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Preface

Let G be a finitely generated group, and for n ∈ N let an(G) denote the
number of subgroups of index n in G. By the ‘subgroup growth’ of G one
means the asymptotic behaviour of the sequence (an(G)). The first main theme
of this book is the relationship between the subgroup growth of a group and its
algebraic structure.

This may be viewed as a new chapter in the theory of finiteness conditions in
infinite groups, originated early in the last century by the Russian school of O.
J. Schmidt and largely associated with the names of Kurosh and P. Hall. This
studied questions of the following sort: let P be a property that is common to all
finite groups F , for example ‘there exist m and n such that F is generated by m
elements and every element x of F satisfies xn = 1’. Now let G be an arbitrary
group having property P; does it follow that G is finite? In the case of the above
example this is the Burnside problem. In other cases one would only expect to
deduce that G is virtually soluble, perhaps, e.g. when P is the property of
having finite rank : there exists m such that every (finitely generated) subgroup
can be generated by m elements. Numerous positive results were obtained in
the middle of the century, pertaining to special classes of groups such as linear
groups. However, many of the natural conjectures resisted all attempts at a
general proof. The reason for this became clear in the 1970s, when Olshanskii
and Rips constructed the so-called ‘Tarski monsters’: these are infinite groups
G such that every proper subgroup of G is cyclic of (a fixed) prime order.
Such a group G satisfies any reasonable finiteness condition and is a counter-
example to any reasonable conjecture, such as the Burnside problem. On the
other hand, in the ’80s and ’90s it gradually appeared that if one takes the
old conjectures and adds the hypothesis that G is residually finite, then the
conjectures indeed become theorems. The most famous example is the positive
solution of the restricted Burnside problem, which may be interpreted as saying
that every finitely generated residually finite group of finite exponent is finite
– this earned Zelmanov a Fields medal. Other examples, closer to the spirit of
this book, are the proof by Lubotzky and Mann that every finitely generated
residually finite group of finite rank is virtually soluble, and results of Wilson
and Zelmanov about residually finite Engel groups. These may all be seen as
wide generalisations of the earlier results about finitely generated linear groups,
since all such groups are indeed residually finite.

For a group to be residually finite means that it has many subgroups of finite
index: enough so that their intersection is trivial. It is entirely natural, then,
to ask the question “how many subgroups of each finite index?” From the most
naive point of view, the study of subgroup growth may be seen as the project of
arranging residually finite groups in a spectrum, from the ‘very residually finite’
– with fast subgroup growth – at one end to the ‘only just residually finite’ –
having very slow subgroup growth – at the other.

The new developments mentioned above rest on three main planks: (i) the
classification of the finite simple groups, (ii) Lie algebra methods applied to finite
p-groups, and (iii) ‘linearisation techniques’ via p-adic analytic groups. We shall
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see how (i) and (iii) are applied throughout this book, to derive information
about the algebraic structure of a group, now assumed to be residually finite,
when its subgroup growth is restricted: by specifying the type of subgroup
growth we obtain a whole spectrum of refined finiteness conditions.

Thus subgroup growth puts a new slant on a long tradition in infinite group
theory. However, it can also be seen in a quite different light. As well as the
asymptotic behaviour, the arithmetic of the sequence an(G) may be of interest;
this is conveniently encoded in the Dirichlet series ζG(s) =

∑
an(G)n−s, known

as the ‘zeta function of the groupG’ (the definition parallels that of the Dedekind
zeta function of a number field, which encodes in the same way the number of
ideals of each index in a ring of algebraic integers). One can now begin to
develop a branch of ‘non-commutative analytic number theory’ that relates the
analytic properties of the function ζG(s) to the structure of the group G. This
is the second main theme of the book.

Let us mention some highlights, beginning with growth. A well established
theory of ‘growth of groups’ relates to the ‘word growth’, that is the nature of
the sequence

(
bSn(G)

)
where bSn(G) denotes the number of elements of G that can

be expressed as words of length at most n in some (fixed) finite generating set
S. While the precise values of the bSn(G) depend on the choice of generating set
S, their growth (i.e. asymptotic behaviour) does not. For example, free groups
have exponential growth, while abelian, and more generally nilpotent, groups
have polynomial growth. In fact a celebrated theorem of Gromov characterises
the groups of polynomial growth precisely as those which are virtually nilpotent.

The situation with subgroup growth is similar in broad outline, but differs
in interesting ways. Again, the fastest growth occurs for free groups, but now it
is of type n!, which is like en logn, that is, slightly faster than exponential. At
the other end of the spectrum, the PSG Theorem (Theorem 5.1 in the book)
characterises the (finitely generated) groups with polynomial subgroup growth:
these are precisely the groups G such that G/R(G) is virtually soluble of finite
rank – here R(G) denotes the intersection of all subgroups of finite index in G.
(Of course the numbers an(G) can only contain information about the quotient
G/R(G), so when studying subgroup growth it is natural to assume throughout
that R(G) = 1, that is, G is residually finite.).

While the PSG theorem and Gromov’s theorem are logically quite indepen-
dent, they share a number of features. To begin with, both classify the groups of
polynomial growth as (finite extensions of) groups in a well-understood subclass
of the soluble groups. Moreover, both are proved following a similar pattern,
centred on a reduction via topological groups to the special case of linear groups.

Gromov developed new methods in geometric group theory in order to embed
his group in a topological group, at which point he was in a position to apply
the solution to Hilbert’s 5th problem (the characterisation of topological groups
having the structure of a real Lie group). In the case of polynomial subgroup
growth, the classification of the finite simple groups is invoked along the way
to embedding the group in a pro-p group, at which point one is in a position to
appeal to Lazard’s solution of the p-adic version of Hilbert’s 5th problem (the
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proof that we give in Chapter 5 actually avoids p-adic Lie groups but is based
on the same ideas).

The characterisation of linear groups with polynomial word growth depends
on the ‘Tits alternative’: a finitely generated linear group either is virtually
soluble or else contains a non-abelian free subgroup. The presence of a free sub-
group in G implies that G has exponential word growth, but tells us nothing
about the subgroup growth. To deal with linear groups of polynomial subgroup
growth, a different dichotomy had to be established: now sometimes known
as the ‘Lubotzky alternative’, this asserts that a finitely generated linear group
either is virtually soluble or else has a subgroup of finite index whose profinite
completion maps onto the congruence completion of some semisimple arithmetic
group. This reduces the problem to the question of counting congruence sub-
groups in arithmetic groups.

The counting of congruence subgroups may be seen as a form of ‘non-
commutative number theory’. The proof of the PSG theorem is completed
by an application of the Prime Number Theorem; but the precise estimation of
‘congruence subgroup growth’ in arithmetic groups is of interest in itself, and
this involves both some serious group theory and deep number theory, such as
the Bombieri-Vinogradov theorem on the ‘Riemann hypothesis in the average’.

Another highlight in the story of word growth was the construction by Grig-
orchuk of groups of intermediate growth, strictly between polynomial and ex-
ponential. While (continuously) many such growth types have been realised,
they all lie between e

√
n and en, and the nature of the ‘spectrum’ of possible

growth types is still very much a mystery. In contrast, the spectrum of subgroup
growth types is known to be essentially complete: explicit constructions that
demonstrate this are given in Chapter 13. On the other hand, as is the case for
word growth, there are definite ‘gaps’ in the subgroup growth spectrum when
one restricts to special classes of groups such as linear groups.

The class of finitely generated nilpotent groups plays a special role both in
word growth and subgroup growth. As mentioned above, these are (virtually)
just the groups of polynomial word growth, and an exact formula for the minimal
degree of a bounding polynomial was given by Bass; it takes integral values
and depends on simple structural invariants of the group. Finitely generated
nilpotent groups also have polynomial subgroup growth; but there is no known
way to determine the degree of polynomial subgroup growth in terms of the
structure of the group, and it is not always an integer. It is known, however,
that this degree is a rational number.

This brings us to our second theme, the ‘arithmetic of subgroup growth’. If
G is a finitely generated nilpotent group, its degree in the above sense is denoted
α(G), and is equal to the abscissa of convergence of the zeta function ζG(s). Such
zeta functions share some of the properties of the more traditional zeta functions
of number theory: for example they enjoy an Euler product decomposition, and
for each prime p the local factor at p, denoted ζG,p(s), is a rational function of
p−s. The proof applies a beautiful rationality theorem for p-adic integrals due
to Denef, based on considerations in p-adic model theory.

However, in contrast to classical zeta functions, the global behaviour of ζG(s)
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is erratic; for example, ζG(s) does not (usually) have analytic continuation to C.
This is related to the fact that the rational function expressing the local factor
ζG,p(s) depends on the number of Fp-rational points of a certain variety defined
over Z, and so varies wildly with the prime p. The construction of this variety
is a procedure in algebraic geometry involving resolution of singularities, that
leads to an explicit determination of the local factors. This is precise enough to
yield the conclusion that the global abscissa α(G) is a rational number (using the
Lang-Weil estimates for rational points on varieties over finite fields). It is also
used to show that the global function ζG(s) is approximated in a neighbourhood
of α(G) by an Artin L-function, and hence has a meromorphic continuation
to this neighbourhood. This opens the way to methods of analytic number
theory, which then yield an asymptotic formula cnα(G)(log n)β for the number
of subgroups of index at most n in G (here c is a constant and β is a non-negative
integer) – a statement whose simplicity belies its depth.

The ‘local zeta function’ ζG,p(s) is also defined for a p-adic analytic pro-p
group G, and again is a rational function. This depends on deep work of Denef
and van den Dries in ‘p-adic analytic model theory’, and has remarkable and
unexpected consequences for the theory of finite p-groups, including the proof
of a delicate conjecture of Newman and O’Brien (explained in Chapter 16).

Attempts to answer the simple question: ‘how many subgroups of index
n does a group possess?’ have thus encompassed a surprisingly broad sweep
of mathematics. The full range will become apparent on looking through this
book; it includes methods and results from the theories of finite simple groups,
permutation groups, linear groups, algebraic and arithmetic groups, p-adic Lie
groups, analytic and algebraic number theory, algebraic geometry, probability
and logic. In many cases it has not been sufficient to quote results “off the
peg”, and new results have been obtained that have nothing to do with sub-
group growth as such. Among these are criteria for an infinite group to be
linear, the ‘Lubotzky alternative’ mentioned above, and new theorems about
finite permutation groups. There have also been applications outside subgroup
growth: a group-theoretic characterisation of arithmetic groups with the con-
gruence subgroup property, estimates for the number of hyperbolic manifolds
with given volume, and the results mentioned above on the enumeration and
classification of finite p-groups.

Our aim in this book is not to present a completed theory: the subject is still
very young. Indeed, while some of the core results (such as the PSG theorem)
have been around for a few years, many were discovered even as we wrote, and
are still unpublished (around 44% of those labeled ‘Theorem’ in the main body
of the book had not been published by the end of the 20th century). This book
is an attempt to present the state of the art as we reach what is perhaps the
end of the ‘foundational stage’. The broad outlines of a rich theory have begun
to emerge; it is ripe for deeper investigation and new discoveries, and we hope
that this book will encourage more mathematicians to explore an intriguing new
field.
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Notation

Number theory

f ∼ g if f(n)/g(n) → 1 as n→∞
f = O(g) if there exists a > 0 such that f(n)/g(n) ≤ a for all large n
f = o(g) if f(n)/g(n) → 0 as n→∞
f � g if f = O(g) and g = O(f).

log x = log2 x
lnx = loge x
[x] : greatest integer ≤ x
dxe : least integer ≥ x

Group theory

H ≤ G, H C G, H CC G : H is a subgroup, normal subgroup, subnormal
subgroup of G

H ≤o G etc.: H is an open subgroup of G (a profinite group)
|G : H| : the index of H in G
gx = x−1gx
[g, x] = g−1gx

〈X〉 : subgroup generated by a set X
[H,K] = 〈{[h, k] | h ∈ H, k ∈ K}〉
G′ = [G,G] derived group of G
γn(G) : nth term of lower central series of G ( γ1(G) = G, γn(G) =

[γn−1(G), G] )
CG(X), NG(X): centraliser, normaliser of X in G
Z(G) : centre of G
Φ(G) : Frattini subgroup of G
Gn = 〈{gn | g ∈ G}〉
G(n) : direct product of n copies of G (also sometimes denoted Gn when G

is abelian)
G o S : the permutational wreath product of G with (the finite permutation

group) S
d(G) : size of a minimal generating set for G

rk(G) = sup

 d(H) : H ≤ G and d(H) <∞ (G an abstract group)

d(H) : H ≤o G (G a profinite group)

ur(G) = sup {rk(Q) : Q a finite quotient of G}
rp(G) = rk(P ) where P is a Sylow p-subgroup of G (G a finite group)

urp(G) = sup {rp(Q) : Q a finite quotient of G}
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o(x) : the order of the element x in a given group

The Fitting length (or height) of a soluble group G is the minimal length of
a chain 1 = N0 < N1 < . . . < Nk = G of normal subgroups such that Ni/Ni−1

is nilpotent for each i

Cn : cyclic group of order n
Sym(n), Alt(n) : symmetric, alternating group of degree n

an(G) : the number of subgroups (or open subgroups) of index n in G
sn(G) : the number of subgroups (or open subgroups) of index at most n in

G
s(G) :the number of subgroups in the finite group G
mn(G), aC

n (G), aCC
n (G) : the number of maximal, resp. normal, resp. sub-

normal subgroups (or open subgroups) of index n in G (similarly for sC
n (G),

sCC
n (G) )
cn(Γ), cCn (G) : the number of congruence subgroups (resp. normal congru-

ence subgroups) of index at most n in the arithmetic group Γ

A group G is said to be virtually X , where X is some class of groups, if G
has a normal subgroup N of finite index such that N ∈ X (when G is profinite
N must be open).

A group G is residually X if ⋂
G/N∈X

N = 1;

equivalently, if for each element x 6= 1 of G there is an epimorphism θ : G→ H
where H ∈ X and θ(x) 6= 1.



Chapter 0

Introduction and overview

Suppose we want to bring some order into the universe of infinite groups. This
is too huge and too diverse for anything like a classification up to isomorphism
to be feasible; instead, we look for simple invariants, and try to see how groups
are divided up according to the nature of their invariants.

The invariant we are going to study is the subgroup growth function. To each
group G we associate the numerical function

n 7→ an(G)

where an(G) denotes the number of subgroups of index n in G. (We only consider
groups for which these numbers are finite: this restriction is discussed below.)

From the group-theoretic point of view, the natural questions are

(1) what are the general features of subgroup growth functions, for groups in
general?

(2) which algebraic features of a group are reflected in properties of its subgroup
growth function?

If we are number theorists rather than group theorists, we may view the
subject from a different angle. If G is a ‘natural’ sort of group, one would like
to know

(3) what are the arithmetical properties of the numerical sequence (an(G)) ?

From this point of view, the investigation of subgroup growth functions should
be seen as a branch of ‘non-commutative arithmetic’: it is in direct analogy
to the study of the Dedekind zeta function of a number field, which encodes
the arithmetical sequence (an(o)), where an(o) denotes the number of ideals of
index n in the ring of algebraic integers o.

1



2 CHAPTER 0. INTRODUCTION AND OVERVIEW

0.1 Preliminary comments and definitions

(i) First of all, we need to know that an(G) is finite for each n. This forces
us to restrict attention to groups G for which this is the case; every finitely
generated group G has this property, and more generally so does every group
whose profinite completion is finitely generated (see below). (It is shown in
[Wilson 1970] that every group satisfying the maximal condition for normal
subgroups has only finitely many subgroups of each finite index; the subgroup
growth of such groups has not as yet been investigated.)

(ii) Let R(G) be the intersection of all finite-index subgroups of G. Then
an(G) = an(G/R(G)). So we may as well restrict attention from the beginning
to groups G such that R(G) = 1. Such groups are said to be residually finite.

Many of the groups that arise naturally in mathematics are both finitely
generated and residually finite, so these restrictions leave us with plenty of
material to work on.

(iii) Every group G has a profinite completion Ĝ. This is the inverse limit of
the system of all finite quotient groups ofG; it is a compact Hausdorff topological
group whose open normal subgroups form a base for the neighbourhoods of the
identity, in other words a profinite group. IfG is residually finite we may consider
G as a dense subgroup of Ĝ. In that case, the mapping H 7→ H (the closure of H
in Ĝ) is an index-preserving bijection from the set of all finite-index subgroups
in G to the set of all open subgroups in Ĝ. It follows that an(G) = an(Ĝ) for
every n, where by an(Ĝ) we denote the number of open subgroups of index n in
Ĝ. (When referring to subgroups of finite index in a profinite group, we shall
always mean open subgroups. Whether a finitely generated profinite group can
have finite-index subgroups that are not open is an interesting open problem,
but not one that need concern us here.) These matters are explained in more
detail in the Profinite groups window.

The moral is that subgroup growth is ‘really’ a feature of profinite groups. It
is logical to divide our study into two stages: one: examine the subgroup growth
of profinite groups; two: investigate the (abstract) groups that have a particular
profinite group as their profinite completion. In practice we don’t always follow
this path, but it is illuminating to bear in mind these two distinct aspects of
the subject (analogous to arithmetic in the p-adic numbers vs. arithmetic of
the rationals). In the rest of the book we move freely between ‘abstract’ groups
and profinite groups, according to what seems more appropriate in the context.

(iv) ‘Growth types’ When studying subgroup growth in the asymptotic
sense, it is natural to consider the growth rate of the ‘summatory’ function

n 7→ sn(G) =
n∑
j=1

aj(G),

that is, the number of subgroups of index at most n in a group G. A rough
classification of groups by subgroup growth is provided by the growth type: a
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group G has (subgroup) growth type at most f , for some function f , if there
exists a positive constant a such that

sn(G) ≤ f(n)a for all large n; (1)

G has growth type f if this holds and there exists another positive constant b
such that

sn(G) ≥ f(n)b for infinitely many n. (2)

In other words, the growth type is f if and only if

log(sn(G)) = O(log f(n))
log(sn(G)) 6= o(log f(n)).

A moment’s consideration shows that ‘having the same growth type’ is not
actually an equivalence relation; however, it is a convenient way to summarize
the information that we have about many groups. In some cases we can do
better, namely when we have a lower bound as well as an upper bound for
sn(G) that is valid for all large n. Thus we say that G has strict growth type f
if (2) as well as (1) holds for all large n, in other words if

log(sn(G)) � log f(n).

‘Having the same strict growth type’ is of course an equivalence relation.
G is said to have polynomial subgroup growth if the growth type is at most

n, i.e. if sn(G) ≤ nc for all n, where c is some constant.

We shall also be considering some other subgroup-counting functions:

aC
n (G), sC

n (G) : the number of normal subgroups of index n (resp. index at
most n) in G

aCC
n (G), sCC

n (G) : the number of subnormal subgroups of index n (resp. index
at most n) in G

mn(G) : the number of maximal subgroups of index n in G,

and the language of ‘growth types’ is extended to these in the natural way.
The results on these growth functions are less systematic and complete than in
the case of subgroup growth, and this is one area where much remains to be
discovered.

0.2 Overview of the chapters

Each of the chapters after the first deals with a particular aspect of subgroup
growth (or a related topic). Several basic and elementary arguments appear
repeatedly in different contexts, and we have collected these together in Chapter
1. The reader should not be put off by the somewhat bitty nature of this
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chapter, but rather skim through it on first reading and refer back to it whenever
necessary.

The next four chapters deal with groups of successively slower growth types.
Chapter 2 considers free groups. These exhibit the fastest possible growth:
they have subgroup growth of strict type nn. The proof is a (relatively simple)
application of finite permutation group theory, of a kind that will appear (in
more sophisticated forms) in several other places. The normal, subnormal and
maximal subgroup growth types of free groups are also determined; the first of
these depends on the following result of independent interest: the number of
isomorphism types of finite d-generator goups of order n is bounded above by
n2d logn.

An ‘upper composition factor’ of a group G means a composition factor of
a finite quotient of G. One of the recurring themes throughout the book is the
close link between subgroup growth of a group and the structure of its upper
composition factors. This is first examined in detail in Chapter 3. The first
main result there shows that a finitely generated groupG has at most exponential
subgroup growth type (and at most polynomial maximal subgroup growth) if G
does not involve every finite group as an upper section (this is equivalent to
a restriction on the upper composition factors). A precise relationship is then
established between the actual rate of subgroup growth and the nature of the
excluded finite groups.

If every upper composition factor of G is cyclic of order p, for a fixed prime p,
then Ĝ is a pro-p group; the last part of Chapter 3 determines the strict growth
type of free pro-p groups, which is again exponential. The normal subgroup
growth type of these groups is also determined; again, this is done by estimating
the number of isomorphism types of finite d-generator goups of order pn, which
is about pcn

2
where c depends on d.

Chapter 4 continues the study of pro-p groups, those that are in some sense
smaller than the free ones. In analogy with a result stated above, it is shown
that a finitely presented pro-p group has growth type at most 2

√
n if it does

not involve every finite p-group as an upper section. Several examples of pro-p
groups are examined, all of which have growth type nlogn.

The most important result of this chapter is the following dichotomy satisfied
by every finitely generated pro-p group G : let c < 1/(8 log p). Then either
sn(G) > nc logn for infinitely many n or G has polynomial subgroup growth;
and the latter holds if and only if G has finite rank (this is equivalent to G having
the structure of a p-adic analytic group). This theorem is a forerunner of the
‘PSG Theorem’, which characterizes groups of polynomial subgroup growth;
and it is the first case of a ‘gap theorem’, saying that (within a particular class
of groups) the growth type cannot lie in a certain range – in this case, strictly
between type n and type nlogn.

Chapter 5 is devoted to one of the main results of the book, the aforemen-
tioned PSG Theorem: a finitely generated residually finite group has polyno-
mial subgroup growth if and only if it is virtually soluble of finite rank. The
‘if’ direction is easy and already appears in Chapter 1. The proof in the other
direction involves several different techniques:
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• Finite group theory, including the classification of finite simple groups, to
obtain restrictions on the upper composition factors.

• ‘Linearisation’, that is, finding sufficient conditions for an infinite group
to be isomorphic (or almost so) to a linear group over a field.

• ‘Strong approximation’ results for linear groups, reducing questions about
these to the case of arithmetic subgroups in semisimple algebraic groups.

• The Prime Number Theorem.

Much of the necessary material, which is of independent interest, is dealt with
separately in ‘windows’ (explained below).

We jump ahead to Chapter 10, which treats the ‘Profinite PSG Theo-
rem’, namely the characterisation of profinite groups with polynomial subgroup
growth. Such a group need not be soluble: modulo a prosoluble normal sub-
group of finite rank the group is (virtually) a product of finite simple groups of
Lie type, satisfying certain precise arithmetical conditions. The proof develops
further the finite group theory of Chapter 5 (but is independent of the other
parts of that chapter).

Chapters 8 and 9 discuss stronger versions of the PSG Theorem that ap-
ply to linear groups, and more generally to residually nilpotent groups. In each
case there is a ‘gap theorem’: if the subgroup growth is of type strictly less than
nlogn/ log logn then it is polynomial. This depends in part on results of Chapter
6, decribed below, as does the following striking theorem on normal subgroup
growth: if a finitely generated linear group G has polynomial normal subgroup
growth, then the simple components of the Zariski closure of G (a linear al-
gebraic group) are of types G2, F4 or E8. Here we see a remarkably subtle
structural property of a group reflected in its subgroup growth; the result is
‘genuine’ in that the groups G2(Z), F4(Z) and E8(Z) really do have polynomial
normal subgroup growth.

The heart of proof of the PSG Theorem is an estimation of the congruence
subgroup growth in arithmetic groups. A fairly easy lower estimate sufficed
for that proof. Chapter 6 is devoted to the precise determination of this growth
type: it is nlogn/ log logn in characteristic zero and nlogn in positive characteristic.
The methods in the two cases are quite different, depending in the first case on
Bombieri’s deep results on the Riemann hypothesis ‘on average’, in the second
case on the combinatorial study of finite Lie algebras. The growth type of
normal congruence subgroups is also determined: this depends delicately
on the type (i.e. the Dynkin diagram) of the underlying simple algebraic group.

These results are used in Chapter 7 to establish a group-theoretic char-
acterisation of arithmetic groups (in characteristic zero) with the congruence
subgroup property (CSP): an arithmetic group has CSP if and only if it
has subgroup growth of type strictly less than nlogn. Arithmetic groups are a
particular case of lattices in Lie groups. Using the above criterion as a def-
inition of the ‘generalized CSP’, the rest of Chapter 7 examines the subgroup
growth of such lattices, and establishes in many cases a generalized version of
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Serre’s congruence subgroup conjecture, namely that a lattice in a simple Lie
group L has the (generalized) CSP if and only if L has real rank greater than
1. The methods here are largely topological and geometric. As an application,
it is shown that the number of hyperbolic manifolds of a given dimension and
volume at most r grows like rcr, where c is a constant.

The emphasis so far has been on determining the subgroup growth of various
groups, using a more-or-less direct approach. A new angle appears in Chapter
11. Here we consider a profinite group G as a probability space, using its
natural Haar measure as a compact topological group. The simple observation
that the probability for random a k-tuple in G to belong to a given open sub-
group H is |G : H|−k has far-reaching consequences. Applying this when H is
a maximal subgroup, for example, we see that the probability P (G, k) that G
can be generated by k elements is at least 1 −

∑
mn(G)n−k; this implies that

if G has polynomial maximal subgroup growth then for sufficiently large k one
has P (G, k) > 0 – in this case G is said to be positively finitely generated or
PFG (as a special case we may infer that every profinite group with PSG is
finitely generated! – a non-probabilistic result proved by simple probabilistic
means). In fact, a profinite group is PFG if and only it has polynomial max-
imal subgroup growth; the “only if” is a much deeper result that depends on
the classification of finite simple groups. A variety of other applications of the
probabilistic method are also given, including an elegant determination of the
zeta function of Zd (see below).

The property of having polynomial (or otherwise restricted) subgroup growth
may be viewed as a finiteness condition on a group; it is an ‘upper finiteness
condition’ in the sense that it is defined as a limitation on the finite quotients. In
Chapter 12 we consider some other upper finiteness conditions, in particular
one called polynomial index growth (PIG): a groupG has PIG if |G∗ : G∗n| ≤
nc for all n and every finite quotient G∗ of G, where c is a constant. Another
closely related condition is ‘bounded generation’: a profinite group is said to be
boundedly generated (BG) if it is equal to the product of finitely many procyclic
subgroups. The main result shows that both conditions are closely related to
subgroup growth: for profinite groups, PSG =⇒ BG =⇒ PIG, while PIG implies
that the subgroup growth is of type at most n(logn)2 . Both PIG and BG (for the
profinite completion) can be used to characterize arithmetic groups with the
congruence subgroup property, in analogy to the first main result of Chapter 7.

The theory of groups with upper finiteness conditions such as these is less
developed than the theory of subgroup growth, and one purpose of Chapter 12
is to draw attention to the many unanswered questions in this area.

Chapter 13 concludes our study of growth types by establishing that the
subgroup growth spectrum is essentially complete. That is, for any ‘rea-
sonably nice’ non-decreasing unbounded function f : N → (0,∞) such that
f(n) = o(n) there exists a finitely generated residually finite group having sub-
group growth of type nf(n). This means that there are no ‘gaps’ in the spectrum
of possible growth types, between the slowest type n1 and the fastest type nn.
(Actually the given constructions leave the possibility of a ‘small gap’ between
types nlog logn and nlogn, but there seems little doubt that this can be filled.)
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It follows in particular that there are continuously many distinct growth types
for finitely generated groups.

The examples in this chapter are constructed in two stages: first a profinite
group G is tailored to have the required growth type, and then – the more
challenging part – a finitely generated dense subgroup Γ of G is found such
that the natural epimorphism Γ̂ → G is actually an isomorphism, or at least
has relatively small kernel. This procedure illustrates the philosophy outlined
above in Section 0.1 (iii). It is applied to two different kinds of profinite group:
(a) a product of finite alternating groups, using finite permutation group theory,
and (b) a ‘branch group’ in the sense of Grigorchuk, using the theory of groups
acting on rooted trees.

