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Abstract. This paper is a continuation of our first paper [10] in which we showed how
deformation theory of representation varieties can be used to study finite simple quotients of
triangle groups. While in Part I, we mainly used deformations of the principal homomorphism
from SO.3; R/, in this part we use PGL2.R/ as well as deformations of representations which
are very different from the principal homomorphism.
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1. Introduction

This paper is a continuation of [10] where it was shown that deformation theory of
representation varieties of finitely generated groups � , and in particular of hyperbolic
triangle groups � D T , can be used to prove the existence of many finite simple
quotients of � . Let us recall some basic notation. Let

T D Ta;b;c D hx; y; zW xa D yb D zc D xyz D 1i
be a hyperbolic triangle group so that a; b; c 2 N satisfy 1=a C 1=b C 1=c < 1.
Without loss of generality, we assume a � b � c and call .a; b; c/ a hyperbolic triple
of integers.

We let X be an irreducible Dynkin diagram and denote by X.C/ (resp. Lie.X/)
the simple adjoint algebraic group over C (resp. the simple complex Lie algebra) of
type X . Also X.p`/ denotes the untwisted finite simple group of type X over Fp` .
We say that T is saturated with finite quotients of type X if there exist p0; e 2 N
such that for all primes p > p0, X.pe`/ is a quotient of T for every ` 2 N, and for a

1The authors are grateful to the ERC, the ISF, and and NSF for their support.
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set of positive density of primes p, we even have X.p`/ is a quotient of T for every
` 2 N.

The main idea of [10] was the observation (see Theorem 4.1 therein) that T is
saturated with finite quotients of type X if and only if there exist a simple algebraic
group G over C of type X and a Zariski dense representation �W T ! G.C/ which
is not locally rigid, i.e. dim H 1.T; g/ > 0, where g is the Lie algebra of G and T acts
on g via Ad B �.

In [10] we showed that for all pairs .X; .a; b; c// which are not listed in [10],
Table 1, T is saturated with finite quotients of type X . The main goal of the current
paper is to push the deformation method further in order to eliminate some of the
cases left unsettled in [10], Table 1.

In [10] we produced representations of T into an absolutely simple compact real
form G of X by first using a Zariski dense representation of T into SO.3; R/. From
there, we deformed the representation T ! SO.3; R/ ! G.R/ induced from the
principal homomorphism SO.3/ ! G. This method did not permit us to consider
the six triangle groups in

S D ¹T2;4;6; T2;6;6; T2;6;10; T3;4;4; T3;6;6; T4;6;12º;
which are the (only) hyperbolic triangle groups without SO.3/-dense representations
(see [9]). So our first goal will be to extend in §3 the method we implemented
in [10] for compact forms, to non-compact forms. This time we will start with a
representation T ! PGL2 instead of T ! SO.3/. In this way, our results will also
include these six groups. Note that every Fuchsian group admits a Zariski dense
embedding into PGL2.C/, so this method can be applied to any (hyperbolic) triangle
group, at the cost of some additional complications.

In [10] we sometimes use “two-step ladders” or even “three-step ladders”

T �! SO.3/ �! K �! H �! G

to deform the representation T ! SO.3/ ! G first to a dense homomorphism to K,
thence to a dense homomorphism to H , and finally to a dense homomorphism to G.
Here, we use a non-compact version of the same idea.

Some cases which cannot be covered by the principal homomorphism method can
still be dealt by variants of the deformation-theoretic approach. Here we present two
such cases.

(i) Starting with a Zariski dense representation of T into a group of type

Bk�1 � Br�k � Dr

we deform it to a Zariski dense representation into a group of type Dr . Here, the
novelty is that the homomorphism PGL2 ! Dr is non-principal even though
each homomorphism PGL2 ! Bi is principal.
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(ii) Starting with a representation of T onto the finite group

Altn � SO.n � 1/;

we deform it to a Zariski dense representation to SO.n � 1/.

Using these methods in §4 and §5, respectively, we will get the following result.

Theorem 1.1. The hyperbolic triangle group T D Ta;b;c is saturated with finite
quotients of type X except possibly if .T; X/ appears in Table 1 or Table 2.

Table 1. Possible (nonrigid) exceptions to Theorem 1.1.

X .a; b; c/ r

Ar .2; 3; 7/ 5 � r � 19

.2; 3; 8/ 5 � r � 13

.2; 3; c/, c � 9 5 � r � 7

.2; 4; 5/ 3 � r � 13

.2; 4; 6/ 3 � r � 9

.2; 4; c/, c � 7 3 � r � 5

.2; 5; 5/ r D 6

.2; b; c/, b � 5, c � 5 r D 3

.3; 3; c/, c � 4 r 2 ¹3; 4; 6º
B3 .2; 3; c/, c � 7

.3; 3; c/, c � 4, c ¤ 15c1

.2; 4; 5/

.2; 5; 5/

Dr .2; 3; 7/ r 2 ¹4; 5; 9º
.2; 3; 8/ r 2 ¹4; 5º
.2; 3; 9/ r 2 ¹4; 5º
.2; 3; 10/ r 2 ¹4; 5º
.2; 3; c/, c � 11, c ¤ 15c1 r D 4

.2; 3; c/, c � 12, c ¤ 11c1 r D 5

.2; 4; 5/ r D 5

.3; 3; 4/ r 2 ¹4; 5º

.3; 3; c/, c � 5 and r D 4

c 62 ¹7c1; 9c1; 10c1; 12c1; 15c1º
E6 .2; 3; 7/

.2; 3; 8/

.2; 4; 5/

.2; 4; 6/

.2; 4; 7/

.2; 4; 8/

Here c1 denotes any natural number
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Table 2. Rigid exceptions to Theorem 1.1.

X .a; b; c/

A1 any
A2 a D 2

A3 a D 2, b D 3

A4 a D 2, b D 3

C2 b D 3

G2 a D 2, c D 5

For the cases appearing in Table 2 we know for sure that T is not saturated with
finite quotients of type X . (These are the rigid cases; see [12] and [10].) For the rest
(i.e. the cases appearing in Table 1) we do not know the answer.

Examining Tables 1 and 2 we can immediately deduce the following corollary

Corollary 1.2. The following two assertions hold.

(i) If � D 1=a C 1=b C 1=c � 1=2 then for every simple Dynkin diagram X ¤ A1,
Ta;b;c is saturated with finite quotients of type X .

(ii) Let

Y D ¹Ar W 1 � r � 19º [ ¹B3º [ ¹C2º [ ¹G2º [ ¹E6º
[ ¹Dr W r D 4; 5; 9º:

Then for every hyperbolic triple .a; b; c/ and every simple Dynkin diagram X 62
Y , Ta;b;c is saturated with finite quotients of type X .

Corollary 1.3. Assume

X 62 ¹Ar W 1 � r � 7º [ ¹B3º [ ¹C2º [ ¹Dr W r D 4; 5º:
Then for almost every hyperbolic triple .a; b; c/, the group T D Ta;b;c is saturated
with finite quotients of type X .

Many of our results are new even in the classical case .a; b; c/ D .2; 3; 7/.

Corollary 1.4. The triangle group T2;3;7 is saturated with finite quotients of type X

for every X which is not in

¹Ar W 1 � r � 19º [ ¹B3º [ ¹C2º [ ¹Dr W r D 4; 5; 9º [ ¹E6º:
In particular, it is saturated with finite quotients of type E8.

