
FINITE GROUPS AND HYPERBOLIC MANIFOLDSMIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKY�Abstra
t. The isometry group of a 
ompa
t n-dimensional hyperboli
 man-ifold is known to be �nite. We show that for every n � 2, every �nite groupis realized as the full isometry group of some 
ompa
t hyperboli
 n-manifold.The 
ases n = 2 and n = 3 have been proven by Greenberg [G℄ and Ko-jima [K℄, respe
tively. Our proof is non 
onstru
tive: it uses 
ounting resultsfrom subgroup growth theory to show that su
h manifolds exist.1. Introdu
tionLet Hn denote the hyperboli
 n-spa
e, that is the unique 
onne
ted, simply
onne
ted Riemanian manifold of 
onstant 
urvature �1. By a 
ompa
t hyperboli
n-manifold we mean a quotient spa
e M = �nHn where � is a 
o
ompa
t torsion-free dis
rete subgroup of the group H = Isom(Hn) of the isometries of Hn. Thegroup Isom(M) of the isometries of M is �nite and it is isomorphi
 to NH(�)=�where NH(�) denotes the normalizer of � in H .In 1972, Greenberg [G℄ showed that if n = 2, then for every �nite group G thereexists a 
ompa
t 2-dimensional hyperboli
 manifold M (equivalently, 
o
ompa
t �in H) su
h that Isom(M) �= G (equivalently, NH(�)=� �= G). A similar result forn = 3 was proved in 1988 by Kojima [K℄, who also mentioned the general 
onje
ture.The methods of Greenberg and Kojima are very mu
h of low dimensional geometry(Tei
hm�uller theory and Thurston's Dehn surgery, respe
tively).The long standing problem of realizing every �nite group as the isometry groupof some n-dimensional 
ompa
t hyperboli
 manifold is in 
avor of the inverse Galoisproblem and other questions of su
h kind (see e.g. [F℄). What makes our problemquite deli
ate is that even when we solve it for a group G, it is still not settledneither for the subgroups nor for the fa
tor groups of G. In parti
ular, our problemis not trivial even for the 
ase of the trivial group, for whi
h it means the exis-ten
e of asymmetri
 hyperboli
 n-manifolds. Re
ently, Long and Reid [LR℄ showedthat for every n there exists a 
ompa
t hyperboli
 n-dimensional manifold M withIsom+(M) = feg. Here, Isom+(M) is the group of orientation preserving isome-tries, it is a subgroup of index at most two in Isom(M). They asked separately([LR℄, x4:3 and x4:4) whether su
h an M exists with Isom(M) = feg as well asfor the general G. In this paper we give a 
omplete solution to the problem. Itturns out, indeed, that the proof is somewhat di�erent for the 
ases G = feg andG 6= feg.Our main result is the followingTheorem 1.1. For every n � 2 and every �nite group G there exist in�nitely many
ompa
t n-dimensional hyperboli
 manifolds M with Isom(M) �= G.� Partially supported by BSF (USA { Israel) and ISF.1



