
7. Counting congruence subgroups and the
congruence subgroup problem

Let k be a global field, i.e., k is a finite extension of Q, in case char(k) = 0,
or of Fp(x), in case char(k) = p > 0 Let O be the ring of integers of k and S a
finite set of valuations (“primes”) of k and OS = {x ∈ k|v(x) ≥ 0, ∀v /∈ S}. Let
G be a connected, simply-connected simple, algebraic group defined over k with
a fixed embedding G ↪→ GLr. Let Γ = G ∩GLr(OS) the S-arithmetic subgroup
of G. We will always assume that Γ is infinite (or equivalently that Π

v∈S
G(kv) is

not compact). Every ideal J 6= 0 of OS defines a principal congruence subgroup
Γ(J ) of Γ:

Γ(J ) = Ker
(
Γ → GLr(OS/J )

)
A subgroup of Γ containing Γ(J ) for some J is called a congruence subgroup.

Let Cn(Γ) = # congruence subgroups of Γ of index ≤ n.

Theorem 7.1. Assume char(k) = 0. Then there exists positive constants a and
b such that

na log n/ log log n ≤ Cn(Γ) ≤ nb log n/ log log n

Theorem 7.2. Assume char(k) = p > 0 (Assume also ???). Then there exist

positive constants a and b such that na log n ≤ Cn(Γ) ≤ nb(log n)2.

Let Γ̂ be the profinite completion of Γ and Γ̃ the completion of Γ with respect
to the topology induced on Γ by the congruence subgroups (see WINDOW on
STRONG APPROXIMATION). The identity map from Γ to Γ extends to a

continuous epimorphism π : Γ̂ → Γ̃ whose kernel C = C(G, S) is called the
congruence kernel of Γ. Γ is said to have the congruence subgroup property if C
is finite.

Corollary 7.3. If char(k) = 0 and Γ has the congruence subgroup property then
the subgroup growth of Γ is of type nlog n/ log log n.

The precise growth in characteristic p is not known as of now. In any event
and any characteristic such Γ’s have “intermediate subgroup growth” (i.e., more
than polynomial less than exponential). In chapter 9 it will be shown that there
are plenty of such possibilities, including many that are slower than nlog n/ log log n

and yet non-polynomial. On the other hand Theorem 7.1 will be used to show
in chapter 8 that this is impossible among the linear groups.

Theorem 7.1 will be proved in section 7.1, while Theorem 7.2 will be dealt with
in section 7.2. In section 7.3 we will relate the congruence subgroup problem and
subgroup growth:
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Theorem 7.4. Assume char(k) = 0 and that G satisfies the Platonov-Margulis
conjecture (see §7.3). Then Γ has the congruence subgroup property if and only if
for every ε > 0, sn(Γ) = Oε(n

ε log n), i.e. if and only if the subgroup growth type
of Γ is strictly less than nlog n.

Corollary 7.5. Assume char(k) = 0 and Γ as before. If Γ fails to have the
congruence subgroup property then the subgroup growth type of Γ is at least as
large as nlog n.

The last corollary shows that when Γ fails to have the congruence subgroup
property, it has plenty of non-congruence subgroups – by far more than con-
gruence subgroups; the congruence subgroup growth is nlog n/ log log n while the
subgroup growth is at least nlog n. We actually believe (and many known exam-
ples support this) that when the congruence subgroup property fails the subgroup
growth is in fact even faster than nlog n (probably exponential or even super ex-
ponential).

Theorem 7.4 has another important application: it enables us to formulate
the congruence subgroup problem by abstract group theoretic terms making no
reference to the arithmetic structure of Γ:

Generalized congruence subgroup problem: Let Γ be a finitely generated
group. Is the subgroup growth type of Γ strictly smaller than nlog n?