The last three chapters are devoted to the ‘arithmetic of subgroup growth’.
A full treatment would require a whole second book; here we provide no more
than an introduction to this area, where indeed many of the most challenging
open problems are to be found.

In Chapter 14 we report first on the case where G is a free product of finite
or cyclic groups. In this case, the sequence an(G) can be studied by combi-
natorial methods, generalising the approach originally applied to free groups
in Chapter 2. These lead both to remarkably precise asymptotic formulas and
to some intriguing results on divisibility properties. For the proofs, which in-
volve real analysis and combinatorics, we refer the reader to the original litera-
ture. The final section of Chapter 14 determines the subgroup growth of surface
groups; the method is character-theoretic, and potentially opens the way to a
similar study of other classes of one-relator groups.

The next two chapters introduce the (subgroup growth) zeta function. If G
is any group with polynomial subgroup growth, the Dirichlet series

ζG(s) =
∞∑
n=1

an(G)
ns

represents a complex analytic function, the zeta function of G, regular on the
half-plane Re(s) > α(G), where α(G) = inf{c | sn(G) ≤ nc for all large n} is
the ‘degree of polynomial subgroup growth’.

Chapter 15 studies the case where G is a finitely generated nilpotent group.
In this case, the zeta function has excellent properties, including (a) an Euler
product expansion, (b) for each prime p the ‘local factor’

ζG,p(s) =
∞∑
n=0

apn(G)p−ns (3)

ia a rational function of p−s; (c) analytic continuation. These are applied in the
proof of the following theorem: (d) if G is a finitely generated nilpotent group
then

sn(G) ∼ cnα(log n)β

for some c > 0, 0 < α = α(G) ∈ Q and 0 ≤ β ∈ Z.
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Claim (a) is elementary. The rationality theorem (b) is discussed in detail,
and related to properties of integrals on p-adic manifolds. The chapter also
presents five different proofs of the nice formula

ζZd(s) = ζ(s)ζ(s− 1) . . . ζ(s− d+ 1)

(here ζ(s) denotes the Riemann zeta function), each illustrating a different ap-
proach to the topic. On the other hand, (c) and (d) are very deep, and we only
outline briefly the main ideas of the proofs.

Finally, Chapter 16 considers the zeta function of a compact p-adic an-
alytic group. For such a group G (which is a finite extension of a pro-p group
of finite rank), the ‘local zeta function’ (3) is again a rational function of p−s

(generalising the nilpotent case). This applies for example to groups such as
SLd(Zp), raising the interesting challenge of actually determining the rational
functions in such cases. It also has several remarkable applications to the enu-
meration and classification of finite p-groups; the simplest of these to state is
the following, where

f(n, p, c, d)

denotes the number of isomorphism types of d-generator groups of order pn and
nilpotency class at most c: for fixed p, c and d the function n 7→ f(n, p, c, d)
satisfies a linear recurrence relation with integer coefficients; while the most
remarkable is the proof of a subtle conjecture of Newman and O’Brien on the
classification of p-groups of fixed coclass. Again, the chapter gives only an outline
of the main ideas of the proofs.

0.3 On CFSG

The classification of the finite simple groups (CFSG) is a wonderful ‘black box’
that enables the solution of many otherwise intractable problems in group the-
ory. A few of the major theorems in the book rely on this black box for their
proof, notably the ‘PSG Theorems’ of Chapters 5 and 10. This does mean that,
at present, the complete proof of such theorems is about 15,000 pages long! We
do not know if independent proofs will ever be found; this would certainly be
desirable for aesthetic and mathematical reasons We have tried on the whole
to resist the temptation to ‘shorten’ arguments by appealing indiscriminately to
CFSG, though we occasionally mention points at which such an appeal would
simplify a proof.

On the positive side, the book shows how CFSG has made possible substan-
tial advances in infinite group theory, in a perhaps unexpected way; thus as well
as being the end of one story it is the beginning of a new one.

0.4 The windows

On the whole, the individual chapters after the first are independent of one
another, and can be read in any order (except that Chapters 7 and 8 rely on
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Chapter 6, Chapter 10 on parts of Chapter 5, and Chapter 16 on parts of
Chapter 15).

A wide range of mathematical disciplines has to be invoked in the course of
our work. Each will be familiar to some readers and not to others. In an attempt
to keep clear the main structure of the development within each chapter, we have
separated off the discussion of various topics into twelve windows. Although
physically they appear together at the end of the book, the reader is expected
to treat them rather as ‘hypertext links’, and be prepared to flick to a window
for illumination whenever necessary. We apologise for the (hopefully minor)
inconvenience, and hope that this is compensated by the attendant streamlining
of the main text.

The windows vary in style: some are little more than lists of results, with ref-
erences, collected together for convenience; others discuss some topic in greater
or lesser depth, and present either new material or material that is not other-
wise easily available in the required form. We occasionally allow ourselves to
digress, where we feel there is something interesting to be said. The windows
on Linearity conditions and Strong approximation in particular are quite
substantial and are really chapters in their own right; their present form is sup-
posed to emphasize that they are of more general interest, quite apart from
their applications in this book. It is our hope that these, and some of the other
windows, will be a useful source for people working in related areas beyond the
narrow topic of subgroup growth.

For cross-references to the windows we use boldface type and the special
symbol #, so for example “(# Pro- p groups)” means “see the Window on
pro-p groups”.

0.5 The ‘notes’

Results are usually given in the main text without attribution; needless to say
this is not meant to imply any claim of originality. Instead, bibliographic ref-
erences are collected in the ‘notes’ section at the end of each chapter. We
have tried to give due credit to the authors of all the main results; doubtless
some oversights will have occurred, and we beg the forgiveness of our respected
colleagues in such cases.

Occasionally, the ‘notes’ also contain references to additional material not
covered in the main text, and/or historical remarks.
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Chapter 1

Basic techniques of
subgroup counting

The purpose of this preliminary chapter is to introduce a variety of simple
arguments that will serve as basic tools throughout the book. Taken en masse
these may seem rather dry and uninspiring – the reader may prefer to skim
through them fairly briskly, returning later when necessary to study particular
points in more detail (the simpler results will often be used in later chapters
without special mention).

There are three basic methods for obtaining upper bounds on the number
of subgroups of finite index in a group: (i) counting homomorphisms into finite
groups, (ii) counting generating sets and (iii) counting complements in exten-
sions. We shall see how each of these methods is used, sometimes in combination.
Slightly more sophisticated methods will also appear, which involve restricting
to Sylow subgroups or to soluble subgroups.

We give a fairly thorough account of subgroup-counting in abelian groups;
this is essential because the most usual way to obtain lower bounds for sn(G)
in a general group G is to locate an elementary abelian section A ‘near the top’
of G and then relate sn(G) to sn/m(A), where m is the index of A in G.

We recall some notation:

d(G) : the minimal cardinality of a generating set for G (topological gener-
ating set if G is profinite);

rk(G) = sup {d(H) | H a finitely generated subgroup of G} ;

rp(G) = sup {d(H) | H a p-subgroup of G} (when G is finite);

an(G) : the number of subgroups of index n in G (open subgroups if G is
profinite);

sn(G) =
n∑
j=1

aj(G), s(G) =
∞∑
j=1

aj(G)

11
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Ĝ denotes the profinite completion of a group G;

log x denotes the logarithm to base 2 of x.

1.1 Permutation representations

Let G be a group and H a subgroup of index n in G. Then G permutes the
right cosets of H by right multiplication. If we label H with 1 and the remaining
n− 1 cosets with 2, , . . . , n in any order we obtain a homomorphism

ϕ : G→ Sym(n);

it is clear that (i) ϕ(G) is transitive and (ii)H = StabG,ϕ(1) = ϕ−1Sym({2, . . . , n}).
Since there are (n−1)! distinct such labellings, we see thatH gives rise to (n−1)!
homomorphisms ϕ : G → Sym(n) satisfying (i) and (ii). Conversely, to each
ϕ : G → Sym(n) such that ϕ(G) is transitive we may associate the subgroup
StabG,ϕ(1) which has index n in G.

Under this correspondence between subgroups and permutation representa-
tions, moreover, the maximal subgroups of G correspond to primitive represen-
tations (for the stabilizer of a block containing the point 1 is a subgroup of G
containing the stabiliser of 1). Thus, writing

tn(G) = |{ϕ : G→ Sym(n) : ϕ(G) is transitive}|

and
pn(G) = |{ϕ : G→ Sym(n) : ϕ(G) is primitive}| ,

we have

Proposition 1.1.1

an(G) = tn(G)/(n− 1)!
mn(G) = pn(G)/(n− 1)!

For example, if G is infinite cyclic we have an(G) = 1 for every n, while tn(G)
is equal to the number of n-cycles in Sym(n) which is (n− 1)!.

Corollary 1.1.2 If G is a finitely generated group, or a finitely generated profi-
nite group, then

an(G) ≤ n!d(G)/(n− 1)! = n · n!d(G)−1.

(For the profinite case, note that the homomorphisms ϕ are continuous.) Asymp-
totically, this is the best possible upper bound, as we shall see in Chapter 2.

To go further we need to count the number of transitive permutation repre-
sentations. Write h0 = 1 and for n ≥ 1 let

hn(G) = |Hom(G, Sym(n))|.
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Lemma 1.1.3 Let G be any group. Then

hn(G) =
n∑
k=1

(
n− 1
k − 1

)
tk(G)hn−k(G).

Proof. For each k, let hn,k(G) denote the number of representations of G
in in Sym(n) for which the orbit of 1 has length exactly k. Now given k, there
are

(
n−1
k−1

)
ways to choose the orbit of 1, tk(G) ways for G to act on this orbit,

and hn−k(G) ways for G to act on its complement in {1, 2, . . . , n}. Therefore

hn,k(G) =
(
n− 1
k − 1

)
tk(G)hn−k(G), (1.1)

and the result follows.
Combining this with Proposition 1.1.1 we get

Corollary 1.1.4 Let G be any group. Then

an(G) =
1

(n− 1)!
hn(G)−

n−1∑
k=1

1
(n− k)!

hn−k(G)ak(G).

This recursive formula is useful only when we have some independent infor-
mation about the permutation representations of G; it will be applied to free
groups (Chapter 2), to groups having restricted composition factors (Chapter
3), and to certain groups given by a finite presentation (Chapter 14).

1.2 Quotients and subgroups

The following is evident, and will be used frequently without special mention:

Lemma 1.2.1 (i) If N C G then an(G/N) ≤ an(G) and sn(G/N) ≤ sn(G).
(ii) If H ≤ G with |G : H| = m then an(H) ≤ amn(G) and sn(H) ≤ smn(G).
(iii) Provided an(G) is finite, an(G) = an(G) for some finite quotient G of

G. Consequently an(G) = an(Ĝ).

Lemma 1.2.2 If G is finite then

sn(G) ≤ s(G) ≤ |G|rk(G)
, (1.2)

rk(G) ≤ log |G| . (1.3)

Proof. (1.2) is clear since each subgroup of G can be generated by rk(G)
elements. At least one subgroup H really needs rk(G) = r generators; say
H = 〈x1, . . . , xr〉 . Put Hi = 〈x1, . . . , xi〉. Then

|G| ≥ |H| = |H : Hr−1| · . . . · |H2 : H1| · |H1| ≥ 2r,

whence (1.3).
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Lemma 1.2.3 Let U be a subgroup of finite index g in G. Then for each k the
number of subgroups H of G with H ≥ U and |H : U | ≤ k is at most

g[log k].

Proof. The maximal length of a chain of subgroups between U and H is
at most [log k] = s, say; so H can be generated by U and at most s further
elements. Moreover,

〈U, x1, . . . , xs〉 = 〈U, a1x1, . . . , arxs〉

whenever a1, . . . , as ∈ U, so the number of distinct subgroups of this form is at
most |G : U |s = gs.

Corollary 1.2.4 Suppose that L is a subgroup of finite index m in G. Then for
each n we have

sn(G) ≤ (mn)[logm]sn(L).

Proof. To each H ≤ G we associate the subgroup H∩L of L. If |G : H| ≤ n
then |H : H ∩ L| ≤ n. Given a subgroup U of index at most n in L, if H ≤ G
satisfies H ∩L = U then |H : U | ≤ m, so the number of such subgroups H is at
most

|G : U |[logm] ≤ (mn)[logm].

The corollary follows.

1.3 Group extensions

In this section, we fix a normal subgroup N of G and write Q = G/N. We
denote by

Der(G,H)

the set of derivations (crossed homomorphisms, 1-cocycles) from G into a
G-group H; that is, maps δ : G → H such that δ(xy) = δ(x)y · δ(y). If H is
abelian (i.e. a G-module) this set is an abelian group, with pointwise operations.
When the G-action on H is trivial, Der(G,H) = Hom(G,H). The supremum of
|Der(G,H)| for all actions of G on the group H is denoted

der(G,H).

Lemma 1.3.1 (i) The number of complements to N in G is either zero or else
equal to |Der(Q,N)| (for a certain action of Q on N);
(ii)

der(Q,N) ≤ |N |d(Q)
. (1.4)

(iii) If N is abelian then Der(Q,N) is isomorphic to a subgroup of N (d(Q)) and

|Der(Q,N)| = |N/CN (Q)| ·
∣∣H1(Q,N)

∣∣ . (1.5)

(iv) If N is abelian and Q is finite then |Q| ·H1(Q,N) = 0.
(v) If N is abelian, H is a subgroup of finite index m in Q and N has exponent
coprime to m then

∣∣H1(Q,N)
∣∣ ≤ ∣∣H1(H,N)

∣∣.
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Proof. (i) if G is a non-split extension of N by Q then there are no comple-
ments. Otherwise, G is a semi-direct product G = N oH , and we may identify
Q with H, which acts on N by conjugation. For δ ∈ Der(H,N) define

Hδ = {h · δ(h) | h ∈ H} .

It is routine to verify that each Hδ is a complement to N in G and that δ 7→ Hδ

is a bijection between Der(H,N) and the set of all complements to N .
(ii) A derivation is determined by its effect on the elements of a generating

set.
(iii) Say Q = 〈x1, . . . , xd〉 . Then

δ 7→ (δ(x1), . . . , δ(xd))

embeds Der(Q,N) into N (d(Q)). The first cohomology group H1(Q,N) is
Der(Q,N)/IDer(Q,N) where IDer(Q,N) denotes the set of inner derivations
δa : x 7→ [a, x] (x ∈ Q, a a fixed element of N). Now (1.5) holds because the
map a 7→ δa induces an isomorphism N/CN (Q) → IDer(Q,N).

(iv) and (v) (Well known cohomological facts) Write N additively, and let
H ≤ Q be as in (v). The restriction map Der(Q,N) → Der(H,N) induces a
homomorphism res : H1(Q,N) → H1(H,N). Put K = ker(res). We show that
mK = 0. This gives (iv) if we take H = 1; while if tN = 0 then clearly tK = 0,
so if gcd(t,m) = 1 then K = 0, giving (v).

Now an element of K is represented by some δ ∈ Der(Q,N) such that
δ(H) = 0. Let T be a transversal to the right cosets of H in Q and put

a = −
∑
x∈T

δ(x).

Let y ∈ Q. Then for x ∈ T we have xy = hxx
′ where hx ∈ H and x 7→ x′ is a

permutation of T , so

δ(xy) = δ(hx)y + δ(x′) = δ(x′).

It follows that

δa(y) =
∑

(δ(x)− δ(x)y) =
∑

δ(x)−
∑

δ(xy) +
∑

δ(y)

=
∑

δ(x)−
∑

δ(x′) +mδ(y)

= mδ(y).

Thus m · δ is the inner derivation δa and represents 0 in H1(Q,N).

Proposition 1.3.2 The following hold:
(i)

an(G) ≤
∑
t|n

an/t(Q)at(N)trk(Q) (1.6)

sn(G) ≤ sn(Q)sn(N)nrk(Q) (1.7)

sn(G) ≤ sn(Q)sn(N)cn where c = 3d(Q)/3. (1.8)



16 CHAPTER 1. BASIC TECHNIQUES OF SUBGROUP COUNTING

(ii) If Q is finite then
sn(G) ≤ sn(N)n|Q|. (1.9)

(iii) If G is finite then

s(G) ≤ s(Q)s(N) |N |rk(Q) (1.10)

s(G) ≤ s(N) |G|rk(Q)
. (1.11)
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Proof. Let H be a subgroup of index n in G, put D = H∩N and B = NH,
and let t = |N : D| . Put A = NB(D) and C = A ∩ N . Then H/D is a
complement to C/D in A/D. So for a given pair D,B the number of possibilities
for H is at most

der(A/C,C/D) ≤ trk(Q),

since |C/D| ≤ t and A/C ∼= B/N ≤ Q. Given t, the number of possibilities for
D is at most at(N) and the number of possibilities for B is at most an/t(Q);
this gives (1.6), and (1.7) is an immediate consequence. When G is finite, this
also gives (16.4.8) since t ≤ |N |, and (1.11) follows on applying (1.2) to Q (a
more direct argument for (1.11) is given below).
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Now put d = d(Q). Keeping the above notation, note that by Schreier’s
formula ([R], 6.1.1) we have

d(A/C) = d(B/N) ≤ 1 + |G : B| (d− 1) = 1 +
n

t
(d− 1) ≤ nd/t.

Hence
der(A/C,C/D) ≤ tnd/t ≤ 3nd/3,

since t1/t ≤ 31/3 for every t ∈ N. The estimate (1.8) now follows as before.
Suppose now that |Q| = q is finite. Fix n and let D ≤ N with |N : D| =

t ≤ n. Then fix transversals {x1, . . . , xq} to G/N and {y1, . . . , yt} to the right
cosets of D in N . If H is a subgroup of G with H ∩N = D then

H =
⋃

i∈S(H)

Dyf(i)xi

for some subset S(H) of {1, . . . , q} and some function f : S(H) → {1, . . . , t}.
Now |G : H| = tq/ |S(H)| , so if |G : H| ≤ n then either t < n or t = n and
S(H) = {1, . . . , q}. Suppose that t < n. Then putting f(i) = ∞ for each i /∈
S(H), we see thatH is determined by a function from {1, . . . , q} to {1, . . . , t,∞};
so the number of such subgroups H is at most (t+1)q ≤ nq. On the other hand,
if t = n then H is determined by a function from {1, . . . , q} to {1, . . . , t}, so
there are again at most nq possibilities for H. Since there are sn(N) possibilities
for D this gives (1.9).

Suppose finally that G is finite. If H ≤ G and H ∩ N = D then H/D ∼=
HN/N ≤ Q so H is generated by D together with at most rk(Q) further el-
ements. Each of these can be chosen in at most |G| ways, and (1.11) follows.

In part (iii) of the last proposition we bounded s(G) in terms of s(N) and
rk(Q). In some circumstances it is also possible, though harder, to give a bound
in terms of s(Q) and rk(N):

Proposition 1.3.3 Suppose that G is finite and that N is soluble, of derived
length l and rank r. Then

s(G) ≤ s(Q) |N |3r
2+lr |Q|lr ≤ s(Q) |G|3r

2+lr
.

This depends on

Lemma 1.3.4 If Q is finite and A is a finite Q-module of (additive) rank r
then ∣∣H1(Q,A)

∣∣ < |A|3r
2−1 |Q|r .

Proof. Put G = AoQ. For each prime p let Qp be a Sylow p-subgroup of
Q and let Ap denote the p-component of A. Then

H1(Q,A) ∼=
⊕

H1(Q,Ap)
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and Lemma 1.3.1(v) shows that
∣∣H1(Q,Ap)

∣∣ ≤ ∣∣H1(Qp, Ap)
∣∣ for each p; so our

claim will follow if it holds with A, Q replaced by Ap, Qp. Thus we may assume
that both A and Q are p-groups.

Put C = CG(A). To each complement H to A in G associate the subgroup
DH = H ∩ C. Each such DH is a complement to A in C, so the number of
possibilities for DH is at most

|Der(C/A,A)| = |Hom(C/A,A)| =
∣∣Hom(C,A)

∣∣
=
∣∣Hom(A,C)

∣∣
≤
∣∣C∣∣r ≤ |Q|r ,

where C = C/AC ′. Having fixed DH = D, put R = NG(D) and S = R ∩ C =
NC(D). Now R/S ∼= G/C acts faithfully by conjugation on A; it follows that

rk(R/S) ≤ 5(r2 − r)/2 < 3r2 − 1

(↪→ Pro-p groups, Proposition 13). Hence

|Der(R/S, S/D)| ≤ |S/D|3r
2−1 ≤ |A|3r

2−1
.

But H/D is a complement to S/D in R/D, so this bounds the number of possi-
bilities for H with DH = D. The result follows since

∣∣H1(Q,A)
∣∣ ≤ |Der(Q,A)|

which is exactly the number of such complements H.

We now complete the

Proof of Proposition 1.3.3. Suppose first that N is abelian. To each
subgroup H of G associate the pair of groups DH = H ∩ N, GH = NH. The
number of possibilities for GH is s(G/N) = s(Q), and the number of possibilities
for DH is s(N) ≤ |N |r. Now H/DH is a complement to N/DH in GH/DH , so
given GH = R and DH = D, the number of possibilities for H is

|Der(R/N,N/D)| ≤ |N/D| ·
∣∣H1(R/N,N/D)

∣∣
≤ |N/D| · |N/D|3r

2−1 |R/N |r

≤ |N |3r
2

|Q|r ,

by Lemma 1.3.4. Thus

s(G) ≤ s(Q) |N |3r
2+r |Q|r

when N is abelian.
Now suppose that N has derived length l > 1, and let A be the (l − 1)th

term of the derived series of N . Inductively we may suppose that

s(G/A) ≤ s(Q) |N/A|3r
2+(l−1)r |Q|(l−1)r

.
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Applying the first case with A, G/A in place of N, Q we now obtain

s(G) ≤ s(G/A) |A|3r
2+r |G/A|r

≤ s(Q) · |N/A|3r
2+(l−1)r · |A|3r

2+r · |G/A|r · |Q|(l−1)r

= s(Q) · |N/A|3r
2+lr · |A|3r

2+r · |Q|lr

≤ s(Q) |N |3r
2+lr |Q|lr

as required.

An analogous result, using the Fitting length instead of the derived length
of N , is established in §10.4; however in that case the proof depends on CFSG.

It is sometimes useful to have a bound for the number of supplements to N
in G, that is, subgroups H such that NH = G. If in the above proof we count
only subgroups H for which GH = G, the factor s(Q) gets replaced by 1, and
essentially the same argument gives

Corollary 1.3.5 Suppose that G is finite and that N is soluble, of derived
length l and rank r. Then the number of supplements to N in G is at most
|G|3r

2+lr.

When counting normal subgroups the following variations on (1.7) can be
useful:

Proposition 1.3.6 Put

Zn(N) = {Z(N/D) | D ≤ N, D C G, |N : D| ≤ n} ,
zn(N) = sup {|Z| | Z ∈ Zn(N)} ,
δn(N) = sup {rk(Z) | Z ∈ Zn(N)} .

Then
sC
n (G) ≤ sC

n (Q)sC
n (N)zn(N)rk(Q) ≤ sC

n (Q)sC
n (N)nrk(Q)

and
sC
n (G) ≤ sC

n (Q)2sC
n (N)zn(N)δn(N).

Proof. To each H C G with |G : H| ≤ n we associate the pair

X = NH, D = N ∩H. (1.12)

The number of possibilities for such a pair is at most sC
n (Q)sC

n (N). Having fixed
the pair (X,D), let H denote the set of H C G such that (1.12) holds, and put
Z/D = Z(N/D). It will suffice now to show that |H| is bounded above by both

|Z|rk(Q) and sC
n (Q) |Z|rk(Z)

.
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To do so we may factor out D and so assume that D = 1. Then X = N ×H
for each H ∈ H. Now fix one B ∈ H. Then any H ∈ H takes the form

H = {b · f(b) | b ∈ B}

where f : B → N is a homomorphism with f(B) ≤ Z. Since d(B) = d(X/N) ≤
rk(Q) the number of such homomorphisms is at most |Z|rk(Q)

, giving the first
bound. For the second, note that the kernel of f is just B ∩H which is normal
in G, and as

X/(N · ker f) ∼= B/ ker f ∼= f(B)

it follows that K = N · ker f is a normal subgroup of index at most n in G.
There are at most sC

n (Q) possibilities for such a K. Having fixed K, we have
ker f = B ∩K, and the number of possibilities for f is at most the number of
monomorphisms from B/(B ∩K) into Z. If there is at least one then d(B/(B ∩
K)) ≤ rk(Z), so in any case their number is at most |Z|rk(Z), whence the second
bound.

1.4 Nilpotent and soluble groups

For nilpotent groups a sharper version of Lemma 1.2.2 holds:

Lemma 1.4.1 If G is nilpotent then for each n > 1

an(G) < nrk(G), (1.13)

sn(G) < n1+rk(G). (1.14)

Proof. If G has infinite rank there is nothing to prove. Otherwise, we may
assume that G is finite. Let p be a prime. Then every subgroup of index p in G is
normal, so is the kernel of some epimorphism G→ Cp. Since d(G) ≤ rk(G) = r
there are at most pr − 1 such epimorphisms, and so ap(G) < pr. Now let n > 1.
Then n = pm for some prime p, and every subgroup of index n in G is contained
in some subgroup M of index p in G. Arguing by induction on n we may suppose
that am(M) ≤ mr. It follows that

an(G) ≤ ap(G) · max
|G:M |=p

am(M)

< prmr = nr.

This proves (1.13), and (1.14) follows.
Combining this with Proposition 16.4.8 we obtain a large family of groups

with polynomial subgroup growth:

Proposition 1.4.2 Suppose that the group G has a chain of subgroups

1 = Gk C Gk−1 C · · · C G0 C G

where Gi−1/Gi is nilpotent of rank ri for i = 1, . . . , k and |G/G0| = m is finite.
Then

sn(G) ≤ nm+k+
∑
ri .
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Proof. Put si = ri+1 + · · · + rk for 0 ≤ i < k. From (1.13) we have
an(Gk−1) ≤ nrk = nsk−1 . Let i < k and suppose inductively that an(Gi) ≤
nsi+k−i−1 for each n. Then (1.6) and (1.13) give

an(Gi−1) ≤
∑
t|n

an/t(Gi−1/Gi)at(Gi)tri

≤
∑
t|n

(n/t)ri · tsi+k−i−1 · tri

= nri

∑
t|n

tsi+k−i−1 ≤ nsi−1+k−i.

It follows by induction that an(G0) ≤ ns0+k−1 for each n, and hence that
sn(G0) ≤ ns0+k. An application of (1.9) now concludes the proof.

Corollary 1.4.3 If G is a virtually soluble group of finite rank then there exists
a constant α such that sn(G) ≤ nα for all n.

The converse of this result will be the main result of Chapter 5.
From the arithmetical point of view, the key fact about nilpotent groups is

Proposition 1.4.4 Let G be a nilpotent group. If n =
∏
pe(p) (with distinct

primes p) and an(G) is finite then

an(G) =
∏

ape(p)(G).

Proof. Replacing G by a suitable finite quotient, we may assume that G
is finite. Then G = P1 × · · · × Pk where P1, . . . , Pk are the distinct Sylow
subgroups of G. The result now follows because each subgroup H of G is of the
form (H ∩ P1)× · · · × (H ∩ Pk).

1.5 Abelian groups I

For certain abelian groups it is possible to estimate the subgroup growth with
some precision.

Proposition 1.5.1 If p is a prime then(
1− 1

pd

)
pk(d−1) ≤ apk(Z(d)) ≤

(
1 +

1
p− 1

)d
pk(d−1)

for all k ≥ 0.

