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Abstract. We give estimates on the number ALH(x) of conjugacy classes of arithmetic lattices
Γ of covolume at most x in a simple Lie group H. In particular, we obtain a first concrete estimate
on the number of arithmetic 3-manifolds of volume at most x. Our main result is for the classical
case H = PSL(2,R) where we show that

lim
x→∞

log ALH(x)

x log x
=

1

2π
.

The proofs use several different techniques: geometric (bounding the number of generators of Γ
as a function of its covolume), number theoretic (bounding the number of maximal such Γ) and
sharp estimates on the character values of the symmetric groups (to bound the subgroup growth
of Γ).

1. Introduction

Let H be a noncompact simple Lie group with a fixed Haar measure µ. A discrete subgroup
Γ of H is called a lattice if µ(Γ\H) < ∞. A classical theorem of Wang [Wa] asserts that if H is
not locally isomorphic to PSL2(R) or PSL2(C), then for every 0 < x ∈ R the number LH(x) of
conjugacy classes of lattices in H of covolume at most x is finite. This result was greatly extended
by Borel and Prasad [BP]. In recent years there has been an attempt to quantify Wang’s theorem
and to give some estimates on LH(x) (see [BGLM, Ge1, GLNP, Be, BL]).

If H = PSL2(R) or PSL2(C), then LH(x) is usually not finite (and even uncountable in the
first case). Still Borel [Bo] showed that the number ALH(x) of conjugacy classes of arithmetic
lattices in H of covolume at most x is finite for every x ∈ R.

In this paper we study the asymptotic behavior of ALH(x) when x→∞. Our first result gives
a general upper bound.

Theorem 1.1. Assume that H is of real rank one. There exists a constant b = b(H,µ) such that
ALH(x) ≤ xbx for all x� 0.

Theorem 1.1 is also true if the rank of H is greater than one, see Remark 5.1 below and [Ge2],
but for most higher rank groups much better estimates are given in [BL]. Our next result shows
that Theorem 1.1 is best possible in general.

Theorem 1.2. For H = PSO(n, 1) there exists a constant a = a(n) > 0 such that ALH(x) ≥ xax
for all x� 0.
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One novelty of the current work compared to [BGLM] and [Ge1] is that it deals with orbifolds
rather than manifolds, i.e. we do not require the lattices to be torsion free. However, it is
clear from the proof that the lower bound remains valid when restricting only to conjugacy
classes of arithmetic torsion free lattices. Another novelty is that it covers the case of H =
PSO(3, 1) = Isom(H3), for which the result translates to: the number of arithmetic hyperbolic 3
orbifolds (or manifolds) of volume at most x is roughly xcx for large x. Prior to this work no
explicit upper bound was known in this case, as well as for the case H = PSO(2, 1). The upper
bound obtained here confirms the expected estimate which follows from the Lehmer conjecture
concerning algebraic integers (cf. [Ge1]).

The proofs of Theorems 1.1 and 1.2 allow one to compute concrete constants, but in general it
seems very difficult to obtain sharp estimates for these constants. The main part of this paper is
dedicated to the classical case H = SO(2, 1)◦ ∼= PSL2(R) where we obtain a very sharp estimate:

Theorem 1.3. Let H = PSL2(R) endowed with the Haar measure induced from the Riemanian
measure of the hyperbolic plane H2 = PSL2(R)/PSO(2). Then

lim
x→∞

log ALH(x)
x log x

=
1

2π
.

The proof of Theorem 1.3 shows:

Corollary 1.4. Let AS(g) be the number of arithmetic Riemann surfaces of genus g. Then

lim
g→∞

log AS(g)
g log g

= 2.

Let us now describe the main ingredients of the proofs. We start with a result on the number
d(Γ) of generators of lattices Γ, which is of independent interest.

Theorem 1.5. Let H be a connected simple Lie group of real rank one. Then there is an effectively
computable constant C = C(H) such that for any lattice Γ < H we have d(Γ) ≤ C · vol(Γ\H).

The proof of Theorem 1.5 is geometric and valid for all lattices, not necessarily arithmetic. Note
that Theorem 1.5 implies the celebrated Kazhdan–Margulis theorem [KM] asserting that there is
a common lower bound on the covolumes of all lattices in H. Indeed, d(Γ) ≥ 2⇒ vol(Γ\H) ≥ 2

C .
It also has several other applications, for instance, it gives a linear bound on the first Betti number
of orbifolds in terms of their volume (cf. [FGT] and see Remark 2.7 below and [Ge2]).

Another essential component in our proofs is the following.

Theorem 1.6. Let MALuH(x) (resp. MALnuH (x)) denote the number of conjugacy classes of
maximal uniform (resp. non-uniform) irreducible arithmetic lattices of covolume at most x in
H = PGL2(R)a × PGL2(C)b. Then:

(i) There exists a positive constant α = α(a, b), and for every ε > 0 a positive constant
β = β(ε, a, b), such that

xα ≤ MALuH(x) ≤ xβ(log x)ε , for x� 0.

(ii) There exist positive constants α′ = α′(a, b) and β′ = β′(a, b) such that

xα
′ ≤ MALnuH (x) ≤ xβ′ , for x� 0.
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Some yet unproved number-theoretic conjectures imply that a polynomial upper bound is true
also in the first case (see [Be]).

Theorem 1.6 was proved in [Be] for higher absolute rank groups but the cases of PSL2(R) and
PSL2(C) which are the most crucial for us were left open; in particular, Theorem 1.6 answers a
question from [Be].

The general strategy of the proof of Theorem 1.6 is similar to [Be] but some special consider-
ations are needed for small rank. (Note that in [Be] the proof is easier for very high rank - see
Proposition 3.3 there). The seminal work of Borel [Bo] which gives a detailed description of the
maximal arithmetic lattices in PGL2(R)a×PGL2(C)b combined with some ideas of Chinburg and
Friedman [CF] enables us to prove it. Various number theoretic estimates are needed along the
way.

The fact that the number of maximal arithmetic lattices grows slowly reduces the problem to
the subgroup growth of a given such maximal lattice Γ.

Recall now that for any finitely generated group Γ, we have sn(Γ) ≤ (n!)d(Γ), where sn(Γ)
denotes the number of subgroups of index at most n in Γ. This, combined with Theorems 1.5
and 1.6, proves Theorem 1.1. The proof of the precise bound in Theorem 1.3 requires more.

For PSL2(R) the ”miracle” is that the covolume of Γ and the subgroup growth of Γ are both
controlled by χ(Γ) – the Euler characteristic of Γ. The covolume is −2πχ(Γ) by the Gauss-
Bonnet formula, and the number sn(Γ) of subgroups of index at most n in Γ is n(−χ(Γ)+o(1))n, as
was proved by Liebeck and Shalev [LiSh]. Thus the contribution of Γ to ALH(x) is roughly

s x
−2πχ(Γ)

(Γ) = (
x

−2πχ(Γ)
)
(−χ(Γ) 1

−2πχ(Γ)
+o(1))x

= x( 1
2π

+o(1))x,

which, on the face of it, proves Theorem 1.3. However, there is a delicate point here: the behavior
of the error term o(1) above depends on Γ. This can be a serious problem: the issue is illustrated
in [BL] where it is shown, in contrary to a conjecture from [BGLM] and [GLNP], that for high
rank Lie groups the growth of the total number of arithmetic lattices is strictly faster than those
arising from finite index subgroups of a given lattice. Our next result yields a uniform bound on
the subgroup growth of Fuchsian groups and overcomes this difficulty:

Theorem 1.7. There exists an absolute constant c such that for every Fuchsian group Γ and for
every n ∈ N we have

sn(Γ) ≤ (cn)−χ(Γ)n.