The classical congruence subgroup problem is asked for S-arithmetic groups
as above. Every such S-arithmetic group is a lattice (i.e., a discrete subgroup of
finite covolume) in a suitable semi-simple group H. Here by semi-simple group H

we mean a product
r∏

i=1

Gi(Ki) when for each 1 ≤ i ≤ r, Ki is a local field and Gi is

a simple algebraic group defined over Ki. By the celebrated arithmeticity result
of Margulis [ ], under some assumptions on H, every lattice in H is S-arithmetic.
On the other hand, when H = G(K), K a local field and G a simple, connected,
algebraic group defined over K and of K-rank one, it is possible (sometimes) that
H has non-arithmetic lattices. It is of special interest to extend the congruence
subgroup problem and to study it in the more general framework of lattices in
semi-simple groups and not merely for S-arithmetic lattices.

Serre conjecture, which is largely proved by now, asserts, loosely speaking, that
an S-arithmetic lattice in a semi-simple group H has the congruence subgroup
property if and only if rank(H) ≥ 2 (see section 7.3 for a precise formulation).
In particular, the conjecture says that the validity of the congruence subgroup
property for lattices Γ in H, depends only on H and not on Γ. This is compatible
with the experience with other properties of lattices. Extending this philosophy
to arbitrary lattices in H, it is natural to extend Serre’s conjecture and to add the
conjecture that all non-arithmetic lattices (in rank one groups, and as mentioned
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above, by Margulis’ result only in rank one group, non-arithmetic lattices exist)
fail to satisfy the generalized congruence subgroup property.

Theorem 7.6. Let H = G(K) when K is a local field and G a simple, connected
algebraic group defined over K. Let Γ be a lattice in H. Then:

(1) If K is non-archimedean then Γ has a negative answer to the generalized
congruence subgroup problem.

(2) If H is locally isomorphic to SO(n, 1), n = 2 or 3 then Γ has a negative
answer to the generalized congruence subgroup problem.

(3) If H is locally isomorphic to SO(n, 1), n ≥ 4 and Γ is one of the known
non-arithmetic lattices (i.e., either generated by reflections or the ones
constructed by Gromov and Piatezki-Shapiro [GPS]) then Γ has negative
answer to the generalized congruence subgroup problem.

The proof of Theorem 7.6 uses hyperbolic geometry. As a byproduct of the
subgroup growth consideration, the following result is deduced:

Theorem 7.7. Let n ≥ 4, 0 < r ∈ R and ρn(r) be the number of isomorphism
classes on n-dimensional hyperbolic manifolds of volume at most r. Then there
exist two constants a = a(n) and b = b(n) such that

ar log r ≤ log ρn(v) ≤ br log r

The lower bound of Theorem 7.7, (which is based on subgroup growth is proved
in section 7.5. (For the upper bound – see [BGLM]). We also compare there
Theorem 7.7 and Theorem 7.1 and present some conjectures about the rate of
growth of other types of manifolds.

We end the chapter with some conjectures and speculations on subgroup growth
of groups with Kazhdan property (T ) and of amenable groups. (???)
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7.1. Counting congruence subgroups: the characteristic O case.

In this section we determine precisely the congruence subgroup growth type of
S-arithmetic groups over number fields and prove Theorem 7.1.

Keeping the notations of the introduction, we assume k is a finite extension of
Q. So S is a finite set of prime ideals in O-the ring of integers in k. For such S let
SQ be the set of all the rational primes lying below S, i.e. SQ = {p ∈ Z+|P ∩Z =
(p) for some P ∈ S} and let S be the set of all primes in O lying above SQ.
Then S ⊆ S and clearly G(O) ⊆ G(OS) ⊆ G(OS), we also have surjective maps

G(Ô) � G(ÔS) � G(ÔS). Now if H is Resk
Q(G) the restriction of scalars from

k to Q, then H(Z) = G(O) and H(ZSQ) = G(OS). Thus if we prove the upper
bound of Theorem 7.1 for H(Z) and the lower bound for H(ZSQ) the Theorem
will be proved. This shows that it suffices to prove the Theorem for k = Q. We
therefore assume k = Q, an assumption that will simplify the notations.

