
FINITE GROUPS AND HYPERBOLIC MANIFOLDSMIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKY�Abstrat. The isometry group of a ompat n-dimensional hyperboli man-ifold is known to be �nite. We show that for every n � 2, every �nite groupis realized as the full isometry group of some ompat hyperboli n-manifold.The ases n = 2 and n = 3 have been proven by Greenberg [G℄ and Ko-jima [K℄, respetively. Our proof is non onstrutive: it uses ounting resultsfrom subgroup growth theory to show that suh manifolds exist.1. IntrodutionLet Hn denote the hyperboli n-spae, that is the unique onneted, simplyonneted Riemanian manifold of onstant urvature �1. By a ompat hyperbolin-manifold we mean a quotient spae M = �nHn where � is a oompat torsion-free disrete subgroup of the group H = Isom(Hn) of the isometries of Hn. Thegroup Isom(M) of the isometries of M is �nite and it is isomorphi to NH(�)=�where NH(�) denotes the normalizer of � in H .In 1972, Greenberg [G℄ showed that if n = 2, then for every �nite group G thereexists a ompat 2-dimensional hyperboli manifold M (equivalently, oompat �in H) suh that Isom(M) �= G (equivalently, NH(�)=� �= G). A similar result forn = 3 was proved in 1988 by Kojima [K℄, who also mentioned the general onjeture.The methods of Greenberg and Kojima are very muh of low dimensional geometry(Teihm�uller theory and Thurston's Dehn surgery, respetively).The long standing problem of realizing every �nite group as the isometry groupof some n-dimensional ompat hyperboli manifold is in avor of the inverse Galoisproblem and other questions of suh kind (see e.g. [F℄). What makes our problemquite deliate is that even when we solve it for a group G, it is still not settledneither for the subgroups nor for the fator groups of G. In partiular, our problemis not trivial even for the ase of the trivial group, for whih it means the exis-tene of asymmetri hyperboli n-manifolds. Reently, Long and Reid [LR℄ showedthat for every n there exists a ompat hyperboli n-dimensional manifold M withIsom+(M) = feg. Here, Isom+(M) is the group of orientation preserving isome-tries, it is a subgroup of index at most two in Isom(M). They asked separately([LR℄, x4:3 and x4:4) whether suh an M exists with Isom(M) = feg as well asfor the general G. In this paper we give a omplete solution to the problem. Itturns out, indeed, that the proof is somewhat di�erent for the ases G = feg andG 6= feg.Our main result is the followingTheorem 1.1. For every n � 2 and every �nite group G there exist in�nitely manyompat n-dimensional hyperboli manifolds M with Isom(M) �= G.� Partially supported by BSF (USA { Israel) and ISF.1



2 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYLet us desribe the line of the proof. We start with the Gromov and Piatetski-Shapiro onstrution [GPS℄ of a non-arithmeti lattie �0 in Isom(Hn). Theselatties are obtained by interbreeding two arithmeti latties and the onstru-tion, in partiular, implies that �0 is represented as a non-trivial free produt withamalgam. By Margulis theorem [Mr, Theorem 1, p. 2℄ the non-arithmetiity ofthe lattie implies that its ommensurator � = CommH(�0) is a maximal disretesubgroup of Isom(Hn), so for every �nite index subgroup B of �, NH(B) = N�(B).It therefore suÆes to �nd suh a torsion-free B with N�(B)=B �= G.We begin the searh for B inside �0 whih enables us to use its amalgamatedstruture. To this end we modify the argument of [L2℄ to show that � has asuitable �nite index torsion-free normal subgroup � whih is mapped onto a freegroup F = Fr on r � 2 generators with kernelM . We then apply ideas and resultsfrom subgroup growth theory [LS℄ to prove that � has a �nite index subgroupA with N�(A)=A isomorphi to G. A ruial point here is that F has at leastk! subgroups of index k but at most kr log2 k of them are normal in F , for someabsolute onstant . (This result was proved in [L3℄ using the lassi�ation of the�nite simple groups, but the version we need is somewhat weaker and an be provedwithout the lassi�ation. So the urrent paper is