Proof. Suppose
apk(Z(d)) = f(d, k)pk(d−1)
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for all d and k. Then f(1, k) = 1 for all k. Now let d > 1. Taking N = Z and
Q = Z(d−1) in (1.6) gives

pk(d−1)f(d, k) = apk(Z(d)) ≤
k∑
i=0

api(Z(d−1)) · 1 · p(k−i)(d−1) (1.15)

=
k∑
i=0

f(d− 1, i)pi(d−2) · p(k−i)(d−1)

= pk(d−1)
k∑
i=0

f(d− 1, i) · p−i.

Supposing inductively that f(d− 1, i) ≤ (p/(p− 1))d−1 for all i we deduce that

f(d, k) <
(

p

p− 1

)d−1 ∞∑
i=0

p−i =
(

p

p− 1

)d
.

This establishes the second inequality.
On the other hand, Z(d) has pkd homomorphisms into the cyclic group Cpk ,

and hence pkd − p(k−1)d epimorphisms onto Cpk . The number of epimorphisms
with a given kernel is

∣∣Aut(Cpk)
∣∣ < pk; it follows that the number of distinct

such kernels is at least (pkd − p(k−1)d)p−k. This implies the first inequality.

It is worth mentioning that the above calculation gives an exact recursive for-
mula for f(d, k), because in the present case the inequality in (1.15) is actually
an equality, as is clear from the proof of (1.6). This formula is elegantly summed
up in the generating function identity

∞∑
n=0

apn(Z(d))Xn =
d−1∏
j=0

1
1− pjX

;

see Chapter 15.

The analogous estimate for elementary abelian groups, stated next, is the
single most frequently used result in our subject. To state it, for each prime p
we define the constant κ(p) by

κ(p) =
∞∏
i=1

(1− p−i)−1.

We also put [
d

r

]
p

=
(pd − 1)(pd − p) . . . (pd − pr−1)
(pr − 1)(pr − p) . . . (pr − pr−1)

.

Note that 1 < κ(p) < 4 for every p, and that κ(p) → 1 as p → ∞. Note also
that [

d

r

]
p

=
[

d

d− r

]
p

.
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Proposition 1.5.2 Let A = C
(d)
p . Then for 1 ≤ r < d,

κ(p)pr(d−r) > apr (A) =
[
d

r

]
p

> pr(d−r).

(d+ 1)κ(p)pd
2/4 > s(A) > p[d2/4]. (1.16)

Proof. Think of A as a d-dimensional vector space over Fp. Now
[
d
r

]
p

is
the number of linearly independent r-tuples in A divided by the number of
distinct bases in any r-dimensional subspace, so

[
d
r

]
p

is equal to the number of

r-dimensional subspaces in F(d)
p . By duality, this is the same as the number of

subspaces of codimension r, which is apr (A). The two inequalities in the first
line then follow from the fact that

pd−r

1− p−(r−i) >
pd − pi

pr − pi
> pd−r

for 0 ≤ i < r < d. For the final inequality, note that s(A) > apd/2(A) when d is
even, s(A) > ap(d+1)/2(A) when d is odd.

The proof of the lower bound carries over without difficulty to homocyclic
groups of prime-power exponent:

Proposition 1.5.3 Let A = C
(d)
pn where n ≥ 1. Then for 1 ≤ r < d we have

apnr (A) > pnr(d−r).

Proof. Let us call a k-tuple of elements of A independent if it generates
a subgroup isomorphic to C

(k)
pn . A simple counting arument shows that the

number of independent k-tuples in A = C
(d)
pn is

q(d, k) =
k−1∏
i=0

(
pnd − p(n−1)d+i

)
.

It follows that the number of subgroups isomorphic to C(k)
pn is given by

q(d, k)
q(k, k)

> pn(d−k)k

if 1 ≤ k < d. The result follows on taking k = d− r.

1.6 Finite p-groups

Proposition 1.5.2 can be used to deduce an upper bound valid in every finite
p-group:

Proposition 1.6.1 Let G be a group of order pd. Then for 1 ≤ r ≤ d,

apr (G) < κ(p)pr(d−r).
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Note that this is sharper than Lemma 1.4.1 only when r > d− rk(G).
Proof. We prove this in two ways, illustrating different techniques.
(1) By the preceding result, it suffices to show that G has at most as many

subgroups of index pr as does the elementary abelian group A of the same order,
and we prove this by induction on d. Let Z be a central subgroup of order p in
G. Then

apr (G) = apr (G/Z) +
∑
K

ε(K) |Hom(K/Z,Z)|

= apr (G/Z) +
∑
K

ε(K)pd(K/Z)

≤ apr (G/Z) + apr−1(G/Z)pd−r

where K runs over all subgroups of G containing Z with |G : K| = pr−1, and
ε(K) = 1 if Z has a complement in K, ε(K) = 0 otherwise. Similarly, taking Y
to be a subgroup of order p in A we have

apr (A) = apr (A/Y ) +
∑
K

ε(K)pd(K/Y )

= apr (A/Y ) + apr−1(A/Y )pd−r,

where K runs over all subgroups of A containing Y with |G : K| = pr−1, and
ε(K) is defined analogously, so ε(K) = 1 for every K in this case. The result
now follows by the inductive hypothesis.

(2) We adapt the argument of the elementary abelian case. Let n ≤ d and let
H be a group of order pn with d(H) = m. The number of n-tuples of elements
that generate H/Φ(H) is at least

(pm − 1)(pm − p) . . . (pm − pm−1)pm(n−m) > κ(p)−1pnm.

Each of these corresponds to |Φ(H)|n = pn(n−m) generating n-tuples for H, so
H has more than κ(p)−1pn

2
ordered generating sets of size n. Now the number

of n-tuples of elements in G is pdn; consequently the number of subgroups of
order pn in G is less than

pdn

κ(p)−1pn2 = κ(p)p(d−n)n.

This gives the result on putting n = d− r.
If G is a p-group with d(G) = d < ∞ then G/Φ(G) is isomorphic to F(d)

p ,
and so for 1 ≤ r ≤ d we have

apr (G) ≥ apr (F(d)
p ) =

[
d

r

]
p

≥ pr(d−r), (1.17)

in particular
ap(G) ≥ pd−1. (1.18)



1.6. FINITE P -GROUPS 25

Since every subgroup of index p in G contains Φ(G), we also have

ap(G) =
pd − 1
p− 1

<
p

p− 1
· pd−1 = pd−µ(p) (1.19)

where

µ(p) =
log(p− 1)

log p
;

note that 0 < µ(p) < 1 and that µ(p) → 1 as p→∞.
Now let

• dn(G) = max{d(H) | H a subgroup of G of index pn}

• d∗n(G) =
n∑
i=0

di(G)

• δn(G) = min{d(H) | H a subgroup of G of index pn}

Proposition 1.6.2 Let G be a finite p group. Then for each n ≥ 1 we have

pdn−1(G)−1 ≤ apn(G) ≤ pd
∗
n−1(G)−nµ(p), (1.20)

apn(G) ≥
n∏
i=1

pδi−1(G) − 1
pi − 1

. (1.21)

Proof. (1.20): Let H be a subgroup of index pn−1 with d(H) = dn−1(G).
Applying (1.18) to H gives the first inequality in (1.20). For the second, note
that every subgroup H of G of index pn is part of a chain

H = Hn < Hn−1 < Hn−2 < · · · < H1 < H0 = G (1.22)

with |G : Hi| = pi for each i. By (1.19), Hi has at most pdi(G)−µ(p) subgroups
of index p, so given Hi this is an upper bound for the number of possibilities
for Hi+1. It follows that the number of possibilities for H = Hn is at most

n−1∏
i=0

pdi(G)−µ(p) = pd
∗
n−1(G)−nµ(p).

(1.21): Write kn = apn(G). Now let n ≥ 1. Each subgroup of index pn−1 in
G has at least (pδn−1(G)−1)/(p−1) subgroups of index p. On the other hand, if
H is a subgroup of index pn in G then the number of subgroups of index pn−1

that contain H is at most (pn − 1)/(p − 1): for each of them corresponds to
a subgroup of order p in the group NG(H)/H, which has order at most pn. It
follows that

kn ≥
(pδn−1(G) − 1)/(p− 1)

(pn − 1)/(p− 1)
· kn−1,

and as k0 = 1 this gives (1.21).
Remark Proposition 1.6.2 applies without change to every finitely generated

pro-p group, since all of the invariants apn(G), dn(G), d∗n(G) and δn(G) can be
detected in a suitable finite quotient of a pro-p group G.
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1.7 Sylow’s theorem

Another method for counting subgroups in finite groups uses Sylow subgroups,
to reduce to the p-group situation.

Lemma 1.7.1 Let G be a finite soluble group. If n = pe11 . . . pek

k where p1, . . . , pk
are distinct primes, then

an(G) ≤ n ·
k∏
i=1

apei
i

(Pi)

where for each i, Pi is a Sylow pi-subgroup of G.

Proof. We may assume that n divides |G| , since otherwise an(G) = 0.
According to Hall’s theory of Sylow systems (# Finite group theory, §1),
G has a family of Sylow pi-subgroups Pi, one for each of the primes p1, . . . , pm
dividing |G|, with the following property: for every subgroup H of G there exists
x ∈ G such that

Hx = (Hx ∩ P1) . . . (Hx ∩ Pm).

Now suppose that |G : H| = n. Then |Hx ∩ Pi| is the pi-part of |Hx| = |H| =
g/n, and so |Pi : Hx ∩ Pi| = pei

i (where ei = 0 if i > k). The number of
possibilities for Hx ∩ Pi is therefore at most apei

i
(Pi), and so the number of

possibilities for Hx is at most
∏m
i=1 apei

i
(Pi). The result follows since H is one

of the |G : NG(Hx)| ≤ |G : H| = n conjugates of Hx, and apei
i

(Pi) = 1 for each
i > k.

Corollary 1.7.2 Let G be a finite soluble group and put r =
max {rp(G) | p prime}. Then

an(G) ≤ n1+r,

sn(G) ≤ n2+r

for every n.

Proof. Keep the above notation. Lemma 1.4.1 shows that

apei
i

(Pi) ≤ prei
i

for each i. The first claim now follows from the preceding lemma, and the second
is an immediate consequence.

This provides an alternative approach to Corollary 1.4.3; it has the advantage
of being truly ‘local’, depending only on the finite quotients of the group and
not on its global structure:

Corollary 1.7.3 Let G be a group such that every finite quotient of G is soluble
of rank at most r. Then

sn(G) ≤ n2+r

for all n.
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A similar argument yields a slightly weaker estimate for an arbitrary finite
group:

Proposition 1.7.4 Let G be a finite group. If n = pe11 . . . pek

k where p1, . . . , pk
are distinct primes, then

an(G) ≤ nk ·
k∏
i=1

apei
i

(Pi)

where for each i, Pi is a Sylow pi-subgroup of G.

Proof. Let H be a subgroup of index n in G. For each i, H has a Sylow pi-
subgroup of the form H∩P xi

i with xi ∈ G. Given xi, the number of possibilities
for H ∩ P xi

i is at most apei
i

(P xi
i ); so the number of k-tuples of the form

(H ∩ P x1
1 , . . . ,H ∩ P xk

k )

for a given k-tuple x = (x1, . . . , xk) is at most

k∏
i=1

apei
i

(Pi).

The number of such k-tuples x is at most |G|k; but if x corresponds to H as
as above then so does the k-tuple (x1h1, . . . , xkhk) for any h1, . . . , hk ∈ H, so
the number of k-tuples corresponding to distinct subgroups of index n in G is
at most |G|k / |H|k = nk. The result follows since H is generated by its Sylow
subgroups H ∩ P xi

i (i = 1, . . . , k).

Corollary 1.7.5 Let |G| = pb11 . . . pbt
t where p1, . . . , pt are distinct primes, and

put b = max{bi | 1 ≤ i ≤ t}, r = max{rpi
(G) | 1 ≤ i ≤ t}. Then

an(G) ≤ nν(n)+r ≤ nt+r ≤ nt+b ≤ n2 log|G|

for each n, where ν(n) denotes the number of distinct prime divisors of n.

The first inequality follows on applying Lemma 1.4.1 to each Pi, and the re-
maining inequalities are clear (we may assume that n | |G| since an(G) = 0
otherwise).

As an exercise, the reader can generalise this argument to show that G has
at most n2 log g = g2 logn subgroups of index n containing a given subgroup U
of index g in G (the proposition above being the case U = 1). This is sharper
than Lemma 1.2.3 when n < g1/3.

1.8 Restricting to soluble subgroups

Write
sol(G), nil(G)

for the number of soluble subgroups, respectively nilpotent subgroups of G. The
following is useful for estimating the total number of subgroups in a finite group.
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Proposition 1.8.1 Let G be a finite group.
(i) s(G) ≤ |G| · sol(G).
(ii) Let l be the maximal Fitting height of any soluble subgroup of G. Then

s(G) ≤ nil(G)l+1.

Proof. It is proved in [Aschbacher & Guralnick 1982] that every finite group
can be generated by a soluble subgroup together with one further element. This
immediately implies (i) (though easy to use, this hardly counts as an elemen-
tary result, since the theorem of Aschbacher and Guralnick is an application of
CFSG).

Now let H be a finite soluble group of Fitting height l. We claim that H is
equal to a product of l nilpotent subgroups. If l = 1 then H is nilpotent and
the claim is trivial. Suppose that l > 1. Then H has a normal subgroup K of
Fitting height l − 1 such that H/K is nilpotent, and then H = KC where C is
any Carter subgroup of H (# Finite group theory). The claim now follows
by induction.

In the situation of (ii), it now follows (with the theorem quoted above) that
every subgroup of G is generated by at most l nilpotent subgroups together with
one cyclic subgroup, so we have (ii).

A similar argument combined with Corollary 1.7.2 gives

Proposition 1.8.2 Let G be a finite group and put r = max {rp(G) | p prime}.
Then

sn(G) ≤ |G|b n2+r

for every n, where b is an absolute constant.

Proof. This depends on the following theorem of [Borovik, Pyber & Shalev
1996]: the number of maximal soluble subgroups of G is at most |G|c , where c is
an absolute constant. IfH is a subgroup of index at most n in G thenH = 〈S, x〉
for some soluble subgroup S and some x ∈ G, by the theorem of Aschbacher
and Guralnick; without loss of generality S = H ∩ T where T is a maximal
soluble subgroup of G, and then |T : S| ≤ n. There are at most |G|c choices for
T, and given T there are at most n2+r possibilitites for S, by Corollary 1.7.2.
The result follows, with b = c+ 1. (Borovik, Pyber and Shalev conjecture that
c = 1 will do; if this is correct, we can take b = 2 in the proposition.)

1.9 Applications of the ‘minimal index’

We have applied Proposition 16.4.8 to soluble groups in several of the above
results. It is also useful for dealing with groups having non-abelian composition
factors. Denote by

µ(G)

the minimal index of a proper subgroup of G; of course µ(G) = |G| if G is cyclic
of prime order, but there are also good lower bounds for µ(G) when G is a
non-abelian simple group.
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Proposition 1.9.1 Suppose that 1 = Gk C Gk−1 C . . . C G0 = G. Put Qi =
Gi−1/Gi and suppose that

µ(Qi)c ≥ |Qi|
rk(Qi) ≤ r

for each i, where (c− 1)r ≥ 2. Then for every n,

sn(G) ≤ nkcr.

Proof. Put Q = Q1. If st(Q) > 1 then t ≥ µ(Q) ≥ |Q|1/c , so for every t ≥ 1
we have

st(Q) ≤ |Q|r ≤ tcr.

This gives the result if k = 1. Now suppose k > 1 and argue by induction. Then
(1.6) gives

an(G) ≤
∑
t|n

an/t(Q)at(G1)trk(Q)

≤ an(G1)nr +
∑
t≤n/2

an/t(Q)at(G1)tr

≤ n(k−1)cr+r +
∑
t≤n/2

(n/t)crt(k−1)crtr

= n(k−1)cr+r + ncr
∑
t≤n/2

t(k−2)cr+r

≤ n(k−1)cr+r + ncr · n
2
· n(k−2)cr+r

≤ nkcr−1

for each n ≥ 2, since 1 + n/2 ≤ n and (k − 1)cr + r + 1 ≤ kcr − 1. The result
follows.

Corollary 1.9.2 Let G be a direct product of non-abelian simple groups. Then

sn(G) ≤ nα

for all n, where α depends only on rk(G).

Proof. This depends on the classification of finite simple groups, which
implies that for any simple group Q of rank at most r we have µ(Q)c ≥ |Q| ,
where c depends only on r (# Simple groups). If G is a product of k simple
groups then G contains an elementary abelian 2-subgroup of rank k (since every
non-abelian simple group has even order), so k ≤ rk(G). The above proposition
now gives the result, with α = c · rk(G)2.
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1.10 Abelian groups II

The material of this section will only be needed in Chapter 10.
A convenient estimate for the number of subgroups in a general finite abelian

group A is provided by the size of the endomorphism ring End(A), as shown in
the next proposition. We shall frequently use the fact that

Hom(
⊕

Ai,
⊕

Bj) ∼=
⊕
i,j

Hom(Ai, Bj). (1.23)

In particular, this implies that if A ∼=
⊕
Cmi and B ∼=

⊕
Cnj then

|Hom(A,B)| =
∏
i,j

gcd(mi, nj) (1.24)

= |Hom(B,A)| .

We also need

Lemma 1.10.1 If n | |A| = a then an(A) = aa/n(A).

This follows from the duality between A and A∗ = Hom(A,C∗).

Now we can establish

Proposition 1.10.2 Let A be any finite abelian group. Then

s(A) ≤ |End(A)| . (1.25)

s(A)4 ≥ |A|−1 |End(A)| (1.26)

Remark. Using a more delicate argument involving Hall polynomials, [Gold-
feld, Lubotzky & Pyber] establish the sharper bounds

|A|−1 |End(A)|
1
4 ≤ s(A) ≤ |A|2 |End(A)|

1
4 .

Proof of Proposition 1.10.2. The first claim (1.25) holds because every
subgroup of A is the kernel of at least one endomorphism of A.

To prove (1.26), write A = B ⊕C where C ∼= Cm and m is the exponent of
A, and suppose inductively that (1.26) holds with B in place of A. Then (1.23)
gives

|End(A)| = |End(B)| · |B|2 · |C|

≤ s(B)4 |B|3 |C|
= (|B| s(B)2)2 · |A| .

So it will suffice to establish that

|B| s(B)2 ≤ s(A)2. (1.27)
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Now for each subgroup L of index n in B there exist |Hom(C,B/L)| = n
subgroups H of A such that H ∩B = L and H +B = A, so we have

an(A) ≥ nan(B).

Put b = |B|. With Lemma 1.10.1 this gives

2s(A) ≥ 2
∑
n|b

an(A)

≥
∑
n|b

nan(B) +
∑
n|b

nab/n(B)

=
∑
n|b

an(B)(n+ b/n) ≥ 2
√
bs(B)

since n+b/n−2
√
b = (

√
n+

√
b/n)2 ≥ 0. This implies (1.27), and so completes

the proof of (1.26).

We shall use this result in conjunction with the following estimates for the
number of endomorphisms.

Lemma 1.10.3 Let A and B be finite abelian groups. Then

|Hom(A,B)|2 divides |End(A)| · |End(B)| .

Proof. Assume first that A and B are p-groups, of types (e1, . . . , er) and
(f1, . . . , fs) respectively. Using (1.24) we see that the statement is equivalent to

2
∑

min(ei, fj) ≤
∑

min(ei, em) +
∑

min(fj , fn). (1.28)

Suppose without loss of generality that e1 ≤ e2 ≤ . . . ≤ er and that f1 ≤ f2 ≤
. . . ≤ fs, and argue by induction on r + s. Now the right-hand side of (1.28) is
equal to∑

i,m<r

min(ei, em) +
∑
j,n<s

min(fj , fn) + er + fs + 2
∑
i<r

ei + 2
∑
j<s

fj

≥ 2
∑

i<r,j<s

min(ei, fj) + er + fs + 2
∑
i<r

ei + 2
∑
j<s

fj (1.29)

by inductive hypothesis. The left-hand side of (1.28) is equal to

2
∑

i<r,j<s

min(ei, fj) + 2 min(er, fs) + 2
∑
i<r

min(ei, fs) + 2
∑
j<s

min(er, fj).

Term by term this is is less than or equal to to (1.29); so (1.28) is true, and the
lemma holds for p-groups.

The general case follows on applying (1.23) to the primary components of
A and B. (For a different, algebraic, proof see [Segal & Shalev 1997], Lemma
4.1.)
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Corollary 1.10.4 ∣∣∣∣∣End(
k⊕
i=1

Ai)

∣∣∣∣∣ |
k∏
i=1

|End(Ai)|k .

Proof. From (1.23), we see that the left-hand side is equal to

∏
|Hom(Ai, Aj)| =

k∏
i=1

|End(Ai)| ·
∏
i<j

|Hom(Ai, Aj)|2 .

By the Lemma this number divides

k∏
i=1

|End(Ai)| ·
∏
i<j

|End(Ai)| |End(Aj)| =
k∏
i=1

|End(Ai)|k .

The case k = 2 can be interpreted as

Corollary 1.10.5 Let M and N be two finite families of positive integers and
H their disjoint union. Then

∏
a,b∈H

gcd(a, b) |

 ∏
a,b∈M

gcd(a, b)
∏
a,b∈N

gcd(a, b)

2

.

Lemma 1.10.6 Suppose that

0 = A0 ≤ A1 ≤ . . . ≤ Ak = A.

Put Qi = Ai/Ai−1 for each i. Then

|End(A)| divides |End(Q1 ⊕ · · · ⊕Qk)| .

Proof. Let C be any abelian group. The exact sequence

0 → Ak−1 → A→ Qk → 0

gives rise to an exact sequence

0 → Hom(C,Ak−1) → Hom(C,A) → Hom(C,Qk).

This implies that |Hom(C,A)| divides |Hom(C,Ak−1)| · |Hom(C,Qk)|, and it
follows by an obvious inductive argument that

|Hom(C,A)| |
k∏
i=1

|Hom(C,Qi)| = |Hom(C,Q1 ⊕ · · · ⊕Qk)| .
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In particular we have

|Hom(A,A)| | |Hom(A,Q1 ⊕ · · · ⊕Qk)|
= |Hom(Q1 ⊕ · · · ⊕Qk, A)|
| |Hom(Q1 ⊕ · · · ⊕Qk, Q1 ⊕ · · · ⊕Qk)| .

Corollary 1.10.7 In the situation of Lemma 1.10.6,

|End(A)| |
k∏
i=1

|End(Qi)|k .

1.11 Growth types

To conclude the chapter, we interpret some of the results in terms of growth
type. Recall that a group G is said to have subgroup growth of type f if there
exist positive constants a and b such that

sn(G) ≤ f(n)a for all n

sn(G) ≥ f(n)b for infinitely many n;

and that G has growth of strict type f if the second inequality holds for all large
n. In particular, polynomial subgroup growth means growth of type at most n.

Let H be a subgroup of finite index m in a group G. Corollary 1.2.4 and
Lemma 1.2.1 show that for every n,

sn(G) ≤ a · nb · sn(H),
sn(H) ≤ smn(G)

where a = m[logm] and b = [logm]. This means that ‘on the whole’, G and H
have the same growth type. For example, G has polynomial subgroup growth
if and only if H does. The same holds for faster growth types, as long as we
restrict to ‘reasonable’ functions. Let us say that a function f satisfies (∗) (for
a given m ∈ N) if

log n = o(log f(n)) ((∗))
and

log f(mn) = O(log f(n)).

This holds for all ‘nice’ functions such as

f(n) = n(log log... logn)β

, or

f(n) = 2n
γ

, or

f(n) = nn
γ

.

Now we can state
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Proposition 1.11.1 Let H be a subgroup of finite index m in a group G.
(i) If H has growth type (or strict growth type) f1 where f1 satisfies (∗),

then so does G;
(ii) if G has growth type (or strict growth type) f2 where f2 satisfies (∗),

then so does H.

Proof. We have

log sn(H) ≤ log smn(G) = O (log f2(mn)) = O (log f2(n))

and
log sn(G) ≤ log a+ b log n+ log sn(H) = O (log f1(n)) ,

so H has growth type at most f2 and G has growth type at most f1. The same
argument (using o in place of O) shows that the growth type of G is not strictly
less than f1 and that of H is not strictly less than f2, so G and H do have
growth types f1 and f2 respectively.

The proof for strict growth types is similar and is left to the reader (note
that if n is large enough, there exists t ∈ N such that m2t ≥ n ≥ mt, and then

sn(G) ≥ smt(G) ≥ st(H),

while
log f1(t) ≥ ε log f1(m2t) ≥ ε log f1(n)

for some fixed ε > 0, provided we assume that f1 is a non-decreasing function;
this assumption is justified when f1 is the strict growth type of a group H).

The dual situation is similar:

Proposition 1.11.2 Let M be a finite normal subgroup of a group G. Then
(i) G has polynomial subgroup growth if and only if G/M does;
(ii) suppose that G/M has strict growth type f where f satisfies (∗) for every

m ∈ N; then G and G/M have the same strict growth type.

Proof. Certainly sn(G) ≥ sn(G/M) for all n. For the other direction, we
may assume that G is residually finite, in which case G has a normal subgroup
N of finite index such that M ∩ N = 1. Write Q = G/N . By (1.9) in Lemma
16.4.8 we have

sn(G) ≤ n|Q|sn(N)

≤ n|Q|smn(G/M)

where m = |G : MN | . This clearly implies (i). For (ii) we note that

log smn(G/M) = O(log f(mn)) = O(log f(n))

and deduce that

log sn(G) = O(log f(n)) = O(log sn(G/M)).



1.11. GROWTH TYPES 35

The result follows.

Similar results hold for normal subgroup growth. Indeed, it is an easy con-
sequence of Proposition 1.3.6 that if M C G is finite then G and G/M have
the same (strict) type of normal subgroup growth, and that if N is a normal
subgroup of finite index in G then the normal subgroup growth type of G is at
most that of N . However, it is not known whether the normal subgroup growth
type N is necessarily bounded above by that of G; even the following problem
is open:

Problem Suppose that G is a group with polynomial normal subgroup growth.
Does every normal subgroup of finite index in G have polynomial normal sub-
group growth?

Notes

Much of this material is “folklore” (inasmuch as a subject barely 20 years old
can be said to have it). Some specific references are as follows.

§1.1: [Dey 1965], [Wohlfahrt 1977]
A version of Corollary 1.3.5 appeared in an early draft of [Goldfeld, Lubotzky

& Pyber]
Corollary 1.4.3: [Segal 1986a]
Proposition 1.6.2: [Ilani 1989]
Lemma 1.7.1 and Corollary 1.7.2: [Mann & Segal 1990]
Proposition 1.7.4 and Corollary 1.7.5: [Pyber 1997]
Proposition 1.8.1 and §1.10: [Segal & Shalev 1997]
Proposition 1.9.2: [Segal 2001].

Some interesting results on groups whose subgroup growth is ‘multiplicative’
(as it is for nilpotent groups) are given in [Puchta 2001].

Further results on counting subgroups in finite abelian groups (as in §1.10)
are established in [Goldfeld, Lubotzky & Pyber]. See also [Butler 1994].
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Chapter 2

Free groups

The study of subgroup growth in finitely generated groups begins with the
observation that there are only finitely many subgroups of each finite index. By
considering homomorphisms of a d-generator group G into Sym(n), we showed
in §1.1 that an(G) ≤ n · (n!)d−1 for each n. It is not much harder to see that
asymptotically this bound is achieved. Rather surprisingly, the same applies
also to the number mn(G) of maximal subgroups of index n. The precise result
is

Theorem 2.1 Let F be a free group on d ≥ 2 generators. Then

an(F ) ∼ mn(F ) ∼ n · (n!)d−1.