2 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYLet us des
ribe the line of the proof. We start with the Gromov and Piatetski-Shapiro 
onstru
tion [GPS℄ of a non-arithmeti
 latti
e �0 in Isom(Hn). Theselatti
es are obtained by interbreeding two arithmeti
 latti
es and the 
onstru
-tion, in parti
ular, implies that �0 is represented as a non-trivial free produ
t withamalgam. By Margulis theorem [Mr, Theorem 1, p. 2℄ the non-arithmeti
ity ofthe latti
e implies that its 
ommensurator � = CommH(�0) is a maximal dis
retesubgroup of Isom(Hn), so for every �nite index subgroup B of �, NH(B) = N�(B).It therefore suÆ
es to �nd su
h a torsion-free B with N�(B)=B �= G.We begin the sear
h for B inside �0 whi
h enables us to use its amalgamatedstru
ture. To this end we modify the argument of [L2℄ to show that � has asuitable �nite index torsion-free normal subgroup � whi
h is mapped onto a freegroup F = Fr on r � 2 generators with kernelM . We then apply ideas and resultsfrom subgroup growth theory [LS℄ to prove that � has a �nite index subgroupA with N�(A)=A isomorphi
 to G. A 
ru
ial point here is that F has at leastk! subgroups of index k but at most k
r log2 k of them are normal in F , for someabsolute 
onstant 
. (This result was proved in [L3℄ using the 
lassi�
ation of the�nite simple groups, but the version we need is somewhat weaker and 
an be provedwithout the 
lassi�
ation. So the 
urrent paper is 
lassi�
ation free!) Anotherinteresting group theoreti
 aspe
t is the use along the way of a result from [L1℄asserting that an automorphism of a free group preserving every normal subgroupof a p-power index must be inner. (The only known proof of this result relies onthe theory of pro-p groups.)Now another problem has to be �xed. While N�(A)=A �= G, N�(A) 
an be(and in fa
t in many 
ases it is) larger than N�(A). To deal with this issue wemodify A by repla
ing it by a somewhat larger subgroup B of � for whi
h indeedN�(B)=B �= G. Two deli
ate points have to be over
ome on the way: First is
ontrolling the normalizer; what makes the whole proof diÆ
ult is the fa
t that"normalizer is not 
ontinuous"; even a small 
hange from A to B 
an 
hange thenormalizer dramati
ally. The se
ond point is to keep B torsion-free just as A. Thisis a
hieved by keeping B inside a suitable prin
ipal 
ongruen
e subgroup.The paper is organized as follows: In x2 we 
olle
t a number of group theoreti
results to be used in the later se
tions. In x3 we bring the main group theoreti
almethod to �nd �nite index subgroups B in a group � with N�(B)=B �= G. Then inx4, a group � in Isom(Hn) is 
onstru
ted whi
h satis�es all the needed assumptions.So only x4 
ontains some geometry. We end with remarks and suggestions forfurther resear
h in x5.A
knowledgement. The �rst author is grateful to the Hebrew University forthe hospitality and support. The se
ond author thanks Alan Reid for sending themanus
ript [LR℄ whi
h was the main inspiration for this work, and B. Farb andS. Weinberger for a helpful dis
ussion.2. Group theoreti
 preliminariesIn this se
tion we will present a number of group theoreti
 results whi
h we willuse later. We begin with the free groups.2.1. Let F = Fr be a free group on r � 2 generators. For a prime p denote byLp(F ) the family of all normal subgroups of F of p-power index.



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 3Theorem 2.1. [L1℄ (a) F is residually-p, i.e., TN2Lp(F )N = feg.(b) If � is an automorphism of F su
h that �(N) = N for any N 2 Lp(F ) then �is inner.While part (a) is well known and easy, it is interesting to remark that the proofof part (b) in [L1℄ is based on the work of Jarden - Ritter [JR℄ whi
h 
ombinespro-p groups and relation modules.Proposition 2.2. (S
hreier's theorem, 
f. [S, Theorem 5, p. 29℄) If H is a subgroupof F = Fr of index k then H is a free group on 1 + k(r � 1) generators.For a �nitely generated group � we denote by an(�) (resp., aCn (�), aCCn (�)) thenumber of subgroups (resp., normal subgroups, subnormal subgroups) of index nin �, and let s�n(�) =Pni=1 a�i (�):Theorem 2.3. (a) (
f. [LS, Corollary 1.1.2, p. 13 and Corollary 2.1.2, p. 41℄)(n!)r�1 � an(F ) � n(n!)r�1:(b) (
f. [L3℄, see also [LS, Theorem 2.6℄) There exists a 
onstant 
 su
h thataCn (F ) � n
r log2 n:(
) (
f. [LS, Theorem 2.3℄) sCCn (F ) � 2rn.2.2. We now turn to free produ
ts with amalgam and HNN-
onstru
tions. Let Qbe a �nite group of order � 3 and T be a subgroup of Q satisfying the following:(�) If N � T � Q and N CQ then N = feg.In parti
ular, (�) implies that [Q : T ℄ > 2.Let R = Q �T Q be the free produ
t of Q with itself amalgamated along T orR = Q�T { the HNN-
onstru
tion. There is a natural proje
tion �� : R! Q whosekernel will be denoted by F = Ker(��). As Q is also a subgroup of R we haveR = F oQ { a semi-dire
t produ
t.Proposition 2.4. (a) F is a non-abelian free group.(b) CR(F ) = feg, i.e., the 
entralizer of F in R is trivial.(
) If � is an automorphisms of R satisfying �(F ) = F and �jF = id then � = id.Proof. (a) This is a known fa
t, let us brie
y re
all the argument. By de�nitionF rfeg does not meet any 
onjugate of Q, so it a
ts trivially on the tree asso
iatedto R by the Bass-Serre theory [S, Se
tion 4.2℄. This implies that F is a free group[S, Theorem 4, p. 27℄. The rank r of F 
an be 
omputed using the formula from[S, Exer
ise 3, p. 123℄, in parti
ular, the 
ondition [Q : T ℄ > 2 implies that r � 2and so F is a non-abelian free group.(b) The group C = CR(F ) is a normal subgroup of R. As F is a non-abelianfree group with a trivial 
enter, C \ F = feg and hen
e C is �nite. We 
laim thatC � T . If R is the free produ
t with amalgam then by [S, Theorem 7, p. 32℄, Ra
ts on a tree with a fundamental domain 
onsisting of an edge e with two verti
esv1 and v2 su
h that StabR(vi), i = 1; 2, are two 
opies of Q in R whi
h we denoteby Q1 and Q2. Sin
e C is �nite it is 
onjugate into one of the Qi's, say Q1. Butsin
e C is normal in R it is 
ontained in Q1 and in all the 
onjugates of Q1 in R.This implies that C �xes all the verti
es in the R-orbit of v1. The later fa
t impliesalso that C �xes v2 (and all the verti
es in its orbit). Hen
e C is also in Q2 and soC � Q1 \ Q2 = T . The 
ase of HNN-
onstru
tion is even easier. Again R a
ts on



