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Let K be a non-archimedean local field and U a compact subgroup of
GLn(K). Such U is a profinite group, actually it is virtually pro-p. If
char(K) = 0, then U is finitely generated and even finitely presented as a profi-
nite group. On the other hand if char(K) = p > 0, then U need not be finitely
generated. Moreover, even if U is finitely generated, it may be non-finitely
presented (see(1.3)). On the other hand;

Theorem 1 Let G be a connected, simply-connected, absolutely almost simple
algebraic group defined over K and U an open compact subgroup of G(K). Then
U is a finitely presented profinite group.

In fact, in the current paper we prove Theorem 1 under the assumption that
G is K-isotropic. If G is anisotropic then G is isomorphic to SL1(D) when D is
a division algebra whose center is K. This special case turns out to be especially
difficult - but it was resolved recently by Ershov [Er2].

Theorem 1 answers a question we were asked by Y. Barnea. Moreover, it
settles a case left open in Raghunathan paper [R1]: Indeed, if U is a pro -
p group, then U is finitely presented if and only if H2(U,Fp) is finite. The
finiteness of the second cohomology of U with various coefficients was proved by
Raghunathan for char(K) = 0 but not for positive characteristic. Prasad and
Raghunathan ([PR1], [PR2]) carried out a detailed and deep computation of the
second cohomology of some local and adelic groups. In a way, the current paper
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and [Er2] are complementary to their work - see (6.2) for a detailed comparison
and connections

Theorem 1 has a global analogue:

Theorem 2 Let k be a global field and G a connected, simply-connected, ab-
solutely almost simple algebraic group defined over k. Let S be a finite set of
valuations of k containing S∞, the set of archimedean ones, and AS-the ring of
S-adeles (i.e. AS = Π∗

v /∈Skv). Let V be an open compact subgroup of G(AS).
Then V is a finitely presented profinite group.

Theorem 2 implies:

Corollary 3. Let k be a global field, O-its ring of integers, S a finite set of
valuations of k containing S∞ and OS-the ring of S-integers. Assume G is
a connected, simply-connected absolutely almost simple algebraic group defined
over k and Γ the S-arithmetic group G(OS). Then C = Ker(Ĝ(OS)→ G(ÔS)),
the congruence kernel, is finitely generated as a normal subgroup of G(ÔS) un-
less char(k) > 0, G is k-isotropic and S-rank(G) :=

∑
v∈S

kv- rank(G) = 1. In

the latter case, Γ = G(OS) is infinitely generated and C is infinitely generated
as a normal subgroup of Γ̂ = Ĝ(OS).

Note that by [Lu3], C is infinitely generated as a profinite group when the
congruence subgroup property fails (see there for the precise result) . So, Corol-
lary 3 says that even then C is finitely generated as a normal subgroup, at least
when G(OS) is finitely generated which is always the case unless k is of positive
characteristic and S-rank (G) = 1.

Corollary 3 is new even for the classical modular group Γ = SL2(Z). For its
importance, let us single it out and state:

Corollary 4. Let C = Ker(ŜL2(Z) → SL2(Ẑ)) be the congruence kernel of
Γ = SL2(Z). Then

(a) C is isomorphic to F̂w-the free profinite group on a countable number of
generators. In particular, it is not finitely generated.

(b) C is finitely generated as a normal subgroup of Γ̂ = ŜL2(Z).

Part (a) is proved in [Me] and [Lu1]. Part (b) can be deduced from Theorem
2. Let us sketch its proof here; this will give some idea on the proof of Theorem
2: As Γ and Γ̂ are finitely generated, it suffices to prove that SL2(Ẑ) is a finitely
presented profinite group. Let ∆ be the S-arithmetic group SL2(Z[ 12 ]). It is
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known that ∆ is finitely presented and has the congruence subgroup property.
Hence ∆̂ is a finitely presented profinite group and is isomorphic to

∏
p�=2

SL2(Zp).

Now,
SL2(Ẑ) =

∏
p

SL2(Zp) = SL2(Z2) × ∆̂.