This is proved in Section 1, along with an exact recursive formula for the num-
bers an(F ). Since nn/2 ≤ n! ≤ nn for all n, it implies

Corollary 2.2 Every finitely generated non-abelian free group has subgroup
growth of strict type nn and maximal subgroup growth of strict type nn.

Since nn = 2n logn, this upper bound for the growth type of finitely generated
groups is a little faster than exponential. Many groups, however, have at most
exponential subgroup growth: in the next chapter we shall see that any group
with super-exponential growth must be rather similar to a free group, in the
sense that it involves every finite group as an upper section. The same holds,
surprisingly, for groups whose maximal subgroups grow faster than polynomially.

Sections 2 and 3 deal with, respectively, subnormal subgroups and normal
subgroups. While exact formulas are too much to expect, we obtain reason-
ably sharp upper bounds. As might be expected, there are somewhat fewer
subnormal subgroups than subgroups, and many fewer normal subgroups.

Theorem 2.3 Let F be a d-generator group. Then for all n,

aCC
n (F ) ≤ n2

2d−1
2(d−1)n.

37
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This upper bound is exponential. On the other hand, we shall prove in the
next chapter that every non-abelian free pro-p group has exponential subgroup
growth. Now if F is a non-abelian free group then the pro-p completion F̂p of
F is a non-abelian free pro-p group, and

an(F̂p) = aCC
n (F )

whenever n is a power of the prime p (# Profinite groups). Theorem 3.6
with p = 2 gives

a2k(F̂2) ≥ 2(d−1)(2k−1)−k(k−1)/2;

this shows that the upper bound in Theorem 2.3 is pretty well sharp when n is
a power of 2. In general, choosing k so that 2k ≤ n < 2k+1 we may deduce that
sCC
n (F ) ≥ 2

d−1
2 n−o(n). It follows that the subnormal subgroup growth of F is

of at least exponential type, so we have

Corollary 2.4 Every finitely generated non-abelian free group has subnormal
subgroup growth of strict type 2n = nn/ logn.

While the proof of Theorem 2.3 as stated uses the Classification of finite simple
groups, we shall give an alternative elementary proof that the growth is at
most exponential; thus Corollary 2.4, like Theorem 2.1, is independent of the
classification.

The number of normal subgroup of index n in F is closely related to the
number f(n, d) of isomorphism types of d-generator groups of order n:

Lemma 2.5 Let F be a free group on d generators. Then for each n,

f(n, d) ≤ aC
n (F ) ≤ ndf(n, d).

Indeed, if G is a d-generator group of order n then there is an epimorphism
from F onto G whose kernel is a normal subgroup of index n. Clearly, non-
isomorphic groups give rise to distinct kernels, so f(n, d) ≤ aC

n (F ). On the
other hand, to each normal subgroup N of index n in F we may associate the
natural epimorphism ϕ : F → F/N, with N = kerϕ. Given a group G of order
n, the number of epimorphisms F → G is at most nd; so the number of N for
which F/N ∼= G is at most nd, and the second inequality follows.

Thus the normal subgroup growth type of F is determined by the function
f(n, d). In Section 3 we establish

Theorem 2.6 For every n and d we have

f(n, d) ≤ n2(d+1)λ(n).

Here, λ(n) =
∑
li when n =

∏
plii with distinct primes p1, p2, . . . , so λ(n) ≤

log n for all n. With the preceding lemma this gives at once
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Theorem 2.7 Let F be a free group on d generators. Then for each n,

aC
n (F ) < n(2d+2)(1+λ(n)).

These results seem to depend crucially on CFSG. (The best upper bound for
f(n, d) that can be established by elementary means seems to be an exponential
one, using the bound for aCC

n (F ) discussed above.)
Corresponding lower bounds are again obtained by considering normal sub-

groups in a free pro-p group, or equivalently the number of d-generator finite
p-groups. In the following chapter we show that for each prime p and each
d ≥ 2,

f(pk, d) ≥ pck
2

for all large k, if c < (d − 1)2/4d. With Theorem 2.7 and Lemma 2.5 this now
gives

Corollary 2.8 Every finitely generated non-abelian free group has normal sub-
group growth of strict type nlogn.

2.1 The subgroup growth of free groups

According to Corollary 1.1.4, the following holds for any group F and each
n ≥ 1 :

an(F ) =
1

(n− 1)!
hn(F )−

n−1∑
k=1

1
(n− k)!

hn−k(F )ak(F ),

where hn(F ) denotes the number of homomorphisms F → Sym(n). If F is the
free group on d ≥ 2 generators then clearly

hn(F ) = (n!)d,

and plugging this in now yields the recursive formula

Proposition 2.1.1 Let F be the free group on d ≥ 2 generators. Then

an(F ) = n(n!)d−1 −
n−1∑
k=1

(n− k)!d−1ak(F ).

To better estimate the growth of an(F ), we note that, provided d ≥ 2,
“most” d-tuples of permutations in Sym(n) generate transitive subgroups: that
is,

tn(F )/hn(F ) → 1 as n→∞, (2.1)

where tn(F ) denotes the number of homomorphisms F → Sym(n) with transi-
tive image.
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Indeed, by Lemma 1.1.3 the number of intransitive actions of F on the set
{1, . . . , n} is just

n−1∑
k=1

hn,k(F ) =
n−1∑
k=1

(
n− 1
k − 1

)
tk(F )hn−k(F )

≤
n−1∑
k=1

(
n− 1
k − 1

)
(k!)d((n− k)!)d

= (n!)d
n−1∑
k=1

(
n

k

)−(d−1)
k

n

≤ (n!)d
[n/2]∑
k=1

(
n

k

)−(d−1)

since
(
n
k

)
=
(
n

n−k
)
. (Here, hn,k(F ) denotes the number of representations of F

in Sym(n) in which the orbit of 1 has length exactly k.) Now for 1 ≤ k ≤ n/2
we have (

n

k

)
≥
(n
k

)k−1

(n− k + 1) ≥ 2k−1 · n/2.

Noting that d− 1 ≥ 1, we deduce that

hn(F )− tn(F ) =
n−1∑
k=1

hn,k(F )

≤ (n!)d
[n/2]∑
k=1

2
2k−1n

<
4
n

(n!)d =
4
n
hn(F ),

and (2.1) follows. (We mention in passing the theorem of [Dixon 1969] that for
d ≥ 2 most d-tuples in Sym(n) not merely act transitively but actually generate
either Sym(n) or Alt(n).)

Now Proposition 1.1.1 gives

an(F ) =
tn(F )

(n− 1)!
(2.2)

∼ hn(F )
(n− 1)!

= n · (n!)d−1

by (2.1). This establishes half of Theorem 2.1.

The following easier estimate is sometimes useful: since Sym(n) contains
(n − 1)! distinct n-cycles, the number of d-tuples that generate a transitive
subgroup of Sym(n) is at least (n− 1)! · (n!)d−1, so (2.2) immediately gives
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Corollary 2.1.2 Let F be the free group on d ≥ 2 generators. Then

an(F ) ≥ n!d−1

for every n.

What about the maximal subgroups? Proposition 1.1.1 also shows that

mn(F ) = pn(F )/(n− 1)!

where pn(F ) denotes the number of primitive actions of G on {1, . . . , n}. Thus
to show that

mn(F ) ∼ n · (n!)d−1 (2.3)

it suffices to establish that

pn(F )/hn(F ) → 1 as n→∞.

Of course, this follows from the theorem of Dixon mentioned above, but it is
easy to prove directly. Indeed, each transitive but imprimitive action of F on
{1, . . . , n} preserves some non-trivial partition of this set into equal parts, of
size r = n/s, say, and corresponds to a homomorphism from F into the wreath
product

Sym(r) o Sym(s).

The number of such partitions is

1
s!

(
sr

r

)(
(s− 1)r

r

)
. . .

(
2r
r

)(
r

r

)
=

n!
(r!)ss!

,

and the number of homomorphisms from F into Sym(r) o Sym(s) is

|Sym(r) o Sym(s)|d = ((r!)ss!)d .

It follows that

tn(F )− pn(F ) ≤
∑ n!

(r!)ss!
· ((r!)ss!)d

< d(n) · n! · ((r!)ss!)d−1

< d(n)n−(d−1)(n!)d,

since it is easy to see that (r!)ss! < (n− 1)! when n = rs with r > 1 and s > 1
(here d(n) denotes the number of divisors of n). Thus

tn(F )− pn(F )
hn(F )

= (n!)−d(tn(F )− pn(F ))

< d(n) · n−(d−1)

which tends to 0 as n → ∞, since d ≥ 2 and d(n) = o(n) (see [HW], §18.1).
Together with (2.1) this establishes (2.3), and completes the proof of Theorem
2.1.
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2.2 Subnormal subgroups

The proof of Theorem 2.3 is a simple application of two facts. The first is
Schreier’s formula: if H is a subgroup of finite index n in a finitely generated
group G, then

d(H)− 1 ≤ n(d(G)− 1) (2.4)

(see [R], Theorem 6.1.1). The second lies much deeper, and depends on CFSG:

Lemma 2.2.1 A d-generator group has at most 2nd−1 maximal normal sub-
groups of index n.

Proof. It follows from the classification (# Finite simple groups) that
there are at most 2 simple groups of a given order n. So if G is a d-generator
group, the number of epimorphisms from G onto simple groups of order n is
at most 2nd. However, if n is not prime then each such simple group S has at
least n automorphisms; it follows that for each epimorphism from G to S, there
exist at least n− 1 further epimorphisms with the same kernel. Thus if n is not
prime, then G has at most 2nd−1 maximal normal subgroups of index n. If n
is prime, there is only one group of order n, and it has n − 1 automorphisms;
in this case G has at most nd/(n − 1) ≤ 2nd−1 maximal normal subgroups of
index n.

To prove the theorem we have to show that if G is a d-generator group then,
for each n, the number of subnormal subgroups of index n in G is at most

n2

2d−1
2(d−1)n = n22(d−1)(n−1).

Arguing by induction on n, we may assume that n > 1 and that the correspond-
ing result holds for all indices less than n (and all finitely generated groups).
We may also assume that d ≥ 2, as the result holds trivially if G is cyclic. Now
if H is subnormal of index n in G, then there is a maximal normal subgroup N
of G such that

H CC N C G.

Let r = |G : N |. Then (2.4) shows that d(N)−1 ≤ r(d−1), and |N : H| = n/r.
So if N is given, the number of possibilities for H is at most

(n/r)22r(d−1)(n/r−1) =
n2

r22r(d−1)
2(d−1)n (2.5)

(here we are using the inductive hypothesis). If r is given, the number of
possibilities for N, according to Lemma 2.2.1, is at most 2rd−1. Consequently,

aCC
n (G) ≤

∑
1<r|n

(
2rd−1 · n2

r22r(d−1)
2(d−1)n

)
. (2.6)
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So to complete the proof it will suffice to show that

∑
1<r

2 · (2r)d−1

r22r(d−1)
≤ 1.

Now since d ≥ 2 and 2r/2r ≤ 1/2 for r ≥ 4, the sum in question is bounded
above by

2
22

+
2
32
· 6
8

+
∞∑
r=4

r−2 =
2
3

+ (π2/6− 1− 1
4
− 1

9
) = 0.95 . . . < 1.

This completes the proof of Theorem 2.3.

We promised an alternative proof that aCC
n (G) is exponentially bounded.

This is based on the following elementary result established in the Finite sim-
ple groups window: there is an absolute constant c such the number of simple
groups of order n is bounded above by cn. Using this in the proof of Lemma
2.2.1 we deduce that a d-generator group has at most cnnd−1 maximal normal
subgroups of index n.

Now we are ready to prove by induction on n that for d ≥ 2, a d-generator
group has at most

n2cn2(d−1)(n−1)

subnormal subgroups of index n. The argument goes as above, replacing (2.5)
by

(n/r)2cn/r2r(d−1)(n/r−1) = (n/r)2cn/r2(n−r)(d−1)

and (2.6) by

aCC
n (G) ≤

∑
1<r|n

(
crrd−1 · (n/r)2cn/r2(n−r)(d−1)

)
≤ n2cn2(d−1)(n−1) ·

∑
1<r|n

(2r)d−1

r22r(d−1)
.

The result follows since we have shown above that the final sum is at most 1/2.

2.3 Counting d-generator finite groups

Recall that f(n, d) denotes the number of isomorphism types of d-generator
groups of order n. This section is devoted to the proof of Theorem 2.6, which
we restate as

Theorem 2.3.1 For every n and d we have

f(n, d) ≤ n2(d+1)λ(n).
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We begin by stating two conjectures.

Conjecture A Every group of order n with a given set of d generators can be
defined by these generators and at most 2(d+ 1)λ(n) relations.

Conjecture B Every finite simple group G can be defined by two generators
and at most 2λ(|G|) relations.

Recall that λ(n) denotes the total number of factors in the prime factorisation
of n.

At the time of writing, Conjecture B is known for most types of finite simple
group, the only unknown cases being certain Ree groups (see the notes below).

We will now show that Conjecture B implies Conjecture A and then we will
show that Conjecture A implies Theorem 2.3.1. Subsequently, we shall introduce
profinite presentations and show that in the profinite interpretation, Conjecture
B is true, while the above mentioned implications remain valid. Thus Theorem
2.3.1 will be eventually proved unconditionally.

Conjecture B implies Conjecture A

Let G be a group of order n generated by x1, . . . , xd. Suppose first that G
is simple. By hypothesis, G has a presentation

〈y, z ; w1(y, z), . . . , wr(y, z)〉

where r ≤ 2λ(n). Say xi = ξi(y, z) and y = η(x), z = ζ(x) where η, ζ and the
ξi are words. Then it is easy to see that the d+ r ≤ d+ 2λ(n) < 2(d+ 1)λ(n)
relations

xi = ξi(η(x), ζ(x)) (i = 1, . . . , d)
wj(η(x), ζ(x)) = 1 (j = 1, . . . , r)

define G on the given generators x1, . . . , xd.
Suppose now that G is not simple, and let N be a minimal normal subgroup

of G, of order m. By induction G/N can be defined by r ≤ 2(d + 1)λ(n/m)
relations in the generators x1N, . . . , xdN . Let these relations be u1(xN) =
1, . . . , ur(xN) = 1. (Here and below xN stands for the d-tuple (x1N, . . . , xdN),
similarly for x etc.). Now, N is a product N = S1×· · ·×Sk of conjugate simple
groups. Put s = |S1| and let

S1 = 〈y, z ; R〉

be a presentation of S1, where R is a set of words on y, z with |R| ≤ 2λ(s).
Now since G/N is finite, there exist negative words (i.e. involving no positive
powers of the generators)

v1 = 1, v2(x), . . . , vk(x)
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such that, in G,

S
vi(x)
1 = Si

for each i. Then Si = 〈yi, zi〉 where yi = yvi(x), zi = zvi(x). Say y = w(x) and
z = w′(x), and put

wi(x) = w(x)vi(x) (2.7)

w′i(x) = w′(x)vi(x).

Next, find words ti such that ui(x) = ti(y, z) (this is possible since ui(x) ∈ N)
and words sij and s′ij such that

y
xj

i = sij(y, z) z
xj

i = s′ij(y, z).

We claim that G can be defined by the following relations in the generators
x1, . . . , xd, where ti, sij , s′ij will be used to denote the words in x obtained by
substituting the word wl(x) for yl and w′l(x) for zl in the words ti, sij and s′ij :

ui = ti(y, z) (i = 1, . . . , r)
R(w1, w

′
1) = {1},

[w1, wi] = [w1, w
′
i] = [w′1, wi] = [w′1, w

′
i] = 1 (i = 2, . . . , k) (2.8)

w
xj

i = sij , w
′xj

i = s′ij (i = 1, . . . , k, j = 1, . . . , d).

Indeed, let X be the group defined by this presentation. Since the relations
hold in G, there is a homomorphism φ from X onto G (mapping the generators
xi of X to the generators with the same name of G). Let Y be the subgroup of
X generated by the 2k elements wi, w′i. The subgroup Y1 generated by w1 and
w′1 is an image of the simple group S1, and hence is isomorphic to S1 since φ
maps it onto S1 in G; and the identities (2.7) show that Y = 〈Y v11 , . . . , Y vk

1 〉.
Note also that for every xi the relations imply that Y xi ≤ Y ; hence Y π ≤ Y
whenever π is a positive word in the xi, and since the words vi are negative we
have Y ≤ Y vi for each i. Now the third line of (2.8) ensures that

Y = 〈Y1,CY (Y1)〉 ,

so Y1 C Y. It follows that for each i, Y vi
1 C Y vi , and hence by the preceding

remark Y vi
1 C Y . Therefore Y = Y v11 · . . . · Y vk

1 has order at most sk, so it has
exactly this order and φ|Y : Y → N is an isomorphism. Also, as Y is finite the
relations Y xi ≤ Y ensure that Y is normal in X.

Putting every wi and w′i equal to 1 in the above presentation we obtain a
presentation of X/Y , which is just the given presentation 〈x ; u1, . . . , ur〉 for
G/N . Hence φ also induces an isomorphism from X/Y onto G/N . Thus φ is
injective and X ∼= G as claimed.

To estimate the number of relations we separate two cases.
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Case 1 : where S is non-abelian. Then λ(s) ≥ 2, and the number of relations
is

r + |R|+ 4(k − 1) + 2kd ≤ 2(d+ 1)λ(n/m) + 2λ(s) + 4(k − 1) + 2kd
= 2(d+ 1)λ(n)− 2(d+ 1)λ(m) + 2λ(s) + 4(k − 1) + 2kd
≤ 2(d+ 1)λ(n)− 2kd

since λ(m) = kλ(s) ≥ 2k.
Case 2: where S1 is cyclic of prime order. In this case, we may take w′ =

1, |R| = 1, and omit the redundant relations in rows three and four of (2.8)
involving the w′i. The number remaining is then

r + 1 + (k − 1) + kd ≤ 2(d+ 1)λ(n/m) + (d+ 1)k
= 2(d+ 1)λ(n)− (d+ 1)k

since now λ(m) = k.
In each case we have fewer than 2(d + 1)λ(n) relations, and the proof is

complete.

Conjecture A implies Theorem 2.3.1

Let G = 〈x1, . . . , xd〉 be a group of order n. Then G has a minimal normal
subgroup N = S1 × · · · × Sk as above, where S1, . . . , Sk are isomorphic simple
groups, of order s, say. Once N and G/N are given, G is determined up to
isomorphism by the following data: the d automorphisms

a 7→ axi

of N , and the r elements
ti = ui(x)

ofN where 〈x1N, . . . , xdN ; ui(xN) = 1 (i = 1, . . . , r)〉 is a presentation forG/N .
Now if S and T are simple groups and |S|k = |T |k

′
for some k, k′ ≥ 1

then k = k′ and |S| = |T | ; and given |S| there are at most two possibilities for
the isomorphism type of S (for both claims, # Finite simple groups). So
having fixed |N | = m we have at most two possibilities for the isomorphism
type of N . Since N can be generated by 2k elements it has at most m2k ≤
m2λ(m) automorphisms. By definition, there are f(n/m, d) possibilities for the
isomorphism type of G/N , and according to Conjecture A, the group G/N is
defined by r ≤ 2(d + 1)λ(n/m) relations among the generators xiN . Putting
these together, we see that the number of possibilities for G is

f(n, d) ≤
∑

1<m|n

2 · f(n/m, d) ·m2dλ(m) ·m2(d+1)λ(n/m)

=
∑

1<m|n

2 · f(n/m, d) ·m2(d+1)λ(n) ·m−2λ(m).
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Assume inductively that f(h, d) ≤ h2(d+1)λ(h) whenever h < n. Then for n =
hm we have

f(h, d)m2(d+1)λ(n) ≤
(
hλ(h)mλ(n)

)2(d+1)

= n2(d+1)λ(n) · h−2(d+1)λ(m).

Putting this into the above we get

f(n, d) ≤ n2(d+1)λ(n)
∑

1<m|n

2m−2λ(m)(n/m)−2(d+1)λ(m)

< n2(d+1)λ(n)

since each term inside the sum is at most 2/n2. This concludes the proof of
Theorem 2.3.1, modulo Conjecture A.

Profinite presentations

The reader has certainly noticed that the proof shows that Conjecture A
and Theorem 2.3.1 are valid if we consider groups whose composition factors
satisfy Conjecture B, e.g., all soluble groups, or even all finite groups whose
composition factors are not of type U(3, q) or 2G2(q). Unfortunately, the last
two families of finite simple groups are not known to have short presentations.
This obstacle can be overcome by using “profinite presentations” instead.

Let F̂d be the free profinite group on d generators, i.e., F̂d is the profinite
completion of the discrete free group Fd on the generators x1, . . . , xd. F̂d has the
universal property: if ϕ : {x1, . . . , xd} → G is a map from the set {x1, . . . , xd}
to a profinite group, it has a unique extension to a continuous homomorphism
ϕ̃ : F̂d → G. Note that for every element (“word”) w in F̂d, every profinite
(in particular, finite) group G and every g1, . . . , gd ∈ G we can evaluate w on
g1, . . . , gd, i.e., w(g1, . . . , gd) is defined as ϕ̃(w) when ϕ̃ is the unique homo-
morphism ϕ̃ : F̂d → G extending the map ϕ(xi) = gi, i = 1, . . . , d. Thus we
can consider the elements w of F̂d as “words”, though they are not words in
x1, . . . , xd in the usual sense. Moreover, we can speak of presentations of profi-
nite groups by generators and relations: if G = F̂d/N and Y is a subset of N
such that N is the minimal closed normal subgroup of F̂d containing Y then we
say that 〈x1, . . . xd;Y 〉 is a profinite presentation of G.

Theorem 2.3.2 Every finite simple group G has a profinite presentation with
two generators and 2λ(|G|) relations.

We postpone the proof of this theorem, but note first that it implies

Theorem 2.3.3 Every group of order n generated by d elements has a profinite
presentation with these generators and at most 2(d+ 1)λ(|G|) relations.

Indeed the proof that Conjecture B implies Conjecture A works word for word,
just replacing the set R, which was a set of ordinary relators, by a set of profinite
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words. Similarly, the deduction of Theorem 2.3.1 from Conjecture A serves just
as well if we replace Conjecture A by Theorem 2.3.3.

We are thus left with the need to prove Theorem 2.3.2. Once this is done,
the proof of Theorem 2.3.1 will be complete.

To prove Theorem 2.3.2 we start with a proposition of some independent
interest. But first we need a definition. Let G be a finite group with presentation
G = Fd/N , where Fd is the free group on d generators. Write N ′ = [N,N ] for
the commutator subgroup of N, and for a prime p put N(p) = N ′ · Np. By
the Nielsen-Schreier Theorem N is a free group on r = 1 + d(n− 1) generators
where n = |G|. Hence N/N ′ ∼= Zr and N/N(p) ∼= Frp. The free group Fd acts on
N/N ′ and N/N(p) by conjugation and in both cases the action factors through
G. The G-module N/N ′ (resp., N/N(p)) is called the relation module (resp.
mod p relation module) of G with respect to the presentation G = Fd/N .

Now, if G = Fd/N is a presentation of G then G is also isomorphic to F̂d/N
where N is the closure of N in F̂d. Thus F̂d/N is a profinite presentation of G.

Proposition 2.3.4 The number of relations needed for the profinite presenta-
tion G = F̂d/N is equal to max

p
dG(N/N(p)), i.e. the maximum over all primes

p of the number of generators of N/N(p) as a G-module.

Remark. A deep result of R. Swan asserts that dG(N/[N,N ]) = max
p

dG(N/N(p)),

so the proposition can be reformulated as saying that the number of profinite re-
lations needed for G is equal to the number of generators of the relation module
(see [Gruenberg 1976]). But we will not need Swan’s result for our applica-
tion. It is worthwhile to mention, though, that a longstanding open problem is
whether N can be generated as a normal subgroup by dG(N/[N,N ]) elements.
In view of the above Proposition, this is equivalent to asking whether the num-
ber of ordinary relations needed to define G is equal to the number of profinite
relations needed for the same purpose. This is the difference between Theorem
2.3.3 and Conjecture A.

Proof of Proposition 2.3.4. N is a normal subgroup of F̂d. Let M be the
intersection of all the maximal open normal subgroups of N . It is easy to see
that (i) M is normal in F̂d and (ii) for a subset Y of N,Y generates N normally
if and only if it does so modulo M . Moreover, we can describe quite precisely
the structure of N/M . In fact, N/M ∼=

∏
S

Smr(S) where the product runs over

all the finite simple groups S and each one occurs with multiplicity mr(S), when
Smr(S) is the largest direct product of copies of S which is still generated by r
elements. So, for example, if S is abelian, i.e. S = Cp for some p,mr(S) = r,
but for non-abelian groups it is much larger than r (see [Kantor & Lubotzky
1990]).

Separate the product into two parts N/M ∼= A × B when A =
∏
p
Crp and

B =
∏
S

Smr(S) where this time S runs only over the non-abelian finite simple
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groups. Note that the action of F̂d on A factors through G, making A into a
G-module.

Claim: The number of generators of N/M as a normal subgroup of F̂d/M
is equal to dG(A).

Indeed assume {y1, . . . , y`} is a subset of A generating A as G-module. Let
z1 be an element of B, each of whose components, in each single S, is non-trivial.
As B is a product of finite simple groups, the normal closure of z1 in B (and
hence in F̂d/M) is B. Since A and B have no common composition factors, it
follows that (y1, z1), (y2, 1), . . . , (y`, 1) generate A×B as a normal subgroup of
F̂d/M .

Now, as the different primes are also “independent” one deduces that

dG(A) = max
p

dG(N/[N,N ]N
p
)

= max
p

dG(N/N(p))

and Proposition 2.3.4 is proved.

This reduces the proof of Theorem 2.3.2 to the problem of evaluating the
numbers dG(N/N(p)). The first step is to reformulate the problem, using a
general formula due to [Gruenberg 1976]. Let S denote the set of all simple
Fp[G]-modules, and for M ∈ S put

ξM = 0 if M ∼= Fp
ξM = 1 if M � Fp.

Gruenberg’s formula is as follows; for the proof see the Profinite groups win-
dow:

Proposition 2.3.5

dG(N/N(p)) = max
M∈S

{⌈
dimH2(G,M)− dimH1(G,M)

dimM

⌉
− ξM

}
+ d.

(If p - |G|, this formula reduces to dG(N/N(p)) = d, a result obtained earlier
by Gaschütz.)

Thus it remains to estimate the dimensions of certain cohomology groups,
for a finite simple group G. The next two results, which depend on CFSG, give
us what we need. For each prime p, the invariant `p(G) is defined by

p`p(G) | |G|
p`p(G)+1 - |G|.
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Proposition 2.3.6 (# Finite simple groups) Let G be a finite non-abelian
simple group. Then for every prime p,

dimH2(G,Fp) ≤ 2.

Proposition 2.3.7 [Holt, 1987] Let G be a finite group and M a faithful simple
Fp[G]-module. Then

dimH2(G,M) ≤ 2`p(G) dimM.

We can now complete the proof of Theorem 2.3.2. Let G be a finite non-
abelian simple group. Then G can be generated by 2 elements (# Finite
simple groups), so we have a profinite presentation G = F̂2/N ; in view of
Proposition 2.3.4, it will suffice to prove that

dG(N/N(p)) ≤ 2λ(|G|)

for every prime p. According to Proposition 16.4.7 with d = 2, this holds
provided every simple Fp[G]-module M satisfies

dimH2(G,M)− dimH1(G,M) ≤

 (2λ(|G|)− 1) dimM if M � Fp

2(λ(|G|)− 1) dimM if M ∼= Fp
.

(2.9)
Now of course |G| is not a prime-power, since G is non-abelian and simple, so
λ(|G|) ≥ 2 and λ(|G|) ≥ 1 + `p(G) for every prime p. Applying the last two
propositions we see that in each case, the right hand side of (2.9) is at least
dimH2(G,M).

Thus Theorem 2.3.2 is established, and Theorem 2.3.1 follows.