4 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYa tree and this time the fundamental domain 
ontains a single vertex. We get thatC is 
ontained in the stabilizers of all the verti
es and edges, so C is 
ontained inT . In both 
ases 
ondition (�) implies that C = feg.(
) Let f 2 F be an arbitrary element of F and q 2 Q an arbitrary element ofQ. We have q�1fq 2 F , so �(q�1fq) = q�1fq and �(f) = f . This implies thatq�1fq = �(q�1fq) = �(q)�1f�(q);and hen
e �(q)�1q 2 CR(F ) = feg:Thus �(q) = q and so � is the identity on Q. Sin
e R = F o Q, � is the identityautomorphism of R. �2.3. Finally, we will need some fa
ts on the �nite orthogonal groups (see e.g. [A℄).Let f be an m-dimensional quadrati
 form over a �nite �eld F of 
hara
teristi
p > 2. If m is odd, there is a unique, up to isomorphism, orthogonal groupO(f) = Om(F) = Om. If m is even there are two groups O+m and O�m 
orre-sponding to the 
ases when f splits and does not split over F, respe
tively. LetSO(f), PSO(f) denote the 
orresponding spe
ial orthogonal and proje
tive spe
ialorthogonal groups, and let 
(f) = [O(f);O(f)℄ be the 
ommutator subgroup ofO(f). The proje
tive group P
(f) = P
�m(F) is generally simple and is 
ontainedin PSO(f) with index at most 2. More pre
isely, P
m is simple if m � 5 or m = 3and p > 3; in 
ase m = 4, P
�4 is simple but P
+4 = P
3�P
3 is a dire
t produ
tof two groups whi
h are simple if p > 3; the 
ases m = 1; 2 will not be used in thispaper. We sometimes omit the � sign is the notations. For the future referen
enote also that the 
entralizer of P
(f) in PO(f) is always trivial.3. The main algebrai
 resultIn this se
tion we prove a purely group theoreti
 result. In Se
tion 4 we willshow that it 
an be implemented for suitable non-arithmeti
 latti
es in PO(n; 1).Throughout this se
tion � is a �nitely generated group, � a �nite index normalsubgroup of �, and M is a normal subgroup of � with �=M being isomorphi
 to afree group F = Fr on r � 2 generators. We denote by N = N�(M) the normalizerofM in �, so � � N � �. The group N a
ts by 
onjugation on F = �=M . Denoteby C = CN (�=M) the kernel of this a
tion and by D the subgroup of all elementsof N whi
h indu
e inner automorphisms of F . Both C and D are normal in N and
learly D = �C:Moreover, M is normal in D, � and in C. As F = �=M has a trivial 
enter andhen
e interse
ts C=M trivially, � \ C =M . So, taking mod M we getD=M = �=M � C=M:



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 5Moreover, �=M is of �nite index in D=M and hen
e C=M is a �nite group.�fin: OOOOOOOOO N = N�(M)
��

��
��

��
��

�D = �C
ppppppppFr�Fr C = CN (�=M)fin:qq

qq
qq

qqMThis se
tion is devoted to the proof of the following result.Theorem 3.1. Let �, � and D be as above. For every �nite group G there existin�nitely many �nite index subgroups B of D with N�(B)=B isomorphi
 to G.Proof. Denote the order of G by g = jGj, and g0 = jAut(G)j. Also let d+1 = [� : D℄and e; 
1; : : : ; 
d be representatives of the right 
osets of D in �, i.e. � r D =Sdi=1D
i.Let x > maxfg; g0g be a very large integer, to be determined later. Choose d+1primes p0 < p1 < : : : < pd with p0 � x2.Now, if d = 0, 
hoose a normal subgroup of � of index p0 
ontaining M and
all it K. If d > 0 the de�nition of K will be more deli
ate: We 
laim that forevery i = 1; : : : ; d there exists a normal subgroup Ki � M of index p�ii in � forsome �i 2 N, su
h that K
ii 6= Ki (where K
ii = 
�1i Ki
i). Indeed, if not then
onjugation by 
i stabilizes all normal subgroups of � 
ontainingM and of index pi-power in �. As �=M �= F is residually-pi (Theorem 2.1(a)),M is the interse
tion ofthese normal subgroups and hen
e 
i normalizesM and so 
i 2 N�(M). Moreover,
i a
ting on F = �=M is now an automorphism of F whi
h preserves any normalsubgroup of F of pi-power index. By Theorem 2.1(b), 
i indu
es on F an innerautomorphism and hen
e 
i 2 D in 
ontradi
tion to the way 
i was 
hosen. Wede�ne K := Tdi=1Ki.In both 
ases denote the index of K in � by k. Observe that k � x2 and K=Mis a subgroup of �=M = F = Fr of index k so by Proposition 2.2, K=M is a freegroup on 1 + k(r � 1) generators.The proof now splits into two 
ases.Case 1: G 6= feg. We 
laim that there are at least g1+k(r�1)�log2 g di�erentepimorphisms from K onto G whose kernels 
ontain M . Indeed, it follows froman easy argument that a �nite group of order g is generated by at most log2 gelements (
f. [LS, Lemma 1.2.2, p. 14℄), so we 
an send the �rst log2 g generatorsof K=M �= F1+k(r�1) to �xed generators of G and all the rest generators of K=M
an be sent arbitrarily into G. Two su
h epimorphisms �1 and �2 have the same



6 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYkernel if and only if there exists � 2 Aut(G) su
h that �1 = � Æ �2. Again, as G isgenerated by log2 g elements, g0 = jAut(G)j � glog2 g . Hen
e there exist at least1g0 g1+k(r�1)�log2 g � gk(r�1)�2 log2 g =: znormal subgroups A of K 
ontaining M with K=A �= G.Let M denote the set of these subgroups A. We 
laim that for every A 2 M,N�(A) � D. If d = 0, � = D and there is nothing to prove. If d > 0, let 
 2 N�(A)and assume 
 2 �rD, so 
 = Æ
i for some Æ 2 D and some i 2 f1; : : : ; dg. Now, 
normalizes � and A, hen
e 
 normalizes Ki sin
e Ki is the only normal subgroupof � of index p�ii 
ontaining A. Moreover, Æ being an element of D indu
es aninner automorphism on F = �=M hen
e it also normalizes Ki. Thus 
i = Æ�1
normalizes Ki, but this 
ontradi
ts the way Ki was 
hosen. So for every A 2 M,N�(A) � D.Let us observe that KC � N�(A) (sin
e K and C are normal subgroups of D,their produ
t KC is indeed a subgroup). We will show next that for some A 2M,N�(A) = KC. This will be done by a 
ounting argument.We already know that N�(A) = ND(A) � KC. As D=M �= �=M � C=M ,ND(A)=M �= N�(A)=M � C=M , so we 
an proje
t everything to �=M and itsuÆ
es to show that there exists A 2M with N�(A) = K.Fix one A 2M and denote L := N�(A), l := [� : L℄. The subgroup L 
ontainsM and L=M is a subgroup of �=M �= Fr of index l, so L=M is a free group on1 + l(r � 1) generators. Also, A is a normal subgroup of L of index gk=l, so A=Mis a normal subgroup of L=M of the same index. By Theorem 2.3(b), L=M has atmost (gkl )
(1+l(r�1)) log2(gk=l) � 2
rl log22(gk=l) =: ynormal subgroups of index gk=l, where 
 is an absolute 
onstant. Sin
e L � K, ldivides k and it is a proper divisor if L 6= K. So L 	 K implies that l is at mostk=po � k=x2 < k=x. Note also that as k � x2, k=x � x. Running over all l inthe range between 1 and k=x, for big enough x, the maximal value of y is obtainedwhen l = k=x. Thus, there are at most 2
r(k=x) log22(gx) subgroups in M whi
h arenormalized by a given L 6= K.Now note that �=K is a �nite nilpotent group (of order p0 if d = 0 and of order�di=1p�ii otherwise), L=K is a subgroup of �=K and any subgroup of a nilpotentgroup is subnormal. This implies that L is a subnormal subgroup of � of index lessthan k=x (if L 6= K), hen
e by Theorem 2.3(
) there are at most 2rk=x possibilitiesfor su
h L's.Putting all this together we see that there are at least z = gk(r�1)�2 log2 g possi-bilities for A and out of them at mostw := 2rk=x2
r(k=x) log22(gx) = 2(rk=x)(1+
 log22(gx))have their normalizer bigger then KC. For x large enough, z > w and so thereexist A 2M with N�(A) = KC. In fa
t, most A 2M do satisfy this.Note however, that for these AN�(A)=A = KC=A �= K=A� C=M �= G� C=M:So, we have not a
hieved the goal of Theorem 3.1 yet. For this we will have toenlarge A, but �rst let us 
onsider the se
ond 
ase.