lassi�ation free!) Anotherinteresting group theoreti aspet is the use along the way of a result from [L1℄asserting that an automorphism of a free group preserving every normal subgroupof a p-power index must be inner. (The only known proof of this result relies onthe theory of pro-p groups.)Now another problem has to be �xed. While N�(A)=A �= G, N�(A) an be(and in fat in many ases it is) larger than N�(A). To deal with this issue wemodify A by replaing it by a somewhat larger subgroup B of � for whih indeedN�(B)=B �= G. Two deliate points have to be overome on the way: First isontrolling the normalizer; what makes the whole proof diÆult is the fat that"normalizer is not ontinuous"; even a small hange from A to B an hange thenormalizer dramatially. The seond point is to keep B torsion-free just as A. Thisis ahieved by keeping B inside a suitable prinipal ongruene subgroup.The paper is organized as follows: In x2 we ollet a number of group theoretiresults to be used in the later setions. In x3 we bring the main group theoretialmethod to �nd �nite index subgroups B in a group � with N�(B)=B �= G. Then inx4, a group � in Isom(Hn) is onstruted whih satis�es all the needed assumptions.So only x4 ontains some geometry. We end with remarks and suggestions forfurther researh in x5.Aknowledgement. The �rst author is grateful to the Hebrew University forthe hospitality and support. The seond author thanks Alan Reid for sending themanusript [LR℄ whih was the main inspiration for this work, and B. Farb andS. Weinberger for a helpful disussion.2. Group theoreti preliminariesIn this setion we will present a number of group theoreti results whih we willuse later. We begin with the free groups.2.1. Let F = Fr be a free group on r � 2 generators. For a prime p denote byLp(F ) the family of all normal subgroups of F of p-power index.



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 3Theorem 2.1. [L1℄ (a) F is residually-p, i.e., TN2Lp(F )N = feg.(b) If � is an automorphism of F suh that �(N) = N for any N 2 Lp(F ) then �is inner.While part (a) is well known and easy, it is interesting to remark that the proofof part (b) in [L1℄ is based on the work of Jarden - Ritter [JR℄ whih ombinespro-p groups and relation modules.Proposition 2.2. (Shreier's theorem, f. [S, Theorem 5, p. 29℄) If H is a subgroupof F = Fr of index k then H is a free group on 1 + k(r � 1) generators.For a �nitely generated group � we denote by an(�) (resp., aCn (�), aCCn (�)) thenumber of subgroups (resp., normal subgroups, subnormal subgroups) of index nin �, and let s�n(�) =Pni=1 a�i (�):Theorem 2.3. (a) (f. [LS, Corollary 1.1.2, p. 13 and Corollary 2.1.2, p. 41℄)(n!)r�1 � an(F ) � n(n!)r�1:(b) (f. [L3℄, see also [LS, Theorem 2.6℄) There exists a onstant  suh thataCn (F ) � nr log2 n:() (f. [LS, Theorem 2.3℄) sCCn (F ) � 2rn.2.2. We now turn to free produts with amalgam and HNN-onstrutions. Let Qbe a �nite group of order � 3 and T be a subgroup of Q satisfying the following:(�) If N � T � Q and N CQ then N = feg.In partiular, (�) implies that [Q : T ℄ > 2.Let R = Q �T Q be the free produt of Q with itself amalgamated along T orR = Q�T { the HNN-onstrution. There is a natural projetion �� : R! Q whosekernel will be denoted by F = Ker(��). As Q is also a subgroup of R we haveR = F oQ { a semi-diret produt.Proposition 2.4. (a) F is a non-abelian free group.(b) CR(F ) = feg, i.e., the entralizer of F in R is trivial.() If � is an automorphisms of R satisfying �(F ) = F and �jF = id then � = id.Proof. (a) This is a known fat, let us briey reall the argument. By de�nitionF rfeg does not meet any onjugate of Q, so it ats trivially on the tree assoiatedto R by the Bass-Serre theory [S, Setion 4.2℄. This implies that F is a free group[S, Theorem 4, p. 27℄. The rank r of F an be omputed using the formula from[S, Exerise 3, p. 123℄, in partiular, the ondition [Q : T ℄ > 2 implies that r � 2and so F is a non-abelian free group.