This answers a question we were asked by Guralnick. In fact, as already seen in
Corollary 1.2(ii), we have even more.

Corollary 1.5. Every hyperbolic triangle group is saturated with finite quotients of
type E7 and E8.
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2. Preliminary results

This section consists of some preliminary results on deformation theory of hyperbolic
triangle groups and on saturation of hyperbolic triangle groups by finite quotients of
a given type. For more details, see [10].

Let T D Ta;b;c be a hyperbolic triangle group and G be a simple algebraic group
over C of type X . If � 2 Hom.T; G.C// D Hom.T; G/.C/, then T acts on the Lie
algebra g of G via Ad B �, where AdW G ! Aut.g/ denotes the adjoint representation
of G. To avoid confusion we will sometimes write Ad B �jg for the action of T on g
via Ad B �. We let Z1.T; Ad B �/ (respectively, B1.T; Ad B �/) be the corresponding
space of 1-cocycles (respectively, 1-coboundaries) and set

H 1.T; Ad B �/ D Z1.T; Ad B �/=B1.T; Ad B �/:

The following result is due to Weil (see [15]). In the statement, for t 2 ¹x; y; zº,
gt denotes the fixed point space of t in g (under the action Ad B �).

Theorem 2.1. The following assertions hold.

(i) The space Z1.T; Ad B �/ is the Zariski tangent space at � in Hom.T; G/ and

dim Z1.T; Ad B �/ D 2 dim g C i� � .dim gx C dim gy C dim gz/

where i and i� denote the dimensions of the space of invariants of Ad B � and
.Ad B �/� on g and g�, respectively.

(ii) We have

dim H 1.T; Ad B �/ D dim g C i C i� � .dim gx C dim gy C dim gz/:

(iii) If H 1.T; Ad B �/ D 0 then � is locally rigid as an element of Hom.T; G/, i.e.
there exists a neighborhood of � in which every element is obtained from � by
conjugation by an element of G.

(iv) If .Ad B �/� has no (nontrivial) invariants on the dual g� of g, then i D 0 and �

is a nonsingular point of Hom.T; G/.

Corollary 2.2. Let T D Ta;b;c be a hyperbolic triangle group and G be a simple
algebraic group over C. Suppose �0W T ! G is such that Ad B �0 has no invariants
on the Lie algebra g of G and �W T ! G is such that the closure of its image is a
maximal subgroup of G and has finite center, or is G. Then the following assertions
hold.

(i) The representations �0 and � are nonsingular in Hom.T; G/, and Ad B �0 and
its dual (respectively, Ad B æ and its dual) have no invariants on g and g�,
respectively.
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(ii) If furthermore � is in the irreducible component of Hom.T; G/ containing �0,
then

dim H 1.T; Ad B �jg/ D dim H 1.T; Ad B �0jg/:

Proof. Let H be the closure of the image of �W T ! G. If H is a maximal subgroup
of G with finite center, ZG.H/H must equal H which means that ZG.H/ D Z.H /

is finite. Also since G is simple, ZG.G/ is also finite. It follows that Ad B � has no
invariants on g. As the adjoint representation of a simple group in characteristic zero is
self-dual, we deduce that .AdB�/� has no invariants on g�. Hence by Theorem 2.1(iv),
� is nonsingular and by Theorem 2.1(ii)

dim H 1.T; Ad B �jg/ D dim g � .dim gAdB�.x/ C dim gAdB�.y/ C dim gAdB�.z//:

On the other hand, Ad B �0 is also self-dual (since G is simple and defined over C).
Moreover by assumption it has no invariants on g, and so its dual has no invariants
on g�. Hence, again by Theorem 2.1, �0 is nonsingular and

dim H 1.T; Ad B �0jg/

D dim g � .dim gAdB�0.x/ C dim gAdB�0.y/ C dim gAdB�0.z//:

Since the restrictions of two representations in a common irreducible component
of Hom.T; G/ to a cyclic subgroup of T are conjugate, we get dim gAdB�.x/ D
dim gAdB�0.x/ (and similarly for y and z); this yields the result.

For a natural number m, we let ı
G
m denote the dimension of the subvariety GŒm�

of G consisting of elements of order dividing m. Since G is defined over C, we have
(with the notation of Theorem 2.1)

codim gx � ı
G
a ; codim gy � ı

G

b
; and codim gz � ı

G
c : (2.1)

In [10], Theorem 4.1, we gave the following criterion for T to be saturated with
finite quotients of type X .

Theorem 2.3. The hyperbolic triangle group T is saturated with finite quotients
of type X if and only if there exist a simple algebraic group G over C of type X

and a Zariski dense representation � in Hom.T; G/ which is not locally rigid (i.e.
dim H 1.T; Ad B �/ > 0).

Recall the definition of the principal homomorphism. For every simple algebraic
group G over C, there is, up to conjugation, a unique homomorphism SL2 ! G

– called the principal homomorphism – sending every nontrivial unipotent to a regular
unipotent. The induced homomorphism SL2 ! Ad.G/ factors through PGL2. Since
T is Zariski dense in PGL2.C/, if G is of adjoint type we get an induced representation
�

G
0 W T ! PGL2 ! G.

The following result is given in [10], §2.
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Lemma 2.4. Let G D X.C/ be a simple adjoint algebraic group over C of type
X and rank r , and �

G
0 W T ! G be the representation induced from the principal

homomorphism PGL2 ! G. Write n1 D a, n2 D b and n3 D c. The following
assertions hold.

(i) The spaces of invariants of Ad B �
G
0 , on g, and .Ad B �

G
0 /�, on g�, are trivial.

(ii) For x; y; z acting on g via Ad B �
G
0 , we have

dim gx D
rX

j D1

1 C 2

�
ej

n1

�
;

gy D
rX

j D1

1 C 2

�
ej

n2

�
;

and

gz D
rX

j D1

1 C 2

�
ej

n3

�
:

where e1; : : : ; er are the exponents of G.

(iii) In particular,

dim H 1.T; Ad B �
G
0 / D dim G �

3X
kD1

rX
j D1

�
1 C 2

�
ej

nk

��
:

Remark 2.5. Recall (see [2], Planches) that the exponents of the different root sys-
tems are as follows:

Ar W 1; 2; : : : ; r I
Br ; Cr W 1; 3; : : : ; 2r � 1I

Dr W 1; 3; : : : ; 2r � 3; r � 1I
E6W 1; 4; 5; 7; 8; 11I
E7W 1; 5; 7; 9; 11; 13; 17I
E8W 1; 7; 11; 13; 17; 19; 23; 29I
F4W 1; 5; 7; 11I
G2W 1; 5:
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Given a simple algebraic group G over C, we often obtain a Zariski dense repre-
sentation T ! G by deforming a representation in Hom.T; G/ whose Zariski closure
is a maximal subgroup of G. More generally, we let � be a finitely generated group
and let Epi.�; G/ denote the Zariski closure in the homomorphism variety Hom.�; G/

of the set of homomorphisms �W � ! G.C/ such that �.�/ is Zariski dense in G.
We have the following theorem.

Theorem 2.6. Let � be a finitely generated group, G be a quasisimple algebraic
group over C, �0W � ! G.C/ and H be the Zariski closure of �0.�/. Assume

(a) H is semisimple and connected;

(b) H is a maximal subgroup of G;

(c) if g is the Lie algebra of G (where the action is via Ad B �0), then

dim Epi.�; H/ � dim H < dim Z1.�; g/ � dim GI

(d) �0 is a nonsingular point of Hom.�; H/ and of Hom.�; G/.