As SL2(Z2) is also finitely presented (by a well known very special case of
Theorem 1), SL2(Ẑ) is finitely presented and Corollary 4(b) is proved.

So, the discrete group ∆ which has the congruence subgroup property helps
us to analyze the congruence kernel of Γ = SL2(Z) which does not have the
congruence subgroup property.

The proof illustrates the main ingredient of the proof of Theorem 2: The
group V there is virtually a product of groups like U from Theorem 1, but this
is an infinite product. So we cannot use “local to global” methods to deduce
Theorem 2 from Theorem 1.

To prove 2, we show that a finite index subgroup V1 of V can be presented as
a product V1 = V2×V3 where V3 is a product of finitely many groups of type U
of Theorem 1 and V2 is the profinite completion of a suitable finitely presented
S-arithmetic group ∆ which has the congruence subgroup property. Some care
should be taken here as, in positive characteristic, S-arithmetic subgroups are
not necessarily finitely presented. Anyway, as in the argument before, V2 is
therefore a finitely presented profinite group. So will be V1 (and V ) provided
we ensure that V3 is. This is indeed the case by Theorem 1.

In spite of the fact that Theorem 1 is a local theorem, “half” of its proof
is based on global consideration. In fact, Theorem 1 is separated to two cases
with completely different proofs:

I. G is isotropic; in this case we prove Theorem 1 by presenting U as a
suitable quotient of a global group V - as in Theorem 2 - being careful that it
would be a quotient of a group like V2 above, by finitely many relations. So,
the local case is deduced from a global result!

II. G is anisotropic. In this case G must be the norm one elements of a
division algebra over K (see [PR, Theorem 6.5]) and a detailed structure of G
is given in [Ri] and [PR2]. The method we apply for the isotropic case does not
work here since the congruence subgroup property is still open for anisotropic
groups of type An.

This case was left unsettled in an early draft of the current paper and it has
been solved recently by M.Ershov [Er2] who introduced a new method to show
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that a pro-p group U is finitely presented, based on cohomology computation
of some associated Lie algebras. By a somewhat similar method he also showed
that the Nottingham group is finitely presented [Er1] and it seems to have the
potential to be applied to other pro-p groups.

The above mentioned results (1, 2 and 3) are proved in sections 2, 3 and
4, respectively. In Section 5, we show how Theorem 2 can be used to prove a
partial result toward a conjecture of Holt [H] bounding the dimensions of the
second cohomology groups of finite simple groups. So, somewhat surprisingly,
the congruence subgroup property of arithmetic groups finds its way to imply
results on the cohomology of finite simple groups. We end in §6 with remarks
and suggestions for further research.

Acknowledgement: The author is grateful to A. Rapinchuk for various
suggestions including the proof of Lemma 3.1. We also benefitted from conver-
sations and remarks of M. Ershov, G. Prasad, and E. Zelmanov.

1. Preliminaries and first observations

(1.1) Let H be a profinite group. H is finitely generated if H has a finite subset
X generating a dense subgroup of H . We denote by d(H) the minimal number
of (topological) generators of H , H is finitely presented if for some n ∈ N there
exists an epimorphism from the free profinite group F̂n onto H with kernel N
and there is a finite subset R of N such that N is the minimal closed normal
subgroup of F̂n containing R.

The usual properties of finitely presented discrete groups hold also in the
category of profinite groups. We mention a few properties which will be used
frequently:

(a) If H1 is of finite index in H2, then H1 is finitely presented iff H2

is.

(b) Let H1 be a finitely generated profinite group, N � H1 and
H2 = H1/N . If H2 is finitely presented, then N is the (closed)
normal closure in H1 of finitely many elements. If H1 is finitely
presented, then the converse is also true, i.e. H2 is finitely pre-
sented if and only if N is finitely generated as a normal subgroup
of H1 .