The proof is a modification of the one given in [LiSh], it relies heavily on bounds for the
character values of symmetric groups.

Theorems 1.6 and 1.7 imply the upper bound in Theorem 1.3 (see Section 5). The lower bounds
in Theorems 1.2 and 1.3 are proved by analyzing the subgroup growth of specific lattices. There is
one delicate point which has to be considered here: finite index subgroups of Γ may be conjugate
in H without being conjugate in Γ. An argument which uses the congruence topology of Γ solves
this problem and provides the lower bounds in all cases (see Section 5).

Note added in proof: Recently A. Eisenmann [E] proved an analogous result for H = PSL2(k),
where k is a p-adic field. His result says that if k does not contain ζ + ζ−1 (where ζ is the p’th
root of unity) then lim ALH(x)

x log x = q − 1, where q is the order of the residue field of k (here µ is
normalized to give value 1 for the maximal compact subgroup of H.)
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2. On the number of generators of a lattice

In this section we give a proof of Theorem 1.5. Since the center of H is finitely generated,
replacing H by its adjoint group we may assume it is center free. We will assume below that
H is not locally isomorphic to PSL2(R). For H = PSL2(R) the theorem follows easily from the
Gauss–Bonnet formula and the explicit presentation of lattices there (cf. Section 4).

Let K < H be a maximal compact subgroup and X = H/K the associated rank 1 Riemanian
symmetric space. Then H is a connected component of the group of isometries of X, and by our
assumption dimX ≥ 3. For g ∈ H, x ∈ X we denote by

dg(x) = d(x, g · x)

the displacement of g at x, and by

Min(g) := {x ∈ X : dg(x) = inf(dg)}
the (possibly empty) set where dg attains its infimum. Recall that there are 3 types of isometries
g of X:

• g is elliptic if it has a fixed point in X. In this case the set of fixed points Fix(g) = Min(g)
is a totally geodesic submanifold.
• g is hyperbolic if Min(g) 6= ∅ but Fix(g) = ∅. In this case Min(g) is an infinite two sided

geodesic, it is called the axis of g.
• g is parabolic if Min(g) = ∅. In this case g has a unique fixed point p at the visual

boundary ∂X of X, inf(dg) = 0 and a geodesic c : R → X satisfies c(∞) = p if and only
if limt→∞ dg(c(t)) = 0.

Moreover, if g1, . . . , gk ∈ H are commuting elements which are simultaneously elliptic (resp.
hyperbolic, resp. parabolic), then they have a common fixed point (resp. axis, resp. fixed point
at ∂X).

Recall the classical Margulis lemma (cf. [Th, Chapter 4]):

Lemma 2.1. There is a constant εH > 0, depending on H, such that if Λ < H is a discrete group
generated by {γ ∈ Λ : dγ(x) ≤ εH} for some x ∈ X, then Λ virtually nilpotent.

Fix once and for all
ε ≤ min{εH

10
, 1}.

Let Γ be a lattice in H. Denote by M = Γ\X the corresponding orbifold, and by π : X → M

the canonical (ramified) covering map. For a subset Y ⊂ M let Ỹ = π−1(Y ) be its preimage in
X = M̃ .

Let
Ñ := ∪{Min(γ) : γ ∈ Γ \ {1}, inf dγ < ε}.

Since Γ acts properly discontinuously on X, Ñ is a locally finite union of the sets Min(γ). Note
that since H is connected, any g ∈ H preserves the orientation of X, and in particular if g is
elliptic codimX(Fix(g)) ≥ 2. As Ñ is a union of geodesics (axes of hyperbolic elements) and fixed
sets of elliptic elements, the assumption that dimX ≥ 3 implies that codimX(Ñ) ≥ 2. It follows
that X \ Ñ is connected.

For γ ∈ Γ \ {1} and x ∈ X \ Ñ set

d′γ(x) = dγ(x)− inf dγ .
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Let f : R>0 → R≥0 be a smooth function which tends to ∞ at 0, strictly decreases on (0, ε]
and is identically 0 on [ε,∞), and set for x ∈ X \ Ñ

ψ̃(x) :=
∑

γ∈Γ\{1}, inf dγ≤ε

f(d′γ(x)).

since f(d′γ(x)) 6= 0 ⇒ dγ(x) ≤ 2ε and Γ is discrete, there are only finitely many non-zero sum-
mands for each x. Thus ψ̃ is a well defined Γ invariant smooth function on X \ Ñ . Note that
ψ̃(x) tends to ∞ as x approaches Ñ . Let ψ : M \N → R≥0 be the induced function on M \N .

For a ≥ 0, set
ψ̃≤a := {x ∈ X \ Ñ : ψ̃(x) ≤ a},

and ψ≤a = π(ψ̃≤a) = {x ∈ X \ Ñ : ψ(x) ≤ a}. Note that dγ(x) ≥ ε for every x ∈ ψ̃≤0 and
γ ∈ Γ \ {1}. Thus, the injectivity radius of M at any point in ψ≤0 is at least ε

2 .

Lemma 2.2. For x ∈ X \ Ñ , the gradient ∇ψ̃(x) = 0 if and only if ψ̃(x) = 0.

The proof relies on the following simple observations which follow directly from the fact that
X has strictly negative sectional curvature:

(1) If c1(t), c2(t) are two disjoint unit speed geodesics with c1(−∞) = c2(−∞), then d(c1(t), c2(t))
is a strictly increasing smooth function of t, and hence d

dtd(c1(t), c2(t)) > 0 for every t. In
particular, if g · p = p for some g ∈ H, p ∈ ∂X and c is a geodesic with c(−∞) = p, then
d
dtdg(c(t)) > 0 for all t, provided c is not g invariant.

(2) Suppose that A ⊂ X is a closed convex set and let PA : X → A be the nearest point
retraction. Then d(PA(x), PA(y)) < d(x, y) for any x, y ∈ X \ A. We will say that a
geodesic ray c : [0,∞)→ X starting at a point of A is perpendicular to A if PA(c([0,∞)) =
c(0). Then if c1, c2 : [0,∞) → X are two different unit speed rays perpendicular to A,
the function d(c1(t), c2(t)) is convex and strictly increasing. Hence if c : [0,∞) → X is
perpendicular to A and g is an isometry which leaves the set A invariant but moves c(t),
then d

dtdg(c(t)) > 0 for any t > 0.

Note that (1) and (2) fail to hold in higher rank symmetric spaces. In rank one both assertions
follow for instance from the well known Flat Strip Theorem: Two parallel segments in a Hadamard
manifold bound a flat parallelogram, in particular, if the space has strictly negative curvature,
then any two parallel segments are contained in a common geodesic (cf. [Ba, Corollary 5.8]).

Proof of Lemma 2.2. Let x be a point inX\(Ñ∪ψ̃≤0). Let Σx be the finite set of elements in Γ\{1}
which contribute non-zero summands to the function ψ̃, i.e. those σ for which f(d′σ(x)) > 0. We
will show that there is a geodesic c through x (say, x = c(t0)) such that d

dt |t0dσ(c(t)) > 0, ∀σ ∈ Σx.
This will imply that

∇ψ̃(x) · ċ(t0) =
∑
σ∈Σx

f ′(d′σ(x))
d

dt
|t0dσ(c(t)) < 0,

and in particular that ∇ψ̃(x) 6= 0.
Let ∆x = 〈Σx〉. By Lemma 2.1, ∆x admits a normal nilpotent subgroup Λx of finite index in

∆x.
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Suppose first that ∆x is a finite group. Let y be a common fixed point of Σx. Then as
dσ(x) > 0 = dσ(y) for all σ ∈ Σx, we derive from observation (2) above (by considering {y} as a
closed convex set) that the geodesic pointing from y to x does the job.