Then Hom.�; G/ has an irreducible component containing �0 of dimension

dim H 1.�; g/ C dim G

with a nonsingular point � on it which has a dense image. In particular, we also have

dim H 1.�; Ad B �/ D dim H 1.�; Ad B �0/:

Proof. As �0 is a nonsingular point of Hom.�; G/, it belongs to a unique component
W of the homomorphism variety, and

dim W D dim Z1.�; g/

D dim H 1.�; g/ C dim G � dim ZG.�0.�//

D dim H 1.�; g/ C dim G:

By a result of Breuillard, Guralnick, and Larsen [3], the Zariski closure of the image of
the representation of � associated to the generic point of W must contain a subgroup
isomorphic to H . As H is a maximal subgroup of G, this subgroup is isomorphic
either to H or to G.

By Richardson’s rigidity theorem [13], up to conjugation, there are finitely many
injective homomorphisms H ! G. Let �1; : : : ; �kW H ! G be injective homo-
morphisms representing these classes. Let Y D Y 1 denote the unique irreducible
component of Hom.�; H/ which contains �0, and let Y 2; : : : ; Y m be the other ir-
reducible components. For each component Y i and each injection �j , define the
conjugation map �i;j W G � Y i ! Hom.�; G/ by

�i;j .g; �/ D g.�j B �/g�1:
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The fibers of this morphism have dimension at least dim H . Indeed, the action of H

on G � Y i given by
h:.g; �/ D .g�j .h/�1; h�h�1/

is free, and �i;j is constant on the orbits of the action. Thus, the closure of the
image of �i;j has dimension at most dim Y i C dim G � dim H . If Y i is contained in
Epi.�; H/, then by hypothesis, this dimension is less than dim Z1.�; g/, which, in
turn, is � dim Hom.�; G/, since �0 is a nonsingular point of Hom.�; G/. It follows
that the image of �i;j is not dense in W . As the closure of the representation of �

associated to the generic point has image isomorphic to H or G, the image of �i;j

cannot be dense in W if Y i is not contained in Epi.�; H/.
Thus, the generic point of W gives a Zariski dense homomorphism �W � ! G.K/

where K is some finitely generated extension of C. This is a nonsingular point of
the component W since W has a nonsingular point �0. Replacing K by an algebraic
closure, we may assume that it is an algebraically closed field of characteristic zero
whose transcendence degree over Q is the cardinality of the continuum. Thus, we get
K Š C. Fixing an isomorphism, we may take K D C. Thus, we have a nonsingular
element (which we still denote �) of W .C/ which is a nonsingular point of this
variety. We conclude that dim W D dim Z1.�; g/, where � acts on g through Ad B�.
It follows that

dim H 1.�; Ad B �/ D dim W � dim G D dim H 1.�; Ad B �0/:

Corollary 2.7. Let T D Ta;b;c be a hyperbolic triangle group, G be a simple alge-
braic group over C, �0W T ! G.C/ and H be the Zariski closure of �0.T /. Assume
that

(a) H is semisimple and connected;

(b) H is a maximal subgroup of G;

(c) if g is the Lie algebra of G, where the action is via Ad B �0, then

dim Epi.T; H/ � dim H < dim Z1.T; g/ � dim G:

Then the following assertions hold.

(i) �0 is a nonsingular point of Hom.T; H/ and Hom.T; G/.

(ii) Hom.T; G/ has an irreducible component containing �0 of dimension

dim H 1.T; g/ C dim G

with a nonsingular point � on it which has a dense image.

(iii) dim H 1.T; Ad B �/ D dim H 1.T; Ad B �0/.

Proof. The first part follows from Corollary 2.2(i) and Theorem 2.6 yields the second
and third parts. Alternatively one could use Corollary 2.2(ii) to derive the final
part.
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It is interesting to compare Corollary 2.7 with [10], Theorem 5.1. There as G

was a real compact form and H a closed subgroup, Corollary 2.7 had a stronger form
where we only had to consider Z1.T; AdB�0jh/ and its dimension, while here we need
to work with Epi.T; H/ which a priori can be of higher dimension. In what follows
we will show that in our special circumstances, by taking �0 to be the representation
induced from the principal homomorphism, dim Epi.T; H/ is not really larger.

Proposition 2.8. Let T D Ta;b;c be a hyperbolic triangle group and G be a simple

adjoint algebraic group over C. Let �
G
0 W T ! PGL2 ! G be the representation

induced from the principal homomorphism PGL2 ! G and consider the action
Ad B �

G
0 on the Lie algebra g of G . Then

dim Epi.T; G/ � dim Z1.T; Ad B �
G
0 /:

Equivalently,
dim Epi.T; G/ � dim G � dim H 1.T; Ad B �

G
0 /:

The main ingredient in the proof of Proposition 2.8 is the following lemma together
with Theorem 2.1(ii).

Lemma 2.9. Let

T D Tn1;n2;n3
D hx1; x2; x3W x1

n1 D x2
n2 D x3

n3 D x1x2x3 D 1i
be a hyperbolic triangle group and G be an adjoint simple algebraic group over C of
rank r . Let �

G
0 W T ! PGL2 ! G be the representation induced from the principal

homomorphism PGL2 ! G and consider the action Ad B �
G
0 on the Lie algebra g of

G. Then, for 1 � i � 3,
dim gxi D codim GŒni �;

where GŒni � is the subvariety of G consisting of elements of order dividing ni .

Remark 2.10. Note that codim GŒni � is the minimal dimension of a centralizer of an
element of G of order dividing ni and its value is given in [11].

Proof. Write a D ni and x D xi . By Lemma 2.4(ii)

dim gx D r C 2

rX
j D1

jej

a

k

where e1; : : : ; er are the exponents of G which are given in Remark 2.5. Hence the
result will follow once we show that

r C 2

rX
j D1

jej

a

k
D codim GŒa�: (2.2)
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We let h D jˆj=r be the Coxeter number of G where ˆ denotes the root system
of G. Suppose first that G is of exceptional type. If a � h, it follows immediately
from Remark 2.5 that dim gx D r and by Lawther [11] we have codim GŒa� D r and
so (2.2) holds. Finally if a < h, then [11] gives the value for codim GŒa� which is
easily checked to be equal to dim gx , again using Lemma 2.4(ii).

Suppose now that G is of classical type. We prove that (2.2) holds by induction
on r . We let Gr D G, gr D g, hr D h, Lr;a D dim gx

r and Rr;a D codim Gr Œa�.
Letting r0 D 1; 2; 2 or 4 according respectively as G D Ar , Br , Cr and Dr , we note
that (2.2) holds provided that Lr0;a D Rr0;a and LrC1;a � Lr;a D RrC1;a � Rr;a for
all r � r0.

Write hr D ˛ra C ˇr where ˛r � 0 and 0 � ˇr < a are integers, and for an
integer � , let �� D 1 if � is odd, otherwise �� D 0. The value of codim Gr Œa�, given
in [11], depends in general on ˛r , ˇr and a.

