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Finite representations in the unitary dual
and Ramanujan groups

Alexander Lubotzky and Yehuda Shalom

ABSTRACT. We define and study two ”opposite” representation theoretic group
properties pertaining to the place of the finite representations in the uni-
tary dual. The first describes an abstract group theoretic counterpart to the
(asymptotically optimal) Ramanujan graph property. The second, in which
the finite representations are dense in the Fell topology, is shown to be shared
by some lattices in SLs(C), thereby answering, in particular, two questions
raised by Bekka and Louvet. This, together with various other examples of
arithmetic groups satisfying one property or the other, suggests yet another
feature of the well known ”rank one” versus ”higher rank” dichotomy.

1. Introduction

Let I’ be a residually finite discrete group, and I' be its unitary dual, i.e.,
the set of equivalence classes of all unitary I'-representations, equipped with the
Fell topology. The set of finite I'-representations, namely, those factoring through
a finite quotient of I', is the simplest collection of I'-representations, and will be
denoted by I'p. The main purpose of this paper is to study the “location” of I'p in
I, as reflected in F(T') — the closure of Iz in T' in the Fell topology, i.e., the set of
all unitary I'-representations which are weakly contained (denoted <) in the direct
sum of the representations in I'p.

One may heuristically think of two “opposite sides” of the spectrum I': the
first being the regular representation [2(I'), and the second being the trivial repre-
sentation 1p. When I' is amenable, the picture blurs, and the former becomes all
of I'. But as soon as I is non-amenable the two sides are separated, and the situ-
ation becomes interesting. In order to make this phenomenon more precise, one is
naturally led to discuss norms of the so called “averaging” (or “Hecke”) operators,
i.e. norms of elements in the group algebra CI', which act in any [-representation.
Their intrinsic relation to the Fell topology becomes transparent by Eymard’s result
[Ey] stating that m < o iff for any such operator T one has ||T||r < ||T||s. Thus,
any T € CI" and any value of «, may be used to isolate a “corner” in I, defined by
the (closed) set of I-representations = with ||T||, < a.
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We can now make our goal more concrete by distinguishing between two ex-
tremal types of behavior: the first is that F(I') = I, i.e., the finite representations
are dense in the unitary dual, in which case we shall say that I' has Property
FD. The second is that F(I') lies in the same “corner(s)” as does [2(I'). Notice
however, that we cannot require this to hold for all “corners”, nor can we simply
ask that F(I'), or parts of it, be contained in (the closure of) {?(T'), as by Eymard’s
aforementioned result the two amount to the same, and for non-amenable I' no
finite dimensional representation 7 is weakly contained in [2(T"). Rather, it appears
natural to restrict to positive elements only, i.e, to elements T' € CI' with non-
negative real coefficients. For such operators, on the one hand ||T'|| always achieves
its maximal value in 1p, and on the other hand, over a large class of representa-
tions, it always achieves its minimal value on [?(I") (cf. [Sh2] Lemma 2.3 and the
Remark thereafter), so our heuristic “opposite sides” picture becomes sharp and
quantitative.

Thus, a first natural attempt to define the opposite type of behavior to property
FD would be the property that ||T'||, ¢ < |[T][i2(r) for all positive T', of course,
with the restriction that = has no non-zero invariant vectors. Unfortunately, as
appealing as it may seem, we are currently very far away from constructing any
example of a (residually finite, non-amenable) group I satisfying this property, and
it is not clear whether such an example exists at all. Instead, we shall require that
the above inequality holds for at least one fixed positive (non-trivial) operator, and
in fact, often also restrict to 7’s coming from some prescribed (non-trivial) family
of finite quotients. This leads to the following notion, which as is well known by
now, already involves some deep mathematics:

DEFINITION. Let I' be a finitely generated residually finite group, T € CI" a
positive operator whose support generates I', and £ = {I';};c; a family of finite
index normal subgroups which is closed under finite intersections, and has trivial
intersection. We say that the group I' is (T, £)—Ramanujan if for every unitary
I-representation 7 without invariant vectors and factoring through a quotient I'/T;,
one has:  |[T||x < ||T|[izry (%)

We shall say for brevity that I' is Ramanujan if there exists some T and L
for which the above is satisfied.

The outstanding examples of Ramanujan groups are free groups, as follows
from the construction of Ramanujan graphs by Lubotzky-Phillips-Sarnak [LPS].
Thus, from the point of view of combinatorics it may be natural to consider the
more special operators T' arising as an average over a finite (symmetric) generating
subset. However, in representation theoretic perspective the above definition is
both more natural, and has one additional important advantage: Recall that in the
construction of [LPS], one should exclude from () a certain 1-dimensional (+1-
valued) character mg, which gives rise to the maximal possible value in the left
hand side of (x). However, the proof in [LPS] can be modified to show that in
fact any positive operator T' € CI' which is spherically symmetric in the associated
Cayley graph of the free group T, satisfies (x) for any m # g (see Cor. 4.2 below).
Thus, as any element of the sphere of radius 1 (resp. 2) in I’ acts by the scalar
-1 (resp. 1) in mg, one can easily define a positive linear combination of the two
spheres which will be annihilated in 7o, so that now (x) is satisfied for 7y as well.
While in the present case this seems like a mere technicality, in other examples of
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Ramanujan groups constructed below there are (finitely many) more exceptional 1-
dimensional representations, which can then be handled similarly (although we shall
not elaborate here further on this issue). Finally, to put matters in perspective,
we remark that for any family £ as in the Definition, the set of representations
7 appearing in the left hand side of () contains weakly [*(I') (see Lemma 2.1
below), hence for any operator T' € CI" the supermum over the representations 7
in the left hand side of (x) is always > the right hand side of (x). This is what
makes the Ramanujuan property so highly non-trivial.