Suppose now that ∆x is infinite. Let γ be a nontrivial central element of the nilpotent group
Λx, and let C∆x(γ) be the conjugacy class of γ in ∆x. Then |C∆x(γ)| ≤ [∆x : Λx], C∆x(γ) is
contained in the center of Λx and consists of elements which are simultaneously elliptic, hyperbolic
or parabolic. In the first case, let A be the set of common fixed points of the elements of C∆x(γ),
in the second case let A be the common axis, and in the third case let p ∈ ∂X be the common
fixed point at infinity. Note that in the second case, as the geodesic A is ∆x-invariant, we derive
that ∆x consists of semisimple elements and A = Min(α) = axis(α) for every α ∈ ∆x which
is hyperbolic. It follows that A does not contain our point x, for otherwise Σx must consist of
elliptic elements preserving A and as ∆x is infinite, there are α1, α2 ∈ Σx without a common fixed
point. However, since the αi preserve A and dαi(x) < ε, the element α1α2 is hyperbolic with axis
A and displacement < ε, a contradiction (either to the assumption that x ∈ A or to the one that
Σx has no hyperbolic elements). In the first two cases we can take c to be the geodesic through
x perpendicular to the ∆x-invariant closed convex set A, and in the third case we can take c to
be the geodesic through x with c(−∞) = p. The result follows from observations (1) and (2)
above. �

Since limt→0 f(t) = ∞, it follows that for any finite value a, the injectivity radius is bounded
from below on the closed set ψ≤a. Hence ψ≤a is bounded, for otherwise it would admit an
infinite 1-discrete subset, yielding infinitely many disjoint embedded balls of a fixed radius in
M , contradicting the finiteness of vol(M). Therefore ψ≤a is compact for any a < ∞. Thus the
function ψ is proper. Applying standard Morse theory we get:

Proposition 2.3. For every positive a, ψ≤a is a deformation retract of M \N .

Proof. By Lemma 2.2 the proper smooth function ψ : M \ N :→ R≥0 has no positive critical
values. Thus the proposition follows from [M, Theorem 3.1]. �

For a > 0, we will denote by ra : M \ N → ψ≤a the retraction induced by the deformation
retract supplied by Proposition 2.3.

Corollary 2.4. For every a ≥ 0 the set ψ̃≤a is non empty and connected.

Proof. For a > 0 this immediately follows from Proposition 2.3, and for a = 0 it follows since
ψ̃≤0 =

⋂
{ψ̃≤a : a > 0} a descending intersection of the sets ψ≤a. �

Since ψ̃≤a is Γ–invariant and Γ acts freely on it, we conclude:

Corollary 2.5. For every a > 0, Γ is a quotient of π1(ψ≤a) – the fundamental group of ψ≤a =
Γ\ψ̃≤a.

Now recall that the injectivity radius of M at any point of ψ≤0 is at least ε/2. Let S be a
maximal ε/2 discrete subset of ψ≤0. For t > 0 denote by ν(t) the volume of a t–ball in X. Since
the ε/4–balls centered at points of S are pairwise disjoint and isometric to an ε/4–ball in X, the
size of S is bounded by vol(M)/ν( ε4). Moreover, since S is maximal, the union of the ε/2–balls
centered at points of S covers ψ≤0. Denote this union by U . Since U is a neighborhood of the
compact set ψ≤0 and ψ is continuous, choosing a0 > 0 sufficiently small, we have ψ≤a0 ⊂ U .



COUNTING ARITHMETIC LATTICES AND SURFACES 7

Lemma 2.6. π1(ψ≤a0) is a quotient of π1(U).

Proof. The inclusion i : ψ≤a0 → U induces a map i∗ : π1(ψ≤a0) → π1(U), and the retraction ra0

restricted to U , ra0 : U → ψ≤a0 induces a map r∗a0
: π1(U)→ π1(ψ≤a0). Since ra0 ◦ i is the identity

on ψ≤a0 , we see that r∗a0
◦ i∗ is the identity on π1(ψ≤a0). It follows that r∗a0

: π1(U) → π1(ψ≤a0)
is onto. �

Since M is negatively curved, the ε/2–balls centered at points of S are convex, and hence any
non-empty intersections of such is convex, hence contractible. Thus these balls form a good cover
of U , in the sense of [BT] (see also [Ge1]), and the nerve N of this cover is homotopic to U . Now
π1(U) ∼= π1(N ) has a generating set of size ≤ E(N ) – the number of edges of the 1–skeleton N 1.
To see this one may choose a spanning tree T for the graph N 1 and pick one generator for each
edge belonging to N 1 \ T . Finally note that the edges of N correspond to pairs of points in S
which are of distance at most ε. Thus the degrees of the vertices of N are uniformly bounded, in
fact, one can show that ν(1.25ε)/ν(0.25ε) is an upper bound for the degrees. Thus

d(Γ) ≤ |E(N )| ≤ ν(1.25ε)/ν(0.25ε) · |S| ≤ ν(1.25ε)
ν(0.25ε)2

· vol(M).

Remark 2.7. It has been recently shown that Theorem 1.5 holds for all semisimple Lie groups,
with no rank assumption (see [Ge2]).

3. Counting maximal arithmetic subgroups

The main goal of this section is to prove Theorem 1.6. Only the upper bound is needed for the
main result of this paper (and a much weaker estimate suffices).

For simplicity of notations we will assume throughout the proof that H = PGL2(R) and remark
at various points if non-trivial modifications are needed for the general case. (For a proof of an
even more general result including products of PGL2(k), where k is any characteristic 0 local
field, see the forthcoming thesis [E].) We normalize the Haar measure on H so that for a lattice
Γ its covolume is equal to the hyperbolic volume of the corresponding locally symmetric space.
Borel [Bo] described in detail the maximal arithmetic lattices in H. We will follow the exposition
of his work in [MR].

Arithmetic lattices in H are all obtained in the following way: Let k be a totally real number
field of degree d = dk, and A a quaternion algebra over k. Assume that for all the archimedean
valuations v ∈ V∞ except for a single one v0, A ramifies over kv(∼= R), i.e., A(kv) is isomorphic
to the Hamiltonian quaternion algebra, while A(kv0) ∼= M2(R). Let O = Ok be the ring of
integers in k and let D be an order in A(k), i.e., D is a finitely generated O-submodule of
A(k) which is also a subring that generates A(k) over k. Furthermore, assume that D is a
maximal order in A. Let D∗ be the group of invertible elements of D. Now, D∗ is discrete in∏
v∈V∞(A(kv))∗ ∼= U(2)d−1 ×GL2(R), and its projection Γ to PGL2(R) gives a discrete subgroup

of PGL2(R). A subgroup of H = PGL2(R) which is commensurable with such Γ is called an
arithmetic subgroup of H. It is always a lattice, i.e., a discrete subgroup of finite covolume in
H. It is non-uniform if and only if k = Q and A is the split quaternion algebra M2(Q), i.e., Γ
is commensurable to PGL2(Z). All the arithmetic lattices of PGL2(R) are obtained in this way
and two arithmetic lattices of H are commensurable if and only if they come, in the process as
above, from the same algebra A. So for each such algebra A we can associate a well defined
commensurability class of arithmetic lattices in H which is denoted by C(A).
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Now, a quaternion algebra A over k is completely determined by the finite set of valuations
Ram(A), a subset of the set of all valuations V of k which consists of those v for which A(kv)
ramifies (i.e., A(kv) is a division algebra), while for v ∈ V \ Ram(A), A(kv) splits (namely,
isomorphic to M2(kv)). The subset Ram(A) must be of even size; in our case it is formed by exactly
d− 1 real valuations and a subset Ramf (A), possibly empty, of non-archimedean valuations. The
set Ramf (A) can be identified with a subset of the prime ideals of O. Let ∆(A) =

