf. [B1], [La], [Ak] and the

references therein and especially [GZ] for a historical review and a

systematic program of research). This resembles the quite intensive

area of study of “geometric properties”, i.e. properties shared by all

pairs of finitely generated groups with quasi-isometric Cayley graphs.

The current note was sparked by a lecture given by Martin Bridson in

Park-City in July 2012, where he presented an example of two finitely

generated residually finite groups Γ1 and Γ2 with isomorphic profinite

completions, such that Γ2 is finitely presented while Γ1 is not. So, in
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the above terminology, the property of being finitely presented is not

a profinite property. See [BR] for this and more.

Our main result is:

Theorem 1.2. For every r and s there exists finitely generated resid-

ually finite groups Γr and Γs such that Γr has property Fr (and not

Fr+1), Γs has Fs (and not Fs+1) and Γ̂r is isomorphic to Γ̂s.

Recall that a countable group Γ is said to have property Fm if there

exists an Eilenberg-MacLane complex K(Γ, 1) with finite m-skeleton.

Every group is of type F0. Property F1 is equivalent to being finitely

generated while property F2 is equivalent to being finitely presented.

Our theorem is therefore a far-reaching generalization of Bridson-Reid’s

example.

Let us denote φ(Γ) = sup{m|Γ has property Fm} and call φ(Γ)-the

finiteness length of Γ. So our theorem gives:

Corollary 1.3. The finiteness length is not a profinite property.

The theorem is deduced in §2 from various deep results on arithmetic

groups over positive characteristic function fields. A similar trick is

used to deduce the following somewhat surprising result:

Proposition 1.4. Being residually solvable (resp. residually nilpotent,

residually −p) is not a profinite property.

The same trick when applied in §3 for arithmetic groups in charac-

teristic zero gives us

Proposition 1.5. (a) Being torsion-free is not a profinite property.

(b) Having trivial center is not a profinite property.

Additional results on lattices in Lie groups give:

Proposition 1.6. Cohomological dimension is not a profinite property

We conclude in §4 with some related remarks, questions and sugges-

tions for further research.

Acknowledgments: The author acknowledges useful conversations

with Martin Bridson and Kevin Wortman during the above mentioned

Park City conference.

2. Arithmetic groups of positive characteristic

We now prove a much stronger version of Theorem 1.2.
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Theorem 2.1. For every 1 ≤ n ∈ N, there exist residually finite groups
Γ0,Γ1, . . . ,Γn with isomorphic profinite completions and with φ(Γi) = i

for 0 ≤ i ≤ n.

The proof relies on some properties of positive characteristic arith-

metic groups. Some remarkable results have been proven recently on

the finiteness properties of these groups (cf. [BW1] [BW2]) but for our

case the more classical results on SL2 suffice. So, let us formulate them

in a way ready for us to use:

Theorem 2.2 (Stuhler [St]). Fix a prime power q, and O = Fq[t]. Let

S be a set of irreducible polynomials in Fq[t] and

OS =







f(x)

g(x)
∈ Fq(t)

∣

∣

∣

∣

∣

∣

f(x), g(x) ∈ Fq[t] and
the only irreducible

divisors of g(x)are from S







.

Then φ(SL2(OS)) = |S|.

So, for S = ∅, SL2(OS) = SL2(Fq[t]) is of type F0 but not F1, i.e. not

finitely generated, while if |S| = 1, SL2(OS) is finitely generated (F1)

but not finitely presented. On the other hand, if |S| ≥ 2, SL2(OS) is

always finitely presented.

Theorem 2.3 (Serre [Se]). If |S| ≥ 1, then SL2(OS) has the congruence

subgroup property, i.e.

̂SL2(OS) = SL2(ÔS).

Let us spell out the concrete meaning of the last result: ÔS-the

profinite completion of OS is equal to: Π
p/∈S

(OS)p̂ where (OS)p̂ is the

completion of OS with respect to the topology of OS determined by

the ideal (p) generated by the irreducible polynomial p (and its powers).

It is easy to see that (OS)p̂ ≃ Op̂.

Remark 2.4. If S is an infinite set of irreducible polynomials, and OS

is defined in the same way as for a finite set, then Theorem 2.3 is still

valid for SL2(OS). This follows either from the proof in [Se] or from

the fact that such SL2(OS) is the union of SL2(OS′) where S ′ runs over

the finite subsets of S. Note also that as long as S is not the set of

all irreducible polynomials in Fq[x], SL2(OS) is residually finite since

SL2(OS) →֒ SL2((OS)p̂), for every p /∈ S, and the latter group is a

profinite group. Of course, if S is the set of all irreducible polynomials

then OS = Fq(t) and SL2(Fq(t)) has no finite index subgroup (in fact,

it is simple mod its center).
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Before moving on to the proof of the theorem, we need the following

lemma which is surely well known to experts. We were not able to

allocate an explicit reference. We are grateful to Shmuel Weinberger

who showed us how to deduce it quickly from [Wa].