In this paper we shall construct various groups I' with, and without, one of the
above two properties, all coming from the distinguished class of (S—)arithmetic
groups. Property FD, discussed in Sections 2 and 3, deserves some additional
comments. In [Ch] Choi proved that for any free group I, the set of Finite Di-
mensional ['-representations is dense in the Fell topology of I'. Modulo natural
modifications, it remained the only group known to satisfy this property, which is
obviously weaker (at least a priori) than property FD. In [BL] Bekka and Louvet
asked whether that property is satisfied also by surface groups and the Picard group
SLo(Z[i]). We shall answer affirmatively their questions in Section 2, by showing
directly that these groups (along with some other arithmetic groups I' < SL3(C))
have the stronger property FD. The proof involves a mixture of algebraic, geomet-
ric and representation theoretic tools. The Ramanujan property is discussed in
Sections 4 and 5. We shall see that a product of non-amenable groups is never Ra-
manujan, and observe that the deep number theoretic tools related to the so-called
Ramanujan conjecture (including Drinfeld’s and Lafforgue’s work) can easily be
translated into this property for the relevant groups. Combined with the previous
result, this provides an example of two groups I', A generated by subsets S = Sp, Si
resp., such that the two associated Cayley graphs are isometric; still, with respect
to T = Ts one is Ramanujan and the other is not (relative to any family £).

2. Groups with property FD

As mentioned in the introduction, when I is amenable [2(T') is dense in T' and
this property in fact characterizes amenability. Thus for I' which is amenable and
residually finite, we have F(I') = I, since for any residually finite group T, it is
easy to see that F(I') contains (?(I") (see a direct argument at the end of the proof
of Lemma 2.4 below). In fact, the latter can be generalized:

LEMMA 2.1. Assume that the subgroup H < I is of infinite index, and is closed
in the profinite topology defined by L. Then I*>(T/H) < ®r,ccl2(L/T;). In partic-
ular, for every T' € CI' one has: ||T||zr ) < sup |[T]|2r/r,)-

The point of this observation of course is that in the right hand side we have
I2- the zero mean functions, rather than [?. The Lemma also generalizes Alon-
Boppana’s well known result on the liminf of A; of regular graphs. For a proof see
[Sh1] (Part 1 of Theorem 4.1 and Theorem 2.4).

We now establish the first non-trivial class of groups with property FD:

THEOREM 2.2. IfTI' = F, is a free group on r generators, then F(I') =T.

Because of the “local nature” of the Fell topology, this automatically extends
also to the case r = Ng. The heart of the proof lies in the following result, for which
we thank Tim Steger:
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PROPOSITION 2.3. Assume that T' as above acts continuously on a compact
metric space X, preserving a probability measure p. Then the induced unitary T'-
representation on L?(X, ) belongs to F(T).

Proof of the Proposition: The idea of the proof is to show that there are
“arbitrarily small perturbations” of any given action, which factor through a finite
quotient. First however, observe that we may assume p has no atoms since for any
a > 0 there can be only finitely many atoms of weight a (p has total mass 1), hence
they form I'-invariant subset on which the I'-action factors through a finite quotient.
By removing all the atoms of 1 we are reduced to the non-atomic case. Let S C I’
be a free generating subset. Abusing notation, we shall denote both the I'-action
on X and on L?(X) by p, i.e., for f € L?(X) we have: [p(g)f](z) = f(p(g~!)x).
Our strategy now goes as follows: Because the subspace of continuous functions on
X is dense in L2(X), it is enough, given any finite number of continuous functions
fi,--, fn on X, and any € > 0, to construct a new (u-)measure preserving I'-
action p/ on X, which factors through a finite quotient of I", such that for every
g€ SUST! (as well as g = €) one has for the L? norm: ||p(g)fi — p'(9) fil| < € for
all 1 <i<n.

Let then € and f1,---, f, be given. Choose § > 0 so that d(z,y) < 26 implies
|fi(x) — fi(y)] < € for all i and =,y € X. Now, again using continuity, choose
some 0 < 6 < § such that d(z,y) < 6 implies d(p(g)z, p(g)y) < for g € SUS™L.
Next observe that X can be divided into a disjoint union of subsets Bi,--- , By
which have equal measure (of size 1/k) and diameter less than §. We shall leave
the straightforward, yet rather tedious verification of this fact to the reader, hinting
only that it is easier to find first such a subdivision where the measure of every B;
is rational (and then subdivide arbitrarily all B;’s to get pieces of equal measure),
which of course uses the fact that p is non-atomic (it seems most convenient here
to homemorphically embed X in [0, 1]" and work with the latter).

We can now define the new I'-action p’ on X. By freeness, it is enough to
define it for any ¢ € S and we fix such an element. Consider the two disjoint
subdivisions of X: X = UB; = UC;, where C; = ¢g(B;). Let us call a couple B; and
C; “matched” if u(B; N C;) > 0. Because u(B;) = u(C;) = 1/k for all 4,7, it is
easy to see that for every family of m B;’s, the family of C;’s matched to at least
one of its members has least m elements (and vice versa), that is, Hall’s marriage
theorem applies. We can therefore find a permutation o, € S with the property
that g(Bi) N Bg, (;) is non empty for all i. Notice that defining 0,-1 = (og)~t, the
latter holds also when ¢ is replaced by ¢g—1.

By freeness the permutation action of S on the set of B;’s extends to a permu-
tation action of ', factoring through a finite quotient F' (C Si). In order to define
a measure preserving [-action on X (and not only on the collection of subsets B;),
which factors through an action of F' and induces the previous permutation action
on the B;’s, we choose as a “model space” any non-atomic standard Lebesgue space
Y on which Sy acts by permuting a disjoint subdivision of it to k subsets Y;. Iden-
tifying measure preservingly each B; and Y;, induces an F'- (hence also I'—)action
on X, which in turn induces the previously defined permutations {o4} of the sets
B;. This defines the new I'-action p’ on X.

Finally, given any 1 < i < n we show that ||p(g9)f; — ¢/ (9)fi]| < € for any
g € SUS™L In fact, we show that for all z € X: |p(g)fi(z) — p'(g) fi(z)] < €. Let
1 <j < kbesuchthat z € B;. Then p(g~)z € p(g~)Bj,and p'(g 'z) € Bo _ (j)-
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By the construction of o the two B;’s on the right hand sides intersect, and by
the choice of @ and § they both have diameter < §. By the triangle inequality it
follows that d(p(g~ 1)z, p'(g71)x) < 28, which by the choice of § implies |p(g) fi(z)—
0'(9)fi(@)| = |filp(g~V)x) — fi(p' (g7 )x)| < €. As this holds for every z € X and p
is a probability measure, this establishes the Proposition.