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 7Case 2: G = feg. Let q be a prime 
lose to k and di�erent from p0; : : : ; pd, su
hthat q > p0 � x2. LetM be the set of all subgroups of K of index q 
ontaining M .By Theorem 2.3(a) there are at least(q!)k(r�1)+1 > (q!)k(r�1) =: zsu
h subgroups. As before we 
laim that for every A 2 M, N�(A) � D. If d = 0there is nothing to prove. If d > 0, the argument is exa
tly the same: write
 2 �rD as 
 = Æ
i for some Æ 2 D and i 2 f1; : : : ; dg, if 
 normalizes A then italso normalizes Ki, whi
h implies that 
i normalizes Ki { a 
ontradi
tion.So, again for every A 2 M, N�(A) � D. This time we want to prove that forsome (in fa
t, for most) A 2M, N�(A) = AC (note: not KC as for G 6= feg). Asin the previous 
ase we will proje
t everything to �=M and show that there existsA 2M with N�(A) = A.To this end, note that if L := N�(A) is stri
tly larger than A, then L is asubgroup of index, say, l in �, l being a proper divisor of kq and so l � kq=x.Similarly to the previous 
ase L=M is a free group on 1 + l(r � 1) < lr generatorsand A=M is its normal subgroup of index kq=l. It follows from Theorem 2.3(b)that L 
an normalize at most(kql )
lr log2(kq=l) = 2
rl log22(kq=l) =: ysubgroups from M. Now, l 
an get values between 1 and kq=x, and 
learly themaximum of y is attained when l = kq=x (if x is big enough) 
orresponding toy = 2
r(kq=x) log22 x.Continue working mod M , L=M is a subgroup of index at most kq=x of thefree group �=M �= Fr . There are, therefore, at most ((kq=x)!)r su
h subgroupsby Theorem 2.3(a). The later number is bounded by (kq=x)
0(kq=x)r for a suitable
onstant 
0. Altogether, at mostw := (kq=x)
0(kq=x)r 2
r(kq=x) log22 x = 2r(kq=x)(
0 log2(kq=x)+
 log22 x)of A 2 M have normalizer N�(A) larger then A. Re
all that q was 
hosen to beapproximately k and z = (q!)(r�1)k. An easy estimate shows that z > w providedx is large enough. Thus, there exists A in M (in fa
t, most A 2 M) for whi
hN�(A) = A and N�(A) = ND(A) = AC.Let us now treat both 
ases G 6= feg and G = feg together: The above argu-ments show that we 
an always �nd a subgroup A of a �nite index in � su
h thatN�(A)=A �= G, N�(A) = ND(A) and N�(A)=A �= G � C=M . Let us repla
e A byB = AC. Sin
e A and C are both in D and C CD, B is indeed a subgroup andit is 
ontained in D. It is also 
lear that B \� = A (look at everything mod M !).We 
laim that N�(B)=B �= G. This will �nish the proof of the theorem.First, note that if 
 2 N�(B) then 
 also normalizes � (sin
e �C�) and hen
e:A
 = (B \�)
 = B
 \�
 = B \� = A;so 
 2 N�(A). On the other hand every 
 2 N�(A) also normalizes C, sin
eN�(A) � D and C is normal in D. This shows that N�(B) = N�(A) and soN�(B)=B = N�(A)=AC �= N�(A)=A �= Gas 
laimed.