(b) The group C = CR(F ) is a normal subgroup of R. As F is a non-abelianfree group with a trivial enter, C \ F = feg and hene C is �nite. We laim thatC � T . If R is the free produt with amalgam then by [S, Theorem 7, p. 32℄, Rats on a tree with a fundamental domain onsisting of an edge e with two vertiesv1 and v2 suh that StabR(vi), i = 1; 2, are two opies of Q in R whih we denoteby Q1 and Q2. Sine C is �nite it is onjugate into one of the Qi's, say Q1. Butsine C is normal in R it is ontained in Q1 and in all the onjugates of Q1 in R.This implies that C �xes all the verties in the R-orbit of v1. The later fat impliesalso that C �xes v2 (and all the verties in its orbit). Hene C is also in Q2 and soC � Q1 \ Q2 = T . The ase of HNN-onstrution is even easier. Again R ats on



4 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYa tree and this time the fundamental domain ontains a single vertex. We get thatC is ontained in the stabilizers of all the verties and edges, so C is ontained inT . In both ases ondition (�) implies that C = feg.() Let f 2 F be an arbitrary element of F and q 2 Q an arbitrary element ofQ. We have q�1fq 2 F , so �(q�1fq) = q�1fq and �(f) = f . This implies thatq�1fq = �(q�1fq) = �(q)�1f�(q);and hene �(q)�1q 2 CR(F ) = feg:Thus �(q) = q and so � is the identity on Q. Sine R = F o Q, � is the identityautomorphism of R. �2.3. Finally, we will need some fats on the �nite orthogonal groups (see e.g. [A℄).Let f be an m-dimensional quadrati form over a �nite �eld F of harateristip > 2. If m is odd, there is a unique, up to isomorphism, orthogonal groupO(f) = Om(F) = Om. If m is even there are two groups O+m and O�m orre-sponding to the ases when f splits and does not split over F, respetively. LetSO(f), PSO(f) denote the orresponding speial orthogonal and projetive speialorthogonal groups, and let 
(f) = [O(f);O(f)℄ be the ommutator subgroup ofO(f). The projetive group P
(f) = P
�m(F) is generally simple and is ontainedin PSO(f) with index at most 2. More preisely, P
m is simple if m � 5 or m = 3and p > 3; in ase m = 4, P
�4 is simple but P
+4 = P
3�P
3 is a diret produtof two groups whih are simple if p > 3; the ases m = 1; 2 will not be used in thispaper. We sometimes omit the � sign is the notations. For the future referenenote also that the entralizer of P
(f) in PO(f) is always trivial.3. The main algebrai resultIn this setion we prove a purely group theoreti result. In Setion 4 we willshow that it an be implemented for suitable non-arithmeti latties in PO(n; 1).Throughout this setion � is a �nitely generated group, � a �nite index normalsubgroup of �, and M is a normal subgroup of � with �=M being isomorphi to afree group F = Fr on r � 2 generators. We denote by N = N�(M) the normalizerofM in �, so � � N � �. The group N ats by onjugation on F = �=M . Denoteby C = CN (�=M) the kernel of this ation and by D the subgroup of all elementsof N whih indue inner automorphisms of F . Both C and D are normal in N andlearly D = �C:Moreover, M is normal in D, � and in C. As F = �=M has a trivial enter andhene intersets C=M trivially, � \ C =M . So, taking mod M we getD=M = �=M � C=M:



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 5Moreover, �=M is of �nite index in D=M and hene C=M is a �nite group.�fin: OOOOOOOOO N = N�(M)
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qqMThis setion is devoted to the proof of the following result.Theorem 3.1. Let �, � and D be as above. For every �nite group G there existin�nitely many �nite index subgroups B of D with N�(B)=B isomorphi to G.Proof. Denote the order of G by g = jGj, and g0 = jAut(G)j. Also let d+1 = [� : D℄and e; 1; : : : ; d be representatives of the right osets of D in �, i.e. � r D =Sdi=1Di.Let x > maxfg; g0g be a very large integer, to be determined later. Choose d+1primes p0 < p1 < : : : < pd with p0 � x2.Now, if d = 0, hoose a normal subgroup of � of index p0 ontaining M andall it K. If d > 0 the de�nition of K will be more deliate: We laim that forevery i = 1; : : : ; d there exists a normal subgroup Ki � M of index p�ii in � forsome �i 2 N, suh that Kii 6= Ki (where Kii = �1i Kii). Indeed, if not thenonjugation by i stabilizes all normal subgroups of � ontainingM and of index pi-power in �. As �=M �= F is residually-pi (Theorem 2.1(a)),M is the intersetion ofthese normal subgroups and hene i normalizesM and so i 2 N�(M). Moreover,i ating on F = �=M is now an automorphism of F whih preserves any normalsubgroup of F of pi-power index. By Theorem 2.1(b), i indues on F an innerautomorphism and hene i 2 D in ontradition to the way i was hosen. Wede�ne K := Tdi=1Ki.In both ases denote the index of K in � by k. Observe that k � x2 and K=Mis a subgroup of �=M = F = Fr of index k so by Proposition 2.2, K=M is a freegroup on 1 + k(r � 1) generators.The proof now splits into two ases.Case 1: G 6= feg. We laim that there are at least g1+k(r�1)�log2 g di�erentepimorphisms from K onto G whose kernels ontain M . Indeed, it follows froman easy argument that a �nite group of order g is generated by at most log2 gelements (f. [LS, Lemma 1.2.2, p. 14℄), so we an send the �rst log2 g generatorsof K=M �= F1+k(r�1) to �xed generators of G and all the rest generators of K=Man be sent arbitrarily into G. Two suh epimorphisms �1 and �2 have the same



6 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYkernel if and only if there exists � 2 Aut(G) suh that �1 = � Æ �2. Again, as G isgenerated by log2 g elements, g0 = jAut(G)j � glog2 g . Hene there exist at least1g0 g1+k(r�1)�log2 g � gk(r�1)�2 log2 g =: znormal subgroups A of K ontaining M with K=A �= G.Let M denote the set of these subgroups A. We laim that for every A 2 M,N�(A) � D. If d = 0, � = D and there is nothing to prove. If d > 0, let  2 N�(A)and assume  2 �rD, so  = Æi for some Æ 2 D and some i 2 f1; : : : ; dg. Now, normalizes � and A, hene  normalizes Ki sine Ki is the only normal subgroupof � of index p�ii ontaining A. Moreover, Æ being an element of D indues aninner automorphism on F = �=M hene it also normalizes Ki. Thus i = Æ�1normalizes Ki, but this ontradits the way Ki was hosen. So for every A 2 M,N�(A) � D.Let us observe that KC � N�(A) (sine K and C are normal subgroups of D,their produt KC is indeed a subgroup). We will show next that for some A 2M,N�(A) = KC. This will be done by a ounting argument.We already know that N�(A) = ND(A) � KC. As D=M �= �=M � C=M ,ND(A)=M �= N�(A)=M � C=M , so we an projet everything to �=M and itsuÆes to show that there exists A 2M with N�(A) = K.Fix one A 2M and denote L := N�(A), l := [� : L℄. The subgroup L ontainsM and L=M is a subgroup of �=M �= Fr of index l, so L=M is a free group on1 + l(r � 1) generators. Also, A is a normal subgroup of L of index gk=l, so A=Mis a normal subgroup of L=M of the same index. By Theorem 2.3(b), L=M has atmost (gkl )(1+l(r�1)) log2(gk=l) � 2rl log22(gk=l) =: ynormal subgroups of index gk=l, where  is an absolute onstant. Sine L � K, ldivides k and it is a proper divisor if L 6= K. So L 	 K implies that l is at mostk=po � k=x2 < k=x. Note also that as k � x2, k=x � x. Running over all l inthe range between 1 and k=x, for big enough x, the maximal value of y is obtainedwhen l = k=x. Thus, there are at most 2r(k=x) log22(gx) subgroups in M whih arenormalized by a given L 6= K.Now note that �=K is a �nite nilpotent group (of order p0 if d = 0 and of order�di=1p�ii otherwise), L=K is a subgroup of �=K and any subgroup of a nilpotentgroup is subnormal. This implies that L is a subnormal subgroup of � of index lessthan k=x (if L 6= K), hene by Theorem 2.3() there are at most 2rk=x possibilitiesfor suh L's.Putting all this together we see that there are at least z = gk(r�1)�2 log2 g possi-bilities for A and out of them at mostw := 2rk=x2r(k=x) log22(gx) = 2(rk=x)(1+ log22(gx))have their normalizer bigger then KC. For x large enough, z > w and so thereexist A 2M with N�(A) = KC. In fat, most A 2M do satisfy this.Note however, that for these AN�(A)=A = KC=A �= K=A� C=M �= G� C=M:So, we have not ahieved the goal of Theorem 3.1 yet. For this we will have toenlarge A, but �rst let us onsider the seond ase.