Proof of Theorem 2.2: Let 7w be a unitary I'-representation. As is well known,
it is a general fact that there exists a probability measure preserving [-action on a
standard Lebesgue space (X, u) such that 7 is a subrepresentation of the unitary
[-representation on L?(X, ) (cf. [Zi] 5.2.13). It is also a general fact that every
such action admits a topological model, i.e., measure theoretically it can always be
realized on a compact metric I'-space on which I" acts continuously (cf. [Zi] 2.1.19).
Our result now follows immediately from the previous Proposition.

It is not difficult to see that property FD passes to subgroups (see Lemma 3.2
below). Our next purpose is to provide situations where the converse phenomenon
takes place.

LEMMA 2.4. Let I be a discrete group and A < T be a subgroup. Assume that
A has property FD and that every finite index subgroup of A is an intersection
of finite index subgroups of T'. Then for every unitary U-representation w, F(T)
contains the representation © @ 1?(I'/A).

Proor. Consider the restriction 7|x, which by assumption belongs to F'(A).
Thus, for a sequence of finite index subgroups M; < A we have a weak containment
7|a < DI2(A/M;). Inducing both sides to I' (and using “continuity of induction in
the Fell topology”) yields: 7 ® [2(I'/A) < @®I(I'/M;). Therefore it only remains
to be shown that for every finite index subgroup M < A, I>(I'/M) is in F(T),
which is quite standard (compare with the less obvious Lemma 2.1 above). Indeed,
by assumption one can write M = NN; for a decreasing sequence of finite index
subgroups N; < I', which means that for every finite subset S C I' one can find
i large enough so that for any v € St (vle, Lle)izr/ary = (Vles Le)iz(r/n,), where
1. denotes the Dirac function at the identity coset of the corresponding space.
Therefore every matrix coefficient associated with functions which are finite linear
combination of I-translations of 1. (which form a dense subspace of [*(I'/M)), can
be approximated by matrix coefficients in @I?(I'/N;), as required.

O

COROLLARY 2.5. Let I' be a discrete group and A < I' be a normal subgroup
such that T'/A is amenable. Assume either that A has property F D and all its finite
index subgroups are closed in the profinite topology of I'; or, in case A is not finitely
generated, that every finitely generated subgroup of A satisfies the same properties.
Then I' has property FD.

PROOF. Fix a unitary I-representation m; we show that 7 € F(I'). In the
first case this follows immediately from Lemma 2.4, since by assumption we have
1 < I>(T/A), hence: m < 7®[?(I'/A) € F(T). As for the second, denoting by A; < A
an increasing exhausting sequence of finitely generated subgroups, we have by the
Lemma for any i: 7®1?(I'/A;) € F(I'), hence 7 ® (BI2(T'/A;)) = d(r@12(T/A;)) €
F(I'). However since 15 < ®I%(A/A;), inducing to I yields [>(I'/A) < ®I2(L'/A;).
Since 1r < [?(I'/A) we deduce 1p < @®I1*(I'/A;), so tensoring with = and combining
with the previous conclusion completes the proof. O
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Remark. As is clear from the proof, the normality of A in I' is not necessary;
assuming that 1r < [?(I'/A) would suffice for our purposes.

The property that every finite index subgroup of A is closed in the profinite
topology of I is not easily achieved. The next Lemma gives a situation in which it
is satisfied:

LEMMA 2.6. Assume ' is a discrete group, and A is a finitely generated normal
subgroup of I' such that Z(A) = {1} (when Z(A) denotes the center of the profinite
completion A of A). Then the profinite topology of T induces the profinite topology
of A. In particular, if in addition T'/A is residually finite, then every finite index

subgroup of A is the intersection of finite index subgroups of T'.

PROOF. The conclusion of the first (main) statement is equivalent to the asser-
tion that the natural map i from A to A (= the closure of A in f) is an isomorphism
(it is always continuous and onto; the point is its injectivity).

As A is finitely generated, Aut(f\) is a profinite group (see below). Hence
we have the natural map j : [’ — Aut(A) extending the map j : I' — Aut(A)
given by conjugation within I'. Now, j restricted to A (in I) is just the extension
of the map sending each element of A to the inner automorphism determined by
it. It follows that A is mapped under j onto the image of A in Aut(A), which
by the center freeness assumption, may be identified with A. Hence P = joi
is an epimorphism from the finitely generated profinite group K = A onto itself,
which must therefore be a topological isomorphism, since every epimorphism from
a finitely generated profinite group K onto itself is an isomorphism. Indeed, as K is
finitely generated (namely, it has a dense finitely generated subgroup), for any n it
has finitely many closed subgroups of index at most n, so their intersection K, 1 K
has finite index. Because v is onto, for every finite index subgroup Ky < K one
has [K : Ko] = [K : ¢ 1(Kp)], so ¥(K,) C K,. Thus ¢ induces a homomorphism,
Y : K/K, — K/K,, which is onto (as is ¢). Since K/K,, is finite, 1) is injective.
Now, given any e # k € K, there is some n for which k ¢ K, and by the above
Y[k] # [e] in K/K,, so ¢(k) # e thus showing the injectivity of 1. (Note also
that with these notations, Aut(K) is the inverse limit of Aut(K/K,), hence it is
indeed a profinite group, as claimed at the beginning of the proof.) Thus the first
statement is established, whereas the second follows easily since the assumption
made there implies that A itself, being the intersection of finite index subgroups of
I, is closed in the profinite topology of T'. O

We remark that the finite generation assumption on A is necessary. Indeed, as
shown below, all other assumptions hold when I' is a finitely generated free group
and A the kernel of its abelianization is infinitely generated. However, in this
case the profinite topology on A does not have a countable basis, hence it cannot
be induced by that of T

The following result provides a class of examples where the condition in the
previous Lemma can be verified:

PROPOSITION 2.7. If A is a group presented by d generators and e relations

~

with d —e > 2, then Z(A) = 1. In particular, any non abelian free or surface group
has this property.
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PROOF. Suppose by contradiction that there exists a non-trivial element z in
Z(A), and take N normal open in A so that z ¢ N. Then the action of A/N on
N /[N, N] is not faithful. But A/[N, N] is the profinite completion of the residually
finite group A/[N, N], when N = N N A. Hence A/N ~ A/N acts non-faithfully
on N/[N, N]. However this is impossible in our case. Indeed, by [JR, Theorem
3], for every finite index normal subgroup N of A, with G denoting the quotient
A/N, there exists T <A with T C N and N/T ~ Z™ for some m (in particular,
T D [N, NJ), such that (QG)4~¢~! appears as a direct summand of the QG-module
Q ®z N/T. In particular, by our assumption, G = A/N itself must act faithfully
on N/T, hence also on N/[N, N], a contradiction. O

THEOREM 2.8. The groups I' defined below all have property FD:
(1) T'=AXZ a cyclic extension of the finitely generated free group A. In particular,
the Picard group T = SLy(Z[/—1]) and the group SL2(Z[/=3]) have property FD.
(2) T is a surface group.
(3) The same as in (1), where A denotes now a surface group. In particular, the
fundamental group of any closed hyperbolic 3-manifold which fibers over the circle
has property FD.

Remark. As mentioned in the Introduction, for the Picard and surface groups,
the Theorem answers questions raised by Bekka and Louvet in [BL].

Proor. Part (1) follows immediately from Theorem 2.2 after applying the
three preceding results. The fact that (a finite index subgroup of) the Picard group
fits in the form treated by (1) is well known, by realizing the fundamental group
of the whitehead link as its finite index subgroup (cf. [Wi]), and using the fact
that this link is fibered (cf. [Ro] p. 338 Ex. 5). The case of SLz(Z[v/—3]) can be
dealt with similarly, this time using the figure 8 knot (see [Sh1] Section 5 and the
references therein for an explicit matrix realization of the claimed free and cyclic
subgroups). For part (2) we wish to apply the second part of Corollary 2.5 in the
case where A = F, is the kernel of the abelianization of I', again using Theorem
2.2 above for finitely generated free groups. The fact that the second condition in
the statement of the Corollary is satisfied as well, is not trivial; it is given by the
following result of Peter Scott [Sc] which, interestingly, is established by geometric
methods: A surface group I' is LERF (= locally extended residually finite), i.e.,
every finitely generated subgroup of it is closed in the profinite topology of T'.
Finally, part (3) follows now exactly as in (1), from (2).

O

We conclude this section by remarking that since property FD passes to sub-
groups, parts (1) and (3) yield many other new Kleinian groups having property FD
(compare also with the discussion in Section 6 below, and in particular Conjecture
6.4).

3. Groups without property FD

Unlike the case of amenable and free groups, property FD turns out not to be
typical in the class arithmetic groups. The following aims to place the Theorem
(and method) of Bekka [Be] within its largest natural framework:

THEOREM 3.1. Let k be a global field, O its ring of integers, S a finite set of
valuations of k containing all the archimedean ones, Og = {x € k ‘ v(z) > 0 for
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all v ¢ S} and let T' = G(Og) where G is a simple, simply-connected k-algebraic
group. Assume that both
1) k-rank(G) > 1, and
2) S-rank(G) (= Y ky—rank(G)) > 2.
veS
Then I' does not have property FD.

LEMMA 3.2. Let I' be a discrete group and A a subgroup of I'. If F' is a dense
subset of I then F|p (= the representations in F restricted to A) is dense in A.

PROOF. If p € A then by assumption Indy (p) € T is the limit of a subset of
representations {m;} in F. Since p C Indy(p)|, = lim ;| , the Lemma follows. [

Notice that this Lemma in particular shows that property FD passes to sub-
groups. The following provides some kind of “converse” in the special framework
of a lattice subgroup:

LEMMA 3.3. Let A be a lattice in a second countable locally compact group G.
If F is a dense subset of A then Fo = {IndZ(p)|p € F} is dense in G.

PROOF. Let p € G. Then p|r = lim m; where {m;} C F. Hence p ® L*(G/T) =
Ind€ (plr) = lim Ind&(m;). The first contains p since I' is a lattice in G, so p is
indeed in the closure of Fg. O

LEMMA 3.4. Let k,O and S as in Theorem 3.1 and A = SLy(Og). Let C(A)
be the set of congruence representations of A, i.e., the representations factoring
through a congruence quotient of A. Then C(A) is not dense in A.

PROOF. The group A is a lattice in [ SLa(ky). The well known Theorem of
vES

Selberg (“A; > 2”) and its extensions (“the Selberg property” or “property 7 with
respect to congruence subgroups” - cf. [Lul], [Lu2], [C]]) implies in the character-
istic 0 case that some of the complementary series representations of SLs(k,) are
not in the closure of Co = {Ind§(p)|p € C(A)}. The same applies in characteristic
p > 0 due to the Theorem of Drinfeld who proved the Ramanujan conjecture in
this case. Lemma 3.3 now finishes the Proof. O

Proof of Theorem 3.1 . Let G and T" be as in the Theorem. As k-rank(G) > 1,
G has a k-algebraic subgroup H of type A;. This implies that I' has a subgroup
A = H(Og) which is commensurable to SL2(Og) and the congruence topology of
I' induces the congruence topology of A. Now, I' has the congruence subgroup
property (cf. [PR]), thus all its finite representations factor through congruence
subgroups, and T'r restricted to A gives C'(A) in the notations of Lemma 3.4. As

C(A) is not dense in ', Lemma 3.2 implies that F(I') #T. O
Remark: Note that I' = G(Og) is a lattice in [[ G(k,), which is a semisimple
ves

group of rank > 2 by our assumptions. I' is a non-uniform lattice since we assume
k-rank (G) > 1, and the theorem covers all the non-uniform lattices by Margulis’
arithmeticity theorem. The Theorem and the proof are still valid for some uniform
arithmetic lattices in higher rank semi-simple groups but not for all. The same proof
will apply for G of k-rank zero (i.e. anisotropic) if (a) I' satisfies the congruence
subgroup property and (b) G has a k-subgroup of type A;. Note that Condition
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(a) is currently known for all groups whose type is different from A,. See Section
6 below for more in this direction.