8 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYWe �nally mention that by 
hoosing in�nitely many di�erent x's (and hen
e alsothe pi's) we will get in�nitely many subgroups B of � with N�(B)=B �= G. �4. Geometri
 realizationIn this se
tion we will show that for every n � 2 there exist non-arithmeti
latti
es in H = Isom(Hn) satisfying the assumptions of Theorem 3.1 and thendedu
e the main result of this paper. Re
all that H 
an be identi�ed with O0(n; 1) {the subgroup of the orthogonal group O(n; 1) whi
h preserves the upper-half spa
e,it is isomorphi
 to the proje
tive orthogonal group PO(n; 1) = O(n; 1)=f+1;�1g.The subgroup SO0(n; 1) of O0(n; 1) of all the elements of H with determinant 1, isthe group of orientation preserving isometries.Proposition 4.1. For every n � 2 there exist a maximal 
o
ompa
t non-arithmeti
latti
e � in H with subgroups M , � and D satisfying the following:(i) �C � and [� : �℄ <1.(ii) M C�, �=M is a non-abelian free group.(iii) [� : D℄ <1, D � N�(M) andD = fÆ 2 N�(M) j Æ indu
es an inner automorphism on �=Mg:(iv) D is torsion-free.Proof. Let �0 be a 
o
ompa
t non-arithmeti
 latti
e in H obtained by Gromov -Piatetski-Shapiro 
onstru
tion [GPS℄. Re
all that �0 is 
onstru
ted as follows:One starts with two non-
ommensurable torsion-free arithmeti
 latti
es L1 and L2in H , su
h that ea
h of the 
orresponding fa
tor manifolds Wi = LinHn admitsa totaly geodesi
 hypersurfa
e Zi (i = 1; 2) and Z1 is isometri
 to Z2. Assumethat Zi (i = 1; 2) separates Wi into two pie
es Xi [ Yi (the non-separating 
ase
an be treated in a similar way). Then a new manifold W is de�ned by gluingX1 with Y2 along Z1 (whi
h is isomorphi
 to Z2). In parti
ular, W itself hasa properly embedded totally geodesi
 hypersurfa
e Z (isomorphi
 to Z1 and Z2)and so �1(W ) = �1(X1) ��1(Z) �1(Y2). As explained in [GPS℄, �0 = �1(W ) is anon-arithmeti
 latti
e in H �= O0(n; 1) whi
h 
an be supposed to be 
ontained inSO0(n; 1) (so W is orientable) and �1(Z) is a subgroup (in fa
t, a latti
e) in a
onjugate of SO0(n� 1; 1).Let � = CommH(�0) = fg 2 H j [�0 : �0 \ g�1�0g℄ < 1g be the 
ommensura-bility group of �0. Sin
e �0 is non-arithmeti
, Margulis Theorem [Mr, Theorem 1,p. 2℄ implies that � is also a latti
e, a maximal latti
e in Isom(Hn).Let now � be a �nite index normal subgroup of � whi
h is 
ontained in �0. So� is the fundamental group of a �nite sheeted 
over W 0 of W . Pulling ba
k thehypersurfa
e Z to W 0, we dedu
e that W 0 also admits a properly embedded totallygeodesi
 hypersurfa
e and hen
e � = �1 ��3 �2 or � = �1��3 is a non-trivial freeprodu
t with amalgam or an HNN-
onstru
tion.By [GPS, Corollary 1.7.B℄ the groups �1 and �2 are Zariski dense in SO(n; 1).By the 
onstru
tion these groups are 
ontained in � � �. Let O (resp., Oi, fori = 1; 2) be the minimal ring of de�nition of � (resp., �i) in the sense of [V℄. As� is �nitely generated group, O is a �nitely generated ring. In fa
t, it is 
ontainedin some number �eld k. This last 
laim is true for all latti
es in O(n; 1) if n � 3by the lo
al rigidity of these latti
es (see [R, Proposition 6.6, p. 90℄). But it alsofollows (for every n, in
luding n = 2) for the Gromov - Piatetski-Shapiro latti
esdire
tly from their 
onstru
tion.