∏
P∈Ramf (A) P,

the product of all prime ideals at which A ramifies.
Borel showed that the commensurability class C(A) has infinitely many non-conjugate maximal

elements but only finitely many of them have bounded covolume. The minimal covolume in the
class C(A) is:

(1)
8π∆k

3/2ζk(2)
∏
P|∆(A)(N(P)− 1)

(4π2)dk [Rf,∞∗ : (Rf ∗)2][2J1 : J2]
,

see [MR, Corollary 11.6.6, p. 361 and (11.6), p. 333]. (Note that in [MR, (11.28), p. 361] the
formula is given for PGL2(C), in which case the factor 8π in the nominator is replaced by 4π2.)

Here ∆k is the absolute value of the discriminant of k, ζk is the Dedekind zeta function of k
and N(P ) denotes the norm of the ideal P , i.e. the order of the quotient field O/P . For the other
notations we refer to [MR, p. 358]. For our purpose it is enough to know the following estimates:

(2) 1 ≤ [Rf,∞∗ : (Rf ∗)2][2J1 : J2] ≤ 2d+|Ramf (A)|hk,

where hk is the class number of k (see [MR, pp. 358–360]).

We can now begin with the proof of Theorem 1.6. Assume that x is a large real number. We
first bound the number of possible fields k which can contribute a maximal arithmetic lattice of
covolume at most x. Then, given k, we will bound the number of possible quaternion algebras A
and finally, given k and A, we will estimate the number of conjugacy classes of maximal lattices
in C(A) of covolume at most x.

Lemma 3.1. There exist two constants c1 and c2 such that if for some quaternion algebra A over
k as above C(A) contains a lattice of covolume at most x in PGL2(R), then dk ≤ c1 log x+ c2.

Proof. By [CF, Lemma 4.3], we know that if Γ ∈ C(A), then

(3) covol(Γ) > 0.69 exp(0.37dk −
19.08

h(k, 2, A)
),

where h(k, 2, A) is the order of a certain quotient of the class group of k, in particular, 1 ≤
h(k, 2, A) ≤ hk. This lemma is one of the main technical results of [CF], its proof uses a variety
of number-theoretic techniques.

We obtain

(4) 0.69 exp(0.37dk − 19.08) ≤ x,

and so

(5) dk ≤ 3 log x+ 21.

�
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Lemma 3.2. There exist constants c3, c4 ∈ R>0 such that if for some A and k as above there is
Γ in C(A) of covolume ≤ x, then ∆k ≤ c3x

c4.

Proof. Borel and Prasad [BP, (7) on p. 143] deduced from Brauer-Siegel Theorem and a result
of Zimmert that

(6) hk ≤ 102(
π

12
)dk∆k.

Combining (1), (2) and (6), we obtain

(7)
8π∆k

3/2ζk(2)
∏
P∈Ramf (A)(N(P )− 1)

(4π2)dk2dk+|Ramf (A)|102( π12)dk∆k

≤ x.

Now N(P )−1
2 ≥ 1 unless |N(P )| = 2, which can happen for at most dk primes in Ramf (A) and

for those N(P )−1
2 = 1

2 . Also, ζk(2) ≥ 1. Thus from (7) we deduce

(8) x ≥ 8π∆k
1/2

102(4π2)dk22dk( π12)dk
=

8π
102

∆
1
2
k

(4
3π

3)dk

Now, use (5) to deduce that
8π
102

∆
1
2
k ≤ x(

4
3
π3)3 log x+21,

which implies the lemma. �

We can now appeal to a theorem of Ellenberg and Venkatesh ([EV], [Be, Appendix]):

Theorem 3.3. (i) Let N(x) denote the number of isomorphism classes of number fields k
with ∆k ≤ x. Then for every ε > 0, there is a constant c5(ε) such that logN(x) ≤
c5(ε)(log x)1+ε for every x ≥ 2.

(ii) For a fixed d, let Nd(x) be the number of isomorphism classes of number fields k of degree at
most d with ∆k ≤ x. Then there exist c′5 = c′5(d) and c′′5 = c′′5(d) such that Nd(x) ≤ c′5 ·xc

′′
5

for all sufficiently large x.

We can deduce from Lemma 3.2 and Theorem 3.3 that for every ε > 0, the number of number
fields k which contribute lattices of covolume at most x is bounded by xc6(ε)(log x)ε for a constant
c6(ε) and x � 0. Given one of these fields k with degree dk, we now estimate the number of
relevant A’s. This number is bounded from above by the number of possible ways to choose an
even set of valuations Ram(A) consisting of dk − 1 real valuations and Ramf (A), which satisfy

(7). There are dk ways to choose the dk − 1 real valuations. Now, 8π∆
1
2
k ≥ 1 and also ζk(2) ≥ 1,

by Lemma 3.1, dk ≤ c1 log x+ c2, and hence by (7) we get

(9)
1

2|Ramf (A)|

∏
P∈Ramf (A)

(N(P )− 1) ≤ c7x
c8 ,

for some absolute constants c7 and c8. The number of primes P with N(P ) = 2 or 3 is at most
2dk. For them N(P )−1

2 ≥ 1
2 and for all the other primes N(P )−1

2 ≥ N(P )log4( 3
2

). We can therefore
deduce that:

(10)
∏

P∈Ramf (A)

N(P ) ≤ xc9 ,
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for some absolute constant c9.
Note that ∆(A) =

∏
P∈Ramf (A) P is a square free ideal of norm at most xc9 , whose factors

determine A modulo the dk choices of the unique real valuation of k in which A splits.

Lemma 3.4. Let Ik(x) denote the number of ideals of Ok of norm less than x. Then Ik(x) ≤
ζk(2)x2 ≤ (π

2

6 )dkx2.

Proof. Ik(x) = a1 + a2 + . . . + a[x] where an is the number of ideals of norm n. At the same
time ζk(s) =

∑∞
n=1 ann

−s. Hence, for every large x, ζk(2)x2 ≥ Ik(x). It is easy to see that
ζk(2) ≤ ζQ(2)dk and it is well known that ζQ(2) = π2

6 . �

Again, as dk = O(log x), we can deduce from Lemma 3.4 and (10) that given k, the number
of possibilities for ∆(A) is polynomial in x. So all together we now have a bound of the form
xc(ε)(log x)ε for the number of quaternion algebras which give rise to lattices of covolume ≤ x, or,
in other words, for the number of commensurability classes C(A) with representatives of covolume
at most x. Before continuing, let us mention that if one is interested in non-uniform lattices there
is at most one such A (i.e., k = Q and A = M2(Q)) and exactly one when x is large enough. This
is the case for PGL2(R). For general H = PGL2(R)a × PGL2(C)b this number is polynomial by
Theorem 3.3 (ii) since the degree of the field of definition of a non-uniform lattice in such H is
a+ 2b.