(c) The profinite completion of a discrete finitely presented group is
a finitely presented profinite group.
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The proofs of these properties are essentially the same as their analogues
for discrete groups. But one should be slightly careful as we are not allowed
to work with ordinary words. For example, to see (b): Let π : F̂d → H1 be
an epimorphism from the free profinite group F̂d onto H1 with kernel K and ψ
the given epimorphism from H1 to H2 with kernel N . Denote Ñ = Ker(ψ ◦ π).
If H2 is finitely presented, then Ñ is generated as a normal subgroup of F̂d by
finitely many elements (this fact is independent of the specific presentation of
H2; if it is true with one presentation it is true with all - see [Lu5]) and hence
the same is true for N as a normal subgroup of H1.

Conversely, if H1 is finitely presented, then K is finitely generated as a
normal subgroup of F̂d and if N is also finitely generated as a normal subgroup
of H1, then Ñ is finitely generated (as a normal subgroup) over K and hence
altogether Ñ is finitely generated as a normal subgroup of F̂d and H2 is finitely
presented.
(1.2.) In a similar way, one defines a pro-p group H to be finitely presented in
the category of pro-p groups. In [Lu5], it was shown that finitely generated free
pro-p groups are finitely presented in the category of all profinite groups. From
this and (b) it follows that a pro-p group is finitely presented in the category of
pro-p groups iff it is finitely presented in the category of all profinite groups.

The following criterion is well known.

Proposition A finitely generated pro-p groupH is finitely presented iffH2(H,Fp)
is finite.

There is also a cohomological criterion for a finitely generated profinite group
to be finitely presented ([Lu5, Theorem 0.3]); see §5 below.

(1.3.) If K is a non-archimedean local field and U a compact subgroup of
GLn(K) then U is virtually pro-p. If char(K) = 0, then U is virtually “uni-
form powerful” and hence finitely presented (see [DDMS, Prop. 4.32]). On
the other hand, if char(K) = p > 0, U need not be finitely generated, e.g.

U =
{(

1 a
0 1

) ∣∣∣ a ∈ Fp[[t]]
}

or U = PGLp(Fp[[t]]) which is mapped onto

Fp[[t]]∗/(Fp[[t]]∗)p. The latter is an infinitely generated elementary abelian p-
group. Incidently, the last example shows that Theorem 1 does not hold without
the assumption that G is simply connected.

Even if U is finitely generated it needs not be finitely presented as the fol-
lowing example shows:

Example. Let U =
{(

a b
0 a−1

) ∣∣∣ b ∈ Fp[[t]], a ∈ T
}

where T is the closure
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of the cyclic subgroup of Fp[[t]]∗ generated by 1 + t. One can see that U is
isomorphic to the completed wreath product ZpwrFp i.e., Zp � F∞

p , which is
clearly a finitely generated group. But it is not finitely presented, see [W,p.270].
In fact, we have the following general result:
Proposition (Wilson [W, Cor. 12.5.10]) Let U be a finitely presented
solvable pro-p group and let N be a closed normal subgroup such that G/N �
Zp. Then N is finitely generated.

(1.4.) Let us now use the notations of Corollary 3. So Γ is an S-arithmetic
group Γ = G(k)∩GLn(OS) (w.r.t. to some fixed embedding of G into GLn). If
char(k) = 0 , then Γ is always finitely presented. The same holds if char(k) > 0
and G is anisotropic. On the other hand, if char(k) = p > 0 and G is isotropic,
i.e., k-rank (G) ≥ 1, a well known theorem of Behr [Be] says that everything
depends on s = S-rank(G) :=

∑
ν∈S

kν -rank(G). If s = 1, Γ is not finitely

generated, if s = 2, Γ is finitely generated, but not finitely presented, while if
s ≥ 3, Γ is finitely presented.

It is interesting to note that our Theorems 1 and 2 do not distinguish be-
tween the different ranks - so while SL2(Fp[t]) (resp. SL3(Fp[t])) is not finitely
generated (resp. finitely presented), SL2(Fp[[t]]) (resp. SL3(Fp[[t]])) is.

2. Proof of Theorem 1: the isotropic case

In this section, we prove Theorem 1 under the additional hypothesis that G is
isotropic over K. As mentioned before, the anisotropic case is dealt with by an
entirely different method in [Er2].