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 9Thus O is a ring of S-integers in some (real) number �eld k. For i = 1; 2, Oi isa subring of O, so it is the ring of Si-integers of some sub�eld ki of k for a suitable�nite set Si of primes in ki. We 
an assume � � SO(n; 1)(O) and �i � SO(n; 1)(Oi)for i = 1; 2.Now, the strong approximation for linear groups ([We, Theorem 1.1℄, [P, Theo-rem 0.2℄, see also [LS, Window 9℄) implies that for almost every maximal ideal Pof O with �nite quotient �eld Fq = O=P , q = jO=Pj, the image of � in POn+1(Fq )
ontains P
n+1(Fq ) whi
h is of index at most two in PSOn+1(Fq ). The same alsoapplies to � sin
e � is of �nite index in �. Moreover, �i are also Zariski dense,so a similar statement holds for �i with respe
t to the ring Oi. By Chebotarevdensity theorem, there exist in�nitely many primes l in Q whi
h split 
ompletelyin k (and hen
e also in ki). Thus for every prime ideal P of O whi
h lies abovesu
h l, O=P = Oi=Oi \P �= Fl . Moreover, if we repla
e � by the interse
tion of allthe index 2 subgroups in it (note that this interse
tion is 
hara
teristi
 in � and sonormal in �), we 
an assume that for in�nitely many rational primes l, the imagesof �, �1 and �2 are exa
tly the groups P
n+1(Fl ).Choose su
h a prime l. We obtain a homomorphism� : �! Q = P
n+1(Fl )with �(�1) = �(�2) = Q while T = �(�3) � PSOn(Fl ) is a proper subgroup of Q(and by 
hoosing l suÆ
iently large we 
an assume that the index of T in Q is aslarge as we want). For later use we observe that if T 
ontains a normal subgroupN of Q then N = feg. Indeed, if n 6= 3 or n = 3 and Q = P
�4 , Q is a �nite simplegroup and there is nothing to prove. Suppose n = 3, Q = P
+4 �= P
3�P
3. Theonly possibility for N 6= feg is N = P
3. The image T of �3 in 
4 is equal toStab
4(U), the stabilizer of a 3-dimensional subspa
e U of V = F4l and hen
e indeedit is isomorphi
 to 
3, but it 
annot be a normal subgroup of 
4. If it would be, thenfor every g 2 
4, Stab
4(gU) = gTg�1 = T . This implies gU = U (otherwise 
3would preserve a 2-dimensional subspa
e). Now, this means that U is 
4 invariant,whi
h is a 
ontradi
tion. (We re
all that P
+4 �= P
3�P
3 �= PSL(2) � PSL(2)via the a
tion of SL(2)� SL(2) on the 2� 2 matri
es by (g; h)(A) = gAh�1, withdet(A) being the invariant quadrati
 form. But, the a
tion on the 4-dimensionalspa
e is irredu
ible.)The universal property of free produ
ts with amalgam and HNN-
onstru
tionsimplies that there exist a homomorphism~� : �! R = Q �T Q (or = Q�T )depending on � = �1 ��3 �2 or � = �1��3 . The group R is mapped by �� ontoQ with a kernel F whi
h is a non-abelian free group by Proposition 2.4(a). LetM = Ker(~�) and � = Ker(�� Æ ~�). We have: R �� $$IIIIII� // � e� ::uuuuuu � // QM ::ttttttIt is easy to see that M C � and �=M �= F . Also, � = � \ �(l) where the
ongruen
e subgroup �(l) is the kernel of the proje
tion of � to POn+1(Fl ). Thus



10 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKY� is a �nite index normal subgroup of �. We therefore have the properties (i) and(ii) of the proposition.Let now D = fÆ 2 N�(M) j Æ indu
es an inner automorphism on F �= �=Mg:Sin
e D 
ontains �, we are left only with proving that D is torsion-free. DenoteC = fÆ 2 N�(M) j Æj�=M = idg. Then D = �C. We will show that C � �(l)whi
h will prove that D � �(l). As �(l) is torsion-free (when l is large enough), wewill dedu
e that D has no torsion.Let 
 2 C. The element 
 a
ts on �=M �= R with restri
tion to �=M �= Fbeing trivial. Su
h an automorphism of R is trivial by Proposition 2.4(
), so 
 a
tstrivially on �=M , i.e. [
;�℄ �M . Taking this mod �(l) we dedu
e that 
 