Notes

The recursive formula Proposition 2.1.1 is due to [Hall 1949], the first modern
paper to deal with subgroup-counting. The asymptotic formula for an(F ) in
Theorem 2.1 is due to [Newman 1976], who also considers other groups, as
reported in Chapter 14. The observation that Dixon’s theorem implies mn(F ) ∼
an(F ) was made by L. Pyber.

Theorem 2.3, including the elementary proof of the exponential upper bound
for aCC

n (F ), is due to L. Pyber and A. Shalev (unpublished).
The results on normal subgroup growth and the function f(n, d) were estab-

lished for soluble groups, and conjectured in general, by [Mann 1998], following
a slightly weaker conjecture of [Pyber 1996]; [Lubotzky 2001] proved The-
orems 2.6 and 2.7 by adapting Mann’s methodology and introducing profinite
presentations. The sequel [Mann (a)] discusses further interesting variations
on this theme. It is interesting to note that while f(n, d) (for a fixed d) grows
like nlogn, the number of isomorphism types of all groups of order n grows
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like n(logn)2 (see [Pyber 1996]), while the number of those without abelian
composition factors grows very much more slowly, like nlog logn [Klopsch (c)].

For a discussion of Conjecture B, including its proof in most cases, see
[Kantor 1992]. Almost all the remaining cases are dealt with in [Babai,
Goodman & Kantor 1997] and [Hulpke & Seress 2001] (these papers
consider ‘short presentations’ rather than the ‘small presentations’ required for
Conjecture B, but the relevant results may be deduced from them).
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Chapter 3

Groups with exponential
subgroup growth

We saw in the last chapter that finitely generated free groups have super-
exponential subgroup growth; so for a group to have subgroup growth of merely
exponential type is certainly some kind of restriction. Can it be characterised
algebraically? This question seems difficult to answer, because the groups with
exponential subgroup growth encompass a huge variety of examples. This is not
really surprising, because a very mild algebraic condition is in fact sufficient to
ensure that the growth is at most exponential:

Theorem 3.1 Let Γ be a finitely generated group. Suppose that there exists a
finite group which is not isomorphic to any upper section of Γ. Then Γ has at
most exponential subgroup growth type.

(An upper section of Γ means a quotient A/B where B C A ≤ Γ and B has
finite index in Γ). However, among the finitely generated groups with exponen-
tial (and even slower) subgroup growth there also exist some which do involve
every finite group as an upper section: examples are given in Section 2 of Chap-
ter 13. Thus it seems unlikely that the groups with ‘superfast’ – strictly above
exponential – growth can be described in a uniform way, analogous to the char-
acterizations of ‘slow’ – polynomial – subgroup growth to be given in Chapters
5 and 10.

Once we know that a group has exponential growth type, we can ask for a
finer measure of the subgroup growth. Let us define an invariant

σ(G) = lim sup
log sn(G)

n
.

Then σ(G) is finite precisely when G has at most exponential growth type, and
σ(G) > 0 when the growth type is exponential. Thus Theorem 3.1 may be
interpreted as saying that if the upper sections of Γ ‘avoid’ some finite group H

53
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then σ(Γ) is finite. Remarkably, the nature of the ‘avoided’ groups is reflected
quite precisely by the actual value of σ.

This relationship is best articulated in terms of suitable relatively-free profi-
nite groups. To set the scene, let us begin by reformulating Theorem 3.1 in
this language. Let C be a class of finite groups closed under taking subgroups,
quotients and extensions, and containing at least one non-trivial group; we call
such a class ‘good’. We shall denote the free pro-C group on d generators by
F̂d(C). Now if Γ is a d-generator group and Γ does not involve a certain finite
group H as an upper section, then the profinite completion Γ̂ is an image of
F̂d(C) where C is some good class not containing H (for example, one of the
classes Ck defined just below); so Theorem 3.1 follows from the more precise

Theorem 3.2 Let C be a good class of finite groups that does not contain all
finite groups. Let d ≥ 2. Then the free pro-C group F̂d(C) has subgroup growth
of strict type 2n.

Now for k ≥ 4 let
Ck

denote the class of all finite groups that do not involve Alt(k + 1) as a section.
Thus we have a stratification of the class of all finite groups:

S ⊂ C4 ⊂ C5 ⊂ . . . ⊂ Ck ⊂ Ck+1 ⊂ . . .

where S denotes the class of all finite soluble groups. Note that a d-generator
group Γ does not involve Alt(k + 1) as an upper section if and only if Γ̂ is an
image of F̂d(Ck). Now we can state

Theorem 3.3 Let d ≥ 2 and k ≥ 4. Then

σ(F̂d(Ck)) = σ−(F̂d(Ck)) = (d− 1)
log k!
k − 1

, (3.1)

σ(F̂d(S)) = σ−(F̂d(S)) = (d− 1)
log 24

3
. (3.2)

Here, we have included the invariant

σ−(G) = lim inf
log sn(G)

n
.

The theorem shows that our invariant σ is fine enough to distinguish al-
ternating sections in free pro-C groups; however it cannot distinguish between
prosoluble groups and groups having some other types of simple non-abelian
sections, since 241/3 = 4!1/(4−1). Thus the alternating groups seem to play a
special role when it comes to subgroup growth, a phenomenon we shall see again
in Chapter 13.

In the cases where σ(F ) = σ−(F ) = σ, say, the function log sn(F ) is asymp-
totic to σn; thus for any ε > 0 we have

2(σ−ε)n < sn(F ) < 2(σ+ε)n
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for all large n. The theorem therefore implies (and refines) the upper bound
for subgroup growth in Theorem 3.2, since any class C satisfying the given
conditions clearly also satisfies C ⊆ Ck for some k ≥ 4. Applying the theorem
to the profinite completion of a finitely generated group we obtain the following
refinement of Theorem 3.1:

Corollary 3.4 Let Γ be a d-generator group that does not involve Alt(k+1) as
an upper section, where d ≥ 2 and k ≥ 4. Let ε > 0. Then

sn(Γ) < 2(σ+ε)n

for all large n, where σ = (d− 1)(log k!)/(k − 1).

It is not known if this result is best possible: certainly Theorem 3.3 shows that
it cannot be sharpened by “profinite” considerations alone, but the construction
of a d-generator group Γ as in the corollary such that Γ̂ is sufficiently similar to
F̂d(Ck) is another problem.

Restricting the upper sections of a group also has dramatic consequences for
the maximal subgroup growth, and again the alternating groups seem to wield
particular influence.

Theorem 3.5 Let G be a finitely generated profinite or abstract group.
(i) If G does not involve every finite group as an upper section then G has

polynomial maximal subgroup growth.
(ii) If G has only finitely many distinct alternating groups as upper compo-

sition factors then G has maximal subgroup growth of type at most nlogn.
(iii) If G has only finitely many distinct alternating and symmetric groups

among its finite quotients then G has maximal subgroup growth of type at most
n
√
n.

These results are established in Sections 1 and 2. The rest of the chapter
concerns pro-p groups. In Section 3 we establish

Theorem 3.6 Let F be the free pro-p group on d ≥ 2 generators. Then for all
k ≥ 1 we have

p
d−1
p−1 (pk−1)− k(k−1)

2 ≤ apk(F ) ≤ p
d−1
p−1 (pk−1)+k.

It follows that log spk(F ) ∼ pk · (d− 1) log p/(p− 1) and hence that

σ(F ) = (d− 1) log p/(p− 1).

On the other hand, σ−(F ) = σ(F )/p; for the function log sn(F ) fluctuates
between n · (d − 1) log p

p−1 + o(1) and n
p · (d − 1) log p

p−1 + o(1), since it is constant
for n between pk and pk+1 − 1. In any case, it follows that every non-abelian
free pro-p group has strict growth type 2n. This implies the lower bound for
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subgroup growth in Theorem 3.2, since if C is a good class of groups then C
contains all finite p-groups for at least one prime p.

It is interesting to compare this result with Theorem 3.3. Thinking of F as
a quotient of the free d-generator prosoluble group F̂d(S), we see that among
all open subgroups of F̂d(S), the subnormal ones of p-power index have positive
density, measured in a suitable logarithmic sense, and that this density is roughly
proportional to log p

p .
In Section 3 we also show how “Hall’s enumeration principle” may be used

to give a recursive formula for the numbers apk(F ).

The last two sections deal with normal subgroup growth. The following result
is established, as a counterpart to Theorem 2.7:

Theorem 3.7 Let F be the free pro-p group on d ≥ 2 generators. Then

pk
2((d−1)2/4d+o(1)) ≤ aC

pk(F ) ≤ pk
2(d−1)/2−k(d−3)/2−1

where o(1) is a term that tends to 0 as k →∞.

As before, this may be interpreted in terms of the number f(pk, d) of iso-
morphism types of d-generator groups of order pk. Using Lemma 2.5 we have

Corollary 3.8 Let d ≥ 2. Then

pk
2(d−1)2/4d+o(k2) ≤ f(pk, d) ≤ pk

2(d−1)/2+O(k).

(A slightly sharper upper bound will be given in §3.4 below.) As in the
preceding chapter, these results are closely related to the number of (pro-p)
relations required to define a d-generator finite p group. Writing

g(pk, d)

for the smallest integer g such that every d-generator group of order pk has a
pro-p presentation on d generators with g relations, we shall prove

Theorem 3.9 Let d ≥ 2. Then

g(pk, d) ≤ (d− 1)k + 1 for all k ≥ 1,

g(pk, d) ∼ (d− 1)k as k →∞.

Theorem 3.7 shows that

(d− 1)2

4d
≤ lim inf

log aC
pn(F )

n log pn
≤ lim sup

log aC
pn(F )

n log pn
≤ d− 1

2
.

This suggests the



3.1. UPPER BOUNDS 57

Problem Does log aC
pn(F )/n log pn tend to a limit as n→∞, and if so what is

it?

It is worth remarking that all the results on ‘relatively free’ profinite groups
may be interpreted as results about (absolutely) free abstract groups; for exam-
ple, writing F̂d(p) for the d-generator free pro-p group, we have the ‘dictionary’

an(F̂d(S)) = |{H ≤ Fd | |Fd : H| = n, Fd/coreFd
(H) is soluble}|

apk(F̂d(p)) = aCC
pk (Fd)

aC
pk(F̂d(p)) = aC

pk(Fd)

where Fd is the free group on d generators and coreFd
(H) denotes the biggest

normal subgroup of Fd contained in H.

Throughout this chapter, we shall use the convention that in the context of
profinite groups, ‘subgroup’ means ‘closed subgroup’ and all homomorphisms
are supposed continuous.

3.1 Upper bounds

In order to calculate the subgroup growth of a free group, we had to enumerate
the transitive d-generator subgroups of Sym(n). Using the same approach, we
can estimate the subgroup growth of a free pro-C group by enumerating the
transitive d-generator C-subgroups of Sym(n).

We begin with some generalities. Let C be a quotient-closed class of finite
groups, and for n ∈ N let

Mt
C(n)

denote the set of maximal transitive C-subgroups of Sym(n) (i.e. maximal mem-
bers of the set of subgroups that are both transitive and belong to C). Clearly
Mt
C(n) is a union of a certain number

ConjtC(n)

of conjugacy classes of subgroups in Sym(n). We write

OrdtC(n) = max{|H| : H ∈ Mt
C(n)}.

Proposition 3.1.1 Let G be a pro-C group generated by d elements. Then for
each n,

an(G) ≤ n · ConjtC(n) ·OrdtC(n)d−1.

Proof. According to Proposition 1.1.1, an(G) = tn(G)/(n−1)! where tn(G)
is the number of transitive representations of G in Sym(n). Now if ϕ : G →
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Sym(n) is such a representation then ϕ(G) is a transitive C-subgroup of Sym(n);
so for each such ϕ there exists H ∈ Mt

C(n) with H ≥ ϕ(G). It follows that

tn(G) ≤
∑

H∈Mt
C(n)

|Hom(G,H)|

≤
∑

H∈Mt
C(n)

|H|d .

Now the conjugacy class of a subgroup H in Sym(n) has cardinality
|Sym(n) : NG(H)| ≤ n! |H|−1

, so partitioning Mt
C(n) into conjugacy classes

we get ∑
H∈Mt

C(n)

|H|d ≤ ConjtC(n) · max
H∈Mt

C(n)

(
n! |H|−1 |H|d

)
= n! · ConjtC(n)OrdtC(n)d−1.

The proposition follows.

This simple proposition is very important: it shows that many subgroup
growth questions are in essence questions about finite permutation groups. In
this book we cannot go deeply into permutation group theory, and will have to
be content with quoting a number of results. We should emphasise that these
results about pemutation groups lie much deeper than the simple reduction
arguments we are using here; for a proper understanding of the subgroup growth
theorems of this section, the reader should really study the original literature
referred to in the Permutation groups window (some of which was motivated
by these subgroup growth questions).

Theorem 15 of the Permutation groups window may be stated as

Proposition 3.1.2 Let C be a good class such that S ⊆ C ⊆ Ck for some k.
Then there exists c depending only on C such that

ConjtC(n) ≤ nc

for all n.

On the other hand, Theorem 8 of the Permutation groups window gives

Proposition 3.1.3 Let C ⊆ CC
k where k ≥ 4. Then OrdtC(n) ≤ µn−1 where

µ = (k!)1/(k−1).

(Here CC
k denotes the class of all finite groups that do not have Alt(n) as a

composition factor for any n > k; of course this class properly contains Ck.)
Now let G be a d-generator pro-C group, where S ⊆ C ⊆ Ck and k ≥ 4.

Combining the last three propositions we get

an(G) ≤ n · nc · µ(n−1)(d−1);
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it follows that

log sn(G) ≤ (c+ 1) log n+ (n− 1)(d− 1) logµ
= n · ((d− 1) logµ+ o(1)) .

Thus
σ(G) ≤ (d− 1) logµ.

Taking C = Ck gives the upper bound in (3.1) (which implies the upper
bound for subgroup growth in Theorems 3.2 and 3.1). Taking C to be the class
of soluble groups and k = 4 we get the upper bound in (3.2).

Suppose finally that C is the class of finite p-groups, for some prime p. Since
the largest power of p dividing n! is at most (n − 1)/(p − 1), the analogue of
Proposition 3.1.3 in this case has µ = p1/(p−1), and we deduce in the same way
that every d-generator pro-p group G satisfies

σ(G) ≤ (d− 1)
log p
p− 1

.

An alternative approach to pro-p groups, giving more precise results, is described
in Section 3.

It remains to establish the upper bounds on maximal subgroup growth. We
saw in §1.1 that mn(G) = pn(G)/(n−1)! where pn(G) is the number of primitive
permutation representations of G of degree n. It follows as before that if G is a
d-generator pro-C group then

mn(G) ≤ n · ConjpC(n) ·OrdpC(n)d−1,

where ConjpC(n) denotes the number of conjugacy classes of maximal primitive C-
subgroups in Sym(n) and OrdpC(n) the maximal order of a primitive C-subgroup
of Sym(n). It is easy to see that OrdpC(n) ≤ OrdtC(n) and ConjpC(n) ≤ ConjtC(n);
part (i) of Theorem 3.5 is therefore a consequence of Proposition 3.1.2 together
with

Proposition 3.1.4 Let C be a good class of finite groups that does not contain
all finite groups. Then there exists a constant c, depending on C, such that

OrdpC(n) ≤ nc

for every n.

(# Permutation groups, Theorem 4; note that C ⊆ Bk for some k in the
notation of the window.)

Similarly, Theorem 3.5(ii) follows from Theorems 13 and 16 of the Permu-
tation groups window, which we restate as
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Proposition 3.1.5 (i) If C ⊆ CC
k then

OrdpC(n) ≤ nc logn

where c depends only on k.
(ii) If C is the class of all finite groups then

ConjpC(n) ≤ nc logn (3.3)

where c is an absolute constant.

To prove part (iii) of Theorem 3.5, let Γ be a d-generator group and suppose
that G does not have Alt(n) or Sym(n) as a quotient when n > n0. If n > n0

and H is a primitive image of G in Sym(n) then H is a proper primitive group,
hence satisfies |H| ≤ nc0

√
n where c0 is an absolute constant (# Permutation

groups, Theorem 1). Arguing as in the proof of Proposition 3.1.1 and using
(3.3) we deduce that

pn(Γ) ≤ nc logn · n! · n(d−1)c0
√
n

for all n > n0. Hence

mn(Γ) =
pn(Γ)

(n− 1)!
≤ n1+c logn+(d−1)c0

√
n ≤ na

√
n

for sufficiently large n, if a is any constant larger than (d− 1)c0, and Theorem
3.5(iii) follows.

Theorem 3.5(i) shows that there is a huge jump – super-exponential to poly-
nomial – between the maximal subgroup growth type of free groups on the one
hand, and that of groups with restricted upper sections on the other. This ‘jump’
is not a ‘gap’, however: in Chapter 13 we construct finitely generated groups
having a range of maximal subgroup growth types between nn and nlogn. These
examples are all subcartesian products of finite alternating groups. Whether or
not there is a gap in the possible types of maximal subgroup growth between
nlogn and polynomial type is not at present clear.

3.2 Lower bounds

Let us begin with an easy example: it is not logically necessary for Theorem 3.3,
but is instructive and has other applications. Fix a prime p, and for a positive
integer t consider the group

Gt = Cp o Cpt

= Ao 〈x〉 ,

where 〈x〉 is cyclic of order pt and A is the group algebra Fp[〈x〉], considered as
an 〈x〉-module. Now A is an Fp-vector space of dimension pt, hence contains
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(pp
t − 1)/(p − 1) > pp

t−1 subspaces of codimension 1. Thus Gt contains more
than pp

t−1 subgroups of index pt+1.
Now let

Γ = Cp o C∞

=
〈
a, x; ap = 1, [ax

i

, ax
j

] = 1 for all i, j
〉
.

Adding the relation xp
t

= 1 turns this group into Gt, so Γ maps onto each Gt.
In a similar way we see that Gt+1 maps onto Gt for each t, so we may form the
inverse limit

G = lim
←−

Gt,

a two-generator metabelian pro-p group usually denoted Cp oZp; in fact G = Γ̂p.
Fix c with 1 < c < p1/p2 . Suppose now that pt+1 ≤ n < pt+2. Then sn(Γ)

and sn(G) are both at least equal to apt+1(Gt), which exceeds

pp
t−1 > pn/p

2−1 > cn

for all sufficiently large values of n; thus we have established

Proposition 3.2.1 Let p be a prime and let 1 < c < p1/p2 . Then

sn(Cp o C∞) > cn

sn(Cp o Zp) > cn

for all large n.

This shows that there exist 2-generator metabelian groups and 2-generator
metabelian pro-p groups whose subgroup growth is at least exponential (in-
deed, the proof shows that this holds even for the growth of 2-step subnormal
subgroups). This is therefore a lower bound for the strict growth type of any
non-abelian free metabelian group, any non-abelian free metabelian pro-p group,
and any non-abelian free prosoluble group.

If C is any good class of finite groups then C contains Cp for some prime p;
provided d ≥ 2 the free pro-C group F̂d(C) then maps onto Cp o Zp, hence has
strict growth type which is at least exponential. This completes the proof of
Theorem 3.2.

We now establish the lower bounds in Theorem 3.3. Slightly more generally,
fix k ≥ 4 and let C be any good class of finite groups that contains Sym(k) and
all finite soluble groups. Let Φd = F̂d(C) denote the free pro-C group on d ≥ 2
generators, and write

κ =
log k!
k − 1

.
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Step 1. For each t ≥ 0,

log akt(Φd) ≥ κ(d− 1)(kt − 1)− ct2

where c = (log k)2.
This is trivial if t = 0. The general case is proved by induction on t, start-

ing at t = 1. To start the induction, let Fd denote the (abstract, absolutely)
free group on d generators, and let X be the intersection of the kernels of all
homomorphisms from Fd into Sym(k). Then every subgroup of index k in Fd
contains X. As Fd/X ∈ C it is an image of Φd, so we have

ak(Φd) ≥ ak(Fd) ≥ k!d−1 (3.4)

by Corollary 2.1.2. This gives the claim for t = 1 since κ(k − 1) = log k!.
Now suppose that t > 1, and put m = kt−1(d − 1) + 1. By Schreier’s

formula for pro-C groups (# Profinite groups), each open subgroup H of
index kt−1 in Φd is isomorphic to Φm, hence, by (3.4), contains at least k!m−1

open subgroups of index k. By inductive hypothesis there are at least 2n such
subgroups H where

n = κ(d− 1)(kt−1 − 1)− c(t− 1)2.

On the other hand, given a subgroup L of index kt in Φd, the number of distinct
subgroups H of index kt−1 in Φd that contain L is at most

kt log k

(Lemma 1.2.3). Putting these estimates together we deduce that

log akt(Φd) ≥ n− t(log k)2 + (m− 1) log k!

≥ κ(d− 1)(kt−1 − 1)− c(t− 1)2 − ct+ κ(k − 1)kt−1(d− 1)

≥ κ(d− 1)(kt − 1)− ct2

as claimed.

Step 2. Now let n > 1 be arbitrary, and choose t and r so that

k2t ≤ n < k2(t+1)

rkt ≤ n < (r + 1)kt.

Fix an open subgroup H of index r in Φd; such subgroups exist, because Φd
maps onto every finite cyclic group. As above, we see that H ∼= Φr(d−1)+1, so
by Step 1 we have

log akt(H) ≥ κr(d− 1)(kt − 1)− ct2

≥ κ(d− 1)n− κ(d− 1)(r + kt)− ct2.
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Since r ≤ kt+2 ≤ k2
√
n and ct2 ≤ c(log n/2 log k)2 = (log n)2/4, while sn(Φd) ≥

akt(H), we infer that

log sn(Φd) ≥ log akt(H)

≥ κ(d− 1)n− κ(d− 1)(k2 + 1)
√
n− (log n)2/4

= κ(d− 1)n−O(
√
n).

It follows that σ−(Φd) ≥ κ(d− 1). This completes the proof of Theorem 3.3
(for (3.2), take k = 4 and C to be the class of all finite soluble groups).

To conclude this section, let us show if C is a good class that includes Cp
and Cq for distinct primes p and q then the free group F̂d(C) for d ≥ 2 has
maximal subgroup growth of strict type n. Say q is odd, and let s be the order
of p modulo q. Then the order of p modulo qm+1 is qms for each m ≥ 0. Given
n ≥ s, let m be such that

qms ≤ n < qm+1s,

and put t = qms. The field Fpt then contains a primitive element x of order
qm+1, and we form the group H = Fpt o 〈x〉 (where x acts by multiplication on
the additive group of the field). It is easy to see that 〈x〉 is a self-normalising
maximal subgroup of H, and that H is a 2-generator group in C. Thus H, and
therefore also F̂d(C), has at least pt ≥ n1/q maximal subgroups of index pt ≤ n.

3.3 Free pro-p groups

From now on we concentrate on pro-p groups. Throughout the rest of the
chapter, the prime p is kept fixed, and we put

µ =
log(p− 1)

log p
.

Note that 0 ≤ µ < 1 and that µ→ 1 as p→∞. According to Proposition 1.6.2
and the remark following it, if G is a finitely generated pro-p group then

pdn−1(G)−1 ≤ apn(G) ≤ pd
∗
n−1(G)−nµ,

apn(G) ≥
n∏
i=1

pδi−1(G) − 1
pi − 1

. (3.5)

Here

• dn(G) = max{d(H) | H a subgroup of G of index pn},

• d∗n(G) =
n∑
i=0

di(G),

• δn(G) = min{d(H) | H a subgroup of G of index pn}.
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Now let F be the free pro-p group on d ≥ 2 generators. Schreier’s index
formula (# Profinite groups) shows that

δk(F ) = dk(F ) = pk(d− 1) + 1

for each k ≥ 1. It follows that

d∗k−1(F )− kµ =
k−1∑
i=0

(
pi(d− 1) + 1− µ

)
≤ d− 1
p− 1

(pk − 1) + k,

and hence that
apk(F ) ≤ p

d−1
p−1 (pk−1)+k.

This gives the upper bound in Theorem 3.6.
For the lower bound, note that

pδi−1(F ) − 1
pi − 1

> pδi−1(F )−i

for each i ≥ 1, and

k∑
i=1

(δi−1(F )− i) =
d− 1
p− 1

(pk − 1)− k(k − 1)/2.

Combining these with (3.5) we deduce that

apk(F ) ≥ p
d−1
p−1 (pk−1)− k(k−1)

2 .

This completes the proof of Theorem 3.6.

To conclude this section, let us derive a recursive formula for apk(F ). For
brevity we write Ψm = F̂m(p) for each m, so F = Ψd. Also[

d

t

]
=

(pd − 1)(pd − p) . . . (pd − pt−1)
(pt − 1)(pt − p) . . . (pt − pt−1)

.

Lemma 3.3.1 For k ≥ 1,

apk(Ψd) =
d∑
t=1

(−1)t+1

[
d

t

]
pt(t−1)/2apk−t(Ψ1+pt(d−1)). (3.6)

Proof. Let Φ = Φ(Ψd) denote the Frattini subgroup of Ψd. Let{
Kt,i/Φ | i = 1, . . . ,

[
d
t

]}
be the list of subgroups of index exactly pt in Ψd/Φ.

By Schreier’s theorem for pro-p groups (# Pro-p groups), each Kt,i is a free
pro-p group on 1 + pt(d − 1) generators. The result now follows immediately
from Hall’s enumeration principle (# Pro-p groups) applied to the collection
of index pk subgroups of Ψd.

This is a legitimate recursive formula, but it uses apl(Ψs) to express apk(Ψd)
with s 6= d (s > d but l < k). It is not hard to deduce from this a relation which
expresses apk(Ψd) using only apt(Ψd) for t < k:
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Proposition 3.3.2 For k ≥ 1,

apk(Ψd) =
k∑
t=1

(−1)t+1 pt(t−1)/2

[
pk−t(d− 1) + 1

t

]
apk−t(Ψd). (3.7)

Proof. For brevity, let us write

an,t = apn(Ψ1+pt(d−1)).

Certainly (3.7) is correct when k = 1. Let n > 1 and suppose inductively that
(3.7) is valid whenever k < n. Putting k = n in the right-hand side of (3.6) and
applying the inductive hypothesis we obtain

d∑
t=1

(−1)t+1

[
d

t

]
pt(t−1)/2 ·

n−t∑
s=1

(−1)s+1 ps(s−1)/2

[
pn−t−s(pt(d− 1)) + 1

s

]
an−t−s,t.

(3.8)
Putting k = n in the right-hand side of (3.7) and applying (3.6) we obtain

k∑
t=1

(−1)t+1 pt(t−1)/2

[
pn−t(d− 1) + 1

t

]
·
d∑
s=1

(−1)s+1

[
d

s

]
ps(s−1)/2an−t−s,s. (3.9)

Observe now that (3.9) and (3.8) are equal (interchange the indices s and t). It
follows that (3.7) is valid for k = n, and the proof is complete.

3.4 Normal subgroups in free pro-p groups

In the preceding chapter, we were able to estimate the number of d-generator
groups of order n by obtaining an upper bound for the number of (profinite)
relations needed to define such a group. The same approach is effective when
dealing with finite p-groups. In fact the proof given in §2.3 applies directly to
groups of p-power order; however, as the finite simple p-groups are much easier
to understand than finite simple groups in general, the argument is very much
simpler in this case, so let us give it here.

Proposition 3.4.1 Let G be a group of order pk > 1 with a generating set X
of size d. Then G has a presentation 〈X;R〉 where |R| ≤ dk.

Proof. Suppose first that k = 1. If G = 〈x1, . . . , xd〉 has order p then xi
alone generates G for some i and then G has a presentation of the form

G =
〈
x1, . . . , xd; x

p
i = 1, xj = x

e(j)
i (j 6= i)

〉
.