Let G be a connected, simply-connected absolutely almost simple group
which is defined and isotropic over a global field k such that K = kv0 for
some valuation v0 and such that G(kv0) is isomorphic to G(K). Let S be a
finite set of valuations of k containing S∞ - the set of the archimedean valu-
ations and such that: (i) v0 /∈ S (ii) The S-arithmetic group Γ = G(OS) is
finitely presented and (iii) Γ = G(OS) has the congruence subgroup property,
i.e., Ker(Ĝ(OS)→ G(ÔS)) is finite.

Such an S does exist: Recall that for almost every valuation v of k, G is
quasi-split over kv ([PR, p.281]) and in particular, also of kv-rank ≥ 1. So by
enlarging S if needed, we ensure that

∑
v∈S

kv-rank(G) ≥ 3 which implies by Behr’s

Theorem (see (1.4)) that Γ is finitely presented. Moreover, by Raghunathan [R2,
p.74] Γ has the congruence subgroup property.
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Now (ii) implies that the profinite completion Γ̂ is finitely presented and (iii)
implies that this holds also for G(ÔS) =

∏
v /∈S

G(OS).

Furthermore, if S1 = S ∪ {v0}, then

G(ÔS1 ) =
∏

v /∈S1

G(Ov)

so G(ÔS) = G(OS1 ) × G(Ov0). Thus G(ÔS1 ) is a quotient of G(ÔS) and hence
it is finitely generated. At the same time Ĝ(OS1 ) can be regarded as a normal
subgroup of Ĝ(OS). This implies that the quotient G(ÔS)/G(ÔS1 ) = G(Ov0)
is a finitely presented group. The latter is commensurable to U . So U is also
finitely presented as claimed.

3. Proof of Theorem 2

For the proof, we need the following lemma:

Lemma 3.1. Let k and G be as in Theorem 2. Then there exists a connected,
simply-connected absolutely almost simple, quasi-split group G defined over k,
such that for almost every valuation v of k, G(kv) is isomorphic to G(kv).

Proof. Let G0 be the split form of the group G. The k-forms of G0 are
classified by the elements of H1(k,Aut(G0)) (see [PR ,§6]). Now, Aut(G0) is a
semi-direct product of Aut(D) (= the automorphisms of the Dynkin diagram
associated to G0) and Int(G0) (= the inner automorphisms of G0). There is
a natural map f : H1(k,Aut(G0)) → H1(k,Aut(D)). Let c ∈ H1(k,Aut(G0))
denote the cocycle that corresponds to G.

As Aut(G0) = Int(G0) � Aut(D), we can consider f(c) also as an element of
H1(k,Aut(G0)). Twisting the split form G0 by f(c) will give a quasi-split form
G (since the Borel subgroup is preserved by Aut(D) and hence still defined over
k). By [P, Lemma 2.0] G is the unique quasi-split form in the same inner class
as G.

Look now over kv, still G and G are at the same inner class, G is of course
quasi-split for all v and G is quasi-split for almost all v. Again, as before,
there is a unique quasi-split form in every kv-inner class, so for almost every v,
G(kv) � G(kv). Lemma 3.1 is now proved.

To prove Theorem 2, we can replace V by a finite index subgroup and assume
that V has the form

∏
v /∈S

Mv, where each Mv is compact open in G(kv) and for
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almost every v,Mv = G(Ov). From Theorem 1, we know that each Mv is finitely
presented, but in general, an infinite product of finitely presented groups is not
finitely presented (see (6.1)).

Let G be as in Lemma 3.1, and S1 = {v | G(kv) 	� G(kv)}. So S1 and S′ =
S1 ∪ S are finite. Write V = V1 × V2 where V1 =

∏
ν /∈S′

Mv and V2 =
∏

ν∈S′\S

Mν .