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 7Case 2: G = feg. Let q be a prime lose to k and di�erent from p0; : : : ; pd, suhthat q > p0 � x2. LetM be the set of all subgroups of K of index q ontaining M .By Theorem 2.3(a) there are at least(q!)k(r�1)+1 > (q!)k(r�1) =: zsuh subgroups. As before we laim that for every A 2 M, N�(A) � D. If d = 0there is nothing to prove. If d > 0, the argument is exatly the same: write 2 �rD as  = Æi for some Æ 2 D and i 2 f1; : : : ; dg, if  normalizes A then italso normalizes Ki, whih implies that i normalizes Ki { a ontradition.So, again for every A 2 M, N�(A) � D. This time we want to prove that forsome (in fat, for most) A 2M, N�(A) = AC (note: not KC as for G 6= feg). Asin the previous ase we will projet everything to �=M and show that there existsA 2M with N�(A) = A.To this end, note that if L := N�(A) is stritly larger than A, then L is asubgroup of index, say, l in �, l being a proper divisor of kq and so l � kq=x.Similarly to the previous ase L=M is a free group on 1 + l(r � 1) < lr generatorsand A=M is its normal subgroup of index kq=l. It follows from Theorem 2.3(b)that L an normalize at most(kql )lr log2(kq=l) = 2rl log22(kq=l) =: ysubgroups from M. Now, l an get values between 1 and kq=x, and learly themaximum of y is attained when l = kq=x (if x is big enough) orresponding toy = 2r(kq=x) log22 x.Continue working mod M , L=M is a subgroup of index at most kq=x of thefree group �=M �= Fr . There are, therefore, at most ((kq=x)!)r suh subgroupsby Theorem 2.3(a). The later number is bounded by (kq=x)0(kq=x)r for a suitableonstant 0. Altogether, at mostw := (kq=x)0(kq=x)r 2r(kq=x) log22 x = 2r(kq=x)(0 log2(kq=x)+ log22 x)of A 2 M have normalizer N�(A) larger then A. Reall that q was hosen to beapproximately k and z = (q!)(r�1)k. An easy estimate shows that z > w providedx is large enough. Thus, there exists A in M (in fat, most A 2 M) for whihN�(A) = A and N�(A) = ND(A) = AC.Let us now treat both ases G 6= feg and G = feg together: The above argu-ments show that we an always �nd a subgroup A of a �nite index in � suh thatN�(A)=A �= G, N�(A) = ND(A) and N�(A)=A �= G � C=M . Let us replae A byB = AC. Sine A and C are both in D and C CD, B is indeed a subgroup andit is ontained in D. It is also lear that B \� = A (look at everything mod M !).We laim that N�(B)=B �= G. This will �nish the proof of the theorem.First, note that if  2 N�(B) then  also normalizes � (sine �C�) and hene:A = (B \�) = B \� = B \� = A;so  2 N�(A). On the other hand every  2 N�(A) also normalizes C, sineN�(A) � D and C is normal in D. This shows that N�(B) = N�(A) and soN�(B)=B = N�(A)=AC �= N�(A)=A �= Gas laimed.