Lemma 2.5. Let Γ1 and Γ2 be two countable groups. Then φ(Γ1×Γ2) =

min(φ(Γ1), φ(Γ2)).

Proof. By a result of Wall [Wa, Theorem A, p. 58] it is equivalent

for a homotopy type to have property Fm or to be dominated by a

space of type Fm. Thus, if Γ1 × Γ2 has type Fm so do Γ1 and Γ2, i.e.

φ(Γi) ≥ φ(Γ1 × Γ2). On the other hand, if both K(Γ1, 1) and K(Γ2, 1)

have finite m-skeleton, so does K(Γ1×Γ2, 1) = K(Γ1, 1)×K(Γ2, 1) and

hence φ(Γ1 × Γ2) ≥ min{φ(Γi)|i = 1, 2} and the Lemma is proven. �

We are now ready to prove Theorem 2.1: Fix 1 ≤ n ∈ N and fix a

set of n irreducible polynomials S = {p1, . . . , pn} in Fq[x]. Denote for

i = 1, . . . , n, Si = {p1, . . . , pi}. Now choose for some m ≥ n, a set T

of m irreducible polynomials with T ∩ S = ∅. For i = 1, . . . , n, denote

Ti = T ∪ {pi+1,...,pn}, so Tn = T and Si ∪ Ti = S ∪ T . Finally let

Γi = SL2(OSi
)× SL2(OTi

).

We claim: (a) φ(Γi) = i. Indeed by Theorem 2.2, φ(SL2(OSi
)) =

i while φ(SL2(OTi
)) = m + n − i. Hence, by Lemma 2.5, φ(Γi) =

min(i,m+ n− i) = i.

(b) Γ̂1 ≃ Γ̂2 ≃ · · · ≃ Γ̂n. In fact, as Si ∪ Ti = S ∪ T , we have by

Theorem 2.3 and the explanation following it:

Γ̂i =
∏

p/∈Si

SL2(Op̂)×
∏

p/∈Ti

SL2(Op̂)

∼=
∏

p/∈T∪S

(SL2(Op̂)× SL2(Op̂))×
∏

p∈T∪S

SL2(Op).

This shows that the isomorphism type of the profinite completion is

independent of i.

We still have to show that there exists a countable group Γ0 which

is residually finite and not finitely generated (so φ(Γ0) = 0) and with

the same profinite completion as of Γ1, . . . ,Γn. To this end let R be

an infinite set of irreducible polynomials in Fq[t], whose complement

R̄ is nonempty. In this case SL2(OR) is an ascending union of finitely

generated groups and hence not finitely generated. Still by Remark

2.4, Serre’s Theorem applies and both SL2(OR) and SL2(OR̄) have the
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congruence subgroup property. Hence

̂SL2(OR)× SL2(OR̄) = SL2(ÔR)× SL2(ÔR̄) =
∏

p

SL2(Op̂)

where this time p runs exactly once over all the irreducible polynomials

in Fq[t].

Let us now take Γ0 = SL2(OT∪S)× SL2(OR)× SL2(OR̄). This is not

a finitely generated group and its profinite completion is
∏

p/∈T∪S

SL2(Op̂)×
∏

all p

SL2(Op̂)

=
∏

p/∈T∪S

(SL2(Op̂)× SL2(Op̂))×
∏

p∈T∪S

SL2(Op̂).

So, Γ̂0 is isomorphic to Γ̂i for all i = 1, . . . , n and Theorem 2.1 is proven.

Proof of Proposition 1.4. Let us first say that by residually solvable

(resp. nilpotent, p) we mean here that the homomorphisms to finite

solvable (resp. nilpotent, p) groups separate the points of the group.

But, actually the proof will work also in the other sense, i.e. when

no finite assumption is made. Anyway Proposition 1.4 is somewhat

surprising since it shows that there are residually finite groups Γ1 and

Γ2 with the same finite quotients, and in particular, the same finite

solvable quotients; still, for Γ1, the finite solvable quotients separate its

points, while for Γ2 they do not.

For the proof we will use again the notations used in the proof of

Theorem 2.1. For simplicity, assume q ≥ 4. Let S1 = {p1, p2} be

a set of two primes in Fq[x]. Write ΓS for SL2(OS) and for a prime

p, p /∈ S, ΓS(p) = Ker(SL2(OS) → SL2(OS/(p))), the congruence

subgroup mod p.