As V2 is a finite product of local (finitely presented) groups, it is finitely
presented. We are left to prove that V1 is finitely presented. Now, we argue in
a similar way to the proof in §2: V1 is an open subgroup of G(ÔS′ ). Let S′′ be
a finite set of valuations containing S′ such that
S′′-rank(G) :=

∑
v∈S′′

kν-rank(G) ≥ 3. (Such S′′ clearly exists, as G is quasi

split over every kν). Thus the S-arithmetic group Γ = G(OS′′ ) is finitely pre-
sented by Behr’s Theorem (see (1.4)) and has the congruence subgroup property
by Raghunathan’s Theorem ([R2]). The group G(ÔS′′ ) is, therefore, a finitely
presented profinite group. Now, V2 is commensurable to V3 × G(ÔS′′ ) where
V3 =

∏
ν∈S′′\S′

Mν . As S′′\S′ is finite, V3 is also finitely presented. This proves

that V2 is finitely presented and so is V .
Theorem 2 is now proven.

§4. Proof of Corollary 3

Assume first that we are not in the excluded case (char(k) > 0 and S-rank(G) =
1). Then by the result of Behr mentioned in (1.4), Γ = G(OS) is finitely
generated, hence Γ̂ = Ĝ(OS) is a finitely generated profinite group. By Theorem
2, G(ÔS) is a finitely presented profinite groups. So, an elementary group
theoretical argument implies (see (1.1)(b)) that C = Ker ̂(G(OS) → G(ÔS)) is
finitely generated as a normal subgroup of Ĝ(OS).

Assume now that char(k) > 0, G is k-isotropic and S-rank (G) = 1. In this
case, Behr’s result says that Γ = G(OS) is not finitely generated. In fact, in this
case |S| = 1, so S = {v}, and Γ is a non-uniform lattice in the rank one kv-group
G(kv), so it is a “non-uniform tree lattice” (see [Lu2] and [BL]) and hence not
finitely generated. Furthermore, we have proven in [Lu2] that Γ has a finite
index congruence subgroup ∆ which is a free product of a finitely generated free
group and finitely many “cusp subgroups”. In particular, it is shown there that

∆ is mapped onto the infinite elementary abelian group
∞⊕

i=1
Cp, where Cp is the

cyclic group of order p.
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Let now ∆̂ be the profinite completion of ∆ and ∆̄ its closure in G(ÔS).
Then C = Ker(∆̂→ ∆̄) and C is finitely generated as normal subgroup of Γ̂ if
and only if it is so in ∆̂. But taking abelianizations, we see that ∆̂/[∆̂, ∆̂] is

mapped onto the infinitely generated group
∞∏

i=1
Cp while ∆̄ being a finite index

open subgroup in the semisimple adelic group G(ÔS) has finite abelianization.
This implies that (Ker(∆̂/[∆̂, ∆̂] → ∆̄/[∆̄, ∆̄]) is infinitely generated, hence C
cannot be finitely generated as a normal subgroup of ∆̂ or Γ̂.

§5. Cohomology of finite simple groups

In this section we will present an unexpected contribution of the congruence
subgroup property to the cohomology of finite simple groups. This will be in
the form of a partial result toward a conjecture of Holt [H].

For a finite group G denote

h(G) = sup
p

sup
M
{dimH2(G,M)

dimM

∣∣∣ M is a simple Fp[G]−module}

The main result of [H] says that for finite simple groupsG, h(G) = O(log |G|).
Holt conjectures furthermore that h(G) = O(1), i.e., bounded by a constant
when G runs over all finite simple groups.

We can use the results of the current paper to give some partial results in
this direction.

Proposition 5.1. Let G be a simple Chevalley scheme (e.g. G = SLn). Then
(1) h(G(Fp)) = O(1) when p runs over all primes and similarly

h(G(Fp)/Z(G/Fp)) = O(1).
(2) For a fixed prime p, h(G(Fpr )) = O(1) where r ∈ N, and similarly

h(G/Fpr)/Z(G(Fpr )) = O(1).

To prove Proposition 5.1, let us start with recalling a few results from [Lu5]
on profinite presentations.