4. Ramanujan groups

In this section we place all the examples of Ramanujan groups under one uni-
fied construction, which also simplifies (conceptually and technically) the work of
Lubotzky-Phillips-Sarnak [LPS].

Let G be a locally compact second countable group, I' < G a discrete co-
compact torsion free subgroup, and K < G a compact subgroup. Let X C G be a
bounded K-invariant fundamental domain for I'; i.e. G = XTI, and assume that the
Haar measure m of G is normalized on X. Associated naturally to this X is a cocycle
ax : Gx X — T, defined by ax(g,z) = v iff gzy € X, and a measure preserving
G-action on it, denoted (g,x) — g - « (distinguished from the usual multiplication
in G), which is obtained by identifying X with G/T'. Finally, to any compactly
supported probability measure p on G, we may define the probability measure
v = ax(u) on T', by pushing the measure p x m to I" via the map ax : Gx X — T.
Notice that because u is compactly supported and X is bounded, ax(u) is finitely
supported. To simplify notation, given a unitary G-representation 7 we shall denote
by 7(u) the p-averaging (or “convolution”) operator acting in the representation
m, and by || (w)]| its norm (similarly for measures on T').

In the rest of the paper we denote the regular representation of a group H
by pg. Our main tool for constructing Ramanujan groups is the following general
result:

PROPOSITION 4.1. Retain the above notations for G,U,ax,u,v. Let o be a
unitary T -representation and 7 = Ind%o.
(1) We have |lo()|| < ||m(w)l], and if u is bi-K-invariant then ||7(u)|| may be
replaced by sup||TE (p)||, where 7K is the set of those unitary G-representations
having a non-zero K -fized vector in some direct integral decomposition m = [ mydz.
(2) If p is bi-K-invariant and X = K, (i.e. G = KT'), then equality holds:
lo )| = lln(u)l| (and |lx()]| may be replaced by suplwk ()] as in (1)). In
particular, (taking o = pr) we have: ||pr(V)|| = |lpa(w)]|-

The point of the Theorem is that it enables one to deduce that certain groups
are Ramanujan without making any explicit numerical calculations of norms, as
the following shows:

COROLLARY 4.2. Retain the above notations and assume that i is bi-K-invariant
and X = K, as in (2).

1) If o is a T-representation for which 7 = Ind%o < pg then |[o(v)|| <
llor(V)|]. In fact, the same conclusion holds for any o for which we assume
the weak containment only for the TX above in place of .

2) Consequently, if L ={T';} is a family of finite index subgroups of T such that
for any i one has: L3(G/T;) < pg, then the group T is (T, £)-Ramanujan,
where the operator T, € CU is the one corresponding to v. In fact, the same
conclusion holds if we assume the above weak containment in pg only for
the “K-spherical part” of the representations L3(G/T';) (as in (1) of 4.1).

3) In particular, if L is as in (2) above, then for any g € G the '-averaging
operator over the set KgK NI, or more generally, the averaging operator
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over F N T for any bi-K-invariant compact subset F C G, satisfies the
conclusion of (2) above.

Indeed, (1) follows immediately since by (1) and (2) of the Proposition we have:
o)l < [lx (Wl < lleaW)Il = llpr ()1

Parts (2) and (3) of the Corollary make abstract a large part of the proof of the
existence of Ramanujan graphs (or groups). All that remains to be done is to plug
in the (deep) number theoretic tools which ensure that its condition is satisfied,
and in the list of examples below we recall various cases where it can indeed be
done.

Finally, before proving the Proposition, we remark that when applied to ap-
propriate finite dimensional but infinite I'-representations, it immediately gives a
unified proof also for the part of work of Lubotzky-Phillips-Sarnak pertaining to uni-
form points distribution on the sphere (cf. [Lul] Ch. 9). Moreover, using Margulis
superrigidity and conditional on the conjectural congruence subgroup property, one
could deduce that some of the examples below satisfy the Ramanujan property with
respect to all finite dimensional representations, not only the finite ones.

Proof of Proposition 4.1: Retain all the notations preceding the statement
of the Proposition. Consider part (1). Recall that the representation space for
IndS o may be identified with V;; = L?(X, V,), where G operates on f € L?(X,V,)
by [7(9)fl(x) = o0 a(g,z)[f(g"* - x)]. For unit vectors v,w € Vi, consider the
constant functions f,, fi, € L?(X,V,), taking the constant value v,w resp. Note
that because X is K-invariant, so are f,, f,,. For any g € G we have by definition
of the scalar product in Vi (7(g)fu. fu)v, = [y (0 o alg, z)v,w)v,dm(z), hence
integrating both sides over g with respect to u and recalling the definition of the
measure v on I', gives:

(%) <7T(u)fv,fw>vﬂ:/G/X<0°a(gar)v,w>vadm(x)du(g):<0(V)U,W>vg

Since v and w are arbitrary, we can choose them so that the right hand side of (x)
is arbitrarily close to ||o(v)]], so the first part of (1) follows. The second part would
follow from the assertion that in (%) one can replace in the very left hand side 7
by 7K, where 7% C 7 is the subrepresentation supporting the 7X’s. Indeed, by
K-invariance of i, 7(u) vanishes on the orthogonal complement to 7%, and f,, f.
are K-invariant, so the whole computation goes through with 7% in place of 7.

For part (2) we wish to establish an inequality in the opposite direction. If
we knew that in (x), any functions f1, fo € Vi can be obtained in the form f,, fu
for some v,w € V,, then the very same argument as in the previous proof could
be reversed to show, by appropriately choosing fi, f2, that the opposite inequality
holds. Notice that the assumption that p is bi-K-invariant shows, as before, that
it is actually enough to consider only f1, fo which are K-invariant. However, since
we now assume X = K, a K-invariant function is (essentially) constant on X, so
it is obvious that the K-invariant functions are exactly those functions of the form
fuv, thereby completing the proof.