8 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKYWe �nally mention that by hoosing in�nitely many di�erent x's (and hene alsothe pi's) we will get in�nitely many subgroups B of � with N�(B)=B �= G. �4. Geometri realizationIn this setion we will show that for every n � 2 there exist non-arithmetilatties in H = Isom(Hn) satisfying the assumptions of Theorem 3.1 and thendedue the main result of this paper. Reall that H an be identi�ed with O0(n; 1) {the subgroup of the orthogonal group O(n; 1) whih preserves the upper-half spae,it is isomorphi to the projetive orthogonal group PO(n; 1) = O(n; 1)=f+1;�1g.The subgroup SO0(n; 1) of O0(n; 1) of all the elements of H with determinant 1, isthe group of orientation preserving isometries.Proposition 4.1. For every n � 2 there exist a maximal oompat non-arithmetilattie � in H with subgroups M , � and D satisfying the following:(i) �C � and [� : �℄ <1.(ii) M C�, �=M is a non-abelian free group.(iii) [� : D℄ <1, D � N�(M) andD = fÆ 2 N�(M) j Æ indues an inner automorphism on �=Mg:(iv) D is torsion-free.Proof. Let �0 be a oompat non-arithmeti lattie in H obtained by Gromov -Piatetski-Shapiro onstrution [GPS℄. Reall that �0 is onstruted as follows:One starts with two non-ommensurable torsion-free arithmeti latties L1 and L2in H , suh that eah of the orresponding fator manifolds Wi = LinHn admitsa totaly geodesi hypersurfae Zi (i = 1; 2) and Z1 is isometri to Z2. Assumethat Zi (i = 1; 2) separates Wi into two piees Xi [ Yi (the non-separating asean be treated in a similar way). Then a new manifold W is de�ned by gluingX1 with Y2 along Z1 (whih is isomorphi to Z2). In partiular, W itself hasa properly embedded totally geodesi hypersurfae Z (isomorphi to Z1 and Z2)and so �1(W ) = �1(X1) ��1(Z) �1(Y2). As explained in [GPS℄, �0 = �1(W ) is anon-arithmeti lattie in H �= O0(n; 1) whih an be supposed to be ontained inSO0(n; 1) (so W is orientable) and �1(Z) is a subgroup (in fat, a lattie) in aonjugate of SO0(n� 1; 1).Let � = CommH(�0) = fg 2 H j [�0 : �0 \ g�1�0g℄ < 1g be the ommensura-bility group of �0. Sine �0 is non-arithmeti, Margulis Theorem [Mr, Theorem 1,p. 2℄ implies that � is also a lattie, a maximal lattie in Isom(Hn).Let now � be a �nite index normal subgroup of � whih is ontained in �0. So� is the fundamental group of a �nite sheeted over W 0 of W . Pulling bak thehypersurfae Z to W 0, we dedue that W 0 also admits a properly embedded totallygeodesi hypersurfae and hene � = �1 ��3 �2 or � = �1��3 is a non-trivial freeprodut with amalgam or an HNN-onstrution.By [GPS, Corollary 1.7.B℄ the groups �1 and �2 are Zariski dense in SO(n; 1).By the onstrution these groups are ontained in � � �. Let O (resp., Oi, fori = 1; 2) be the minimal ring of de�nition of � (resp., �i) in the sense of [V℄. As� is �nitely generated group, O is a �nitely generated ring. In fat, it is ontainedin some number �eld k. This last laim is true for all latties in O(n; 1) if n � 3by the loal rigidity of these latties (see [R, Proposition 6.6, p. 90℄). But it alsofollows (for every n, inluding n = 2) for the Gromov - Piatetski-Shapiro lattiesdiretly from their onstrution.



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 9Thus O is a ring of S-integers in some (real) number �eld k. For i = 1; 2, Oi isa subring of O, so it is the ring of Si-integers of some sub�eld ki of k for a suitable�nite set Si of primes in ki. We an assume � � SO(n; 1)(O) and �i � SO(n; 1)(Oi)for i = 1; 2.Now, the strong approximation for linear groups ([We, Theorem 1.1℄, [P, Theo-rem 0.2℄, see also [LS, Window 9℄) implies that for almost every maximal ideal Pof O with �nite quotient �eld Fq = O=P , q = jO=Pj, the image of � in POn+1(Fq )ontains P
n+1(Fq ) whih is of index at most two in PSOn+1(Fq ). The same alsoapplies to � sine � is of �nite index in �. Moreover, �i are also Zariski dense,so a similar statement holds for �i with respet to the ring Oi. By Chebotarevdensity theorem, there exist in�nitely many primes l in Q whih split ompletelyin k (and hene also in ki). Thus for every prime ideal P of O whih lies abovesuh l, O=P = Oi=Oi \P �= Fl . Moreover, if we replae � by the intersetion of allthe index 2 subgroups in it (note that this intersetion is harateristi in � and sonormal in �), we an assume that for in�nitely many rational primes l, the imagesof �, �1 and �2 are exatly the groups P
n+1(Fl ).Choose suh a prime l. We obtain a homomorphism� : �! Q = P