Now fix k and A, or, equivalently, Ram(A). We need to count the maximal lattices within the
class C(A). In [MR, Section 11.4] a class m(A) of lattices in C(A) is described which essentially
gives the maximal subgroups in C(A), namely, it contains all the maximal ones but maybe some
more. We will show that even the total number of all of them is polynomial in x. An element
of m(A) is denoted by ΓS,D where D is a maximal order in A (in [MR] it is denoted by O but
we prefer to use D as O for us is the ring of integers in k) and S is a finite set of finite primes
of k disjoint from Ramf (A). When S is the empty set we get the group Γ∅,D. This is a group
of the minimal covolume in C(A) whose covolume is given by (1). Up to conjugacy, the number
of such groups is the same as the number of conjugacy classes of maximal orders D in A. This
number is called the type number of A (cf. [MR, Section 6.7]). The type number is a power
of 2 [MR, Corollary 6.7.7]) which divides hk2dk−1 (see [MR, eq. (6.13) p. 221]). Recall that
dk = O(log x) (by Lemma 3.1). On the other hand by (6), hk ≤ 102( π12)dk∆k and by Lemma 3.2,
∆k is polynomially bounded in x. Thus, the type number of A is also polynomially bounded in
x. We can therefore fix D and count the number of possibilities for S. The exact form of ΓS,D is
described in [MR, Section 11.4], but for our current purpose what is only relevant is its covolume
which is given by Theorem 11.5.1 on page 357 there:

Proposition 3.5.
covol(ΓS,D)
covol(Γ∅,D)

= 2−m
∏
P∈S

(N(P ) + 1) for some 0 ≤ m ≤ |S|.

Recall that the covolume of Γ∅,D is given by (1), but at this point we do not need it. Just recall
that a well known result of Siegel asserts that for all lattices Γ in PGL2(R), covol(Γ) ≥ π

42 . (Note
that in both cases G = PSL2(R) and G = PGL2(R) we have used the measure induced from the
hyperbolic structure on G/K = H2. Now the lattice of minimal covolume in PGL2(R) has as
fundamental domain the pull back of the triangle (π2 ,

π
3 ,

π
7 ) while its intersection with PSL2(R)

is of minimal covolume there but needs two copies of that triangle.) We can deduce now that if
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covol(ΓS,D) ≤ x, then ∏
P∈S

N(P ) + 1
2

≤ 42
π
x.

Arguing exactly as we did in (9), (10) and Lemma 3.4 when bounding the possibilities for Ramf (A)
we deduce that the number of possibilities for S is polynomial in x (in fact, it is even easier now
as we do not need to exclude the primes 2 and 3).

If H = PGL2(R)a × PGL2(C)b, instead of Siegel’s theorem we can use the Kazhdan–Margulis
theorem [KM], or Borel’s result [Bo, Theorem 8.2] which implies that covolumes of arithmetic
lattices in H are bounded from bellow by a positive constant which depends only on H. This
finishes the proof of the upper bounds in both parts of 1.6.

The proof of the lower bounds is much easier but it requires a detailed description of the groups
ΓS,D above. As the lower bounds are not really needed for the main results, we only sketch the
argument assuming that the reader is familiar with Section 11.4 of [MR].

For the lower bound in case (a) of Theorem 1.6 we could vary the algebra A and easily deduce
that for some δ > 0, there are at least xδ non conjugate (and also not commensurable after
conjugation) maximal arithmetic lattices in PGL2(R) with covolume at most x, but such a proof
would not work for the non-uniform case where all arithmetic lattices are commensurable (after
conjugation) and there is only one A = M2(Q). For a proof which works in both cases fix k, A
and D so that C(A) is a commensurability class of arithmetic lattices in H. We need to show that
there exist sufficiently many subsets S with

∏
v∈S qv ≤ xc and ΓS,D is maximal. For the group

ΓS,D to be maximal there should exist an element a ∈ k such that ṽ(a) is odd for v ∈ S (here
ṽ(a) denotes the logarithmic valuation on kv), a is positive at the ramified real places of A, and
ṽ(a) is even for v ∈ Vf \ (Ramf (A) ∪ S) (see discussion in Section 11.4 of [MR] for more details).

Let p be a rational prime and let Sp be the set of places v ∈ Vf such that ṽ(p) is odd. Assume
that p is unramified in k which is the case for all sufficiently large primes. Then Sp consists of
the prime ideals of k which divide p, so if p1 6= p2, then Sp1 6= Sp2 . To every such p we can
assign a maximal arithmetic subgroup Γp = ΓSp,D which contains an element odd at v for v ∈ Sp
and even at the remaining places in Vf \ Ramf (A). Then for p1 6= p2 the groups Γp1 and Γp2

are non-conjugate maximal arithmetic subgroups of H. By Borel’s volume formula (see (1) and
Proposition 3.5)

covol(Γp) ≤ c1

∏
v∈Sp

(qv + 1),

where c1 = c1(k,A) is a positive constant.
The set Sp contains at most dk places of k and

∏
v∈Sp qv ≤ p

dk . This implies

covol(Γp) ≤ c1(2p)dk .

Thus, if p ≤ 1
2(x/c1)1/dk = xc2 , then covol(Γp) ≤ x. As k is fixed and so is dk, it follows from the

prime number theorem that for a large enough x there exists a constant δ > 0 such that there
are at least xδ such primes p, and hence such Γp’s.

This finishes the proof of the theorem. �

Remark 3.6. Theorem 1.6 gives a solution to Problem 6.5 of [Be] and implies that we can now
remove the restriction that the group H has no simple factors of type A1 in the main result there.
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Remark 3.7. With the estimate of Lemma 3.2 at hand we can essentially repeat all the steps
of the proof of Theorem A in [BP] for the groups G defined over number fields and having the
absolute rank 1. The only missing ingredient, which is an analogue of a number-theoretic result
from Section 6.1 in [BP] for the groups of type A1, is now available because of Lemmas 3.1 and
3.2. This allows us to remove the restriction on the absolute rank from the statement of the
Borel-Prasad theorem, which can be now formulated as follows:

Theorem 3.8. Let c > 0 be given. Assume k runs through the number fields. Then there are
only finitely many choices of k, of an absolutely almost simple algebraic group G′ defined over
k up to k-isomorphism, of a finite set S of places of k containing all the archimedean places, of
arithmetic subgroup Γ′ of G′S =

∏
v∈S G′(kv) up to conjugacy, such that µ′S(G′S/Γ

′) ≤ c.

We refer to [BP] for the definition of the measure µ′S with respect to which the covolumes of
arithmetic subgroups are computed (the so-called Tits measure), introduction and more details
on this important result. Note that an analogous result for the groups over the global function
fields is not true. For example, one can show that the covolume of SLn(Fq[t−1]) in SLn(Fq((t)))
tends to zero if either n or q →∞ (see [BP, Section 7.12]).

4. Uniform bounds for Fuchsian groups and characters of Symmetric groups

In this section we study the subgroup growth of finitely generated non-elementary discrete
subgroups of PGL2(R), the so called Fuchsian groups.