So let Γ = G(ZS) and M = G(ẐS) its congruence completion. There is one to
one correspondence between index n subgroups of M and congruence subgroups
of index n of Γ. It will be sometimes more convenient to work with M rather
than Γ. We will move freely between the two.

Proof of the lower bound: Let x be a large real number. Bombieri’s theorem
(which is “Riemann hypothesis on the average”) implies (see [Window, Prime
number theorem]) that for every ρ < 1

2
there exists at least one prime q with

q ∼ xρ such that #O(x, q) ∼ Li(x)
φ(q)

where Li(x) =
∫ x

0
log t

t
dt, φ is the Euler function

(so φ(q) = q − 1) and O(x, q) = {p| p prime ≤ x and p ≡ 1( mod q)}.
So we have:

P :=
∏

p∈O(x,q)

p ∼ ex/φ(q) ∼ ex1−ρ

and

L := #O(x, q) ∼ x

φ(q) log x
∼ x1−ρ

log x

Let’s now look at the congruence subgroups Γ(P ) of Γ. From the Strong Approx-
imation Theorem for arithmetic groups (see[Window, Strong Approximation]) it
follows that Γ/Γ(P ) = G(Z/PZ) and by the Chinese Reminder Theorem

G(Z/PZ) =
∏

p∈O(x,q)

G(Fp).

By Lang’s Theorem (see [Window, Algebraic groups]) G is quasi split over the
finite field Fp, so it has a one dimensional split torus, i.e., G(Fp) contains a
subgroup isomorphic to F∗p which is a cyclic subgroup of order p − 1. As p ∈
O(x, q), q|p− 1 and so F∗p and hence G(Fp) has a cyclic subgroup of order q, and
G(Z/PZ) has an elementary abelian q-group A of dimension L = #O(x, q). Now

by [Basic Counting] A has at least qL2/4 subgroups. Each of them when pulled
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back to Γ give rise to a subgroup of Γ containing Γ(P ) and hence of index at
most #G(Z/PZ) ∼ P d when d = dim(G).

So Γ has at least qL2/4 subgroups of index at most P d. Taking log we get:

log(q1/4L2

) = 1
4
L2 log q ∼ 1

4

x2(1−ρ)

log2 x
· ρ log x = ρ

4

x2(1−ρ)

log x

while log(P d) = d log P ∼ dx1−ρ Hence:

log(q1/4 L2

) ≥ ρ(1−ρ)
4d2

log2(P d)
log log(P d)

Let ρ → 1
2
, we get the lower bound for the theorem with a = 1

16d2 .

Remark. One can improve the result to get a better estimate of a - see[GL].
For example for Γ = SL2(Z) we get ??? Should we start with SL2(Z) as an
example???

Proof of the upper bound

Proposition 7.8. (“level ≤ index”) Let Γ = G(Z) as before and H a congruence
subgroup of Γ. Then H ≥ Γ(m) for some m ≤ [Γ : H].

Proof. To be given [can Babai-Cameron-Palfy replace the original proof??? ] �

Corollary 7.9.

Cn(Γ) ≤
n∑

m=1

s
(
G(Z/mZ)

)
The problem is therefore transformed now to a problem on finite groups. We

need the following Proposition, which is of independent interest:

Proposition 7.10. rank
(
G(Z/pαZ)

)
is bounded by a constant C independent of

p and α.

Proof. Here or in a window????? Note: the case α = 1, needs (as far as I know)
the CFSG-Pyber has an argument without (see [Lub]). Anyway, C can made
explicit. What is better: without CFSG but worse constant???