n+1(Fl )with �(�1) = �(�2) = Q while T = �(�3) � PSOn(Fl ) is a proper subgroup of Q(and by hoosing l suÆiently large we an assume that the index of T in Q is aslarge as we want). For later use we observe that if T ontains a normal subgroupN of Q then N = feg. Indeed, if n 6= 3 or n = 3 and Q = P
�4 , Q is a �nite simplegroup and there is nothing to prove. Suppose n = 3, Q = P
+4 �= P
3�P
3. Theonly possibility for N 6= feg is N = P
3. The image T of �3 in 
4 is equal toStab
4(U), the stabilizer of a 3-dimensional subspae U of V = F4l and hene indeedit is isomorphi to 
3, but it annot be a normal subgroup of 
4. If it would be, thenfor every g 2 
4, Stab
4(gU) = gTg�1 = T . This implies gU = U (otherwise 
3would preserve a 2-dimensional subspae). Now, this means that U is 
4 invariant,whih is a ontradition. (We reall that P
+4 �= P
3�P
3 �= PSL(2) � PSL(2)via the ation of SL(2)� SL(2) on the 2� 2 matries by (g; h)(A) = gAh�1, withdet(A) being the invariant quadrati form. But, the ation on the 4-dimensionalspae is irreduible.)The universal property of free produts with amalgam and HNN-onstrutionsimplies that there exist a homomorphism~� : �! R = Q �T Q (or = Q�T )depending on � = �1 ��3 �2 or � = �1��3 . The group R is mapped by �� ontoQ with a kernel F whih is a non-abelian free group by Proposition 2.4(a). LetM = Ker(~�) and � = Ker(�� Æ ~�). We have: R �� $$IIIIII� // � e� ::uuuuuu � // QM ::ttttttIt is easy to see that M C � and �=M �= F . Also, � = � \ �(l) where theongruene subgroup �(l) is the kernel of the projetion of � to POn+1(Fl ). Thus



10 MIKHAIL BELOLIPETSKY AND ALEXANDER LUBOTZKY� is a �nite index normal subgroup of �. We therefore have the properties (i) and(ii) of the proposition.Let now D = fÆ 2 N�(M) j Æ indues an inner automorphism on F �= �=Mg:Sine D ontains �, we are left only with proving that D is torsion-free. DenoteC = fÆ 2 N�(M) j Æj�=M = idg. Then D = �C. We will show that C � �(l)whih will prove that D � �(l). As �(l) is torsion-free (when l is large enough), wewill dedue that D has no torsion.Let  2 C. The element  ats on �=M �= R with restrition to �=M �= Fbeing trivial. Suh an automorphism of R is trivial by Proposition 2.4(), so  atstrivially on �=M , i.e. [;�℄ �M . Taking this mod �(l) we dedue that  entralizesQ = P
n+1(Fl ) in POn+1(Fl ), so  is trivial there by Setion 2.3. This implies that 2 �(l) and Proposition 4.1 is now proved. �We an now prove the main Theorem from the Introdution:Let n � 2, G is a �nite group, � and D are latties as in Proposition 4.1.By Theorem 3.1, there exist in�nitely many �nite index subgroups B of � withN�(B)=B �= G. Note that NH(B) � CommH(�) = �, so NH(B) = N�(B) andhene NH(B)=B �= G. As explained in the introdution NH(B)=B �= Isom(BnHn).The theorem is proved. 5. Remarks5.1. As it was already pointed out in the Introdution although in Theorem 2.3(b)we make use of the results of [L3℄, whih rely on the lassi�ation of the �nite simplegroups, what we really need in this paper does not require the lassi�ation. Indeed,Theorem 2.3(b) says that aCn (Fr) � nr log2 n, where aCn (Fr) denotes the number ofindex n normal subgroups N of the free group F = Fr and  is a onstant. Butwhen we use it in the proof of Theorem 3.1, we need suh an upper bound only forthose N C F , for whih F=N has a normal subgroup G0 isomorphi to the �xed�nite group G and (F=N)=G0 is nilpotent. In [Mn℄, Mann showed impliitly that ifS is a family of �nite simple groups suh that for every S 2 S, S has a presentationwith at most 0(S) log2 jSj relations, then there is a onstant 1(S) suh that thenumber of index n normal subgroups N of Fr with all omposition fators of F=Nbeing from S is bounded by n1(S)r log2 n. Mann's argument is elementary. Weould use this result instead of Theorem 2.3(b). Sine all the omposition fatorsof our groups are either those of G or abelean, learly, suh a 0(S) exists.5.2. The �nite volume non-ompat ase an be treated in an entirely similarway. So, for every �nite group G there also exist in�nitely many �nite volumenon-ompat n-dimensional hyperboli manifolds M with Isom(M) �= G.5.3. The proof of Proposition 4.1 atually shows that the subgroup D onstrutedthere is ontained in a priniple ongruene subgroup �(l). Now, if l > 2 (whih wasindeed an assumption), then �(l) � SO(n; 1). So we atually provided in�nitelymany M 's with Isom(M) = Isom+(M) �= G.P. M. Neumann suggested the following generalization for the problem: Let Gbe a �nite group with a subgroup G+ of index 2. For every n � 2 does there exista ompat hyperboli n-manifold M with an isomorphism  : Isom(M) ! G suhthat  (Isom+(M)) = G+ ?