By classical work of Fricke and Klein, the orientation-preserving Fuchsian groups Γ (i.e. those
contained in PSL2(R)) have a presentation of the following form:

(11)

generators : a1, b1, . . . , ag, bg, (hyperbolic), x1, . . . , xd (elliptic),
y1, . . . , ys (parabolic), z1, . . . , zt (hyperbolic boundary elements)

relations : xm1
1 = · · · = xmdd = 1, x1 · · ·xd y1 · · · ys z1 · · · zt [a1, b1] · · · [ag, bg] = 1,

where g, d, s, t ≥ 0 and mi ≥ 2 for all i. The number g is referred to as the genus of Γ. Define
µ(Γ) = −χ(Γ), where χ(Γ) is the Euler characteristic of Γ (in the rest of this section we reserve
the letter χ for characters of symmetric groups). Then for Γ as above we have

µ(Γ) = 2g − 2 +
d∑
i=1

(1− 1
mi

) + s+ t.

It is well known that µ(Γ) > 0.
The non orientation-preserving Fuchsian groups have presentations as follows, with g > 0:

(12)

generators : a1, . . . , ag, x1, . . . , xd, y1, . . . , ys, z1, . . . , zt

relations : xm1
1 = · · · = xmdd = 1,
x1 · · ·xd y1 · · · ys z1 · · · zt a2

1 · · · a2
g = 1.

In this case we have

µ(Γ) = −χ(Γ) = g − 2 +
d∑
i=1

(1− 1
mi

) + s+ t,

and again, µ(Γ) > 0.
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We call Fuchsian groups as in (11) oriented, and those as in (12) non-oriented.
The Fuchsian groups with s = t = 0 are the uniform lattices; these are more challenging ones

since the other Fuchsian groups are free products of cyclic groups.
In this section we prove Theorem 1.7 which provides a uniform bound on the subgroup growth

of Fuchsian groups.
The novelty of Theorem 1.7 is that it holds for all n (not just for large n, where large may

depend on Γ), and that it uses µ(Γ) as the only parameter. For a fixed group there are more
refined asymptotic results (see [LiSh]), but it is the uniform version above which is crucial for our
applications.

We shall now embark on the proof of Theorem 1.7. We assume throughout this section that Γ
is an oriented Fuchsian group with the presentation given in (11). The proof in the non-oriented
case (12) is very similar, hence omitted.

A major tool in our proof is character theory of symmetric groups (see [Sa]). We begin with
some relevant notation and results.

Denote by Irr(Sn) the set of all irreducible characters of Sn. By a partition of a positive integer
n we mean a tuple λ = (λ1, . . . , λr) with λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 1 and

∑r
i=1 λi = n. Denote by χλ

the irreducible character of Sn corresponding to the partition λ.
The following result of Fomin and Lulov [FL] plays a key role in our proof.

Proposition 4.1. (Fomin-Lulov [FL]) Fix an integer m ≥ 2. Suppose n is divisible by m, say
n = am, and let π ∈ Sn be a permutation of cycle-shape (ma). Then for any irreducible character
χ of Sn, we have

|χ(π)| ≤ a!ma

(n!)1/m
· χ(1)1/m.

Consequently we have
|χ(π)| ≤ bn1/2 · χ(1)1/m,

where b is some absolute constant.

We note that the second assertion follows from first using Stirling’s formula. In fact, as noted
in [FL], we even have |χ(π)| ≤ bn1/2−1/(2m) · χ(1)1/m. In the rest of this section b denotes the
constant above.

We shall also frequently use the Murnaghan-Nakayama Rule [Sa, p. 180]. By a rim r-hook ν
in a λ-tableau, we mean a connected part of the tableau containing r boxes, obtained by starting
from a box at the right end of a row and at each step moving downwards or leftwards only, which
can be removed to leave a proper tableau denoted by λ\ν. If, moving from right to left, the rim
hook ν starts in row i and finishes in column j, then the leg-length l(ν) is defined to be the number
of boxes below the ij-box in the λ-tableau.

Lemma 4.2. (Murnaghan-Nakayama Rule) Let ρσ ∈ Sn, where σ is an r-cycle and ρ is a
permutation of the remaining n− r points. Then

χλ(ρσ) =
∑
ν

(−1)l(ν)χλ\ν(ρ),

where the sum is over all rim r-hooks ν in a λ-tableau.

In order to apply the Murnaghan-Nakayama rule it is useful to estimate the number of rim
r-hooks in a tableau. We quote Lemma 2.11 from [LiSh]:
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Lemma 4.3. For any positive integer r and any partition λ of n, the number of rim r-hooks in
a λ-tableau is at most

√
2n.

We now deduce the following.

Lemma 4.4. Let π = ρσ ∈ Sn be a permutation of order m, where ρ has cycle-shape (ma) and
σ permutes the remaining n −ma points. Let C(σ) be the number of cycles in σ. Then for any
χ ∈ Irr(Sn) we have

|χ(π)| ≤ b(2n)C(σ)/2χ(1)1/mn1/2.

Proof. Applying the Murnaghan-Nakayama Rule repeatedly for each cycle in σ and Lemma 4.3,
we see that

|χ(π)| ≤
∑
|χi(ρ)|,

where χi ∈ Irr(Sma), the sum has at most (2n)C(σ)/2 terms, and χi(1) ≤ χ(1). By Proposition 4.1,
|χi(ρ)| ≤ bχi(1)1/mn1/2 ≤ bχ(1)1/mn1/2. This implies

|χ(π)| ≤ b(2n)C(σ)/2χ(1)1/mn1/2

as required. �

For a permutation π ∈ Sn we let πSn denote its conjugacy class. We now deduce the following.

Proposition 4.5. Let m ≥ 2 be an integer. Then for any positive integer n, any permutation
π ∈ Sn satisfying πm = 1 and any character χ ∈ Irr(Sn), we have

|πSn | · |χ(π)| < b(nn)1−1/m · χ(1)1/m · (2e)n.

Proof. Let π have cycle-shape (ma1
1 , . . . ,m

ak
k ), where

∑
miai = n, m1 > m2 > . . . > mk and

m1 = m (allowing the possibility that a1 = 0). Set A =
∑k

i=2 ai. Since

|πSn | = n!∏k
i=1m

ai
i

∏k
i=1 ai!

≤ n!∏k
i=1 ai!

,

Lemma 4.4 implies that

(13) |πSn | · |χ(π)| ≤ n!∏k
i=1 ai!

(2n)A/2bχ(1)1/mn1/2.

Since na

a! < ea for any positive integer a, we have n
P
aiQ
ai!

< e
P
ai . Let B =

∑k
i=1 ai. Then

n!∏k
i=1 ai!

≤ nn∏k
i=1 ai!

=
nB∏k
i=1 ai!

nn−B < eBnn−B.

In view of (13) this implies

|πSn | · |χ(π)| < eBnn−B(2n)A/2bχ(1)1/mn1/2 ≤ bnn−B+A/2χ(1)1/meB2A/2n1/2.

Now, for i ≥ 2 we have mi ≤ m/2 (since mi is a proper divisor of m), so a1m + Am/2 ≥∑k
i=1 aimi = n. Thus

B −A/2 = a1 +A/2 ≥ n/m.
We also have eB2A/2n1/2 ≤ en2n/22n/2 = (2e)n. Hence

|πSn | · |χ(π)| < bnn−n/mχ(1)1/m(2e)n,
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which proves the result. �

We shall also use the following.

Lemma 4.6. Fix a real number s > 0. Then∑
χ∈Irr(Sn)

χ(1)−s → 2 as n→∞.

In particular,
∑

χ∈Irr(Sn) χ(1)−s ≤ C(s) for all n, where C(s) is a number depending only on s.