entralizesQ = P
n+1(Fl ) in POn+1(Fl ), so 
 is trivial there by Se
tion 2.3. This implies that
 2 �(l) and Proposition 4.1 is now proved. �We 
an now prove the main Theorem from the Introdu
tion:Let n � 2, G is a �nite group, � and D are latti
es as in Proposition 4.1.By Theorem 3.1, there exist in�nitely many �nite index subgroups B of � withN�(B)=B �= G. Note that NH(B) � CommH(�) = �, so NH(B) = N�(B) andhen
e NH(B)=B �= G. As explained in the introdu
tion NH(B)=B �= Isom(BnHn).The theorem is proved. 5. Remarks5.1. As it was already pointed out in the Introdu
tion although in Theorem 2.3(b)we make use of the results of [L3℄, whi
h rely on the 
lassi�
ation of the �nite simplegroups, what we really need in this paper does not require the 
lassi�
ation. Indeed,Theorem 2.3(b) says that aCn (Fr) � n
r log2 n, where aCn (Fr) denotes the number ofindex n normal subgroups N of the free group F = Fr and 
 is a 
onstant. Butwhen we use it in the proof of Theorem 3.1, we need su
h an upper bound only forthose N C F , for whi
h F=N has a normal subgroup G0 isomorphi
 to the �xed�nite group G and (F=N)=G0 is nilpotent. In [Mn℄, Mann showed impli
itly that ifS is a family of �nite simple groups su
h that for every S 2 S, S has a presentationwith at most 
0(S) log2 jSj relations, then there is a 
onstant 
1(S) su
h that thenumber of index n normal subgroups N of Fr with all 
omposition fa
tors of F=Nbeing from S is bounded by n
1(S)r log2 n. Mann's argument is elementary. We
ould use this result instead of Theorem 2.3(b). Sin
e all the 
omposition fa
torsof our groups are either those of G or abelean, 
learly, su
h a 
0(S) exists.5.2. The �nite volume non-
ompa
t 
ase 
an be treated in an entirely similarway. So, for every �nite group G there also exist in�nitely many �nite volumenon-
ompa
t n-dimensional hyperboli
 manifolds M with Isom(M) �= G.5.3. The proof of Proposition 4.1 a
tually shows that the subgroup D 
onstru
tedthere is 
ontained in a prin
iple 
ongruen
e subgroup �(l). Now, if l > 2 (whi
h wasindeed an assumption), then �(l) � SO(n; 1). So we a
tually provided in�nitelymany M 's with Isom(M) = Isom+(M) �= G.P. M. Neumann suggested the following generalization for the problem: Let Gbe a �nite group with a subgroup G+ of index 2. For every n � 2 does there exista 
ompa
t hyperboli
 n-manifold M with an isomorphism  : Isom(M) ! G su
hthat  (Isom+(M)) = G+ ?
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lose in spirit to Greenberg's proof for n = 2: while he 
ountsthe dimensions of 
ertain subspa
es of the Moduli spa
es we use 
ounting resultson subgroups growth whi
h also allow to dete
t the existen
e of the manifolds withthe pres
ribed groups of symmetries. The method of Long and Reid is 
onstru
tivein a sense.Our method is not 
onstru
tive, still the proof says something about its e�e
-tiveness. For a �xed n, one has to �nd �0 { the Gromov - Piatetski-Shapiro latti
ein O(n; 1) as in x4. Then, with the notations of x4, we need to �nd a prime l forwhi
h the image of � (and also of its subgroups �1 and �2) to POn+1(Fl ) 
ontainsP
n+1(Fl ) (all but �nitely many primes whi
h split in the ring of de�nition of �have this property). On
e this is done the proof gives an expli
it estimate for theindex of B in � for whi
h NH(B)=B �= G.One 
an de�ne for a �nite group G, f(n;G) to be the minimal volume of a
ompa
t n-dimensional manifold M with Isom(M) �= G. It may be of interest togive some bounds on f(n;G).We mention by passing that for n � 4 and a given r > 0, there are only �nitelymany n-dimensional hyperboli
 manifolds of volume at most r [Wa℄. In [BGLM℄,it is shown that the growth rate of the number of manifolds is like exp(
(n)r log r).One may ask, whether for most of them Isom(M) �= feg (our proof gives a partialsupport to believe that this is the 
ase).5.5. Another natural question is if a result like Theorem 1.1 will hold if we repla
eHn by other spa
e X , say X is H=K where H is a simple Lie group and K is amaximal 
ompa
t subgroup of H .In 
ase R-rank(H) � 2 one 
annot expe
t this to be true. Indeed, by MargulisTheorem [Mr, Theorem 1, p. 2℄ every latti
e � in H is arithmeti
, moreover, bySerre 
onje
ture (
f. [PR, Se
tion 9.5℄) we expe
t � to have the 
ongruen
e sub-group property (in fa
t, Serre's 
onje
ture has by now been established for mostof the 
ases). This gives a strong restri
tion on the �nite groups that 
an appearas quotients of �nite index subgroups of su
h �'s. For example, their Lie type
omposition fa
tors should have a bounded Lie rank depending only on H and noton �.An analogue of Theorem 1.1 might hold for the 
omplex hyperboli
 spa
esHC n = SU(n; 1)=K. Unfortunately, very little is 
urrently known here. In [Li℄,Livne produ
ed an example of a 
o
ompa
t latti
e in SU(2; 1) whi
h is mappedonto a non-abelean free group. This implies that for every �nite group G thereexists a 
ompa
t manifold M 
overed by HC 2 , with G � Isom(M). For n > 2 we
an not prove even this weak result.Referen
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