Let now p3, p4 be two different primes not in S. Denote

Γ1 = ΓS(p3)× ΓS(p4)

and Γ2 = ΓS × ΓS(p3p4),

where ΓS(p3p4) = ΓS(p3) ∩ ΓS(p4)

is the congruence subgroup mod p3p4. Now, Γ1 is a finitely pre-

sented residually −p group. Indeed ΓS(p3) is a subgroup of its clo-

sure in SL2(OS)p̂3), i.e. SL2 over the p3-closure of OS. But it is in-

side Ker(SL2(OS)p̂3 → SL2((OS)p̂3/(p3))) - the p3-congruence subgroup

which is a pro-p group (this time p is the rational prime such that q = pe

for some e). Hence ΓS(p3) is residually-p group. The same holds for

ΓS(p4). On the other hand, ΓS has no non-trivial solvable quotient.
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Indeed, by a well known result of Margulis, every normal subgroup of

ΓS is either finite or of finite index, [Ma, Chap. VIII, Theorm (2.6),

p. 265]. Moreover, from the affirmative solution of the congruence sub-

group problem we deduce that every non-trivial finite quotient of ΓS is

mapped onto PSL2(q
a) for some a ≥ 1. As q ≥ 4, these are non-abelian

finite simple groups. This implies that Γ2 is not residually solvable.

Finally, by a similar argument as in the proof of Theorem 2.1, we

see that

Γ̂1 =Γ̂S(p3)× Γ̂S(p4) =
∏

p 6=p3

SL2(Op̂)×Ker(SL2(Op̂3) → SL2(Op̂3/(p3))

×
∏

p 6=p4

SL2(Op)×Ker(SL2(Op̂4) → SL2(Op̂4/(p4))

∼=
∏

p 6=p3,p4

SL2(Op̂)
2 × SL2(Op̂3)× SL2(Op̂4)

×Ker(SL2(Op̂3) → (SL2(Op̂3/(p3)))×Ker(SL2(Op̂4) → SL2(Op̂4/(p4))).

While

Γ̂2 = ̂SL2(OS)× ̂ΓS(p3p4)

=
∏

p

SL2(Op)×
∏

p 6=p3,p4

SL2(Op)

×Ker(SL2(Op̂3 → SL2( Op̂3/(p3))

×Ker(SL2(Op̂4) → SL2(Op4/(p4))

and therefore

Γ̂2 ≃ Γ̂1.

Proposition 1.4 is now proven since Γ1 is residually finite-p, while Γ2

is not even residually solvable. �

3. Arithmetic groups of zero charactistic

Let us start with proving Proposition 1.5:

This time let ΓS = SL2(ZS) where S is a finite set of rational primes

and

ZS =
{a

b

∣

∣ a, b ∈ Z and all prime divisors of b are in S
}

.

As ΓS contains SL2(Z), it has nontrivial torsion. But for every 2 6= ℓ ∈

Z which is not in S, the congruence subgroup

ΓS(ℓ) = Ker(SL2(ZS) → SL2(ZS/ℓZS))

is torsion free.
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By a result of Serre [Se] SL2(ZS) has the congruence subgroup prop-

erty whenever S 6= ∅. This means that ̂SL2(ZS) ≃ SL2(ẐS) =
∏

p/∈S

SL2(Zp)

when Zp is the ring of p-adic integers. Now, for ΓS(ℓ) we have (still

assuming S 6= ∅):

Γ̂S(ℓ) ∼=
(

∏

p/∈S
p∤ℓ

SL2(Zp)
)

×
∏

p/∈S
p|ℓ

Ker(SL2(Zp) → SL2(Zp/ℓZp)

Now let

S = {7}, ℓ = 15 = 3 ·5, Γ1 = SL2(ZS)×ΓS(ℓ) and Γ2 = ΓS(3)×ΓS(5).

Clearly Γ1 has torsion while Γ2 does not. Moreover Γ1 has nontrivial

center, while Γ2 is centerless. Still

Γ̂1 =
(

∏

p 6=7

SL2(Zp)
)

×
(

∏

p 6=7,3,5

SL2(Zp)
)

×Ker(SL2(Z3) → SL2(F3))×Ker(SL2(Z5) → SL2(F5))

while

Γ̂2 =
(

∏

p 6=3,7

SL2(Zp)
)

×Ker(SL2(Z3) → SL2(F3))

×
(

∏

p 6=5,7

SL2(Zp)
)

×Ker(SL2(Z5) → SL2(F5)).

So both groups Γ̂1 and Γ̂2 are isomorphic to:
∏

p 6=3,5,7

(

SL2(Zp)× SL2(Zp)
)

× SL2(Z3)× SL2(Z5)

×Ker(SL2(Z3) → SL2(F3))× (KerSL2(Z5) → SL2(F5)).

This proves the proposition.