This result is proved in [LiSh] (see Theorem 1.1 there) following earlier results for the case
s ≥ 1. Here we apply it for a rather small value of s, namely s = 1

42 , which is the minimal value
of µ(Γ) for a Fuchsian group Γ.

Next we study the space of homomorphisms Hom(Γ, Sn) from a Fuchsian group Γ to Sn by
splitting it into subspaces whose sizes can be estimated. Let g, d, s, t,m1, . . . ,md be as in (11)
and let µ = µ(Γ).

Let g1, . . . , gd ∈ Sn be permutations satisfying gmii = 1 for each i. Let Ci = gSni (1 ≤ i ≤ d) be
their conjugacy classes in Sn. Write C = (C1, . . . , Cd). Define

HomC(Γ, Sn) = {φ ∈ Hom(Γ, Sn) : φ(xi) ∈ Ci for 1 ≤ i ≤ d}.
Suppose now that Γ is a uniform lattice. The following formula, which essentially dates back

to Hurwitz [Hu], connects |HomC(Γ, Sn)| with characters of symmetric groups:

(14) |HomC(Γ, Sn)| = (n!)2g−1|C1| . . . |Cd|
∑

χ∈Irr(Sn)

χ(g1) · · ·χ(gd)
χ(1)d−2+2g

.

This formula includes the case d = 0 in which Γ is a surface group, HomC = Hom and empty
products are taken to be 1.

In fact, formula (14) holds for any finite group G in place of Sn, its proof is carried out by
counting solutions in G of the equations corresponding to the defining relations of Γ. See, for
instance, Section 3 of [LiSh] for details and for a similar formula for non-oriented Fuchsian groups.

Lemma 4.7. With the above notation we have

|HomC(Γ, Sn)| ≤ c1b
d(nn)µ+1(2e)dn,

where c1 is some absolute constant.

Proof. Suppose first that Γ is uniform. We use formula (14) above. By Proposition 4.5, we have

|Ci||χ(gi)| ≤ b(2e)n(nn)1−1/miχ(1)1/mi

for all i = 1, · · · , d. This yields

|HomC(Γ, Sn)| ≤ (nn)2g−1bd(2e)dn(nn)
Pd
i=1(1−1/mi)

∑
χ∈Irr(Sn)

χ(1)
Pd
i=1 1/mi

χ(1)d−2+2g
.

Since µ = 2g − 2 +
∑d

i=1(1− 1/mi), we conclude that

|HomC(Γ, Sn)| ≤ bd(2e)dn(nn)µ+1
∑

χ∈Irr(Sn)

χ(1)−µ.
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By Lemma 4.6 and a well known Siegel’s inequality µ ≥ 1/42, we have∑
χ∈Irr(Sn)

χ(1)−µ ≤
∑

χ∈Irr(Sn)

χ(1)−1/42 ≤ c1,

where c1 = C(1/42). The result follows by combining the two inequalities above.
It remains to deal with Fuchsian groups with s + t > 0. Let r = 2g + s + t − 1, Zm denote a

cyclic group of order m and Fr a free group of rank r. Then we have a free product decomposition

Γ ∼= Zm1 ∗ · · · ∗ Zmd ∗ Fr.
It follows immediately that

(15) |HomC(Γ, Sn)| = (n!)r
d∏
i=1

|Ci|.

We claim that if π ∈ Sn satisfies πm = 1, then

(16) |πSn | ≤ en(nn)1−1/m.

Indeed, let a1, . . . , ak be the multiplicities of the cycle lengths of π and let B =
∑k

i=1 ai, the
number of cycles in π. Then, as in the proof of Proposition 4.5, we have

|πSn | ≤ n!∏
ai!
≤ eBnn−B.

Since all cycle lengths of π are at most m, we have n/m ≤ B ≤ n. Thus eBnn−B ≤ ennn−n/m,
proving the claim.

Recall that Ci = gSni and gmii = 1. Therefore, using the claim, we obtain

|Ci| ≤ en(nn)1−1/mi

for all i = 1, . . . , d. Plugging this in (15) we conclude that

|HomC(Γ, Sn)| = (n!)redn(nn)
P

(1−1/mi) ≤ (nn)r+
P

(1−1/mi)edn.

Since r +
∑

(1− 1/mi) = µ+ 1 the result follows (with an even better upper bound). �

We can now provide upper bounds for |Hom(Γ, Sn)|. Given d define d1 = max(d, 1).

Lemma 4.8. There exists an absolute constant c2 such that with the above notation we have

|Hom(Γ, Sn)| ≤ (nn)µ+1cd1n
2

for all n.

Proof. We clearly have
|Hom(Γ, Sn)| =

∑
C

|HomC(Γ, Sn)|,

where the sum is over all possible C = (C1, . . . , Cd). Now, Sn has p(n) conjugacy classes, where
p(n) is the partition function, and each summand |HomC(Γ, Sn)| can be bounded as in Lemma 4.7.
This yields

|Hom(Γ, Sn)| ≤ p(n)d · c1b
d(nn)µ+1(2e)dn.

It is well known that p(n) ≤ c
√
n

3 ≤ cn3 for some absolute constant c3. This yields

|Hom(Γ, Sn)| ≤ c1(nn)µ+1cdn4 ,
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for the absolute constant c4 = 2ebc3. This easily implies the required conclusion (with c2 =
c1c4). �

We can now draw conclusions to the subgroup growth of Fuchsian groups.

Proposition 4.9. There exists an absolute constant c5 such that with the above notation we have

sn(Γ) ≤ nµncd1n
5

for all n.

Proof. For a positive integer n, denote by an(Γ) the number of index n subgroups of Γ. Define

Homtrans(Γ, Sn) = {φ ∈ Hom(Γ, Sn) : φ(Γ) is transitive}.

It is well known that an(Γ) = |Homtrans(Γ, Sn)|/(n− 1)! (see, for instance, [LuSe, 1.1.1]). Obvi-
ously, |Homtrans(Γ, Sn)| ≤ |Hom(Γ, Sn)|, so applying Lemma 4.8 we obtain

an(Γ) ≤ (nn)µ+1cd1n
2 /(n− 1)!,

and hence
sn(Γ) ≤ n · (nn)µ+1cd1n

2 /(n− 1)!.

Since n · nn/(n− 1)! ≤ cn6 for some absolute constant c6, we obtain

sn(Γ) ≤ cn6 · (nn)µcd1n
2 ,

which implies the conclusion (with c5 = c2c6). �

We can finally prove the main result of this section, namely Theorem 1.7.
Note that µ = 2g − 2 +

∑d
i=1(1− 1/mi) ≥ −2 + d/2. This yields d ≤ 2µ+ 4, and so

d1 ≤ d+ 1 ≤ 2µ+ 5.

Next, since µ ≥ 1/42, we have 5 ≤ 210µ, and so 2µ+ 5 ≤ 212µ. This implies

d1 ≤ 212µ.

Applying Proposition 4.9, we obtain

sn(Γ) ≤ nµnc212µn
5 ≤ (cn)µn,

where c = c212
5 .

This completes the proof of Theorem 1.7. �

We did not make an attempt to optimize the constants appearing here and in Theorem 1.7 in
particular.

Remark 4.10. It is intriguing that there are no uniform lower bounds on the subgroup growth
of Fuchsian groups. For example, let Γ be a triangle (p, q, r)-group with p, q, r distinct primes
which are greater than n (so Γ has a presentation as in (11) with g = s = t = 0, d = 3 and
m1 = p,m2 = q,m3 = r). Then one easily sees that sn(Γ) = 0. Since n can be arbitrarily large
no uniform lower bounds exist.