Now let k > 1 and suppose that G = 〈x1, . . . , xd〉 has order pk. Then G has
a central subgroup N of order p. Inductively, we may suppose that G/N has a
presentation

G/N = 〈x1N, . . . , xdN ; ui(xN) = 1 (1 ≤ i ≤ r)〉 (3.10)
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where r = d(k− 1). Since |G| > |G/N | and x1, . . . , xd generate G, the relations
ui(x) = 1 cannot all hold in G, so there exists t such that the element ut(x) = z
actually generates N . Then ui(x) = ze(i) where 0 ≤ e(i) ≤ p−1 for i = 1, . . . , r.
It is easy to see that the following is then a presentation for G :

G =

〈 x1, . . . , xd;
ut(x)p = 1, [xj , ut(x)] = 1 (1 ≤ j ≤ d),
ui(x) = ut(x)e(i) (1 ≤ i ≤ r, i 6= t)

〉
.

Thus G is defined by 1+d+d(k−1)−1 = dk relations on the given generators.

Note that we obtain here a presentation in the category of groups. For
purposes of enumeration, it is enough to consider pro-p presentations (just as
profinite presentations sufficed in Chapter 2), and for these we have a slightly
better result:

Theorem 3.4.2 Let G be a group of order pk > 1 with a generating set X of
size d. Then G has a pro-p presentation 〈X;R〉 where |R| ≤ (d− 1)k + 1.

We postpone the proof, which is couched in the language of graded Lie
algebras, to the next section, and proceed now to deduce the upper bounds
stated in Theorem 3.7 and Corollary 3.8.

Let F be the free pro-p group on d ≥ 2 generators. Suppose that N Co F
and |F : N | = pn > 1. Write

ΦF (N) = Np[N,F ], dF (N) = dimFp(N/ΦF (N)).

Thus dF (N) is the number of generators required by N as a closed normal
subgroup of F . According to Theorem 3.4.2, dF (N) ≤ (d−1)n+1, so N/ΦF (N)
is an elementary abelian p-group of rank at most (d−1)n+1. Such a group has
fewer than p(d−1)n+1 subgroups of index p, and this is then an upper bound for
the number of open normal subgroups of F that are contained in N and have
index pn+1. Since every open normal subgroup of index pn+1 is contained in at
least one of index pn this shows that for n ≥ 1,

aC
pn+1(F ) < aC

pn(F ) · p(d−1)n+1.

Since aC
p (F ) < pd it follows inductively that

aC
pn(F ) < pn

2(d−1)/2−n(d−3)/2+d−1.

The number of isomorphism types of d-generator groups of order pn is de-
noted f(pn, d). Since f(p1, d) = 1, a similar argument yields

f(pn, d) ≤ pn
2(d−1)/2−n(d−3)/2−1.

Using Proposition 3.4.1, proved above, instead of Theorem 3.4.2, the same
kind of argument yields slightly weaker upper bounds, of order pn

2d/2.
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We turn now to the lower bounds. These will follow from a corresponding
lower bound for the number of pro-p defining relations. Indeed, we shall show
that Theorem 3.4.2 is very sharp in the sense that for every k, there exists a
d-generator group of order pk that needs ‘about’ (d− 1)k pro-p relations. Let

g(pk, d) = max
{
dF (N) | N Co F, |F : N | = pk

}
where as above F is the free pro-p group on d generators; thus g(pk, d) is the
least integer r such that every d-generator group of order pk has a d-generator
pro-p presentation with r relations.

Theorem 3.4.3 Let d ≥ 2. Then

g(pk, d) ∼ (d− 1)k

as k →∞.

This will be proved below. Now given k, we can find N Co F with |F : N | =
pk and dF (N) = g(pk, d) = g, say. For each n with k < n < k+ g we then have

aC
pn(F ) ≥ apn−k(N/ΦF (N)) > p(n−k)(g−n+k).

We would like to maximize this lower bound by choosing k optimally with
respect to n. Putting k = xn and supposing temporarily that g = (d − 1)k,
we find that (n − k)(g − n + k) = n2((d + 1)x − dx2 − 1) has its maximum at
x = (d+ 1)/2d. This suggests that we choose k = [(d+ 1)n/2d], which yields

(n− k)(g − n+ k) ≥ (d− 1)n
2d

· (d− 1 + ε(k))n
2

=
(d− 1)2n2

4d
+ o(n2)

(here ε(k) → 0 as k → ∞). Thus aC
pn(F ) ≥ pn

2(d−1)2/4d+o(n2); with the upper
bound given above this establishes

Theorem 3.7 Let F be the free pro-p group on d ≥ 2 generators. Then as
n→∞,

pn
2(d−1)2/4d+o(n2) ≤ aC

pn(F ) ≤ pn
2(d−1)/2+n/2;

if d ≥ 3 the n/2 term on the right may be omitted.

The rest of this section is devoted to the proof of Theorem 3.4.3. As above,
F denotes the free pro-p group on d ≥ 2 generators (it may equally well be the
abstract free group on d generators, if the reader prefers). We write

Γn = γn(F ), Pn = Pn(F )

for the terms of the lower central series and of the lower central p-series of
F . These are related in the following way: for each k ≥ 1 there is a bijective
mapping

θk :
k∏
i=1

Γi/ΦF (Γi) → Pk/Pk+1, (3.11)

(x1, . . . , xk) 7→ xp
k−1

1 xp
k−2

2 . . . xkPk+1 (3.12)
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where xi = xiΦF (Γi); moreover θk is a group isomorphism unless p = 2, in
which case the restriction of θk to

∏k
i=2 Γi/ΦF (Γi) is a homomorphism; for the

proof see e.g. [HB] Chapter VIII, Theorem 1.9(b). For k ≥ 2 and i = 2, . . . , k
let

Pk(i)/Pk+1 = θk

 i∏
j=1

Γj/ΦF (Γj)

 ,

so Pk = Pk(k) > Pk(k − 1) > . . . > Pk(2) > Pk+1. If p is odd these are
evidently subgroups of Pk; this remains true if p = 2 – it suffices to check that
for x, y ∈ F,

x2k

y2k

≡ (xy)2
k

modPk(2),

and this follows from the fact that

x2k

y2k

(xy)−2k

∈ Γ2k

2

k∏
l=1

Γ2k−l

2l ,

an application of the ‘Hall-Petrescu identity’; see e.g. [DDMS], Lemma 11.9(i).
Another application of the same identity gives

Lemma 3.4.4

Pk(i)p = Pk+1(i) if 2 ≤ i ≤ k

Pk(i)p ≤ [Pk(i− 1), F ]Pk+1(i− 1) if 3 ≤ i ≤ k.

Proof. The mapping x 7→ xp induces a homomorphism π : Pk/Pk+1 →
Pk+1/Pk+2 such that θk+1 = π ◦ θk; this implies the first claim. Now let i ≥ 3
and suppose that x ∈ Γi−1, y ∈ F . According to [DDMS], Lemma 11.9(ii) we
have

[x, y]p
k+1

[xp
k+1

, y]−1 ∈ Γp
k+1

2

k+1∏
l=1

Γp
k+1−l

pl

≤ Pk+2.

The second claim of the lemma now follows since Pk(i) is generated by Pk(i−1)
together with elements of the form [x, y]p

k

with x ∈ Γi−1, for which xp
k+1 ∈

Pk(i− 1).

Corollary 3.4.5 (i) Let Pk+1 ≤M ≤ N ≤ Pk, where k ≥ 2, and put |N : M | =
pm. Then

dF (N) ≥ dF (M)− dm.

(ii) Let Pk+1 ≤ N ≤ Pk and put |N : Pk+1| = pm. If (a) Pk(i− 1) ≤ N ≤ Pk(i)
where i ≥ 3 or (b) N ≤ Pk(2) then

dF (N) ≥ dF (Pk+1)− (d− 1)m− d(d+ 1)/2.
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Proof. Say F = 〈g1, . . . , gd〉 and N = 〈u1, . . . , um〉M . Then ΦF (N) is
generated modulo ΦF (M) by {up1, . . . , upm} ∪ {[uj , gl] | j ≤ m, l ≤ d}, so

dimFp
(ΦF (N)/ΦF (M)) ≤ (d+ 1)m.

It follows that

m+ dF (M) = logp |N : ΦF (M)| = dF (N) + logp |ΦF (N) : ΦF (M)|
≤ dF (N) + (d+ 1)m.

This gives (i).
Now let N be as in (ii)(a) and put M = Pk(i− 1). Then Lemma 3.4.4 gives

Np ≤ Pk(i)p ≤ [Pk(i− 1), F ]Pk+1(i− 1)
= [M,F ]Mp = ΦF (M);

so ΦF (N) = [N,F ]ΦF (M) and the argument used above shows that now dF (N) ≥
dF (M) − (d − 1)m0 where pm0 = |N : M |. Putting |Pk(j) : Pk(j − 1)| = pmj ,
we see similarly that

dF (Pk(j)) ≥ dF (Pk(j − 1))− (d− 1)mj

for i− 1 ≥ j ≥ 3. On the other hand, part (i) applied to the pair N = Pk(2) >
M = Pk+1 gives

dF (Pk(2)) ≥ dF (Pk+1)− d(m2 +m1),

and putting these together gives

dF (N) ≥ dF (Pk+1)− (d− 1)(m0 +mi−1 + · · ·+m3)− d(m2 +m1)
= dF (Pk+1)− (d− 1)m− (m2 +m1).

If N ≤ Pk(2) then m ≤ m2 +m1, and (i) with M = Pk+1 gives

dF (N) ≥ dF (Pk+1)− (d− 1)m−m ≥ dF (Pk+1)− (d− 1)m− (m2 +m1).

Part (ii) follows in either case since

m2 +m1 = dimFp
(Γ2/ΦF (Γ2))+dimFp

(Γ1/ΦF (Γ1)) =
d(d− 1)

2
+d =

d(d+ 1)
2

.

We can now complete the

Proof of Theorem 3.4.3 It follows from Theorem 3.4.2 (to be proved in the
next section) that g(pn, d) ≤ 1 + (d− 1)n ∼ (d− 1)n. Now let n ≥ d(d+ 1)/2.
Then for a suitable value of k ≥ 3 we can find an open normal subgroup N of
F with |F : N | = pn such that either

Pk(i− 1) ≤ N ≤ Pk(i)
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for some i ≥ 3, or
Pk+1 ≤ N ≤ Pk(2).

Write
ps(k) = |F : Pk+1| , pr(k) = |Pk+1 : Pk+2| .

Then |N : Pk+1| = ps(k)−n and dF (Pk+1) = r(k), so from the Corollary we have

dF (N) ≥ r(k)− (d− 1)(s(k)− n)− d(d+ 1)/2
= (d− 1)n+ r(k)− (d− 1)s(k)− d(d+ 1)/2.

Since g(pn, d) ≥ dF (N) and n ≥ s(k − 1), it will therefore suffice to prove
that

(d− 1)s(k)− r(k)
s(k − 1)

→ 0 (3.13)

as k →∞.
Let M(i) = dimFp

(Γi/ΦF (Γi)). Then M(i) is equal to the rank of the free
abelian group Γi/Γi+1, and this is given recursively by a famous formula due to
Witt:

dn =
∑
j|n

jM(j);

see for example [HB] Chapter VIII, Theorem 11.15. It is easy to see that

M(n) ∼ dn/n;

indeed, if n ≥ 8 and C = Cn ≥ 2 is a constant such that jM(j) ≤ Cdj for all
j < n then

nM(n)
dn

− 1 =
∑

j|n,j<n

jM(j)
dn

≤ Cnd−n/2 ≤ C/2 ≤ C − 1

so nM(n) ≤ Cdn. By induction this holds for all n with C = C8, and the claim
follows since Cnd−n/2 → 0 as n→∞.

The bijection θk shows that r(k) =
∑k+1
i=1 M(i), and s(k) =

∑k−1
i=0 r(i). From

elementary analysis we deduce that

r(k) ∼ dk+2

(d− 1)k
,

s(k) ∼ dk+2

(d− 1)2k
∼ r(k)
d− 1

.

Thus
(d− 1)s(k)− r(k) = o(r(k)) = o(s(k − 1))

and (3.13) follows.
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3.5 Relations in p-groups and Lie algebras

Theorem 3.4.2, stated above, is equivalent to

Theorem 3.5.1 Let F be the free pro-p group on d ≥ 2 generators and N an
open normal subgroup of index pm > 1 in F . Then

dimFp
(N/[N,F ]Np) ≤ (d− 1)m+ 1.

The result, and the proof, are the same if F is taken instead to denote the
abstract free group. We shall deduce it from an analogous result about Lie
algebras. To effect the translation, we first associate a graded Lie algebra toF,
in the following way. Write Γi for the ith term of the lower central series of F ,
put Li = Γi/Γi+1, and define a bracket operation Li × Lj → Li+j by setting

[xΓi+1, yΓj+1] = [x, y]Γi+j+1 (x ∈ Γi, y ∈ Γj).

It is easy to see that this is a well-defined bilinear mapping (writing the group
operation in each Li additively), and it extends to a binary operation on the
direct sum

L =
∞⊕
i=1

Li.

This makes L into a Lie ring (the Jacobi identity follows from the group-theoretic
Hall-Witt identity; see e.g. [HB] Chapter VIII, § 9). Since F is a free pro-p
group, each of the factors Γi/Γi+1 = Li is actually a free Zp-module of rank
M(i), defined in the preceding section; all we need here, however, is that L is
additively torsion-free: indeed, each Li is torsion-free because the lower central
factors of a free group are free abelian ([HB] Chapter VIII, Theorem 11.15).
Since [L,L] =

⊕
i>1 Li we have

dimFp
(L/([L,L] + pL)) = dimFp

(F/(Γ2F
p)) = d.

Now let N be as in the theorem, put

Ni =
(NΓi+1) ∩ Γi

Γi+1
≤ Li

and let

L(N) =
∞⊕
i=1

Ni.

It is easy to see that then L(N) is an ideal in the Lie algebra L and that
|L : L(N)| = |F : N | . Since [(NΓi) ∩ Γi−1, F ] ≤ [N,F ]Γi+1 ∩ Γi for each i > 1,
we have

[L(N), L] + pL(N) ⊆ L(N∗)

where N∗ = [N,F ]Np. Thus dimFp(N/N∗) ≤ dimFp(L/ΦL(L(N))), where for
an ideal H of L we write

ΦL(H) = [H,L] + pH.

Theorem 3.5.1 therefore follows from the second claim in the next result:
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Theorem 3.5.2 Let L be a Lie ring and H an ideal of L such that L/H is
nilpotent. Suppose that

dimFp
(L/ΦL(L)) = d ≥ 2, |L : H| = pm > 1.

Then

dimFp
(H/ΦL(H)) ≤

 (d− 1)m if pL = 0

(d− 1)m+ 1 if L has no additive p-torsion
.

Proof. Case 1: where pL = 0. Consider L as an Fp-algebra. We may
suppose that ΦL(H) = 0 and have to bound dim(H). Since L/H is nilpotent,
there exists x ∈ L \ H with [x, L] ⊆ H. If m = 1 then L = H + xFp so
ΦL(L) = [L,H] + [x, x]Fp = 0 and dimL = d, giving the result in this case.
If m > 1, put M = H + xFp. Arguing by induction we may suppose that
dim(M/ΦL(M)) ≤ (d − 1)(m − 1). Since [[M,L], L] ⊆ [H,L] = 0 we have
[M,ΦL(L)] = 0; since ΦL(M) = [H,L] + [x, L] it follows that dim(ΦL(M)) ≤ d.
Thus

dim(H) = dim(M)− 1 ≤ (d− 1)(m− 1) + d− 1 = (d− 1)m.

Case 2: where L has no p-torsion (this hypothesis is not needed until subcase
2.3, in fact).

Subcase 2.1: Where H ⊇ ΦL(L). Then m ≤ d and L = H+x1Z+ · · ·+xmZ,
say. We have

ΦL(L) = ΦL(H) +
m∑
i=1

pxiZ +
∑

1≤i<j≤m

[xi, xj ]Z ⊆ H,

whence

dim(H/ΦL(H)) = dim(L/ΦL(L)) + dim(ΦL(L)/ΦL(H))−m

≤ d+
(
m+

1
2
m(m− 1)

)
−m

≤ (d− 1)m+ 1

since m ≤ d and d ≥ 2.
Subcase 2.2: Where H + [L,L] but H ⊇ pL. Since L/H is nilpotent we

can find an element x ∈ [L,L] \H such that [x, L] ⊆ H and px ∈ H. Now put
M = H + xZ. Then

px ∈ p[L,L] = [pL,L] ⊆ [H,L]

so we have
ΦL(M) = ΦL(H) + [x, L].

The result now follows inductively in a similar way to Case 1 above.



3.5. RELATIONS IN P -GROUPS AND LIE ALGEBRAS 73

Subcase 2.3: Suppose finally that pL * H. Again we argue by induction on
m. Put H1 = H ∩ pL and H2 = H + pL. Applying Case 1 to the Lie algebra
L/pL we have

dim(H2/(ΦL(H2) + pL)) ≤ (d− 1)a

where |L : H2| = pa. Now put

M = p−1H1.

Then M properly contains H and M 6= L; inductively we may assume that

dim(M/ΦL(M)) ≤ (d− 1)b+ 1

where |L : M | = pb. Now multiplication by p induces an (additive) isomorphism
M/ΦL(M) → H1/ΦL(H1), so

dim(H1/ΦL(H1)) ≤ (d− 1)b+ 1.

But

pb = |L : M | = |pL : pM |
= |pL : H1| = |H2 : H| = pm−a.

The result follows, since it is easy to see from the picture that

dim(H/ΦL(H)) ≤ dim(H1/ΦL(H1)) + dim(H2/(ΦL(H2) + pL)).
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Notes

Theorem 3.1 (as well as the upper bound in Theorem 3.2) is due to [Pyber &
Shalev 1996]. (They state a stronger form of Theorem 3.1, concerning groups
with restricted upper composition factors; however, there is a gap in the proof
of Corollary 2.2(ii) of that paper, and the result in the stronger form remains in
doubt; we are grateful to these authors for pointing this out.) The fundamental
result Proposition 3.1.1 is also from [Pyber & Shalev 1996].

Theorem 3.3 was proved for k ≥ 9 (and conjectured in general) by A. Mann
(unpublished). The bounds for primitive permutation groups required to com-
plete the missing cases 4 ≤ k ≤ 8 were established by Atila Maróti (# Per-
mutation groups, §1).

Theorem 3.5(i) is due to [Borovik, Pyber & Shalev 1996]. Parts (ii) and
(iii) of Theorem 3.5 are due to [Pyber & Shalev 1997].

Theorem 3.6 and the material of §3.3 are from [Ilani 1989].
Earlier versions of Theorem 3.7 and Corollary 3.8 are due to [Neumann

1969], who obtained slightly weaker upper bounds (of order pkd
2/2), and [Mann

1998], who obtained significantly weaker lower bounds (pck
2

for some small
c > 0). The sharper results given here are due to Andrei Jaikin-Zapirain
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(unpblished), who is responsible for Theorem 3.9 and the material of §3.5. (In a
slightly longer argument he also obtains the better lower bound pk

2((d−1)/4+o(1))

in Theorem 3.7, still some way short of the corresponding upper bound.)
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Chapter 4

Pro-p groups

In this chapter we consider the subgroup growth of pro-p groups that are in
some sense smaller than the free ones. We begin in Section 1 with one of the
fundamental results on subgroup growth,

Theorem 4.1 The finitely generated pro-p groups with polynomial subgroup
growth are precisely the pro-p groups of finite rank.

The pro-p groups of finite rank are just the p-adic analytic pro-p groups, a
well-known and much studied class of groups (# Pro-p groups). Each such
pro-p group has a well defined dimension, and we show that the ‘degree’ of
polynomial subgroup growth is bounded above and below by constant mutliples
of the dimension.

Theorem 4.1 is strengthened in Section 2, where we establish

Theorem 4.2 Let G be a pro-p group. If

sn(G) ≤ nc logp n

for all sufficiently large n, where c < 1/8 is a constant, then G has finite rank.

A noteworthy feature of this result is that it demonstrates a gap in the “growth
spectrum” of pro-p groups: it shows that any finitely generated pro-p group ei-
ther has growth type ≤ n or has growth type at least nlogn. Actually the known
growth types achieved by finitely generated pro-p groups are rather sparse, but
whether further gaps really exist is at present a complete mystery.

However, it is known that the gap (n, nlogn) is not any wider. In Sections 3,
4 and 5 we determine the subgroup growth of some specific pro-p groups: the
Nottingham group, the groups SL1

d(Fp[[t]]), and more generally the so-called
‘Λ-perfect’ analytic groups over pro-p rings. All these groups have infinite rank
and growth type nlogn, showing that Theorem 4.2 is best possible as regards
growth type; the more delicate problem of finding the best bound for c is still
open: this bound lies somewhere between 1/8 and 1/2.

77
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The final section is devoted to finitely presented pro-p groups. The
main result here is

Theorem 4.3 Let G be a finitely presented pro-p group. Then either G has
subgroup growth of type at most 2

√
n or G contains a non-abelian free pro-p

subgroup.

It follows that if G does not involve every finite p-group as an upper section,
then the subgroup growth of G is significantly less than that of a free pro-p
group (which is exponential): so the theorem is a pro-p analogue to Theorem
3.1. This striking result depends on a deep theorem of Zelmanov about pro-p
groups satisfying the Golod-Shafarevich condition.

We continue to use the convention that in the context of profinite groups,
‘subgroup’ means ‘closed subgroup’.

4.1 Pro-p groups with polynomial subgroup growth

The most thoroughly studied class of pro-p groups is the pro-p groups of finite
rank. We recall that the rank of a profinite group G is defined by

rk(G) = sup {d(H) | H a closed subgroup of G}
= sup {d(H) | H an open subgroup of G} .

Several alternative characterisations are known for the class of pro-p groups of
finite rank, some of which are listed in the Pro-p groups window. The most
spectacular one is that a pro-p group has finite rank if and only if it has the
structure of a p-adic analytic group; for present purposes, some more algebraic
criteria are relevant, and we shall state them below. The purpose of this section
is establish Theorem 4.1 which characterises this class in terms of subgroup
growth.

Suppose to begin with that G is a pro-p group of finite rank r. Each finite
quotient Γ of G is a p-group of rank at most r, hence satisfies

sn(Γ) ≤ n1+r

for each n, by Lemma 1.4.1. Since sn(G) is the supremum of sn(Γ) over all such
Γ it follows that sn(G) ≤ n1+r. Thus G has polynomial subgroup growth.

A sharper bound can be deduced from Proposition 1.6.2, which shows that

apk(G) ≤ pd
∗
k−1(G)−kµ

where µ = log(p− 1)/ log p and

d∗k−1(G) =
k−1∑
i=0

di(G) ≤ kr;



4.1. PRO-P GROUPS WITH POLYNOMIAL SUBGROUP GROWTH 79

recall that di(G) = max{d(H) | |G : H| = pi}. It follows that apk(G) ≤ p(r−µ)k

and hence that

sn(G) ≤
∑
pk≤n

p(r−µ)k < c · nr−µ,

where c = pr−µ/(pr−µ − 1). Hence

α(G) := lim sup
log sn(G)

log n
≤ r − µ.

It remains to show that polynomial subgroup growth implies finite rank.
This depends on the following fact (# Pro-p groups):

Proposition 4.1.1 Let G be a pro-p group. Then G has finite rank if and only
if there exists k <∞ such that d(N) ≤ k for every open normal subgroup N of
G.

This will be applied in conjunction with

Lemma 4.1.2 Let G be a finitely generated pro-p group and k a positive integer.
Let N be an open normal subgroup of G maximal with the property that d(N) ≥
k. Then

|G : N | ≤ p(k−1)λ

where λ = dlog d(N)e.

Proof. Put C = CG(N/Φ(N)); then N ≤ C C G. Suppose that C > N .
Then (C/N)∩ Z(G/N) contains a subgroup M/N = 〈N,x〉 /N of order p. Now

[M,M ] ≤ [N,N ] · [N,x] ≤ Φ(N)

so M/Φ(N) is abelian; therefore

d(M) ≥ d(M/Φ(N)) ≥ d(N/Φ(N)) = d(N) ≥ r.

This contradicts the choice of N as M > N. It follows that N = CG(N/Φ(N)).
The p-group G/N therefore acts faithfully on the Fp-vector space N/Φ(N),

hence may be embedded in the group Ud(Fp) of d × d upper uni-triangular
matrices over Fp, where d = d(N) is the dimension of this vector space. Now it
is easy to see that Ud(Fp) has a filtration (U(i))λi=0 of normal subgroups such
that each factor U(i−1)/U(i) is elementary abelian. Intersecting this with G/N
gives a chain G = N0 > N1 > . . . > Nt = N, where t ≤ λ and each Ni−1/Ni is
elementary abelian. From the choice of N we have d(Ni−1/Ni) ≤ d(Ni−1) ≤ k−
1 for each i, so |Ni−1 : Ni| ≤ pk−1 for each i. Hence |G : N | ≤ p(k−1)t ≤ p(k−1)λ.

Now let G be a pro-p group and suppose that sn(G) ≤ nα for all n. We
have to show that G has finite rank. We note to begin with that G is finitely
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generated: otherwise G/Φ(G) would have infinitely many subgroups of index p.
Now let k be such that d(N) ≥ k for some open normal subgroup N of G. Our
aim is to prove that k is bounded above in terms of α. Once established, this
will imply that there is a fixed upper bound for d(N) as N ranges over all the
open normal subgroups of G, and the result will follow in view of Proposition
4.1.1.

Since the set of open normal subgroups N of G satisfying d(N) ≥ k is non-
empty, we may choose a maximal member, that we call N. Put d(N) = d, so
d ≥ k. The preceding lemma tells us that

|G : N | ≤ p(k−1)λ ≤ p(d−1)λ

where λ = dlog de . On the other hand, N/Φ(N) ∼= Fdp has at least p[d2/4]

subgroups of index p[d/2]. Thus for n = p[d/2]+(d−1)λ, G has at least p[d2/4]

subgroups of index at most n, and so

[d2/4] ≤ logp sn(G) ≤ α logp n

= α[d/2] + α(d− 1)λ ≤ αd/2 + α(d− 1)(1 + log d).

Since (log d)/d tends to 0 as d → ∞ it follows that d is bounded above by a
number depending only on α. As k ≤ d we have achieved our aim, and the
proof is complete.

(Essentially the same argument would work under the weaker hypothesis
sn(G) ≤ nα(logn)1−ε

where ε > 0 is a constant; in the next section we shall do
much better than this.)

We have seen above that if G has rank r then the ‘degree of polynomial
growth’ α(G) is at most r − µ, where µ = log(p − 1)/ log p. It is not clear if
this bound is best possible. When p is large, it is close to the correct bound for
the free abelian pro-p group G = Zrp, which has α(G) = r− 1: this follows from
Proposition 1.5.1, which implies that

spk(Zrp) = spk(Zr) =
∑
i≤k

api(Zr)

is bounded above and below by constant multiples of pk(r−1). It is also known
that α(G) is always a rational number: this follows from the theory of ‘local
zeta functions’, discussed in Chapter 16.

The dimension dim(G) is defined to be the rank of any uniform open sub-
group of G (# Pro-p groups). In general we have

Theorem 4.1.3 Let G be a pro-p group of finite rank. Then provided dim(G) >
1 we have

α(G) ≥ dim(G)/6.

Proof. The group G has an open normal subgroup H which is a uniform
pro-p group, and α(G) ≥ α(H) (see §1.11), so replacing G by H we may as well
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assume that G is uniform, of dimension d say. Let Gi = Pi(G) denote the ith
term of the lower central p-series of G. Then for i > 1,

|G : Gi| = pd(i−1), |Gi : G2i| = pdi,

and Gi/G2i is an abelian group of exponent pi and rank d (# Pro-p groups).
Thus Gi/G2i is homocyclic, and Proposition 1.5.3 shows that

apri(Gi/G2i) > pir(d−r)

for 1 ≤ r < d. Hence

n = pi(d+r) =⇒ sn(G) > pir(d−r) = nc(d,r)

where c(d, r) = r(d− r)/(d+ r). As i can be arbitrarily large we see that

α(G) ≥ max
1≤r<d

c(d, r).