Suppose first that G D Ar where r � 1. Then hr D r C 1. By Lemma 2.4(ii)
and Remark 2.5, L1;a D 1 (recall a > 1) and

LrC1;a � Lr;a D 1 C 2

�
r C 1

a

�
:

By [11], p. 222,
Rr;a D ˛2

r a C ˇr .2˛r C 1/ � 1

and

RrC1;a � Rr;a D .˛2
rC1 � ˛2

r /a C ˇrC1.2˛rC1 C 1/ � ˇr .2˛r C 1/:

Since hr D r C 1 and hrC1 D r C 2, we have

˛r D
�

r C 1

a

�

and

.˛rC1; ˇrC1/ D
8<
:

.˛r ; ˇr C 1/ if 0 � ˇr < a � 1;

.˛r C 1; 0/ if ˇr D a � 1:

It follows that
R1;a D 1 D L1;a

and

RrC1;a � Rr;a D 1 C 2˛r D 1 C 2

�
r C 1

a

�
D LrC1;a � Lr;a

as required.
Suppose now that G D Br or Cr where r � 2. Then hr D 2r . By Lemma 2.4(ii)

and Remark 2.5, L2;a D 4 if a 2 ¹2; 3º, L2;a D 2 if a > 3, and

LrC1;a � Lr;a D 1 C 2

�
2r C 1

a

�
:
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By [11], p. 222,

Rr;a D 1

2
.˛2

r a C ˇr.2˛r C 1// C �a

l˛r

2

m

and

RrC1;a � Rr;a D 1

2
..˛2

rC1 � ˛2
r /a

C ˇrC1.2˛rC1 C 1/ � ˇr .2˛r C 1//

C �a

�l˛rC1

2

m
�

l˛r

2

m�
:

Since hr D 2r and hrC1 D 2r C 2, we have

˛r D
�

2r

a

�

and

.˛rC1; ˇrC1/ D

8̂̂
<̂
ˆ̂̂:

.˛r ; ˇr C 2/ if 0 � ˇr < a � 2;

.˛r C 1; 0/ if ˇr D a � 2;

.˛r C 1; 1/ if ˇr D a � 1:

It follows that

R2;a D L2;a D
8<
:

4 if a 2 ¹2; 3º;
2 if a > 3:

Also if 0 � ˇr < a � 2 then

RrC1;a � Rr;a D 1 C 2˛r D 1 C 2

�
2r

a

�
D 1 C 2

�
2r C 1

a

�
D LrC1;a � Lr;a:

If ˇr D a � 2 then ˛r is odd whenever a is odd, and it follows that

RrC1;a � Rr;a D 1 C 2˛r D 1 C 2

�
2r

a

�
D 1 C 2

�
2r C 1

a

�
D LrC1;a � Lr;a:

Finally, if ˇr D a � 1 then a is odd, ˛r is even, and it follows that

RrC1;a � Rr;a D 3 C 2˛r D 3 C 2

�
2r

a

�
D 1 C 2

�
2r C 1

a

�
D LrC1;a � Lr;a:

It remains to consider the case G D Dr where r � 4. Then hr D 2r �2. We also
write r D 	ra C 
r where 	r � 0 and 0 � 
r < a are integers. By Lemma 2.4(ii)
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and Remark 2.5, L4;2 D 12, L4;3 D 10, L4;a D 6 if a 2 ¹4; 5º, L4;a D 4 if a > 5,
and

LrC1;a � Lr;a D 1 C 2

��
2r � 1

a

�
C

�
r

a

�
�

�
r � 1

a

��
:

By [11], p. 222,

Rr;a D 1

2
.˛2

r a C ˇr .2˛r C 1// C �a

l˛r

2

m
C ˛r C 1 � �˛r

and

RrC1;a � Rr;a D 1

2
..˛2

rC1 � ˛2
r /a

C ˇrC1.2˛rC1 C 1/

� ˇr .2˛r C 1//

C �a

�l˛rC1

2

m
�

l˛r

2

m�
C ˛rC1 � ˛r � �˛rC1

C �˛r
:

Since hr D 2r � 2 and hrC1 D 2r , we have

˛r D
�

2r � 2

a

�

and

.˛rC1; ˇrC1/ D

8̂̂
<̂
ˆ̂̂:

.˛r ; ˇr C 2/ if 0 � ˇr < a � 2;

.˛r C 1; 0/ if ˇr D a � 2;

.˛r C 1; 1/ if ˇr D a � 1:

It follows that

R4;a D L4;a D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

12 if a D 2;

10 if a D 3;

6 if a 2 ¹4; 5º;
4 if a > 5:

Suppose 0 � ˇr < a � 2. Then

RrC1;a � Rr;a D 1 C 2˛r D 1 C 2

�
2r � 2

a

�
D 1 C 2

�
2r � 1

a

�
:

Hence to show that RrC1;a � Rr;a D LrC1;a � Lr;a we need to check that�
r

a

�
�

�
r � 1

a

�
D 0:
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Assume otherwise. Writing r � 1 D 	r�1a C 
r�1 and r D 	ra C 
r as above, we
get 
r�1 D a � 1, 
r D 0 and 	r D 	r�1 C 1. Since hr D 2.r � 1/, it follows
that ˛r D 2	r�1 C 1 and ˇr D a � 2. This yields ˛rC1 D 2	r�1 C 2 D ˛r C 1,
contradicting ˛rC1 D ˛r .

Suppose ˇr D a � 2. Note that a is even if ˛r is even. Now

RrC1;a � Rr;a D
8<
:

3 C 2˛r ; if ˛r is odd,

1 C 2˛r ; if ˛r is even,

D 1 C 2�˛r
C 2

�
2r � 1

a

�
:

Hence to show that RrC1;a � Rr;a D LrC1;a � Lr;a we need to check that�
r

a

�
�

�
r � 1

a

�
D �˛r

: (2.3)

Write r �1 D 	r�1a C
r�1 and r D 	ra C
r as above. Suppose first that ˛r is odd.
Then 2
r�1 � a and ˛r D 2	r�1 C 1 and ˇr D 2
r�1 � a. Since ˇr D a � 2, we
get 
r�1 D a � 1 which yields 	r D 	r�1 C 1 and so (2.3) holds. Suppose now that
˛r is even so that a is also even. Assume (2.3) does not hold. Then 
r�1 D a � 1,

r D 0 and 	r D 	r�1 C 1. Since hr D 2.r � 1/, it follows that ˛r D 2	r�1 C 1,
contradicting ˛r is even.

Suppose ˇr D a � 1. Note that ˛r is even and a is odd. Also

RrC1;a � Rr;a D 3 C 2˛r D 3 C 2

�
2r � 2

a

�
D 1 C 2

�
2r � 1

a

�
:

Hence to show that RrC1;a � Rr;a D LrC1;a � Lr;a we need to check that�
r

a

�
�

�
r � 1

a

�
D 0:

Assume otherwise, and write r � 1 D 	r�1a C 
r�1 and r D 	ra C 
r as above.
Then 
r�1 D a � 1, 
r D 0 and 	r D 	r�1 C 1. Since hr D 2.r � 1/, it follows that
˛r D 2	r�1 C 1, contradicting ˛r is even.

Proof of Proposition 2.8. Note that

dim Epi.T; G/ � max ¹dim Z1.T; Ad B �/W � 2 Hom.T; G/; �.T / D Gº:
Since G is simple and defined over C, a Zariski dense representation in Hom.T; G/

composed with the adjoint representation has no invariants on g and is self-dual.
Hence by Theorem 2.1(i) and (2.1)

dim Epi.T; G/ � 2 dim G � .codim GŒa� C codim GŒb� C codim GŒc�/:
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On the other hand, since �
G
0 W T ! G is the representation induced from the

principal homomorphism PGL2 ! G, Ad B �
G
0 and .Ad B �

G
0 /� have no invariants

on g and g�, respectively. Hence by Theorem 2.1(i)

dim Z1.T; Ad B �
G
0 / D 2 dim G � .gx C gy C gz/:

The result now follows immediately from Lemma 2.9.