Finally, we can provide a lower bound on sn(Γ) in terms of µ(Γ) which holds for all n larger
than some number depending on Γ:
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Proposition 4.11. Let Γ be a Fuchsian group. Then we have

sn(Γ) ≥ (n!)µ(Γ) for all sufficiently large n.

Proof. A somewhat stronger result, namely an(Γ) ≥ (n!)µ(Γ) ·nb for every fixed b and for all large
n is given in Theorem 4.6 of [LiSh]. However, the proof given there only works for Fuchsian
groups with torsion. The remaining Fuchsian groups are free groups and surface groups. For the
free group Γ = Fd (d ≥ 2) it is well known that an(Γ) ∼ (n!)d−1 · n = (n!)µ(Γ) · n. For surface
groups Γ it is known that an(Γ) ∼ 2(n!)µ(Γ) · n (see [MP]). This implies the result. In fact, it
follows that for any constant c < 1 and for any Fuchsian group Γ we have

an(Γ) ≥ cn(n!)µ(Γ), for all sufficiently large n,

and this lower bound is best possible. �

5. Proof of the main results

We can use now the results of Sections 2, 3 and 4 to prove the main Theorems.

5.1. The proof of Theorem 1.1. Recall from [LuSe], Lemma 1.1.2 that if Γ is finitely generated
group with d(Γ) generators, then sn(Γ) ≤ nd(Γ)n where sn(Γ) denotes the number of subgroups
of index at most n in Γ. Let now H be a fixed rank one simple Lie group. By Theorem 1.6 and
[Be], MALH(x) = MALuH(x) + MALnuH (x) ≤ xa log x. Now, every arithmetic lattice Γ of covolume
at most x is contained in a maximal lattice Λ of covolume, say, y ≤ x, and [Λ : Γ] ≤ x

y . Hence,

ALH(x) ≤ MALH(x) ·max{sx
y
(Λ) : y ≤ x, covol(Λ) = y}

where Λ runs over the finitely many conjugacy classes of arithmetic lattices of covolume at most
x. By Theorem 1.5, for such Λ, d(Λ) ≤ Cy for some constant C = C(H), hence

sx
y
(Λ) ≤ (

x

y
)d(Λ)x

y ≤ (
x

y
)Cy

x
y .

Now by Kazhdan-Margulis theorem (which also follows from Theorem 1.5 as we noted in the
introduction), y ≥ C ′ for some C ′ = C ′(H), and hence

ALH(x) ≤ xa log x(
x

C ′
)Cx ≤ xbx

for some constant b when x� 0. �

Remark 5.1. As mentioned in Remark 2.7, Theorem 1.5 holds also for higher rank semisimple
Lie groups, thus the proof shows that Theorem 1.1 is valid in general. We refer to [BL] for better
estimates in the higher rank case.

5.2. The proof of Theorem 1.2. Fix n ≥ 2. In [Lu2] it was shown that H = PSO(n, 1) has an
arithmetic lattice Γ which is mapped onto the free group on two generators. Let L(n) be the set
of subgroups of Γ of index at most n. Then

|L(n)| = sn(Γ) ≥ sn(F2) ≥ n!

(see [LuSe, Corollary 2.1.2] for the right hand side inequality). Thus, if covol(Γ) = v0, Γ contains
at least n! sublattices of covolume at most nv0. We should prove that not too many of them are
conjugate in H.
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To prove this we argue as follows: Let C(n) be the set of congruence subgroups of Γ of index at
most n. By [Lu1], |C(n)| ≤ nc0 logn/ log logn for some constant c0. There is a map φ : L(n)→ C(n)
sending a subgroup in L(n) to its closure in the congruence topology of Γ. There are therefore at
least n!

nc0 logn/ log logn ≥ nc1n subgroups in L(n) with the same congruence closure. If Γ1 and Γ2 are
two such subgroups with congruence closure Γ0 which are conjugate in H, say Γ1 = gΓ2g

−1, then
g ∈ CommH(Γ), the commensurability group of Γ in H. As Γ is arithmetic, CommH(Γ) acts by
k-rational morphisms (more precisely, in the adjoint representation it has entries in k, where k
is the number field over which Γ is defined), hence g preserves the congruence topology. Thus, g
normalizes Γ0, i.e. g ∈ NH(Γ0). Recall that NH(Γ0) is itself a lattice in H (cf. [R]), hence by
Kazhdan-Margulis theorem (or by 1.5) has covolume at least C ′. This implies that at most c2n

subgroups like Γ2 can be conjugated to Γ1 in H. Thus, H has at least nc1n/c2n ≥ nc
′
1n conjugacy

classes of arithmetic lattices of covolume at most nv0. This proves Theorem 1.2.

5.3. The proof of Theorem 1.3. We shall prove a more precise statement:

Theorem 5.2. Let H = PSL2(R) and ALH(x) the number of conjugacy classes of arithmetic
lattices in H of covolume at most x. Then there exist 6 < r < s ∈ R such that

(rx)
1

2π
x ≤ ALH(x) ≤ (sx)

1
2π
x

for all sufficiently large x.

Proof. We will prove first the upper bound. As in the proof of Theorem 1.1 above, ALH(x) ≤
MALH(x) ·max{sx

y
(Λ)}. Again, by Theorem 1.6, MALH(x) ≤ xb log x, but this time we also know

that y = covol(Λ) = −2πχ(Λ) and by Theorem 1.7, sx
y
(Λ) ≤ (cxy )−χ(Λ)x

y . Thus altogether

ALH(x) ≤ xb log x · (cx
y

)−χ(Γ) x
−2πχ(Γ) ≤ (sx)

1
2π
x

for a suitable constant s, as y ≥ π
21 (by Siegel’s theorem).

To prove the lower bound, take Γ to be the arithmetic lattice in H = PSL2(R) of the lowest
covolume ( π21), namely the (2, 3, 7)-triangle group. By Proposition 4.11, sn(Γ) ≥ n−χ(Γ)n for
n � 0. Again using the congruence topology of Γ and the upper bound on the number of
congruence subgroups from [Lu1], we can deduce, as in the proof of Theorem 1.2 above, that Γ
has at least n−χ(Γ)n/[(nc0 logn/ log logn)(c2n)] ≥ (c3n)−χ(Γ)n subgroups of index at most n which
belong to different H-conjugacy classes, where the constant c3 could be taken 1− ε for arbitrary
positive ε. Each such subgroup is a lattice of covolume at most x := n · covol(Γ) = −2πχ(Γ)n.
Thus we have found at least (c3

x
covol(Γ))−χ(Γ) x

−2πχ(Γ) ≥ ( c3
(π/21)x)

x
2π conjugacy classes of arithmetic

lattices in H of covolume at most x. This finishes the proof of Theorem 5.2 and consequently of
1.3. �

Let us remark that the use of the (2, 3, 7)-triangle group was made only to ensure that r > 6.
For proving the lower bound of Theorem 1.3 we could use any arithmetic lattice in PSL2(R).

Proof of Corollary 1.4. The genus g surfaces are in one to one correspondence with the conjugacy
classes of torsion free lattices in PSL2(R) of covolume 4(g − 1)π. Thus Theorem 1.3 implies the
upper bound in 1.4. The proof of the lower bound is similar to the proof of the lower bound in
1.3, just choose as a starting arithmetic lattice one which is torsion free and then count its finite
index subgroups. �
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