The result follows since

c(d,
d

2
) =

d

6
(d even),

c(d,
d− 1

2
) =

(d− 1)(d+ 1)
2(3d− 1)

≥ d

6
(d ≥ 3 odd).

Choosing r more carefully one obtains the estimate

α(G) ≥ (3− 2
√

2) · dim(G)− (
√

2− 1),

which is sharper when dim(G) is large; but we do not know if the lower bound
given here is best possible. Indeed, the precise determination of α(G) for pro-p
groups of finite rank in general seems to be a difficult problem. An example of
a pro-p group of finite rank is the ‘first principal congruence subgroup’ Gm =
ker (SLm(Zp → SLm(Fp)), which has rank m2 − 1 (if p is odd) and therefore
satisfies α(Gm) ≤ m2 − 1− µ. This is very likely not the best bound. The best
bound is not known except for the case m = 2, where [Ilani 1999] showed that
apk(G2) grows like kpk; it follows that α(G2) = 1 = rk(G2)− 2.

4.2 Pro-p groups with slow subgroup growth

To show that a pro-p group of infinite rank has faster than polynomial subgroup
growth, we counted subgroups in a suitably large elementary abelian section.
Doing this more carefully leads to more explicit lower bounds for the subgroup
growth; the main step is

Lemma 4.2.1 Let G be a pro-p group. Suppose that G has an open subgroup
X with

|G : X| = pk, d(X) = d ≥ λk
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where λ > 0. Put

γ =
λ2

4(λ+ 1)
.

Then there exists e < d such that for t = k + e we have

apt(G) > pγ(1−ε)t
2

where ε = (2 + λ)/kλ.

When applying this, we think of λ as fixed while k is very large, so that ε is
very small.

Proof. The idea is to choose e so as to maximize e(d− e)/(k+ e)2; this will
give the best value for γ. As the given expression for γ(1 − ε) is an increasing
function of λ, we may as well assume that λ = d/k. Then elementary calculus
shows that e should be close to τd where τ = 1/(λ+ 2). Taking

e = [τd]

we find that
e(d− e)
(k + e)2

>
λ2

4(λ+ 1)
(1− 1

τd
) = γ(1− ε).

Thus for t = k + e we have

pγ(1−ε)t
2
< pe(d−e) ≤

[
d

e

]
= ape(X/Φ(X)) ≤ apt(G).

Taking advantage of a more subtle characterisation of the pro-p groups of
finite rank, we can now weaken the hypothesis of (the harder implication in)
Theorem 4.1 and prove Theorem 4.2. This says that if G is a pro-p group of
infinite rank and 0 < c < 1/8 then

sn(G) > nc logp n (4.1)

for infinitely many values of n.
To this end, it will suffice to find a chain G = X0 > X1 > · · · > Xm > · · · of

open normal subgroups of G such that if |G : Xm| = pk(m) and d(Xm) = d(m)
then

d(m) ≥ λk(m) (4.2)

for infinitely many values of m, where λ > 2c(1 +
√

1 + c−1). Indeed, if this
holds then the preceding lemma shows that there exist arbitrarily large values
n = pt such that

sn(G) > apt(G) > pγ(1−εn)t2 = nγ(1−εn) logp n,
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where

γ =
λ2

4(λ+ 1)
> c

and εn → 0 as n → ∞. It follows that if n is big enough then γ(1 − εn) > c,
and (4.1) follows.

A suitable chain (Gi) is provided by the ‘Jennings-Zassenhaus’ series of G,
defined recursively as follows:

Definition D1(G) = G; for i > 1, Di(G) = Di where

Di = (Ddi/pe)p ·
∏
j+k=i

[Dj , Dk].

When G is a finitely generated pro-p group, the chain (Di) is the fastest
descending chain of open subgroups of G, starting with G, such that [Dj , Dk] ≤
Dj+k and Dp

j ≤ Dpj for all j and k. For properties of this series, see [DDMS],
Chapter 11. Jennings proved that Di(G) is equal to the ith modular dimension
subgroup of G; however, the important fact for us is the following theorem of
Lazard and Lubotzky & Mann ([DDMS], Theorem 11.4):

Proposition 4.2.2 Let G be a finitely generated pro-p group. Then G has finite
rank if and only if Di = Di+1 for some i.

To return to the proof of Theorem 4.2, suppose G is a pro-p group of infinite
rank and 0 < c < 1/8. If G is not finitely generated then sn(G) is infinite for all
n ≥ p, so we may as well assume that G is finitely generated. Then Di > Di+1

for every i. Now put
Xm = D2m

and define d(m), k(m) as above. Since c < 1/8, we have 2c(1 +
√

1 + c−1) < 1,
and we may choose λ with 1 > λ > 2c(1 +

√
1 + c−1). To complete the proof,

it now suffices to show that (4.2) holds for infinitely many values of m.
Note that for each m we have

Φ(Xm) = [Xm, Xm]Xp
m ≤ D2·2mDp·2m = D2m+1 = Xm+1.

This implies that

pd(m) = |Xm : Φ(Xm)| ≥ |Xm : Xm+1| = pk(m+1)−k(m),

so
k(m+ 1)− k(m) ≤ d(m).

Suppose now that d(m) < λk(m) for all m ≥ m0. Then k(m+1) < (1+λ)k(m)
for all m ≥ m0, and so

k(m0 + n) < (1 + λ)nk(m0)
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for all n > 0. But k(m0 + n) ≥ 2n since Di > Di+1 for 2m0 ≤ i < 2m0+n;
consequently

2n < k(m0)(1 + λ)n

for all n. This is impossible since k(m0) is finite while 2n/(1+λ)n →∞ because
λ < 1. It follows that d(m) ≥ λk(m) for infinitely many values of m, which is
what we had to prove.

4.3 The groups SL1
r(Fp[[t]])

We have seen that a little knowledge of the dimension subgroup series (Di) in
a pro-p group G may enable us to deduce a lower bound for sn(G), at least
for infinitely many values of n. If we know more about the series (Di), we can
do better: in the rest of this chapter we obtain both upper bounds, and lower
bounds valid for all large n, for some groups whose dimension subgroups are
explicitly known.

We begin in this section with certain special linear groups.

Fix an integer r ≥ 2 (or r ≥ 3 if p = 2). For n ≥ 1 let Gn denote the nth
principal congruence subgroup in G0 = SLr(Fp[[t]]):

Gn = ker (SLr(Fp[[t]]) → SLr(Fp[[t]]/(tn))) ,

that is the group of matrices congruent to the identity modulo tnFp[[t]]. The
group G0 inherits a topology from the (t)-adic topology on the matrix ring, in
which the subgroups Gn form a base for the neighbourhoods of 1. Since the
residue-class mappings above are all surjective (because Fp[[t]] is a principal
ideal ring), we have

|G0 : Gn| = |SLr(Fp[[t]]/(tn))| = |SLr(Fp)| · p(r2−1)(n−1)

for each n ≥ 1. It follows that

|G1 : Gn| = p(r2−1)(n−1)

so the group G = G1 is a pro-p group. It can be verified that Gn = Dn(G) =
Pn(G) for each n; hence in particular

d(G) = logp |G : G2| = r2 − 1.

Proposition 4.3.1 “Level vs. index ” Let H be an open subgroup of index pk

in G. Then H ≥ Gk+1.

The proof of this key result involves the associated graded Lie algebra of
G. Now [Gi, Gj ] ≤ Gi+j and Gpi ≤ Gpi for all i, j ≥ 1. This means that
Ln := Gn/Gn+1

∼= Fr2−1
p and that there is a well-defined operation

( , ) : Li × Lj → Li+j
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given by (xGi+1, yGj+1) = [x, y]Gi+j+1; thus we obtain a graded Lie algebra
over Fp,

L =
∞⊕
n=1

Ln.

In fact L ∼= L0 ⊗ tFp[t] where L0 = slr(Fp), with Ln corresponding to L0 ⊗ tn;
for details, see [DDMS], §13.4.

Note that the Lie algebra L0 is perfect, that is, (L0, L0) = L0. It follows that
if V is a subspace of codimension 1 in L0, so L0 = V + aFp for some element a,
then

L0 = (V + aFp, V + aFp) = (V,L0). (4.3)

Lemma 4.3.2 For each n ≥ 1 let Vn be a subspace of L0 and assume that
(Vi, Vj) ⊆ Vi+j for all i, j. Put kn = dimL0 − dimVn for each n and suppose
that k =

∑∞
n=1 kn is finite. Then kn = 0 for all n > k.

Proof. Suppose n is such that kn 6= 0. Then Vn < L0. If i + j = n then
(Vi, Vj) ⊆ Vn < L0, so (4.3) implies that ki + kj ≥ 2. Thus if n = 2m then
km ≥ 1, kn ≥ 1, and

n− 2 = 2(m− 1) ≤
m−1∑
i=1

(ki + kn−i) ≤ k − km − kn ≤ k − 2;

while if n = 2m+ 1 then

n− 1 = 2m ≤
m∑
i=1

(ki + kn−i) ≤ k − kn ≤ k − 1.

In either case it follows that n ≤ k.
We can now complete the

Proof of Proposition 4.3.1 The open subgroup H has index pk in G. For each
n put

Hn = (H ∩Gn)Gn+1/Gn+1 ≤ Ln.

Then (Hi,Hj) ⊆ Hi+j and k =
∑∞
n=1 kn where kn = dimLn − dimHn. Iden-

tifying Ln with L0 ⊗ tn as above, we can write Hn = Vn ⊗ tn where Vn is a
subspace of L0, and the hypotheses of Lemma 4.3.2 are satisfied. It follows that
kn = 0 for all n > k, which means that H ≥ Gk+1. �

It follows from Proposition 4.3.1 that apk(G) = apk(G/Gk+1). Now Propo-
sition 1.6.1 shows that if H is a group of order pd then

apr (H) < κ · pr(d−r)

for 1 ≤ r ≤ d, where κ is a constant lying between 1 and 4. Applying this to
the group G/Gk+1, which has order p(r2−1)k, we deduce



86 CHAPTER 4. PRO-P GROUPS

Theorem 4.3.3 Let G = SL1
r(Fp[[t]]), where r ≥ 2 (r ≥ 3 if p = 2). Then

apk(G) ≤ κ · p(r2−2)k2
.

Taking r = 2 (and p ≥ 3) we find that sn(G) ≤ n(2+ε) logp n for all large n,
if ε > 0. Since G has infinite rank (as it contains an additive copy of Fp[[t]]),
this shows that the bound c < 1/8 in Theorem 4.2 cannot be weakened to
c < 2 + ε for any ε > 0. A slightly different approach, that we shall indicate in
the following section, allowed [Barnea & Guralnick 2002] to establish

Proposition 4.3.4 Let G = SL1
2(Fp[[t]]), where p ≥ 3. Then

apk(G) ≤ p(k2+5k)/2.

So in fact
sn(G) ≤ n(1/2+ε) logp n

for all large n, and the best possible bound for c therefore lies between 1/8 and
1/2.

Now let us determine a lower bound for the subgroup growth. As in the
preceding section we put

Xm = G2m ,

and see that

d(Xm) ≥ logp |G2m : G2m+1 |
= (r2 − 1)2m > logp |G : Xm| .

Thus we may apply Lemma 4.2.1 with λ = 1. For k = logp |G : Xm| = (r2 −
1)(2m − 1) and t = t(m) = k + e where e = [k/3] this gives

apt(G) > p(1/8)(1−3/k)t2 .

Let ε > 0 and let n be a large positive integer. Then there exists m such that
pt(m) ≤ n < pt(m+1), giving

sn(G) > p(1/8)(1−3/k)t(m)2 > n(1/32−ε) logp n,

since t(m + 1) is approximately 2t(m). Thus for the groups SL1
r(Fp[[t]]) the

lower bound sn(G) > nc logp n holds for all large n, if c is any constant with
c < 1/32.

It follows that SL1
r(Fp[[t]]) has strict growth type nlogn. This means that

for G = SL1
r(Fp[[t]]) the quantity

log sn(G)
(log n)2

is bounded above and below by positive constants. The following is an interest-
ing problem:

• Does log sn(G)/(log n)2 tend to a limit as n → ∞? If so, determine this
limit as a function of r.
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4.4 Λ-perfect groups

The results of the preceding section can be generalised in the following way.
A pro-p domain is a complete local integral domain (commutative, Noetherian
with identity) Λ whose residue class field F is finite and has characteristic p.
We denote the maximal ideal of Λ by m, so F = Λ/m, and assume for technical
reasons that the associated graded ring

grΛ =
∞⊕
n=0

mn/mn+1

has no zero divisors. Familiar examples of such rings are the power series rings
Fq[[t1, . . . , ts]], where q is a power of p, and o[[t1, . . . , ts−1]] where o is a finite
extension of Zp. Each of these rings has Krull dimension s, and in general we
let s denote the Krull dimension of Λ. In this section we consider only the
equicharacteristic case, where pΛ = 0.

A Λ-standard group of dimension d is a pro-p group G which carries a coor-
dinate system with values in m(d), such that the group operations are given by
power series with coefficients in Λ. We shall not go into the details here, and
refer the reader to Chapter 13 of [DDMS] for a full discussion, where it shown
that SL1

r(Λ) is Λ-standard group of dimension r2−1, the coordinates of a matrix
M being mij−δij for (i, j) 6= (r, r). More generally, if G is any simple Chevalley
group scheme (other than A1 if p = 2) then the first congruence subgroup

G1(Λ) = ker (G(Λ) → G(Λ/m))

is a Λ-standard group (see [DDMS], Exercise 13.11). These examples will be
important in Chapter 6, when we consider arithmetic groups over global fields
of characteristic p.

Using the coordinates, it is usual to identifyG with the set m(d). Having done
this, we write Gn for the subset (mn)(d). Then each Gn is a normal subgroup of
G = G1, and the family (Gn) is a base for the neighbourhoods of 1 in G. We
say that G is Λ-perfect if G2 = [G,G]. In this case,

[Gm, Gn] = Gm+n (4.4)
Gpm ≤ Gpn

for all m and n (the second line depends on our standing assumption that
pΛ = 0). This holds, for example, for the groups G1(Λ) except when p = 2 and
G is of type A1 or Cn. One may define a graded Lie algebra

L =
∞⊕
n=1

Gn/Gn+1

as in the preceding section, and there exists a d-dimensional Lie algebra L0 over
F such that

L ∼= L0 ⊗
F

grm =
∞⊕
n=1

(
L0 ⊗

F
mn/mn+1

)
, (4.5)
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with Gn/Gn+1
∼= L0 ⊗ mn/mn+1. This construction works for any Λ-standard

group G; and G is Λ-perfect precisely when L0 is a perfect Lie algebra (this is
expressed in (4.4)).

Now |Gn : Gn+1| =
∣∣mn/mn+1

∣∣d, and

dimF (mn/mn+1) ∼ cn(s−1)

for some positive constant c, by the Hilbert-Samuel theorem ([AM], Theorem
11.14). It follows that

|G : G2m | ≤ (1 + o(1)) |G2m : G2m+1 | ,

and the argument at the end of the preceding section now gives

Theorem 4.4.1 Let G be a Λ-perfect pro-p group. Then there exists c > 0 such
that

sn(G) > nc logp n

for all large n.

We can also repeat the proof of Theorem 4.3.3 in the present more general
setting, at least when F = Fp. However, if s > 1 this approach only yields an
upper bound of the form

sn(G) ≤ nc(logp n)s.

The correct generalisation of Theorem 4.3.3 depends on a deeper analysis of the
graded Lie algebra. The key result is

Proposition 4.4.2 ([Lubotzky & Shalev 1994], Proposition 4.2) Let L be the
Lie algebra (4.5). There exists a constant c, depending only on Λ and d, such
that

dimFp
(K/(K,K)) ≤ c · dimFp

(L/K)

for every graded Fp-Lie subalgebra K of finite codimension in L.

(A more precise result in the case where Λ has Krull dimension 1 is proved in
Chapter 6, §6.3).

Now suppose that H is an open subgroup of index pk in G. To H we associate
the graded Lie subalgebra K (over Fp) of L with nth homogeneous component

Hn = (H ∩Gn)Gn+1/Gn+1 ≤ Ln.

Then dimFp
(L/K) = k. It follows by the proposition that dimFp

(K/(K,K)) ≤
ck. Since

(Hi,Hj) = [H ∩Gi,H ∩Gj ]Gi+j+1/Gi+j+1 ≤ ([H,H] ∩Gi+j)Gi+j+1/Gi+j+1,

we see that (K,K) ⊆
⊕

([H,H] ∩Gn)Gn+1/Gn+1 and hence that

|H : [H,H]| ≤ pck.

This implies that d(H) ≤ ck.
We have shown that dk(G) ≤ ck for each k, and applying Proposition 1.6.2

we deduce
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Theorem 4.4.3 Let G be a Λ-perfect group. Then there exists c such that

apk(G) ≤ pck
2

for all n.

Thus sn(G) ≤ nc
′ logp n for some constant c′, and we have shown that every

Λ-perfect group has strict growth type nlogn.

We remark that Proposition 4.3.4, in the preceding section, was deduced in
a similar way by [Barnea and Guralnick 2002] from a variant of Proposition
4.4.2: they prove that

d(K) ≤ dimFp(L/K) + 3

for every graded Lie subalgebra K of L, in the case G = SL1
2(Fp[[t]]).

4.5 The Nottingham group

This interesting pro-p group is the group of normalised automorphisms of the
power series ring Fp[[t]]. For each n ≥ 1, let Nn denote the group of (con-
tinuous) automorphisms of the Fp-algebra Fp[[t]] that induce the identity on
Fp[[t]]/tn+1Fp[[t]], and write N = N1. This is the Nottingham group, and it is
a pro-p group having the chain

N = N1 > N2 > · · · > Nn > · · ·

as a base for the neighbourhoods of 1. For details, we refer to [NH], Chapter
6 and Chapter 10, where it is shown that N is (topologically) generated by 2
elements and that it contains a copy of every countably based (in particular,
every finitely generated) pro-p group. The second fact implies that N does not
have finite rank, so it is not p-adic analytic. More generally, it is shown in
[NH], Chapter 1, Section 5.1 that N is not analytic over any pro-p ring; so it is
distinct form the Λ-perfect groups considered above. The following was proved
by Leedham-Green and Shalev; see [NH] Chapter 6, Theorem 8:

Proposition 4.5.1 Suppose that p 6= 2. Let H be an open subgroup of index
pk in N . Then H ≥ Nn where n = d2kp/(p− 1)e.

It follows that
apk(N ) = apk(N/Nn)

where n = d2kp/(p− 1)e. Now it is easy to see that |N/Nn| = pn−1, so applying
Proposition 1.6.1, as in Section 3 above, we deduce

Theorem 4.5.2 Suppose that p 6= 2. Then

apk(N ) ≤ κ · pk
2(p+1)/(p−1)

for all k ≥ 0.



90 CHAPTER 4. PRO-P GROUPS

Thus for large n we have sn(N ) ≤ nc logp n where c is any constant exceeding
(p+ 1)/(p− 1). Since N has infinite rank it follows from Theorem 4.2 that the
growth type of N is nlogn.

The same holds more generally for the Nottingham group over Fq where q
is any power of p; see [NH], Chapter 6.

4.6 Finitely presented pro-p groups

Let G be a finitely presented pro-p group. A minimal presentation for G is a
pro-p presentation

G = 〈X;R〉

by generators and relations such that |X| = d(G). If every minimal presentation
of G satisfies the condition

|R| ≥ d(G)2

4
,

the group G is said to satisfy the Golod-Shafarevich inequality. The celebrated
theorem of Golod and Shafarevich states that this holds for every finite p-group
G; a far-reaching generalisation of this fact has been proved by Zelmanov:

Theorem 4.6.1 [Zelmanov 2000] Let G � Zp be a finitely presented pro-p
group. If G does not satisfy the Golod-Shafarevich inequality then G contains a
non-abelian free pro-p group as a closed subgroup.

An elementary lemma (# Pro-p groups) shows that to every finite presen-
tation 〈Y ;S〉 of G there corresponds a minimal presentation 〈X;R〉 with

|R| = |S| − (|Y | − |X|).

It follows that if G satisfies the Golod-Shafarevich inequality then

|S| − (|Y | − d(G)) ≥ d(G)2

4
. (4.6)

Lemma 4.6.2 Let G be a finitely presented pro-p group. Then there exists
c > 0 with the following property: if H is an open subgroup of G and H satisfies
the Golod-Shafarevich inequality then

d(H) ≤ c
√
|G : H|.

Proof. We may suppose that G = F/K where F is a finitely generated free
pro-p group and K = 〈RF 〉 is the closed normal subgroup of F generated by
the finite set R. Let H be an open subgroup of index h in G. Then H = E/K
where E is open and of index h in F . Now E is a finitely generated free pro-p
group, and it is clear that K is generated as a closed normal subgroup of E by
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the union of h conjugates of R. Thus H has a finite presentation 〈Y ;S〉 with
|S| ≤ h |R|. Applying (4.6) to H we deduce that

h |R| ≥ h |R| − (|Y | − d(H)) ≥ d(H)2/4.

Thus d(H) ≤ 2
√
|R| ·

√
h.

If G is such that every open subgroup of G satisfies the Golod-Shafarevich
inequality, the lemma shows that dn(G) ≤ cpn/2 for each n, and hence that

d∗n(G) ≤ c
p(n+1)/2 − 1
p1/2 − 1

(Proposition 1.6.2). With Proposition 3.3.1 this gives

apn(G) ≤ pd
∗
n−1(G)−nµ < pc

′pn/2

for a suitable constant c′ (recall that µ = log(p − 1)/ log p). Thus we have
established

Proposition 4.6.3 Let G be a finitely presented pro-p group such that every
open subgroup of G satisfies the Golod-Shafarevich inequality. Then there is a
constant a such that

an(G) ≤ a
√
n

for all n.

Thus a pro-p group satisfying the hypothesis of Proposition 4.6.3 has growth
type ≤ 2

√
n.

The condition that every open subgroup satisfies the Golod-Shafarevich in-
equality would seem to be rather a strong one. In fact, however, it is fulfilled
by a large class of finitely presented pro-p groups: indeed, Zelmanov’s theorem
implies that if G is a finitely presented pro-p group that is not virtually pro-
cyclic, then either G satisfies the hypothesis of Proposition 4.6.3 or G contains
a non-abelian free pro-p group. Since a virtually procyclic group has polynomial
subgroup growth (e.g. by Corollary 1.2.4) this now implies Theorem 4.3:

A finitely presented pro-p group that contains no non-abelian free pro-p sub-
group has subgroup growth type at most 2

√
n.

This applies, for example, to all finitely presented soluble pro-p groups. It also
applies to every finitely presented pro-p group that is linear over a local field,
since [Barnea and Larsen 1999] have shown that such a linear pro-p group cannot
contain a non-abelian free pro-p subgroup.

It is interesting to observe that this result is best possible from two points
of view. Firstly, Theorem 4.3 does not hold for finitely generated pro-p groups
in general: indeed we saw in Chapter 3 that the soluble pro-p group Cp o Zp
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has exponential growth type. This difference between finitely presented and
infinitely presented soluble groups deserves further exploration. Secondly, the
exponent

√
n is best possible: in Section 9.3 we construct a finitely presented

metabelian pro-p group having strict growth type 2
√
n.

Proposition 4.6.3 also has a sort of converse:

Theorem 4.6.4 Let G be a finitely presented pro-p group. If there exists ε > 0
such that

an(G) ≤ n(logn)2−ε

(4.7)

for all large n then G, and every open subgroup of G, satisfies the Golod-
Shafarevich inequality.

This may be viewed as another generalisation of the Golod-Shafarevich theorem,
different in spirit from Zelmanov’s theorem since it refers to the finite quotients
rather than the subgroup structure of G. The proof is along similar lines to that
of Theorem 4.2; the key step is the following result, proved as Theorem D1 in
[DDMS], Interlude D:

Proposition 4.6.5 Let G be a finitely presented pro-p group with Jennings-
Zassenhaus series (Di), and suppose that

|G : Di| = psi .

If
lim sup s1/ii ≤ 1

then G satisfies the Golod-Shafarevich inequality.

Keeping the notation of this proposition, we also have

Lemma 4.6.6 Suppose that lim sup s1/ii > 1. Then for each δ > 0 there exist
infinitely many values of i such that

s2i > s2−δi .

We prove this below, and first complete the proof of Theorem 4.6.4. If G
satifies the subgroup growth condition (4.7), then so does every open subgroup
of G (with possibly a different ε), so it will suffice to show that G itself satisfies
the G-S inequality. Let us suppose that it doesn’t, and aim for a contradiction.
Assume without loss of generality that ε < 1 and put δ = ε/2. The two
preceding results together imply that s2i > s2−δi for infinitely many values of i.
In particular, si →∞ with i. Now Di/D2i is an elementary abelian p-group of
rank s2i − si, hence contains at least psi(s2i−si) subgroups of index psi . So for
n = p2si we have

an(G) ≥ psi(s2i−si).
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But if i is large then an(G) ≤ n(logn)2−ε

by hypothesis, whence

si(s2i − si) log p ≤ (log n)3−ε

= (2 log p)3−εs3−2δ
i .

On the other hand, for infinitely many values of i we have

si(s2i − si) > si(s2−δi − si) ≥
1
2
s3−δi ,

say, giving
sδi ≤ 24(log p)2.

This contradicts si →∞, and the result follows.

Proof of Lemma 4.6.6. We may assume that δ < 1. Put ti = s
1/i
i . Then

for i < j ≤ 2i
tj = s

1/j
j ≤ s

1/j
2i = t

2i/j
2i ≤ t22i. (4.8)

Suppose there exists k such that s2i ≤ s2−δi for every i ≥ k. Then

t2i = (s2i)1/2i ≤ (s2−δi )1/2i = t
1−δ/2
i

for each i ≥ k, and by induction we get

t2jk ≤ t
(1− δ

2 )j

k

for all j ≥ 1. Since 0 < 1− δ
2 < 1 it follows that

t2jk → 1

as j →∞.
Now, for a general large `, pick j with 2j−1k < ` ≤ 2jk. Then (4.8) shows

that

t` ≤ t22jk → 1

and so lim sup t` ≤ 1. The lemma follows.

4.7 Notes

Theorem 4.1 is due to [Lubotzky & Mann 1991]. Theorem 4.1.3 was pointed
out to us by Laci Pyber.

The theorem of [Zelmanov 2000] is actually stronger than we stated: Zel-
manov says that a finitely generated pro-p group satisfies the Golod-Shafarevich
condition if it has a (not necessarily finite) presentation in which the relators
‘grow rapidly’ in a precise sense. This holds in particular if the group is finitely
presented and does not satisfy the Golod-Shafarevich inequality as we have
stated it.
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[Wilson 1991] discussed the Golod-Shafarevich inequality in pro-p groups
and established Lemma 4.6.2.

Applications of the Jennings-Zassenhaus (‘modular dimension subgroup’)
series to subgroup growth were pioneered by A. Shalev. He proved Theorem
4.2 in [Shalev 1992], and Theorem 4.6.4 in recent unpublished work. These
methods are discussed in detail in [DDMS], Chapter 11.

The methods and results of §4.3 are based on [Shalev 1992], Section 4.
The sharper result for SL2(Fp[[t]]) is due to [Barnea & Guralnick 2002].
The material of §4.3 is from [Lubotzky & Shalev 1994].

Recently, [Abért, Nikolov & Szegedy] have proved the following: let G be
a simple Chevalley group scheme of dimension m and G = G1(Fp[[t]]) (excluding
p = 2 if G is A1 or Cl); then

spk(G) ≤ p7k(k−1)/2+mk.