Let G be a finitely generated profinite group with d(G) = d. Let r(G) be
the minimal number of relations in any presentation of G as a quotient of a free
profinite group. It is shown there that r(G) is realized by a presentation with d
generators, 1→ R → F̂d → G→ 1 and

r(G) =

{
1 if G is d-abelian-indexed and not F̂d

dG(R̄) otherwise
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See there for the definition of d-abelian-indexed. Anyway, if G is finite, then
always r(G) = dG(R̄), R̄ is the G-relation module, i.e., R/[R,R] as a G-module.
It is also shown there (Theorem 5.1) that

dG(R̄) = sup
p

sup
M

{
[[

dimH2(G,M)− dimH1(G,M)
dimM

]] + d− ξM
}

when M runs over all the Fp[[G]]-simple modules, ξM = 0 if M is trivial and
1 if not, and for a real number q, [[q]] denotes the smallest integer which is at
least q.

Now, every one-cocycle is determined on the generators, hence
dim H1(G,M)

dim M ≤ d(G) (see [AG] for stronger results for finite simple groups). We
can therefore deduce:
Corollary 5.2. h(G) − 1 ≤ r(G) ≤ h(G) + d(G) + 1.

Now, as all finite simple groups are generated by two elements, Holt’s con-
jecture is equivalent to:
Conjecture 5.3. There exists a constant c such that every finite simple group
has a profinite presentation with at most c relations.

In fact, in [Lu4], the results of Holt [H] were used to show that every finite
simple group has a profinite presentation with O(log |G|) relations. (For ordi-
nary presentations this is still an open problem - see [Ma]). This was enough in
order to deduce the Mann-Pyber conjecture on the normal subgroup growth of
free groups.

We are now ready for:
Proof of Proposition 5.1.

(1) By Theorem 2, the profinite group G(Ẑ) is finitely presented. It suffices
therefore to show that G(Fp) is obtained as a quotient of G(Ẑ) by a number of
relations which is independent of p. Indeed, G(Ẑ) =

∏
q prime

G(Zq), so G(Zp) is

obtained from G(Ẑ) by dividing by
∏

q �=p

G(Zq). The latter is also a quotient of

G(Ẑ), so its number of generators is bounded by d(G(Ẑ)) and so independent
of p. Now, G(Fp) is obtained from G(Zp) by dividing by the first congruence
subgroup - whose number of generators is dim(G) [DDMS] - so again indepen-
dent of p. Finally, the center of G(Fp) is cyclic so one more relation will give
G(Fp)/Z(G(Fp)) and (1) is proved.

Part (2) is proved in a similar way using G(F̂p[t]) instead of G(Ẑ).
We remark that a more careful argument shows that

∏
q �=p

G(Zp) is generated

by one element as a normal subgroup and similarly the congruence subgroup of
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G(Zp). However, to prove Holt’s conjecture in full, we need a uniform bound
on profinite presentations of G(Ẑ) in Theorem 2.

For more discussion, see (6.6) below.

§6. Some concluding remarks

(6.1) Recall that among discrete groups, there are uncountably many isomor-
phism classes of finitely generated groups but clearly only countably many of
them are finitely presented. On the other hand:
Proposition 6.1. There are uncountably many finitely presented profinite
groups.

Proof. Let d ∈ N be a fixed integer ≥ 2 and let P be an arbitrary set of
primes. The group HP =

∏
p∈P

SLd(Zp) is finitely presented. Indeed, it is a

quotient of SLd(Ẑ) =
∏

all p

SLd(Zp) by the finitely generated normal subgroup∏
p/∈P

SLd(Zp). Clearly, for two different sets of primes P1 and P2, HP1 and HP2

are not isomorphic.
Note however, that in general a direct product of infinitely many finitely

presented groups is not finitely presented. For example, each PSLd(Zp) is
finitely presented but

∏
p
PSLd(Zp) = PSL2(Ẑ) is not finitely presented since it

is a quotient of the finitely presented group SLd(Ẑ) by its infinitely generated
center Z =

∏
p
Z(SLd(Zp)) (see (1.1)(b)).

(6.2.) Our results are related to those of Prasad and Raghunathan in [PR1]
and [PR2].