We can now complete the proof of the upper bound; by (7.9) we should estimate

s
(
G(Z/mZ)

)
. If m =

r∏
i=1

pei
i is a decomposition of m into a product of distinct

prime powers then r ≤ log m
log log m

(see [Window on Prime Number Theorem]). Thus

rank
(
G(Z/mZ)

)
= rank

( r∏
i=1

G(Z/pei
i Z)

)
≤ rC ≤ C

log m

log log m

where C is the constant from (7.10). By [Basic counting])

s
(
G(Z/mZ)

)
≤ |G(Z/mZ)|rank

(
G(Z/mZ)

)
≤ mdC log m

log log m
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when d = dim(G). So altogether Cn(Γ) ≤ n · ndC log n
log log n as promised. �
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7.2. Counting congruence subgroups: the positive characteristic case.

Let k be a global field of characteristic p > 0, θ its ring of integers, S a
finite set of (finite) valuations of k and θs = {x ∈ k|v(x) ≥ 0∀v /∈ S}. Let
G be a connected, simply connected, simple k-group with a fixed embedding
G ↪→ GLr. Let Γ = G(θs) = G∩GLr(θs). As before, a subgroup ∆ of Γ is called
a congruence subgroup if there exists an ideal 0 6= A/ θs such that ∆ contains
the principal congruence subgroup Γ(A) = {g ∈ Γ|g ≡ Ir( mod A)}.

Let τn(Γ) denote the number of congruence subgroups of Γ of index at most n.

Theorem 7.11. There exist two positive constant a and b such that for all large
n,

na log n ≤ τn(Γ) ≤ nb(log n)2 .

Remark 7.12. Unfortunately, we cannot determine the rate of growth if τn(Γ):

it is somewhere between nlog n to n(log n)2.

The proof of the lower bound is quite easy: Note that τn(Γ) = sn

(
G(θ̂s)

)
when

θ̂s is the profinite completion of θs and G(θ̂s) is the congruence completion of

Γ. Now, G(θ̂s) = π
v/∈s

G(θv) where θv is the v − adic completion of θ, i.e., the

completion with respect to a maximal ideal m = mv. In particular, K = G(θv)

is a quotient of G(θ̂s). The subgroup growth rate of G(θv) is at least nlog n (in
fact, equal to nlog n, see §4.4). Indeed, let m̄v be the maximal ideal of θv, and m̄v

be the maximal ideal of θv, and m̄i
v its i-th power. Denote Ki = Ker

(
G(θv) →

G)thetav/m̄
i
v)

)
, then one can easily check that:

(i) logp[K : Ki] ∼⊂ i for some constant c.
(ii) [Ki, Ki] ⊆ K2i

(iii) Kp
i ⊆ kpi

This implies that ki/K2i is an elementary abelian p-group of rank approxi-

mately ci̇. Thus there are at least p
1
4
c2i2 subgroups between Ki and K2i all whose

index in K is at most p2ci. This proves the lower bound.
To prove the upper bound we note first that as G(θ̂) is mapped onto G(θ̂s),

we can assume S = ∅, so assume Γ = G(θ). As G is simple over k, it is the
restriction of scalars of an absolutely simple group defined over a finite extension
of k. We can therefore, without loss of generality, assume that G is absolutely
simple. As before τn(Γ) = sn

(
G(θ̂)

)
and we will work with G(θ̂).

Proposition 7.13. Every open subgroup H of L = G(θ̂) of index n has a subgroup
HL subnormal in L and of index at most nc in L, for a suitable constant c.

Proof. The Proposition actually says that L satisfies the “polynomial subnormal
core condition”. As shown in Window , a profinite group satisfying the
Babai-Cameron-Palfy (BCP) condition also satisfies the polynomial subnormal
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core condition. It is easy to see that L satisfies BCP since every non-abelian
upper composition factor of L is a quotient of G(Fq) for some q a power of p. �

Proposition 7.14. Every subnormal subgroup of L = G(θ̂) of index n contains
a principal congruence subgroup of index at most nc′ log n in L, for a suitable
constant c′.

Before proving Proposition 3, let us show how Propositions 2 and 3 imply
Theorem 1. If H is a subgroup of K of index n, it contains a subnormal subgroup
HL of index at most nc and the latter contains a principal congruence subgroup
of index at most ncc′(log nc) = nc2c′ log n = nc1 log n for c1 = c2c′.