Corollary 2.11. Let T D Ta;b;c be a hyperbolic triangle group, G be a simple adjoint
algebraic group over C, �1W T ! G.C/ be a homomorphism, and H be the Zariski
closure of �1.T /. Assume that

(a) H is semisimple and connected;

(b) H is a maximal subgroup of G;

(c) the image of �0W T ! G, where �0 is the representation induced from the prin-
cipal homomorphism from PGL2 into G, is inside H (in this case �0 is also the
representation induced from the principal homomorphism from PGL2 into H )
and �0 and �1 belong to a common irreducible component of Hom.T; G/;

(d) dim H 1.T; Ad B �0jh/ < dim H 1.T; Ad B �0jg/:

Then there exists a nonsingular representation �1W T ! G in the irreducible compo-
nent of Hom.T; G/ containing �1 such that �1.T / D G and

dim H 1.T; Ad B �1jg/ D dim H 1.T; Ad B �1jg/ D dim H 1.T; Ad B �0jg/:

Proof. The result will follow from Corollary 2.7 once we show that

dim Epi.T; H/ � dim H < dim Z1.T; Ad B �1jg/ � dim G: (2.4)

Now by Proposition 2.8

dim Epi.T; H/ � dim H � dim H 1.T; Ad B �0jh/:

Since �1.T / D H is a maximal subgroup of G and Z.H / is finite, Corollary 2.2(i)
shows that Ad B �1 and .Ad B �1/� have no invariants on g and g�, respectively. In
particular (see Theorem 2.1), we get

dim Z1.T; Ad B �1jg/ � dim G D dim H 1.T; Ad B �1jg/:

Now as �1 and �0 are in a common irreducible component of Hom.T; G/, Corol-
lary 2.2(ii) yields

dim H 1.T; Ad B �1jg/ D dim H 1.T; Ad B �0jg/

and so
dim Z1.T; Ad B �1jg/ � dim G D dim H 1.T; Ad B �0jg/:

Inequality (2.4) now follows from the assumption that

dim H 1.T; Ad B �0jh/ < dim H 1.T; Ad B �0jg/:
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3. Non SO.3/-dense hyperbolic triangle groups

By [9] every hyperbolic triangle group T is SO.3/-dense, unless T belongs to

S D ¹T2;4;6; T2;6;6; ; T2;6;10; T3;4;4; T3;6;6; T4;6;12º:
The arguments in [10] for proving saturation break down completely for T 2 S .
In this section we deal with these cases, proving that with a few exceptions .T; X/

consisting of T 2 S and X an irreducible Dynkin diagram, T is generally saturated
with finite quotients of type X .

We let G D X.C/ be a simple adjoint algebraic group over C of type X

and �0W T ! G be the representation induced from the principal homomorphism
PGL2 ! G. To avoid confusion we will sometimes write �

G
0 instead of �0. If g

denotes the Lie algebra of G, we will for conciseness write g for .Ad B �
G
0 jg/, i.e. the

action of T on g via Ad B �
G
0 .

Proposition 3.1. Let T D Ta;b;c be a non SO.3/-dense hyperbolic triangle group
(i.e. T 2 S ) and X be an irreducible Dynkin diagram. Then T is saturated with finite
quotients of type X except possibly if .T; X/ is as in Table 3 below.

Table 3. Non SO.3/-dense Ta;b;c possibly not saturated with finite quotients of type X .

X .a; b; c/

Ar , r � 9 .2; 4; 6/

A2, A3 .2; 4; 6/, .2; 6; 6/, .2; 6; 10/

A1 .2; 4; 6/, .2; 6; 6/, .2; 6; 10/, .3; 4; 4/, .3; 6; 6/, .4; 6; 12/

Dr , r 2 ¹5; 7; 9; 13º .2; 4; 6/

D7 .2; 6; 6/

D5 .3; 4; 4/

E6 .2; 4; 6/

Proof. Let G be the simple adjoint algebraic group of type X over C. Note that as
T is locally rigid in PGL2.C/ (see [10]), T is not saturated with finite quotients of
type A1. We therefore assume that r > 1 if X D Ar and divide the proof into three
parts (in the spirit of [10]), Theorems 5.3, 5.5, 5.8, and 5.9.

Suppose first that X D A2, Br (r � 4), Cr (r � 2), G2, F4, E7 or E8. By Dynkin
(see [6] and [7]) the image of the principal homomorphism PGL2 ! G is maximal
in G. Let H be the Zariski closure of �

G
0 .T /. Since T is Zariski dense in PGL2.C/,

H Š A1 is a maximal subgroup of G and note that �
H
0 D �0

G . It now follows from
Corollary 2.11 that there is a nonsingular Zariski dense representation �1W T ! G,
except possibly if dim H 1.T; Ad B �

H
0 jh/ D dim H 1.T; Ad B �

G
0 jg/. Now by [10],

Lemma 2.4, dim H 1.T; Ad B �
H
0 jh/ D 0 and dim H 1.T; Ad B �

G
0 jg/ > 0 unless

X D A2 and a D 2. In particular, T is saturated with finite quotients of type X ,
unless X D A2 and a D 2.
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Suppose now that X D Ar (r � 3, r ¤ 6), B3, Dr (r � 5), or E6. Let H be a
maximal subgroup of G of type Y where

Y D

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

Br=2 if X D Ar and r even,

C.rC1/=2 if X D Ar and r odd,

G2 if X D B3;

Br�1 if X D Dr ;

F4 if X D E6:

Let �1W T ! H ,! G be the nonsingular Zariski dense representation in Hom.T; H/

obtained in the first part above. Since �
H
0 D �

G
0 (see [14], Theorems A and B), it

follows from Corollary 2.11 that there is a nonsingular Zariski dense representation
�2W T ! G, except possibly if dim H 1.T; Ad B �

H
0 jh/ D dim H 1.T; Ad B �

G
0 jg/.

A case by case check yields

dim H 1.T; Ad B �
H
0 jh/ < dim H 1.T; Ad B �

G
0 jg/

unless X D A3 and a D 2, or X D Ar , r 2 ¹4; 5; 7; 8; 9º and .a; b; c/ D .2; 4; 6/,
or X D Dr , r 2 ¹5; 7; 9; 13º and .a; b; c/ D .2; 4; 6/, or X D D7 and .a; b; c/ D
.2; 6; 6/, or X D D5 and .a; b; c/ D .3; 4; 4/, or X D E6 and .a; b; c/ D .2; 4; 6/.
In particular, excluding these possible exceptions, T is saturated with finite quotients
of type X .

Suppose finally that X D D4 or A6, and let H be a maximal subgroup of G

of type Y D B3. Let �2W T ! H ,! G be the nonsingular Zariski dense rep-
resentation in Hom.T; H/ obtained in the second part above. Since �

H
0 D �

G
0

(see [14], Theorem B), it follows from Corollary 2.11 that there is a nonsingular
Zariski dense representation �3W T ! G, except possibly if dim H 1.T; AdB�

H
0 jh/ D

dim H 1.T; Ad B �
G
0 jg/. An easy check yields

dim H 1.T; Ad B �
H
0 jh/ < dim H 1.T; Ad B �

G
0 jg/

unless X D A6 and .a; b; c/ D .2; 4; 6/. In particular, excluding this possible
exception, T is saturated with finite quotients of type X .