If k, G and S are as in Theorem 2, the congruence subgroup problem asks for
the kernel C(G, S) = Ker(G̃(k) → (G(k)) when G̃(k) (resp. G(k)) is the com-
pletion of G(k) with respect to the S-arithmetic (resp. S-congruence) topology,
i.e., the topology for which the S-arithmetic (resp. S-congruence) subgroups
serve as a basis for the neighborhoods of the identity. Following a long line
of research and authors (see [Rap] for a detailed history) Raghunathan proved
that if k−rank(G) ≥ 1 and S−rank(G) ≥ 2 then C(G, S) is central in G̃(k)+,
G̃(k)+ is a subgroup of G̃(k) which in almost all cases is known to be equal
to G̃(k) and in any case is of finite index there. This led attention to calcu-
lating central extensions of G(k) . The latter is the group of S-adeles: i.e.,
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G(k) = G(AS) =
∏

ν /∈S

G(kv). Central extensions of adelic groups of these kind

are of importance also for other reasons (“the metaplectic conjecture”) and a
good amount of work has been dedicated to their computation with the ultima-
tive answer given by Prasad and Rapinchuk [PrR1], [PrR2].

Now, computing central extension lead toH2(G(AS),R/Z). The latter is re-
lated to a product ofH2(G(kv),R/Z) for v /∈ S. So, computingH2(G(K),R/Z)
for a local field K was a problem of special importance. This problem was solved
to a large extent by Prasad and Raghunathan [PR1], [PR2] (see also ([PrR1]),
who showed, in particular, that this is always a finite group (and computed it
precisely when G is K-isotropic). From their result it follows immediately that
H2(G(K),Fp) is finite (look at the exact sequence 1→ A→ R/Z π→ R/Z→ 1,
where π(x) = px. Then A � Fp. The finiteness of H1(G(K),R/Z) and
H2(G(K),R/Z) implies the finiteness of H2(G(K),Fp)).

Let now U be an open pro-p subgroup of G(K). So our Theorem 1 basically
claims that H2(U,Fp) is finite.

We do not see a way to deduce our result from those of Prasad and Raghu-
nathan. This is especially frustrating in the anisotropic case: Here G(K) is
compact, by [PR2], H2(G(K),Fp) is finite, but it does not seem that their re-
sult works for the finite index subgroups. Recall that in this case G(K) has a
normal open pro-p subgroup N of index prime to p. Proving Theorem 1 for this
N would imply it to any other open subgroup. This is what has been done by
Ershov [Er2] by a fairly complicated and long proof.

In the other direction: The finiteness ofH1(U,Fp) (which is well known) and
that ofH2(U,Fp) (proven here and in [Er2]) imply the finiteness ofH2(G(K),Fp)
(using the spectral sequence given in Section 3 of [PR1] - see also §6 there)).
But it does not seem to imply the stronger result of Prasad and Raghunathan
claiming that H2(G(K),R/Z) is finite. We do not know if H2(U,R/Z) is finite
(when char(K) > 0). If this would be the case the finiteness of H2(G(K),R/Z)
could be deduced from it.

(6.3.) Look again at C = Ker(ŜL2(Z) → SL2(Ẑ)). It is also equal to
Ker( ˜SL2(Q) → SL2(Af )) where ˜SL2(Q) is the completion, as in (5.2), of
SL2(Q) with respect to the arithmetic topology of SL2(Q). By Corollary 4, C
is finitely generated as a normal subgroup of ŜL2(Z) and hence also as a nor-
mal subgroup of ˜SL2(Q). We have learned recently that Prasad and Rapinchuk
([PrR2]) proved that as a normal subgroup of ˜SL2(Q), C can be generated by a
single element. Our method cannot prove this while their method cannot prove
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that C is finitely generated in ŜL2(Z); they need the full ˜SL2(Q).
Looking now at abelianization: we mention in Corollary 4(a) that C � F̂w