FINITE GROUPS AND HYPERBOLIC MANIFOLDS 115.4. Our argument is lose in spirit to Greenberg's proof for n = 2: while he ountsthe dimensions of ertain subspaes of the Moduli spaes we use ounting resultson subgroups growth whih also allow to detet the existene of the manifolds withthe presribed groups of symmetries. The method of Long and Reid is onstrutivein a sense.Our method is not onstrutive, still the proof says something about its e�e-tiveness. For a �xed n, one has to �nd �0 { the Gromov - Piatetski-Shapiro lattiein O(n; 1) as in x4. Then, with the notations of x4, we need to �nd a prime l forwhih the image of � (and also of its subgroups �1 and �2) to POn+1(Fl ) ontainsP
n+1(Fl ) (all but �nitely many primes whih split in the ring of de�nition of �have this property). One this is done the proof gives an expliit estimate for theindex of B in � for whih NH(B)=B �= G.One an de�ne for a �nite group G, f(n;G) to be the minimal volume of aompat n-dimensional manifold M with Isom(M) �= G. It may be of interest togive some bounds on f(n;G).We mention by passing that for n � 4 and a given r > 0, there are only �nitelymany n-dimensional hyperboli manifolds of volume at most r [Wa℄. In [BGLM℄,it is shown that the growth rate of the number of manifolds is like exp((n)r log r).One may ask, whether for most of them Isom(M) �= feg (our proof gives a partialsupport to believe that this is the ase).5.5. Another natural question is if a result like Theorem 1.1 will hold if we replaeHn by other spae X , say X is H=K where H is a simple Lie group and K is amaximal ompat subgroup of H .In ase R-rank(H) � 2 one annot expet this to be true. Indeed, by MargulisTheorem [Mr, Theorem 1, p. 2℄ every lattie � in H is arithmeti, moreover, bySerre onjeture (f. [PR, Setion 9.5℄) we expet � to have the ongruene sub-group property (in fat, Serre's onjeture has by now been established for mostof the ases). This gives a strong restrition on the �nite groups that an appearas quotients of �nite index subgroups of suh �'s. For example, their Lie typeomposition fators should have a bounded Lie rank depending only on H and noton �.An analogue of Theorem 1.1 might hold for the omplex hyperboli spaesHC n = SU(n; 1)=K. Unfortunately, very little is urrently known here. In [Li℄,Livne produed an example of a oompat lattie in SU(2; 1) whih is mappedonto a non-abelean free group. This implies that for every �nite group G thereexists a ompat manifold M overed by HC 2 , with G � Isom(M). For n > 2 wean not prove even this weak result.Referenes[A℄ E. Artin, Geometri algebra, Intersiene Publishers (1957).[BGLM℄ M. Burger, T. Gelander, A. Lubotzky, S. Mozes, Counting hyperboli manifolds, Geom.Funt. Anal. 12 (2002), 1161{1173.[F℄ R. Fruht, Graphs of degree three with a given abstrat group, Canadian J. Math. 1 (1949),365{378.[G℄ L. Greenberg, Maximal groups and signatures, Annals of Math. Studies 79 Prineton Uni-versity Press (1974), 207{226.[GPS℄ M. Gromov, I. Piatetski-Shapiro, Non-arithmeti groups in Lobahevsky spaes, Inst.Hautes �Etudes Si. Publ. Math. 66 (1987), 93{103.
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