4. The embedding Bk � Br�k�1 < Dr

We now rule out some further possible exceptions to [10], Theorem 1.1, for X D Dr

where r � 4 using an embedding of the form Bk �Br�k�1 < Dr . Here we will climb
in a “two-step ladder,” where the second step, this time, is not via the representation
induced from the principal homomorphism. In the process we will use the following
result.
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Lemma 4.1. Let G D SOn.C/ and t be any semisimple element of G of finite order.
Then

dim gAd.t/ D
�

m1

2

�
C

�
m�1

2

�
C 1

2

X
�2Cn¹�1;1º

m2
�

where, for � 2 C, m� denotes the multiplicity of � as an eigenvalue of t , in the
standard representation of G.

Proof. Note that if � is an eigenvalue of t with � ¤ ˙1, then � D ��1 is also an
eigenvalue with the same multiplicity. The lemma now follows from the fact that the
Lie algebra g of G is ƒ2.W /, where W denotes the natural module for G.

We now make the following useful observation. Let H 1 be a simple adjoint al-

gebraic group over C of type Bk where k � 2; k ¤ 3, and consider �
H1

0 W T ! H 1,
the representation induced from the principal homomorphism PGL2 ! H 1. Since
k ¤ 3, the image of the principal homomorphism PGL2 ! H 1 is a maximal sub-
group of H 1 (see [6] and [7]). As T is Zariski dense in PGL2, it follows that

�
H1

0 .T / Š A1 is a maximal subgroup of H 1. By [10], Lemma 2.4, we have

dim H 1.T; Ad B �
H1

0 / > 0 unless k D 2 and b D 3. Since every representation
T ! PGL2 is locally rigid, Corollary 2.7 yields (if k > 2 or b ¤ 3) a nonsingu-
lar Zariski dense representation �1W T ! H 1 in the same irreducible component of

Hom.T; H1/ containing �
H 1

0 and satisfying

dim H 1.T; Ad B �1jh1
/ D dim H 1.T; Ad B �

H 1

0 jh1
/:

If T D Ta;b;c is a hyperbolic triangle group with b ¤ 3 and .a; c/ ¤ .2; 5/, and
H 1 is a simple adjoint algebraic group over C of type B3, one can consider the
nonsingular Zariski dense representation �2;H 1

W T ! H1 obtained by deforming in
a two-step ladder the representation T ! PGL2 ! G2 ,! H1 induced from the
principal homomorphism PGL2 ! G2 (see [10], Theorem 5.8, and Proposition 3.1
and their proofs). Following Corollary 2.11, �2;H 1

is in the irreducible component

of Hom.T; H1/ containing �
H1

0 and

dim H 1.T; Ad B �2;H 1
jh1

/ D dim H 1.T; Ad B �
H1

0 jh1
/:

Theorem 4.2. Let T D Ta;b;c be a hyperbolic triangle group and G D PSO2r .C/

be the simple adjoint algebraic group over C of type X D Dr where r � 4. Let
H D SO2kC1.C/ � SO2r�2k�1.C/ < G where 1 � k � br=2c, i.e. H D H 1 � H 2

where H 1 and H 2 are of types Bk and Br�k�1, respectively. Suppose r ¤ 2k C 1.
Furthermore if b D 3 assume ¹2; 3º \ ¹k; r � k � 1º D ; and if .a; c/ D .2; 5/

assume 3 62 ¹k; r � k � 1º.
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Let �1W T �! H 1 be the representation obtained by deforming the representation

�
H1

0 induced from the principal homomorphism PGL2 ! H 1 if k 62 ¹1; 3º (if k D 1,
take �1 to be the standard representation, and if k D 3, take �1 to be the represen-
tation �2;B3

W T ! B3 obtained by deforming in a two-step ladder the representa-
tion T ! PGL2 ! G2 induced from the principal homomorphism PGL2 ! G2),
�2W T ! H 2 be the representation obtained by deforming the representation �

H2

0

induced from the principal homomorphism PGL2 ! H 2 if k ¤ 3 (if k D 3, take �2

to be the representation �2;B3
), and let � D �1 ˚ �2W T ! H D H 1 � H 2. Then

the following assertions hold.

(i) H is the Zariski closure of �.T /.

(ii) � is a nonsingular point of Hom.T; H/ and Hom.T; G/.

(iii) If dim H 1.T; h1/ C dim H 1.T; h2/ < dim H 1.T; Ad B �jg/ then there exists a
nonsingular representation � W T ! G in the same irreducible component of
Hom.T; G/ as �, with Zariski dense image and satisfying

dim H 1.T; Ad B � jg/ D dim H 1.T; Ad B �jg/:

(iv) If .X; .a; b; c// is as in Table 4 below then T is saturated with finite quotients of
type X .

Remark 4.3. If .X; .a; b; c// with X D Dr is a possible exception to [10], Theo-
rem 1.1, not excluded in Proposition 3.1 and not figuring in Table 4, then one cannot
use Theorem 4.2 to exclude it.

Proof. Since r ¤ 2k C 1, H is a maximal subgroup of G. Indeed, we have that
Lie.G.C//=Lie.H.C// is an irreducible representation of H , namely the tensor
product of the natural representations of the factors H 1 and H 2. Therefore, any
algebraic group K intermediate between H and G either has the same Lie algebra
as H or the same Lie algebra as G (in which case it equals G). Thus, KB D H .
As H 1 and H 2 have distinct Dynkin diagrams without nontrivial automorphisms,
all automorphisms of H are inner. It follows that K is contained in HZG.H/.
If z 2 SO.2r; C/ lies over an element of ZG.H/.C/, then the commutator of z with
any element of

H.C/ D SO.2k C 1; C/ � SO.2r � 2k � 1; C/

lies in ¹˙I º. As H.C/ is connected, this means that the commutator is always I .
By Schur’s lemma, z must be diagonal with entries

.�1; : : : ; �1„ ƒ‚ …
2kC1

; �2; : : : �2„ ƒ‚ …
2r�2k�1

/;
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Table 4. Further possible exceptions to [10], Theorem 1.1, which are ruled out in Theorem 4.2.

X .a; b; c/ r

Dr .2; 3; 7/ r 2 ¹7; 8; 10; 11; 13; 15; 16; 17; 19;

22; 23; 25; 29; 31; 37; 43º
.r � 4/ .2; 3; 8/ r 2 ¹7; 9; 10; 11; 13; 17; 19; 25º

.2; 3; 9/ r 2 ¹7; 10; 11; 13; 19º

.2; 3; 10/ r 2 ¹7; 11; 13º

.2; 3; 11/ r 2 ¹7; 13º

.2; 3; 12/ r 2 ¹7; 13º

.2; 3; c/, c � 13 r D 7

.2; 4; 5/ r 2 ¹4; 6; 7; 9; 11; 13; 17; 21º

.2; 4; 6/ r 2 ¹5; 7; 9; 13º

.2; 4; 7/ r 2 ¹5; 9º

.2; 4; 8/ r 2 ¹5; 9º

.2; 4; c/, c � 9 r D 5

.2; 5; 5/ r 2 ¹4; 6; 7; 11º

.2; 5; 6/ r D 7

.2; 6; 6/ r D 7

.3; 3; 4/ r 2 ¹7; 10; 13º

.3; 3; 5/ r D 7

.3; 3; 6/ r D 7

.3; 4; 4/ r D 5

.4; 4; 4/ r D 5

and then z 2 SO.2r; C/ implies �1 D �2 D ˙1. Thus, z lies over the identity in
G.C/, and K D H .