Now the number of ideals of index m in θ is at most mc2 and if A/θ is an ideal of
index m then the principal congruence subgroup Γ(A) is of index approximately
mc3 when c3 = dim G. Thus the number of principal congruence subgroups of
index at most nc1 log n is at most the number of ideals of index at most nc4 log n.

Hence ∆n(K) ≤ nc4 log nsn

(
G(θ/A)

)
where A is an ideal in θ of index at most

nc1 log n and so G(θ/A) is a finite group of index at most nc5 log n.
By (Window ) the number of subgroups of index n in a group of order g is

at most g2 log n. Hence sn

(
G(θ/A)

)
≤ n(2c5(log n)2 and so τn(Γ) is at most nb(log n)2

for a suitable constant b.
We turn now to the proof of Proposition 3. let us refresh our notations:
Let V = Vk be the set of (finite) valuations of k. For v ∈ V , there is a maximal

ideal mv of θ inducing v. Let θr be the completion of θ with respect to v (or
equivalently with respect to mv, i.e. θv =→

←
lim θ/mi

v) and let mv be the unique

maximal ideal of θv. Denote Lv = G(θv) and

Lv(i) = Ker
(
G(θv) → G(θv/m

i
v)

)
.

So, L = G(θ̂) = π
v∈V

Lv.

Let W (Lv) be the weak-Frattini of Lv, i.e., the intersection of the maximal open
normal subgroups of Lv. Then for almost every v ∈ V, W (Lv) contains Lv(1). In
fact, it is almost always equal to Zv, where Zv is the preimage in Lv = G(θv)
of the center Z = Z

(
G(θv/mv)

)
, since G(θv/mv)/z is a finite simple group, for

every v outside a finite set S.
Let now H be a subnormal subgroup of L, so Hv = H ∩ Lv is a subnormal

subgroup of Lv. We claim that for v /∈ s, either Hv = Lv or Hv ⊆ W (Lv).
Indeed, the image of Hv mod W (Lv) is a subnormal subgroup of the simple
group L/W (Lv) and hence it is either onto, in which case H = Lv, or trivial, in
which case Hv ≤ W (Lv).

Let V0(H) = {v ∈ V |H ∩ Lv 6= Lv}. We claim that if v ∈ V0(H), then
πv(H) ≤ Zv where πv is the projection from L to Lv. Again, it suffices to prove
this under the assumption that πv(H) / Lv, which is then clear.
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This shows that H is contained in the group /∈
v

V0(H) → πLv× ∈
v

V0(H) →

|PIZv. Now, if H is of index n, then it follows that |V0(H)| = 0
(

log n
log log n

)
by

the Prime Number Theorem (for characteristic p) since [Lv : Zv] is of order
approximately [θv : mv]

d where d is a constant (the dimension of G).
Moreover, if V (H) = V0(H) ∪ S, then for every v /∈ V (H), H contains Lv

(since H ∩ Lv = Lv). We can therefore consider H as a subgroup of index n in
∈
v

V (H) → πLv. The results and methods of §4.4 now show that H contains a

principal congruence subgroup corresponding to ∈
v

V (H) → πmc log n
v , where c is

some constant. As the index of ∈
v

V (H) → πmv in ∈
v

V (H) → πθv is at most nc′ ,

Proposition 3 is now proved.
Warning to Dan: (1) There is something to complete here. §4.4 is

under the assumption of “perfect”. Thios is almost always true, but
when not something should be said (I am sure the result is basically
still correct – maybe c will be larger). In my Invent. paper, I made
assumptions on G, but we prefer not to, as we want to use the theorem
for a lower bound on all linear groups in charp.

(2) There is also a notational problem: The ring of integers in k is defined
w.r.t. a choice of a “valuation at ∞”. How to write this? I meant here that θ is
the integral closure in k of Fp[t], if k is a finite extension of Fp(t).