and so W = C/[C,C] is a free abelian profinite group on countable number of
generators. By Corollary 4(b), W is a finitely generated SL2(Ẑ) and SL2(Af)
module. It will be interesting to analyze further this SL2(Af )-module. We
mention in passing that just like SL2(Q) is a discrete subgroup, in fact a
lattice, in H = SL2(A) = SL2(R) × SL2(Af ), SL2(Q) sits as a lattice in
H̃ = SL2(R) × ˜SL2(Q). Now H/SL2(Q) = SL2(A)/SL2(Q) is equal to
the inverse limit lim←−SL2(R)/Γ when Γ runs over the congruence subgroups
of SL2(Z). In a similar way, H̃/SL2(Q) is the inverse limit lim←−SL2(R)/Γ
when this time Γ runs over all finite index subgroups of SL2(Z). It is well
known that L2(H/SL2(Q)) = L2(SL2(A)/SL2(k)) captures the modular forms
of SL2(R) w.r.t. to congruence subgroups and a similar argument shows that
L2(H̃/SL2(Q)) plays a similar role with respect to all finite index subgroups.
The study of W as SL2(Af ) module may be of some relevance for these topics.

(6.4.) In comparison with (6.3), let’s look at

C = Ker( ̂SL2(Fq(t))→ SL2(F̂q(t))) = Ker( ˜SL2(Fq(t))→ SL2(Af ))

where here Af is the adelic completion of Fq(t) at all primes. While we proved in
Corollary 3 that C is not finitely generated as a normal subgroup of ̂SL2(Fq(t)),
it may still be a finitely generated as a normal subgroup of ˜SL2(Fq(t)). We tend
to believe that this is indeed the case.

(6.5.) As pointed out in (1.3), Theorem 1 is not true if G is not simply-
connected. Let us make here the observation that it is still true then if U is
finitely generated. Indeed, let π : G̃ → G be the simply connected cover of G.
Then overK, π(G̃(K)) is normal in G(K) and the quotientD = G(K)/π(G̃(K))
is abelian of finite exponent. Hence if U is finitely generated open subgroup of
G(K) its image in D is finite, so U1 = π(G̃(K)) ∩ U is of finite index in U . We
can pull this group back to G̃(K) (recall that Ker π is finite) to deduce from
Theorem 1 that U1 and hence U is finitely presented.

Theorem 2 is not true without the assumption that G is simply connected,
even if V is finitely generated. Take for example, PSL2(Ẑ) which is a quotient
of SL2(Ẑ) by the infinitely generated center. By Theorem 2, SL2(Ẑ) is finitely
presented but by (1.1)(b), PSL2(Ẑ) is not, as we also mentioned in (6.1).
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(6.6.) One can prove Proposition 5.1 (and even a somewhat stronger result)
directly from the congruence subgroup property of G(Z) (and G(Fp[t])) with-
out passing through Theorem 2. For example, take G = SLn , (n ≥ 3), then
one can deduce from the (proof of the) congruence subgroup property that
if one takes a finite presentation for SLn(Z) and adds one relation Ep

12 = 1,
where E1,2 is the elementary (1, 2)-matrix (i.e., one on the diagonal and at the
(1, 2)-entry and zero elsewhere) then we get a presentation for SLn(Fp), whose
size is independent of p. Similar argument works for all the Chevalley groups.
This argument proves that the family G(Fp) has even ordinary presentation
of bounded size. So, it is stronger than Proposition 5.1 which provides only
such profinite presentation. This result for G(Fp) can be also deduced from
the Curtis-Steinberg-Tits presentation (see [BGKLP, (4.2)]) - but it seems that
not the result for G(Fpe ). We mention in passing that the argument here also
shows that these groups have “short presentations” in the sense of [BGKLP]
where presentations are measured by their length in bits, rather than by the
cardinality of the set of relations.

Finally, we should mention that we actually do not know if the argument
given here really proves something stronger than the one given in §5. As of now,
it seems that no finite group is known whose ordinary presentation needs strictly
more relations than its profinite presentation. But, it is expected that such a
group exists. It may even be that all finite simple groups can be presented with
a bounded number of relations. This is not likely to be true, but if it is true, it
will be a much stronger statement than Holt’s conjecture.
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