Since H 1 and H 2 are the Zariski closures of �1.T / and �2.T /, respectively, �.T /

is mapped onto both H 1 and H 2. These are non-isomorphic simple groups (since
r ¤ 2k C 1), so by Goursat’s lemma, �.T / D H . This shows the first part.

The second part now follows from Corollary 2.2(i).
For the third part: as Hom.T; H/ D Hom.T; H1/ � Hom.T; H2/ we have

dim Epi.T; H/ � dim Epi.T; H1/ C dim Epi.T; H2/:

Now by Proposition 2.8

dim Epi.T; H i / � dim H i � dim H 1.T; hi/ for i D 1; 2:

Since dim H D dim H1 C dim H 2 we get

dim Epi.T; H/ � dim H � dim H 1.T; h1/ C dim H 1.T; h2/:

The third part now follows immediately from Theorem 2.6. The final part will follow
from Theorem 2.3 once we show that for .X; .a; b; c// as in Table 4, we can find H 1

and H 2 as above, satisfying



Deformation theory and finite simple quotients of triangle groups II 831

dim H 1.T; h1/ C dim H 1.T; h2/ < dim H 1.T; Ad B �jg/: (4.1)

Note that dim H 1.T; h1/Cdim H 1.T; h2/ can be easily calculated (Lemma 2.4(iii)).
Let us concentrate on the computation of dim H 1.T; Ad B �jg/. We claim that

dim H 1.T; Ad B �jg/ D dim H 1.T; Ad B �0jg/ (4.2)

where �0 D �
H1

0 ˚ �
H2

0 . By construction � and �0 are in a common irreducible
component of Hom.T; H/ and therefore in a common irreducible component of
Hom.T; G/. Since �.T / D H is a maximal subgroup of G, the claim will follow
from Corollary 2.2, once we show that Ad B �0 has no invariants on g. Note that
�0.T / is a subgroup of H D H 1 �H 2 of type A1 �A1. Since �0 is the direct sum of
two irreducible representations of T , it follows from Schur’s lemma that ZH .�0.T //

consists of diagonal matrices of the form .c1I2kC1; c2I2r�2k�1/ where c1; c2 2 C
satisfy c2kC1

1 D c2r�2k�1
2 D 1. As H < G D PSO2r .C/, we get c1 D c2 D 1 and

so ZH .�0.T // is trivial. As H is a maximal subgroup of G, ZG.�0.T // is a cyclic
group. It follows that ZG.�0.T // is trivial and so Ad B �0 has no invariants on g.
This establishes the claim.

Theorem 2.1(ii) and (4.2) now yield

dim H 1.T; Ad B �jg/

D dim g � .dim gAdB�0.x/ C dim gAdB�0.y/ C dim gAdB�0.z//:
(4.3)

Let r1 D k and r2 D r �k�1 be the ranks of H 1 and H 2 respectively. For i 2 ¹1; 2º,

the eigenvalues of �
H i

0 .x/ are:

��2ri ; ��2.ri �1/; : : : ; �0; : : : ; �2.ri �1/; �2ri

where � is a primitive root of unity of degree 2a (and similarly for �
H i

0 .y/ and �
H i

0 .z/

with 2b and 2c, respectively).
Hence, the eigenvalues for �0.x/ are (recall r1 < r2):

1; 1;��2; ��2; �2; �2; : : : ;

��2r1 ; ��2r1; �2r1; �2r1 ; ��2.r1C1/; �.2r1C1/; : : : ;

��2r2 ; �2r2

where � is a primitive root of unity of degree 2a (and similarly for �0.y/ and �0.z/

with 2b and 2c, respectively).
Using Lemma 4.1, we can easily derive

dim gAdB�0.x/; dim gAdB�0.y/; and dim gAdB�0.z/;

and then (4.3) yields dim H 1.T; Ad B �jg/.
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We give in Table 5 below the pairs .X; .a; b; c// possibly excluded in [10], The-
orem 1.1, or Proposition 3.1 for which there exist H 1 and H 2 satisfying (4.1). The
details can be easily checked.

Table 5. Some pairs .X; .a; b; c// for which there exist H 1 and H 2 satisfying (4.1).

X .a; b; c/ H 1 H 2

D4 .2; b; 5/ B1 B2

D5 .2; 4; c/, c � 6 B1 B3

.3; 4; 4/ B1 B3

.4; 4; 4/ B1 B3

D6 .2; b; 5/ B1 B4

D7 .2; 3; c/, c � 7 B1 B5

.3; 3; c/, 4 � c � 6 B1 B5

.2; 4; c/, c 2 ¹5; 6º B2 B4

.2; b; c/, ¹b; cº � ¹5; 6º B2 B4

D8 .2; 3; 7/ B1 B6

D9 .2; 3; 8/ B1 B7

.2; 4; c/, 5 � c � 8 B2 B6

D10 .2; 3; c/, 7 � c � 9 B4 B5

.3; 3; 4/ B4 B5

D11 .2; 3; c/, 7 � c � 10 B4 B6

.2; b; 5/ B4 B6

D13 .2; 3; c/, 7 � c � 12 B5 B7

.2; 4; c/, c 2 ¹5; 6º B5 B7

.3; 3; 4/ B5 B7

D15 .2; 3; 7/ B6 B8

D16 .2; 3; 7/ B7 B8

D17 .2; 3; c/, c 2 ¹7; 8º B7 B9

.2; 4; 5/ B7 B9

D19 .2; 3; c/, 7 � c � 9 B8 B10

D21 .2; 4; 5/ B9 B11

D25 .2; 3; c/, c 2 ¹7; 8º B11 B13

Dr .2; 3; 7/ Bbr=2c�1 Br�br=2c

r 2 ¹22; 23; 29

31; 37; 43º

Remark 4.4. One could try to exclude some further possible exceptions to [10], The-
orem 1.1, or Proposition 3.1 when X D Ar (r odd) through an embedding of the type
H D PSOrC1.C/ < PSLrC1.C/. Either by starting with the representation T ! H

induced from the principal homomorphism PGL2 ! H (if .D.rC1/=2; .a; b; c// is not
a possible exception to [10], Theorem 5.5, or Proposition 3.1), or by starting with a rep-
resentation T ! H obtained from a representation T ! SO2kC1.C/ � SOr�2k.C/

(see Theorem 4.2). However, it happens that these methods do not allow us to exclude
further possible exceptions to [10], Theorem 1.1, or Proposition 3.1.
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5. The alternating group method

In this section we will use a different homomorphism �0W T ! X.C/ as a starting
point for the deformation space, when X D Br or Dr . We let m D 2r C 2 or 2r C 1

according respectively as X D Br or Dr . We will take a suitable homomorphism
�1 from T onto Altm and then �2W Altm ! SOm�1.C/, the standard embedding
(i.e. the action induced on Cm�1 from the natural action of Symm on Cm). We will
then show that �0 D �2 B �1 has a nontrivial deformation space of Zariski dense
representations. This can handle many of the cases .T; X/ where X D Br or Dr

(see Lemma 5.1 below), but we will only bother to check and prove the cases that
have not been worked out by the principal homomorphism method or by deforming
a representation of the form T ! Bk � Br�k�1.