Proof of Proposition 1.6. The efforts to answer the Grothendieck

problem (cf. [Gr],[PT],[BL],[Py],[BG]) have led to a number of meth-

ods and results of the following kind: There exist finitely generated

residually finite groups Γ1 and Γ2 with an injective map ϕ : Γ1 → Γ2,

such that the induced map ϕ̂ : Γ̂1 → Γ̂2 is an isomorphism while Γ1 is

not isomorphic to Γ2.

Let us recall the construction from [BL]: there Γ2 = L× L when L

is a cocompact torsion free lattice in G = Sp(n, 1) or G = F
(−20)
4 . In

particular the cohomological dimension cd(Γ2) = 2cd(L) and cd(L) =

dim(G/K) when K is a maximal compact subgroup of G. On the other

hand Γ1 is obtained as follows: Let π : L → M be an infinite finitely

presented quotient of L such that M has no finite index subgroup.
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(Such a quotient M exists by [Ol] as L is hyperbolic group.) Let Γ1

be the fiber product over π, i.e. Γ1 = {(a, b) ∈ L × L
∣

∣π(a) = π(b)}.

Then Γ1 is of infinite index, so cd(Γ1) � cd(Γ2) = 2cd(L) containing

the diagonal subgroup (and so cd(Γ1) ≥ cd(L)). It is shown in [BL]that

Γ̂1 ≃ Γ̂2 and hence Proposition 1.6 follows.

Let us remark, that our result here is not as strong as Theorem 1.2.

We do not know to give, for arbitrary r and s in N, examples of Γ1

and Γ2 with cd(Γ1) = r, cd(Γ2) = s and Γ̂1 ≃ Γ̂2. This is probably a

difficult problem: recall that cd(Γ) = 1 if and only if Γ is a free group.

It is a long-standing open problem (usually attributed to Remeslenikov,

cf.[GZ]) whether freeness is a profinite property.

4. Remarks and problems

We have discussed throughout the paper only countable groups and

especially finitely generated groups (which is the most interesting case

for our problem) but one can also say something about uncountable

groups:

By the recent remarkable result of Nikolov and Segal [NS], every fi-

nite index subgroup of a finitely generated profinite group G is open.

This means that Ĝ = G. Applying this for G = Γ̂ the profinite com-

pletion of a finitely generated discrete group Γ, we deduce that Γ̂ ≃ Ĝ.

Hence for every finitely generated infinite, residually finite discrete

group Γ, we deduce that Γ̂ ≃ Ĝ. Hence for every finitely generated

discrete group Γ there exists an uncountable group G with Γ̂ = Ĝ.

On the other hand we do not know if the following is true: For every

finitely generated residually finite group Γ there exists a countable non

finitely generated (but residually finite) group G, with Γ̂ = Ĝ.

In light of Remeslenikov’s problem mentioned in the previous section,

this would be an interesting problem to know if such G exists when Γ

is a finitely generated free group.

The main interest of [BR] is with pairs of groups Γ1 and Γ2 which

have the same “nilpotent genus” (i.e. for every m ∈ N, Γ1/Γ
(m)
1 ≃

Γ2/Γ
(m)
2 where Γ

(m)
i is them term of the lower central series of Γi.) This

implies (though not equivalent) to having the same pro(finite) nilpo-

tent completion. Of course, if the profinite completions are isomorphic

so are the pronilpotent completions. But the examples we presented

in the proofs of the results of this paper are usually not residually

nilpotent. This can be fixed quite easily by switching each time to a

suitable congruence subgroup as we did in the proof of Proposition 1.4
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(and recalling that proper principal congruence subgroups are always

residually nilpotent). We leave the details to the reader. This is usu-

ally easy except in the proof of Proposition 1.5, where some care has

to be taken: Here it is important to replace Γ1 and Γ2 by their mod 2

congruence subgroups, as we want that the new Γ1 still has torsion and

center. (This is the reason we presented the proof there with S = {7}

and not with S = {2}. Of course for proving the original Proposition

1.5, we could use S = {2} or S = {p} for any prime p 6= 3, 5. It is only

for the pronilpotent version that it is important not to use S = {2} as

for this case ΓS has no mod 2 congruence subgroup.)

There is however an interesting difference between our residually

nilpotent groups and the ones presented in [BR]. There, all examples

are residually torsion free nilpotent. But our examples are never such.

The examples Γi presented for Theorems 1.2 (or 2.1) and Propositions

1.4 and 1.5 have the property (FAb) i.e., for every finite index sub-

group △, △/[△,△] is finite, since they have the congruence subgroup

property. The same holds for Γ2 of the proof of Proposition 1.6, since

Γ2 has Kazhdan property T . (It follows that Γ1 also has (FAb), since

(FAb) is clearly a profinite property). For all our examples, when Γ1

and Γ2 have the same pronilpotent completion they also have the same

nilpotent genus.
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