Examples:
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(1) Let H be the standard quaternion algebra, let p be a prime with p = 1(4) and
H(Z[%]) the Z[%]—points of H ,ie

1
o =29+ 219+ 22 + 23k with z; € Z {—} .
p

3
For such a denote ||af|? = a-a = z . Let I' = H(Z[3])*/Z, i.e., the invertible

elements of H(Z[%}) (i.e., those « w1th lal|? € p%) modulo the center. T is a
cocompact lattice in G = PGL2(Qp). It is shown in [Lul] that I'(2) = {a €
I'la = 1(mod2)} acts simply transitively on the Bruhat-Tits building of PGL2(Q)),
which is a (p + 1)-regular tree. Thus G = KI'(2) with K = PGLy(Z,). The
Ramanujan-Petterson conjecture (proved by Deligne) together with the Jacquet-
Langlands correspondence, implies that for every congruence subgroup I'(2m) in
I'(2), the induced representation Indlg(z)lg(F(Z) /T'(2m)) is tempered, and is thus
weakly contained in L?(G) (see [Lul]). Therefore the assumptions of Prop. 4.1
and Cor. 4.2 are satisfied, showing that I'(2) is a Ramanujan group with respect
to every spherically symmetric operator 7' and £ being the family of congruence
subgroups.

(2) In [Mor] Morgenstern showed that for every positive characteristic local field F,
G = PGLy(F) has a suitable arithmetic group I' such that I" acts simply transitive
on the Bruhat-Tits building of G which is a (¢ +1)-regular tree, where ¢ = |O/7O|.
Here O is the valuation ring of F' and 7 a uniformizer in O. Moreover, the analogue
Ramanujan-Petterson conjecture was proved in this case by Drinfeld. Similarly
to the previous example, this now shows in particular that a free group F, with
r= %(p” + 1) and p an odd prime, is a Ramanujan group.

(3) Let S = {p1,...,pe} be a set of -primes with p; = 1(mod4) for every i =

LU Let Zs =7 [p—ll, ey pie} , H(Zs) - the Zs-points of the standard quater-

nion algebra H (see example 1). Let I' = H(Zs)*/Z the invertible elements
of H(Zs) modulo its center. This is a lattice in the product G = H G; with

=

G; = PGL3(Qp,). The congruence subgroup I'(2) acts simply- transrclve on the
‘

vertices of X = [[ T; where T; is the (p; + 1)-regular tree which is the Bruhat-Tits
=1

building of G;. Thus G = KI', where K = H K;, K; = PGLy(Zy,). As shown by

Jordan and Livne [JL], Deligne’s solution of the Ramanujan-Petterson conjecture
implies that the assumptions of (Prop 4.1 and) Cor 4.2 are satisfied for I'(2), and £
being its congruence subgroups. The reader is referred to [JL] for more on examples
of this kind.

(4) Let F be a local field of positive characteristic, @ and ¢ as in example 2. In
[CS1], Cartwright and Steger constructed, for every d > 2, a cocompact lattice
in G = PGLy(F), which acts simply-transitively on the vertices of the Bruhat-
Tits building By(F), which is a building of type A4 1. So G = KT when K =
PGL4(O). Let I' be the Cartwright-Steger lattice. In [LSV1], Lubotzky, Samuels
and Vishne used Lafforgue solution of the Ramanujan-Peterson conjecture for GL4
in positive characteristic to show: if I'(m) is a congruence subgroup of I', then the
representation 7, which is the K-spherical part of 7 = IndS (13(T'/T'(m)), is weakly
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contained in the regular representation of G provided at least one of the following
two conditions is satisfied: either (a) d is a prime number or (b) m is prime to
at least one of the ramification primes of the division algebra defining I" (in the
notations of [CS2], this means that m is a polynomial in Fy[y] which is prime to
z=y+ 1; see [LSV1] and [LSV2] for a detailed discussion).

We mention in passing that unlike examples 2, 3 and 4, in the case d is not a
prime, for some (in fact, for infinitely many) congruence subgroups, the “Ramanu-
jan Conjecture” is not satisfied. Still for infinitely many — it does. In any event,
whenever condition (a) or (b) is satisfied, we get (by Proposition 4.1 and Corollary
4.2) quotients making I' Ramanujan. Since these constructions are very recent, here
are some further details for the convenience of the reader. First we describe sets S,
for which according to part (3) of the Corollary, T' = Ty satisfies the condition of
the Ramanujan property:

For 1 <k <d-1,let g = diag(w,m,...,m 1,...,1) when 7 appears k times.

Let S, = Kgr K NT and A = > s be the corresponding element of the group
SESk
algebra CI'. In general, Ay is not a self adjoint operator (when acting in unitary

[-representations), but (i) it is a normal operator, and (ii) Ay +Aq— is self-adjoint.
The spectrum of Ay on [2(I") (which can be identified with [2(BS(F)), BS(F') being
the 0-skeleton of the building B, (F)), is a subset of C which is described in [CS2]
as:

d
Car= {qk(dfk)mak(zl, . ..,zk)‘For i=1,...,d, z €C,|z]=1 and Hzl =1}
i=1
Here oy, is the k-symmetric function i.e.,

or(21y ...y 2d) = Z ZiyZig e Zij -
iy <dg<--<ig
In [LSV1] it is shown that for the congruence subgroups satisfying either (a)
or (b) the “non-trivial” eigenvalues of Ay on [*(I'/T'(m)) are in Cqy. Moreover,
for Ay + Aq—, it means that its norm on [Z(I'/T'(m)) is bounded by Q(Z) qkd=r)/2,
This last part follows also directly from Corollary 4.2 above. The Ay’s commute

d—1 d—1
with each other and we may take S = |J Sk and A = > Aj. This is the usual
k=1 k=1

adjacency operator with respect to S. Th7uS, for the famﬂ}; L =T(m), the group I'
is (Ts, £)-Ramanujan whenever (a) or (b) is satisfied.