Lemma 5.1. Let X D Br (respectively, Dr ) and H D Altm where m D 2r C 2

(respectively, 2r C 1). Let �2 be the standard representation of H into SOm�1.C/.
If there exists an epimorphism �1 from T to H and �0 D �2 B �1 is such that
dim H 1.T; Ad B �0/ > 0 then T is saturated with finite quotients of type X .

Remark 5.2. Note that if T D Ta;b;c is saturated with finite quotients of a given type,
then so is Ta0;b0;c0 where a0, b0, c0 are any positive multiples of a, b, c, respectively.
Indeed Ta;b;c is a quotient of Ta0;b0;c0 .

Proof. Since r � 2, the action of H on Lie.X/ is irreducible (see [8], Example 4.6,
and Proposition 3.1 in [9]1 and its proof). As dim H 1.T; Ad B �0/ > 0, �0 has non-
trivial deformation. We fix an irreducible component X of Hom.T; G/ containing �0

on which the deformation is nontrivial. Since being irreducible is an open condition,
irreducibility on Lie.X/ must hold in an open neighborhood of �0 in X . For � in such
a neighborhood, �.T / stabilises Lie.�.T //. Since �.T / acts irreducibly on Lie.X/,
either Lie.�.T // is zero or it equals Lie.X/. In the second case, by Theorem 2.3,
we are done. In the first case, �.T / is finite. From Jordan’s Theorem, it then follows
that �.T / has a normal abelian subgroup of bounded index, or equivalently, �.T0/

is abelian for some T0 � T of bounded index. As T is finitely generated, there are
finitely many possible T0, and their intersection T1 is of finite index in T . If for all �

in X.C/, �.T / is of bounded order, then �0 is locally rigid, a contradiction. If they
are unbounded, then, in the generic representation of X , the Zariski closure is infinite
and virtually abelian, again a contradiction.

Lemma 5.3. Let H D Altm and .a; b; c/ be as in Table 6 below. Then H is a quotient
of T D Ta;b;c with torsion-free kernel. Moreover, we can find elements A and B of
H of respective orders a and b such that AB has order c and hA; Bi D H , where
A, B and AB have cycle shapes as given in Table 6 below.

1The reader is encouraged to use theArxiv version as a mistake occurred in the book version (Lemma 3.3
there is not correct as stated). This mistake is fixed in the Arxiv version. The main results are not affected.
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Table 6. Pairs .A; B/ of elements of H D Altm such that H D hA; Bi, jAj D a, jBj D b and
jABj D c.

H D Altm .a; b; c/ A B AB

Alt8 .3; 3; 15/ .3/2.1/2 .3/2.1/2 .5/.3/

Alt9 .2; 3; 15/ .2/4.1/1 .3/3 .5/1.3/1.1/1

.3; 3; 7/ .3/3 .3/3 .7/1.1/2

.3; 3; 9/ .3/3 .3/2.1/3 .9/1

.3; 3; 10/ .3/3 .3/3 .5/1.2/2

.3; 3; 12/ .3/3 .3/2.1/3 .4/1.3/1.2/1

.3; 3; 15/ .3/3 .3/3 .5/1.3/1.1/1

Alt11 .2; 3; 11/ .2/4.1/3 .3/3.1/2 .11/1

Proof. Using Magma, see [1], one can find a subgroup S of T of index m such
that the action of T on the set T=S of cosets of S in T induces a homomorphism
f W T ! Sym.T=S/ satisfying f .T / D Altm and f .x/ D A, f .y/ D B where A,
B are elements of Altm such that A, B and AB have cycle shapes given in Table 6.
The result follows.

Remark 5.4. In the proof of Lemma 5.3, one can give A and B explicitly. However,
for conciseness, we only give the cycle shapes of A, B and AB . This suffices for
computing dim H 1.T; Ad B �0/ as needed below.

Proposition 5.5. Let X D Br (respectively, Dr ) and H D Altm where m D 2r C 2

(respectively, 2r C 1). Suppose .H; .a; b; c// appears in Table 6. Let �2 be the
standard representation ofH into SOm�1.C/, �1 be the epimorphism from T D Ta;b;c

to H provided by Lemma 5.3, and �0 D �2 B �1. Then dim H 1.T; Ad B �0/ > 0 and
so T is saturated with finite quotients of type X .

Proof. We first show that dim H 1.T; Ad B �0/ > 0. Let W be the natural module
for SOm�1.C/ and V D Lie.X/ D ƒ2.W /. Since H is irreducible on Lie.X/,
Theorem 2.1(ii) yields

dim H 1.T; Ad B �0/ D dim V � .dim V AdB�0.x/ C dim V AdB�0.y/ C dim V AdB�0.z//:

Since dim V is either r.2r � 1/ or r.2r C 1/ according respectively as X is Dr or
Br , it now remains to compute dim V AdB�0.t/ for t 2 ¹x; y; zº. Note that if �1.t /

has cycle shape .1/n0.b1/n1 : : : .bs/
ns , then �0.t / acts on W with eigenvalues: 1

occuring with multiplicity �1 C Ps
iD0 ni , and ˇi ; : : : ; ˇ

bi �1
i occuring ni times for

1 � i � s, where ˇi is a primitive bi -th root of unity. Hence, using Lemma 4.1, an
easy check yields dim H 1.T; Ad B �0/ > 0 in all cases. The result now follows from
Lemma 5.1.

The following result shows that the alternating group method cannot be used to
determine whether T is saturated with finite quotients of type X in the remaining
open cases .T; X/ with X D Br or Dr .
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Lemma 5.6. If the pair .Altm; .a; b; c// appears in Table 7 below, then Altm is not
.a; b; c/-generated.

Table 7. Some pairs .Altm; .a; b; c// such that Altm is not .a; b; c/-generated.

Altm .a; b; c/

Alt8 .2; 3; c/; c � 7

.2; 4; 5/, .2; 5; 5/

.3; 3; c/; c � 4; c 6� 0 mod 15

Alt9 .2; 3; c/; c � 7; c 6� 0 mod 15

.3; 3; c/; c � 4; c 6� 0 mod ˛; ˛ 2 ¹7; 9; 10; 12; 15º
Alt11 .2; 3; c/; c � 7; c 6� 0 mod 11

.2; 4; 5/

.3; 3; 4/

Alt19 .2; 3; 7/

The following result (see [5]) is the main ingredient in proving Lemma 5.6.

Lemma 5.7. Suppose the group H is generated by permutations h1, h2, h3 acting
on a set  of size n such that h1h2h3 is the identity permutation. If the generator hi

has exactly mi cycles (for 1 � i � 3) and H is transitive on  then

m1 C m2 C m3 � n C 2 .and m1 C m2 C m3 � n mod 2/:

Proof of Lemma 5.6. Applying Lemma 5.7 we immediately reduce to the case m 2
¹8; 9º. Moreover using [4], theorem at pp. 84–85, where Conder gives for m � 5 a
triple .a; b; c/ with 1=a C 1=b C 1=c maximal such that Altm is an .a; b; c/-group,
we are reduced to the following cases:

m D 8 and .a; b; c/ 2 ¹.3; 3; 6/; .3; 3; 7//º
or

m D 9 and .a; b; c/ 2 ¹.2; 3; 12/; .3; 3; 4/; .3; 3; 5/; .3; 3; 6/º:
It remains to show that in these cases Altm is not .a; b; c/-generated. Using Magma,
see [1], one easily checks that indeed this does not occur.
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