5. Non-Ramanujan groups

Lemma 2.1 above is often useful in showing that a group I' is not Ramanujan
with respect to a given family of subgroups £. This is reminiscent of the Burger-Li-
Sarnak method [BLS] to show the non-validity of the naive Ramanujan conjecture,
of which the Lemma may be viewed as a "discrete” analogue. Here is a useful
illustration:

PROPOSITION 5.1. Let I' = H; x Hy be a direct product of two non-amenable
groups Hy and Hz. Then T is not Ramanujan (i.e., no T, L as in the Definition
make it Ramanujan).

PROOF. Assume to the contrary that I' is Ramanujan with respect to some

L = {I';} and some positive T' € CI'. We claim that for j = 1,2, H; is of finite
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index in I', where E is the closure of H; in the profinite topology on I' defined by L.
Indeed, otherwise by Lemma 2.1 we have: HT”P(F/H_j) < sup ||T|lizrr,) < T pr-
However, since H; are non-amenable and still normal in I', by a well known result
of Kesten [Kel: |[T|[pr < ||T|;2(r/zr;)> Which is a contradiction. Thus H; must be
of finite index in I' for both j = 1,2, and the two must commute, as do the H;’s.
This proves that I' is virtually abelian, in contradiction to the assumption that the
Hj’s are non-amenable. O

Let I'y = Fp 11 X Fp,41 be the product of two free groups on p12+1 and p22_+1
2 2

generators, with set of free generators S’ and S”, respectively. Here p; and po
are two primes with p; = pa = 1(mod4). Let S; = S" U S”. Then Cay(T3;Ss)
is the direct product of the (p; + 1)-regular tree and the (py + 1)-regular tree.
By Proposition 5.1, I's is not Ramanujan. Compare this to I';- the congruence
subgroup mod 2 of H* (Z[pil, p—é])/Z discussed in Example 3 of §4. This group
acts simply transitive on the product of the trees associated to PGL2(Qp,) and
PGL5(Qp,). Hence, its Cayley graph with respect to the generators which take any
fixed “origin” to its neighbours (of distance 1) is also the product of (p; +1)-regular
tree and the (p2 + 1)-regular tree (for more on these groups see [Moz]). We thus
obtained two groups I'; and I'y with systems of generators S; and S, respectively,
such that Cay(T'1;51) is isometric to Cay(T'2;S2). Now, I'y is Ramanujan with
respect to the averaging operator T, (this certainly holds with respect to the family
of congruence subgroups, although notice that by the yet conjectural congruence
subgroup property of this group, there should be no others), while (I'z; S2) is not
Ramanujan.

Finally, by direct considerations we can get some information about the out-
standing example of an arithmetic group, namely, the group SL,, (Z):

PROPOSITION 5.2. LetT,, = SLy,(Z), and S, be the set of elementary matrices
and their inverses, i.e. S, = {I:I:Eijll <i# j<mn}. Then forn large enough, T'y,
is not (T, L) Ramanujan with respect to any L, where Ty, is the averaging operator
over S,.

PROOF. Denote by p,, the regular representation of I';,. Our strategy is to show
that there exists some constant C' < 1 such that ||T,]|,, < C for all n, whereas for
any n we can find a finite representation m,, of I';, with no invariant vectors, such
that ||T||%, — 1 as n — oo.

To establish the first claim, we divide the set S,, into (n? — n)/2 subsets of 4
elements, each consisting of the elements I £ F;;, I & Ej; for all different choices
of 1 < i < j < n. Notice that every such subset generates a copy of a subgroup
isomorphic to SLy(Z), in a way that maps the 4 elements to the (+) upper and
lower unit elementary matrices of SLy(Z). Let C' denote the norm of the averaging
operator on the latter 4-element subset of SLs(Z), acting in its (SLz(Z)-) regular
representation. By non-amenability of SL3(Z) we have C' < 1. We claim that this
C is the one required in our first claim. Indeed, grouping the elements of S, in
(n? — n)/2 4-element subsets as above, and then iterating the triangle inequality
(n? —n)/2 times on the p,-norm, gives the bound ||T,||,, < 3(n*—n)-(C/3(n® —
n)) = C, as soon as we show that the norm of the (normalized by 4) averaging
operator on each 4-element subset acting in p,, is C. This, however, is obvious from
the definition of C, as the restriction of p, to the subgroup (= SL3(Z)) generated
by each 4-element subset is a multiple of its regular representation.
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We now establish the second ingredient of our strategy. Fix n, and consider
a “maximal parabolic” subgroup A, < I'y, i.e., the stabilizer in I';, of the vector
(1,0,---,0) for the standard linear action of I',, on R™. Consider the natural
unitary I',-representation 7, on [2(I'y/A,), and the Dirac function f = 1. at the
identity coset. Since all but 2(n — 1) elements of \S,, are contained in A, they fix
f, while the other 2(n — 1) elements take f to an orthogonal vector. Therefore
we have (T, f, f)., = ﬁ(Z(TF —n)—2n-1)) = ﬁ(n2 —2n+4+1) =21 =
1 — L. Consequently, ||T,[|-, > 1 —+ — 1. Thus it only remains to show that for
every n, the representation 7, can be approximated in the Fell topology by finite
representations of the form (3(T,,/I'%) for a sequence of finite index subgroups
It < T',. However, since it is easy to see that A, is closed in the congruence
topology of T',,, i.e., it is the intersection of finite index (congruence) subgroups of
I',,, this follows now from Lemma 2.1.

We have therefore proved the result when £ is the family of all congruence
subgroups. It is not difficult to see that the groups A,, used in the proof are in fact
closed in any profinite topology on SL,(Z) which is weaker than the congruence
one. Together with the congruence subgroup property, this establishes the result
in general. We leave the verification of some missing details here to the reader.

O

Question: Is SL,(Z) Ramanujan for some n > 3 ?

6. Concluding remarks and open questions

Since all the groups we studied in this paper are S-arithmetic, it is natural
to discuss a relation between their Ramanujan and FD properties, and those of
the ambient algebraic groups, while giving a natural meaning to the latter. For
simplicity, let us concentrate here only on the arithmetic case, i.e., we let G be
a semisimple algebraic group defined over Q, and consider the group I' = G(Z).
Recall that the Automorphic Spectrum Aut G of G is defined to be the closure
in G(R), of the set of all representations of the form L?(G(R)/I'), where I' varies
over all the congruence subgroups of G(Z). Denote also by AutoG the same space,
but with the trivial representation deleted. Much efforts have been devoted to
identifying Aut G, which is one of the most interesting objects of number theory.
Analogues to the Ramanujan and FD properties for the arithmetic groups, one can
now define them for the ambient Q-group by saying that G has the Ramanujan
property if AutgG is contained in the tempered spectrum (i.e. it is weakly contained
in the regular representation), and has property FD if it is the whole dual. These
definitions make sharpest the marked difference between the two properties. Indeed,
G is Ramanujan iff it satisfies the naive Ramanujan conjecture (e.g., Selberg’s 1/4
conjecture in the case of G = SLj), that is to say, the automorphic spectrum is as
restricted as it can possibly be, and it has property FD if nothing can be said about
the “location” of automorphic representations. Although the naive Ramanujan
conjecture is of course known to be false in general (cf. [BLS] and the references
therein), one certainly expects that the automorphic representations should not be
spread out over the whole unitary dual, namely, the following seems plausible:

6.1 Conjecture. Let G be a semisimple algebraic group defined over Q and R-
isotropic. Then G does not have property FD.
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For example, this is known for G = SL,. Of course, one can expect property
FD of the algebraic group to be analogous to that of the arithmetic group only
where the family of (finite) congruence representations are involved. Indeed, we
have:

Observation: If the family of finite representations of I' = G(Z) which factor
through some congruence quotient is dense in I', then G has property FD. In
particular, if I' has the congruence subgroup property and property FD, then G
has property FD.

This follows from Lemma 3.3. Of course, it is a natural question whether the
converse (of the first statement) holds as well, although as we expect that no G has
property FD, this may be of limited interest. However, combined with Conjecture
6.1, the observation gives:

6.2 Conjecture. Let I' be an arithmetic group. If I' satisfies the congruence
subgroup property then it does not have property FD.

In fact, by our reasoning above, the Conjecture becomes a Theorem whenever
the ambient group G is known not to have property FD. Since there are numerous
groups for which the latter can be shown (using known results on the automorphic
spectrum), the observation can be made useful in showing that certain arithmetic
groups do not have property FD (in a way independent of Section 3 above and
Bekka’s method [Be]).

Unfortunately, the relation between the Ramanujan property for the algebraic
and arithmetic group seems less understood at the present. Even though it appears
that the Ramanujan property for the algebraic groups is stronger, we were able to
deduce from it the Ramanujan property of the lattice subgroup only under a strong
restriction on the fundamental domain. Thus the following still remains:

6.3 Question: Does G being Ramanujan implies that (some finite index subgroup
of) T' = G(Z) is as well, at least in the uniform case, i.e., when Q-rankG =0 ?

Of particular interest seems the case of a surface group.

To conclude this direction, we remark that among free groups, we currently have
the Ramanujan property only for some of them, even though we do not require
the relevant operator to be an average over a free generating subset. However,
notice that the list of Ramanujan groups consists not only of those obtained by
Morgenstern [Mor], but also of every index two subgroup of these. This is
obtained by using Proposition 4.1 and Corollary 4.2 for spherical operators which
are supported on spheres of even radius, whose elements generate (though not freely
1) a subgroup of index two. At any rate, one would like to know for which values
of r, the free group F), is Ramanujan, which may be viewed also as a motivation
for the general problem of understanding to what extent the Ramanujan property
passes to finite index subgroups and overgroups.

Turning to a different point of view, the results in §3 show that “most” lattices
in higher rank simple Lie groups, do not have property FD. On the other hand from
Theorems 2.2 and 2.8 it follows that every lattice I' in SL2(R) does, and moreover,
the same conclusion holds for some lattices in SLz(C). A well known conjecture of
Thurston asserts that every irreducible 3-dimensional hyperbolic manifold is fibered
over a circle. If true, it would imply that every lattice in SLy(C) has a finite index
subgroup of the form A x Z, when A is a surface or a free group. In either case,
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Theorem 2.8 shows that such a group has property FD. In fact, more might be
expected:

6.4 Conjecture: Every finitely generated discrete subgroup of SO(n, 1) has prop-
erty FD.

Observe that from the definition it follows that any group I' which has both
property 7 and FD, has Kazhdan’s property (indeed, the family of finite represen-
tations is then both dense and isolated from 1r). Consequently, if an arithmetic
lattice in SO(n,1) or SU(n,1) has property FD, it cannot have 7, and hence it
has a negative solution to the congruence subgroup problem. Indeed, it is known
that T has the Selberg property (i.e., property (7) with respect to the congruence
subgroups see [Lul], [Lu2] and [Cl]]). This means that among the non-trivial finite
representations of I', the congruence yet not all ones are bounded away from 1r.
Thus, Conjecture 6.4 implies Serre’s conjecture [Se] for the arithmetic groups of
SO(n, 1), while making an abstract group theoretical statement. For the current
status of Serre’s conjecture for lattices in SO(n, 1) see [Lu2].

It may be quite reasonable to include SU(n, 1) as well in Conjecture 6.4. On
the other hand we conjecture that the opposite holds for lattices in higher rank
simple Lie groups (a conjecture which is strongly supported by the results in §3).
One would hesitate regarding lattices in Sp(n,1) and F4(_20). The lattices in these
rank one Lie groups sometimes behave as the other rank one groups SO(n, 1) and
SU(n, 1), and sometimes as higher rank lattices. In particular, the following seems
very intriguing:

6.5 Question: Does there exist an infinite discrete Kazhdan group with property
FD ?

Recall that by a result of Wang [Wal, for Kazhdan groups not only the trivial,
but in fact any finite dimensional unitary representation is isolated in the unitary
dual. This may suggest a negative answer to the question. Such an answer would
also account for many of the foregoing results (and questions).
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