Thus sn(G) ≤ n( 7
2+o(1)) logn for every Fp[[t]]-perfect group G of this kind, the

constant 7/2 being independent of the group.
Theorem 4.5.2 on the Nottingham group is due to Leedham-Green and

Shalev; see [NH], Chapter 6.
[Klopsch (a)] examines pro-p groups with slow subgroup growth. This

paper gives a number of results about the degree; the main result is a complete
classification of pro-p groups with linear subgroup growth; apart from easy
soluble cases the main examples are of the form SL1(∆p) where ∆p is a maximal
order in a central Qp-division algebra of index 2.



Chapter 5

Finitely generated groups
with polynomial subgroup
growth

A group G has polynomial subgroup growth, or PSG, if there exists c > 0 such
that

sn(G) ≤ nc

for all n. The most familiar infinite group with this property is of course Z; in
fact, since the property depends only on the finite images of the group, it is
clear that, more generally, every additive subgroup of Q has PSG. Elementary
considerations then show that any group that is obtained from the identity by
finitely many iterated extensions by such subgroups of Q or by finite groups will
still have PSG; we proved this in Chapter 1. The class of groups so obtained
is the class of residually finite virtually soluble groups of finite rank. General
properties of these relatively straightforward groups are discussed in the Soluble
groups window; in particular, a finitely generated residually finite group is
virtually soluble of finite rank if and only if it is virtually soluble and linear over
Q.

Thus we have a good supply of easy examples of PSG groups. Are there
any others? To approach this question one should examine groups that are
very unlike soluble groups of finite rank. Now these groups are ‘tall and thin’
– think of Z on top of Z – and ‘close to abelian’; at the opposite extreme
one might consider groups that ‘low and wide’ and ‘very non-abelian’: infinite
direct products of finite non-abelian simple groups. Among these, it turns out,
we also find some infinite groups with PSG (as we shall see in Chapter 10).
However, such groups can never be finitely generated. Familiar examples of
finitely generated groups that are far from soluble are the semisimple arithmetic
groups, that is, arithmetic subgroups of semisimple algebraic groups. While
some of these, such as SL2(Z), are close to free groups and therefore clearly

95
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don’t have PSG, it is more usual for arithmetic groups to satisfy the so-called
congruence subgroup property ; such groups have relatively few subgroups of
finite index, and so provide a possible source of non-soluble PSG groups.

As a subgroup of GLd(Z), an arithmetic group Γ maps naturally into
GLd(Z/mZ) for each m; the kernels of these mappings are the principal con-
gruence subgroups of Γ, and any subgroup of Γ that contains such a principal
congruence subgroup is called a congruence subgroup. We can estimate the num-
ber of congruence subgroups in Γ by examining the images of Γ in the finite
matrix groups GLd(Z/mZ); when we do this, we find that in fact the growth
of congruence subgroups (let alone all finite-index subgroups) is strictly faster
than polynomial. The reason for this is number-theoretic: as we shall see, there
are many congruence subgroups because there are many primes below any given
bound (the Prime Number Theorem).

At this point, one begins to suspect that maybe there really are no further
kinds of PSG groups; and indeed this is true:

Theorem 5.1 (The PSG Theorem) Let G be a finitely generated residually
finite group. Then G has PSG if and only if G is virtually soluble of finite rank.

This result is sharp, in the following sense: given any increasing function
f such that f(n) 6= O(nc) for every c, there exist finitely generated, residually
finite groups that have subgroup growth of type at most f , but are neither
virtually soluble nor of finite rank. The construction of such groups is given in
Chapter 13.

Polynomial subgroup growth is essentially a restriction on the finite quotients
of a group: it says that they have relatively few subgroups of each given index.
A possible reason for having few subgroups is that every subgroup has a small
generating set. The upper rank of a group G is

ur(G) = sup
{
rk(G) : G a finite quotient of G

}
(this is the same as the rank of the profinite completion of G). An analogue to
the PSG Theorem, and an intermediate step in its proof, is

Theorem 5.2 Let G be a finitely generated residually finite group. Then G has
finite upper rank if and only if G is virtually soluble of finite rank.

It is often easier to estimate the number s(G) of all subgroups in a finite
group G than to determine the numbers sn(G). We therefore tend to work with
the following concept. A group G has weak PSG (wPSG) if there exists c > 0
such that

s(G) ≤
∣∣G∣∣c

for every finite quotient G of G; it is obvious that PSG implies wPSG, and
we show in Chapter 10 that wPSG is actually equivalent to PSG. This is quite
a deep result, being a major step in the proof of the ‘Profinite PSG Theo-
rem’; however it is not needed when dealing with finitely generated (abstract)
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groups: we actually prove the ‘only if’ direction of the PSG Theorem using the
weaker condition, from which it will follow that the weaker condition implies
the stronger one in the finitely generated case.

The proof of the PSG Theorem required the development of some new tech-
niques in infinite group theory. Some of them have wider application, and we
have separated off the discussion of these in the Linearity conditions and the
Strong approximation windows. There are four logically independent parts
to the argument.

I. The ‘linear case’: this is the heart of the proof. In Section 2 we show that
a semisimple arithmetic group can never have wPSG (unless it is finite); this is
an application of the Prime Number Theorem. Then using the ‘Lubotzky alter-
native’ (# Strong approximation), we deduce that every finitely generated
characteristic-zero linear group with wPSG is virtually soluble.

II. The ‘main reduction’: in Section 3 we show that every group G with
wPSG has restricted upper chief factors, that is, there is a finite upper bound
for the ranks of all non-abelian upper chief factors of G (factors A/B where B is
a normal subgroup of finite index in G and A/B is a minimal normal subgroup
of G/B). This depends on CFSG. Together with a result from the Linearity
conditions window, this implies the following: if G is finitely generated and
has wPSG then G has a normal subgroup D such that

(i) G/D is a linear group over a field of characteristic zero, and

(ii) the image of D in every finite quotient of G is soluble.

III. The ‘prosoluble case’: in Section 4 we prove that every prosoluble group
with wPSG has finite rank (as a profinite group); this is essentially a result
about finite soluble groups. It means in particular that if a group G with wPSG
has all its finite quotients soluble, then G has finite upper rank.

IV. The proof of Theorem 5.2 is given in Section 5. This depends on the Feit-
Thompson Odd Order Theorem and P. Hall’s theory of finitely generated soluble
groups, and applies another result from the Linearity conditions window.

Together these four steps complete the proof of Theorem 5.1. We have
already observed that if G is virtually soluble of finite rank then G has PSG
(Corollary 1.4.3). Suppose conversely that G is a finitely generated residually
finite group with weak PSG, and let D be the normal subgroup provided by
Step II. Step I shows that G/D has a soluble normal subgroup G0/D of finite
index; and then from property (ii) of D it follows that every finite quotient of
G0 is soluble. An elementary lemma, proved in Section 1, shows that G0 also
has wPSG, and it follows by Step III that G0 has finite upper rank. Finally,
Theorem 5.2 shows that G0 is virtually soluble of finite rank, and hence so is G.
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To any group G with PSG one may associate its ‘minimal degree of polyno-
mial growth’, namely

α(G) = inf {c | sn(G) ≤ nc for large enough n}

= lim sup
log sn(G)

log n
.

It seems to be a difficult problem to determine α(G) in terms of the algebraic
structure of G. In the final section we show that α(G) is bounded above and
below by constant multiples of the Hirsch length of G.

Is it possible to characterise the PSG groups that are not necessarily finitely
generated? Since subgroup growth is a property of the profinite completion of
a group, this may be construed as a question about the general profinite PSG
group. A structural description of these is given in Chapter 10, where we shall
see that every profinite group with PSG is, roughly speaking, an extension of
a prosoluble group of finite rank by a product of finite simple groups; from
this more general point of view, it then appears that the restriction to finitely
generated groups has the effect of killing off the infinite semisimple ‘top layer’.

Let us conclude this introduction with a philosophical remark. It is a re-
markable feature of both Theorems 5.1 and 5.2 that a hypothesis which men-
tions only a finiteness condition leads to the conclusion of solubility. Two facts
in particular lie behind this, one ‘local’, one ‘global’.

First of all, The Odd Order Theorem, which lies at the heart of Theorem 5.2:
this infers the solubility of a finite group from a purely arithmetical hypothesis,
and takes us to the point where we know that every finite quotient of our group
is soluble. Secondly, the structure of semisimple algebraic groups. This leads to
the ‘global’ conclusion of solubility by way of a contradiction: an algebraic group
that is not virtually soluble must have a non-trivial image which is semisimple, at
which point we can examine the congruence structure of a suitable arithmetic
group and find that the original hypotheses (of an arithmetical nature) are
violated.

5.1 Preliminary observations

For any group G we define

α†(G) = inf
{
α > 0 : s(G) ≤

∣∣G∣∣α for every finite quotient G of G
}
,

α∗(G) = inf {α > 0 : sn(G) ≤ nα for all n ∈ N} ,

where conventionally inf ∅ = ∞. Thus G has weak PSG if and only if α†(G) is
finite. It is clear that

α†(G) ≤ α∗(G),
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so wPSG is indeed a (possibly) weaker condition than PSG.
The upper rank of a group G is

ur(G) = sup
{
rk(G) : G a finite quotient of G

}
= rk(Ĝ).

Since s(G) ≤ |G|rk(G) when G is finite, we see that for every group G

α†(G) ≤ ur(G).

It is also true that α∗(G) is bounded above by a function of ur(G), but this fact
lies deeper, and will be proved in Section 1 of Chapter 10.

It is not true that ur(G) is in general bounded above by a function of α∗(G):
in Section 3 of Chapter 10 we shall see examples of groups with PSG that
have infinite upper rank. That there is such a bound when one restricts to
(pro)soluble groups is established in Section 4, below; it is the essential link
between Theorem 5.1 and Theorem 5.2 in the (pro)soluble case.

It is obvious that each of the three properties PSG, wPSG and finiteness
of upper rank is preserved on passing to quotients. The main point we wish
to establish here is that each property is also preserved on passing to finite
extensions and to subgroups of finite index. We shall use these facts freely
throughout the rest of the chapter.

Proposition 5.1.1 Suppose H ≤ G where |G : H| = m ≤ ∞. Then

ur(H) ≤ ur(G) ≤ ur(H) + logm; (5.1)

α†(G) ≤ α†(H) + logm; (5.2)

α†(H) ≤

 (m+ logm)α†(G) if H C G

(m! + logm!)α†(G) + log(m− 1)! in general
; (5.3)

α∗(H) ≤ (1 + logm)α∗(G); (5.4)
α∗(G) ≤ m+ α∗(H) if H C G. (5.5)

Proof. Since every subgroup of finite index inH contains a normal subgroup
of finite index in G, it is enough to consider the case where G is a finite group.

(5.1) is clear, since if L ≤ G then L is generated by L ∩ H and at most
log |L : L ∩H| ≤ logm further elements. A similar argument establishes (5.2).

For (5.3), suppose first that H C G. If N C H has index n ≥ 2 then N
contains a normal subgroup N0 of G with

∣∣H : N0
∣∣ ≤ nm, and then

s(H/N) ≤ s(G/N0) ≤
∣∣G : N0

∣∣α†(G)

≤ (mnm)α
†(G) ≤ n(m+logm)α†(G).

The general case follows on replacing H by its normal core, and then applying
(5.2).

(5.4) is clear since sn(H) ≤ smn(G) for each n. Finally, (5.5) follows from
Proposition 1.3.2(ii) of Chapter 1.
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5.2 Linear groups with PSG

Let G be a finitely generated linear group over a field of characteristic zero, and
suppose that G is not virtually soluble. We shall prove that G does not have
wPSG. According to the ‘Lubotzky alternative’ (# Strong approximation),
there exist a subgroup G1 of finite index in G, a finite set of primes S, and a
connected, simply connected simple algebraic group S over Q such that every
congruence quotient of Γ = S(ZS) appears as a quotient ofG1 (and Γ is infinite).
If G has wPSG then so does G1; hence s(Γ∗) is bounded by some fixed power
of |Γ∗| as Γ∗ ranges over the congruence quotients of Γ. It will therefore suffice
to show that

log s(Γ/∆)
log |Γ/∆|

is unbounded as ∆ ranges over the principal congruence subgroups of Γ.
Let us suppose that S ≤ GLd. The fact that Γ is infinite implies that the

topological group
S(R)×

∏
p∈S

S(Qp)

is non-compact, because it contains Γ as a discrete subgroup. This means that
the algebraic group S satisfies the hypotheses of the Strong Approximation
Theorem with respect to the set S ∪ {∞}. It follows in particular that for m =
q1 . . . qk where q1, . . . , qk are distinct primes not in S, the natural homomorphism
πm of Γ into GLd(Z/mZ) maps Γ onto

S(Z/mZ) =
k∏
i=1

S(Z/qiZ).

Thus writing Γ(m) for the congruence subgroup kerπm, we have

Γ/Γ(m) ∼=
k∏
i=1

S(Fqi
).

(For all this, see the Strong approximation window.)
Next, we observe that for almost all primes p, the group S(Fp) has even

order; this follows from Lang’s theorem on finite algebraic groups (# Linear
groups), or it can be deduced from the Odd Order Theorem, as follows: if
S(Fp) ≤ GLd(Fp) has odd order, then it is soluble, of derived length bounded
in terms of d (Zassenhaus’s Theorem, # Linear groups); so if T is the set of
all such primes p then Γ/

⋂
p∈T Γ(p) is also soluble. But if T is infinite then⋂

p∈T Γ(p) = 1, whence Γ is soluble. This is impossible because Γ is Zariski-
dense in the simple algebraic group S (Borel’s density theorem, [PR], Theorem
4.10). The set T of exceptional primes must therefore be finite.

Write pn to denote the nth prime (in ascending order starting from p1 = 2),
and let t be the biggest index for which either pt ∈ S or S(Fp) has odd order.
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If

m =
t+k∏

n=t+1

pn,

then the group Γ/Γ(m) contains an elementary abelian subgroup of order 2k,
and it follows that

s(Γ/Γ(m)) ≥ 2[k2/4],

(Proposition 1.5.2). On the other hand,

|Γ/Γ(m)| ≤ |GLd(Z/mZ)| ≤ md2 ;

so the essence of the matter is to compare m with k. This is exactly what the
Prime Number Theorem does. In fact, for present purposes we only need an
easier weak version of it, originally proved by Chebyshev (# Primes): there
exists A > 0 such that

log

(
n∏
i=1

pi

)
≤ An log n

for all n ≥ 1. Taking n = t+ k where k ≥ t, say, gives logm < 4Ak log k, so we
have

log s(Γ/∆m)
log |Γ/∆m|

>
k2/4

4d2Ak log k
= a

k

log k

where a = (16d2A)−1 > 0.
As k/ log k →∞ with k, it follows that log s(Γ/∆)/ log |Γ/∆| is unbounded

as ∆ ranges over the principal congruence subgroups, as required.

Note that if n is large then there exists k such that

4d2A · k log k ≤ log n < 8d2A · k log k.

With m as above, the number cn(Γ) of congruence subgroups of index at most
n in Γ is then at least s(Γ/∆m) ≥ 2[k2/4]; while

log n
log log n

≤ 8d2Ak log k
log(4d2A) + log k + log log k

< 8d2Ak.

Thus

cn(Γ) ≥ 2[k2/4] > 2b(logn/ log logn)2 = nb logn/(log logn)2

where b = (256A2d4)−1 > 0. Sharper bounds for the congruence subgroup
growth of arithmetic groups will be obtained in Chapter 6, by applying a more
delicate form of the Prime Number Theorem along arithmetic progressions.
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5.3 Upper chief factors

The PSG theorem depends ultimately on two particular properties of the fi-
nite simple groups: the first is that each contains a relatively large elementary
abelian subgroup, which implies that a semisimple group contains many sub-
groups relative to its order; the second is that a simple group has relatively
few automorphisms, which is used to show that any non-abelian chief factor in
a group appears in the group with relatively small index (in fact it suffices to
know that a simple group S can be generated by two elements, which implies
that S has at most |S|2 automorphisms). In this section we spell out the de-
tails. In Chapter 10, we shall see that the ‘Profinite PSG Theorem’ depends
on some more delicate information about the simple groups, namely that for
a simple group of bounded rank, both the outer automorphism group and the
Schur multiplier have bounded orders.

Definition An upper composition ( respectively chief) factor of a group G is
a composition factor ( respectively chief factor) of some finite quotient of G.

Definition The group G has restricted upper composition ( respectively chief)
factors if there is a finite upper bound to the ranks of all non-abelian upper
composition (respectively chief) factors of G.

The key result is

Proposition 5.3.1 Every group with weak PSG has restricted upper chief fac-
tors.

We denote by
X (n, e)

the set of all simple groups of Lie type ∗Xn(Fpe), that is, groups of Lie rank n
over finite fields having degree e over a prime field. It follows from CFSG (#
Finite simple groups) that a family of non-abelian finite simple groups has
bounded rank if and only if there exists a positive integer β such that the family
is contained in the union of the following three families of groups:

S0: the sporadic finite simple groups

A(β): alternating groups of degree at least 5 and at most β

X (β) =
⋃
{X (n, e) | n ≤ β and e ≤ β}

(here ‘rank’ is meant in the group-theoretic sense, i.e. Prüfer rank, not Lie
rank).

Lemma 5.3.2 Let S = Alt(n) where n ≥ 5. Then S contains an elementary
abelian 2-subgroup E with 2 | rk(E) > n/4.
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Proof. Say n = 4k + r (0 ≤ r < 4). Then S contains the direct product
of k copies of Alt(4), and for E we take the corresponding product of k Klein
4-groups. Thus E has rank 2k > n/4.

Lemma 5.3.3 Let S = ∗Xn(Fpe) be simple of Lie type. Then S contains an
elementary abelian p-subgroup E with rk(E) > ne/8 and |E|248 ≥ |S| .

Proof. Note that

|S| ≤ p248e if n ≤ 8

|S| ≤ pn(2n+1)e if n > 8

(# Finite simple groups).
Suppose first that n ≤ 8. We take E to be an additive one-parameter

subgroup (a root subgroup or a suitable subgroup of a root subgroup). Then E
is elementary abelian of rank e ≥ 1

8ne, and |E| = pe ≥ |S|1/248.
Now suppose that n = 4k + r > 8 (0 ≤ r < 4). Then S is a classical group,

hence contains a copy of (P)SL[n/2](Fpe) (# Finite simple groups). The
upper unitriangular matrices in this group having non-zero off-diagonal entries
only in the top k × k right corner form an elementary abelian p-subgroup E of
rank k2e ≥ 1

4ne, and

|E| = pk
2e ≥ |S|1/64 .

Definition For a group G,
β(G)

denotes the least natural number β such that every non-abelian upper compo-
sition factor of G lies in S0 ∪ A(β) ∪ X (β) (if there is no such number then
β(G) = ∞).

w(G)

denotes the supremum of the natural numbers m such that some finite quotient
of G has a normal subgroup isomorphic to S(m) for some non-abelian finite
simple group S.

Now Proposition 5.3.1 will follow from the slightly stronger

Proposition 5.3.4 There is a function f : N → N such that for any group G
with weak PSG we have

w(G) ≤ f(α†(G)),

β(G) ≤ f(α†(G)).
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Proof. As we are concerned only with the finite quotients of G, we may
suppose that G is in fact finite. Put α = α†(G). It will suffice to show the
following: if M ∼= S(m) is a non-abelian normal subgroup of G and S is simple
then m ≤ f(α) and S ∈ S0 ∪ A(β) ∪ X (β) where β ≤ f(α).

ReplacingG by a suitable quotient we may assume in addition that CG(M) =
1. Then G acts faithfully by conjugation on M , and permutes the m simple
factors of M among themselves. The kernel G0 of this permutation action has
index at mostm! inG; on the other hand, since S can be generated by 2 elements
(# Finite simple groups), |Aut(S)| ≤ |S|2 , and it follows that |G0| ≤ |S|2m.
Thus |G| ≤ m! |S|2m , which implies that

s(G) ≤ (m! |S|2m)α < mmα |S|2mα .

Now we separate three cases.
Case 1 : S ∈ S0. Let C be the maximal order of a sporadic simple group

(so C is the order of the Monster simple group in fact). The group S contains
an involution, so M has an elementary abelian 2-subgroup of rank m, hence
contains at least 2[m2/4] subgroups. Hence

2[m2/4] ≤ s(G) ≤ mmαC2mα.

Case 2 : S = Alt(n) where n ≥ 5. Using Lemma 5.3.2 we see similarly that
M contains at least 2m

2n2/8 subgroups. As |S| = n!/2 < nn we infer that

2m
2n2/8 ≤ s(G) < mmαn2mnα.

Case 3 : S = ∗Xn(Fpe). By Lemma 5.3.3, S contains an elementary abelian
p-subgroup E of rank r, say, where r > ne/8 and |S| ≤ p248r. As above, this
implies that

p[m2r2/4] ≤ mmαp496mrα.

In each case, taking the logarithm of each side of the given inequality, and
noting that log x/x→ 0 as x→∞, we may deduce

in Case 1 that m is bounded by a function of α ;
in Case 2 that m and n are bounded by functions of α ;
in Case 3 that m and r are bounded by functions of α , which implies that

n and e are also so bounded since ne < 8r.
This completes the proof.

Now the following is proved as Corollary 3 in the Linearity conditions
window:

Proposition 5.3.5 Let G be a finitely generated group with restricted upper
chief factors. Then there is an exact sequence

1 → D → G→ GLn(F )

where F is a field of characteristic zero and the closure of D in Ĝ is prosoluble.
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With Proposition 5.3.1 this now gives the main result of this section,

Proposition 5.3.6 Let G be a finitely generated group with wPSG. Then G has
a normal subgroup D such that (i) G/D is linear over a field of characteristic
zero and (ii) D/(N ∩D) is soluble for every normal subgroup N of finite index
in G.

This conclusion applies only to finitely generated groups. Propositions 5.3.1
and 5.3.4, on the other hand, are quite general, and will be used in Chapter 10
where we characterise the profinite groups with wPSG.

Similar restrictions on the upper composition factors of a group G can be
inferred, using the same kind of argument, if G has subgroup growth slightly
faster than PSG: if we assume merely that G has subgroup growth of type
strictly less than nlogn/(log logn)2 , then there exist β0 and for each prime p some
finite βp such that every non-abelian upper composition factor S of G belongs
to

S0 ∪ A(β0) ∪
⋃
p

{∗Xn(Fpe) | n ≤ βp, e ≤ βp} .

If M ∼= S(m) is a normal subgroup of some finite quotient of G, then m is
bounded for S ∈ S0 ∪A(β0) and m is bounded by some number depending on p
if S = ∗Xn(Fpe) (see [Segal (a)]). However, the dependence on p is unavoidable
in this case, as shown by the examples constructed in Chapter 13.

5.4 Groups of prosoluble type

Let us say that a group G is of prosoluble type if G is residually finite and
every finite quotient of G is soluble; in other words, G embeds naturally in its
profinite completion Ĝ, and Ĝ is a prosoluble group. The aim of this section is
to establish

Theorem 5.4.1 Every group of prosoluble type with weak PSG has finite upper
rank.

This follows from the quantitative version:

Proposition 5.4.2 There is a function f : N → N such that

rk(G) ≤ f(α†(G))

for every finite soluble group G.

Proof. Kovacs’s Theorem (# Finite groups) says that

rk(G) ≤ 1 + max
p

rp(G),



106CHAPTER 5. FINITELY GENERATED GROUPS WITH POLYNOMIAL SUBGROUP GROWTH

so let us fix a prime p and show that rp(G) is bounded above by some function
of α†(G) = α. Since rp(G) = rp(G/Op′(G)), we may now factor out Op′(G) and
assume further that Op′(G) = 1.

Put F = Op(G). Then F = Fit(G) and so CG(F ) = Z(F ) (# Finite
group theory). Now considering F/F ′F p as an FpG-module, let V denote the
direct sum of its FpG-composition factors and C the kernel of the action of G
on V . Then C/Z(F ) acts faithfully and nilpotently on the p-group F, and it
follows that C is a p-group; hence C = F and so G/F acts faithfully on the
completely reducible FpG-module V . It follows by the theorem of Pálfy and
Wolf (# Permutation groups) that |G : F | ≤ p3d where d = dimFp

(V ) =
dimFp(F/F ′F p). Since F/F ′F p contains at least p[d/2]2 subspaces, we have

p[d/2]2 ≤ s(G/F ′F p) ≤ |G/F ′F p|α ≤ p4dα,

giving d ≤ 16α+ 2. Hence |G : F | ≤ pm where m = 48α+ 6.
Now put F0 = F and for i ≥ 0 let Fi+1 = F ′iF

p
i . Let s = maxi dimFp(Fi−1/Fi),

q = 2 + [log s]. Then Fq is a powerful p-group, |F : Fq| ≤ psq and rk(F ) ≤
s(q + 1). Since Fq is powerful, we have dimFp

(Fi−1/Fi) ≤ dimFp
(Fq/Fq+1) for

all i > q; hence dimFp
(Fi−1/Fi) = s for some i ≤ q+ 1. (For properties of pow-

erful p-groups, # Pro-p groups.) Then |G : Fi| ≤ p(q+1)s+m, and as above we
infer that [s/2]2 ≤ ((q + 1)s + m)α. Since q ≤ 2 + log s this implies that s is
bounded by some function of m and α. As

rp(G) ≤ rp(G/F ) + rk(F ) ≤ m+ (q + 1)s,

the result follows.

As we shall see repeatedly, a key step in the investigation of PSG groups
is to establish upper bounds for the index of elementary abelian sections in a
group: this connects the subgroup growth of the elementary abelian section to
that of the group, and can then be used to estimate the rank of the section.
In the preceding proof, the required upper bound was provided by the Pálfy-
Wolf theorem which bounds the order of a completely reducible soluble linear
group over Fp; the generalisation of this result to linear groups with restricted
composition factors will play the analogous role in Section 2 of Chapter 10.

5.5 Groups of finite upper rank

Here we prove Theorem 5.2. As with the PSG Theorem, the proof has a ‘local’
part and a ‘global’ part.

The ‘local’ part concerns the finite images of a group, and does not depend
on finite generation. For a finite group G with Sylow p-subgroup Sp(G), let

dsp(G) = d(Sp(G)),
rp(G) = rk(Sp(G));
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for any group G, write

udsp(G) = sup
{
dsp(G) | G a finite quotient of G

}
,

urp(G) = sup
{
rp(G) | G a finite quotient of G

}
;

equivalently, udsp(G) = d(Sp(Ĝ)) and urp(G) = rk(Sp(Ĝ)) where Sp(Ĝ) is a
Sylow pro-p subgroup of the profinite completion Ĝ. It is clear that

udsp(G) ≤ urp(G) ≤ ur(G)

for each prime p and every group G.
Recall that a group G is of prosoluble type if G is residually finite and Ĝ is

prosoluble, which amounts to saying that every finite quotient of G is soluble.

Theorem 5.5.1 Let G be a residually finite group. If uds2(G) is finite then G
is virtually of prosoluble type.

Proof. LetK be a normal subgroup of finite index inG such that ds2(G/K) =
uds2(G). We claim that every finite quotient of K is soluble. To establish this,
let K/N1 be a finite quotient of K. Then N1 contains a finite-index normal
subgroup N of G, and it will suffice to show that K/N is soluble.

Now Tate’s theorem (# Finite groups) shows that the group K/N has
a normal 2-complement, Q/N say. Then Q/N is soluble by the Odd order
theorem, and K/Q is soluble because it is a 2-group. The claim follows.

Remark The first part of this argument is equally valid for odd primes p; it
shows that if udsp(G) is finite then G has a normal subgroup G0 of finite index
such that every finite quotient of G0 has a normal p-complement. In this case,
every subgroup of p-power index in G0 is subnormal.

We now proceed to the ‘global’ part of the argument. Let G be a finitely
generated residually finite group of finite upper rank. By Theorem 5.5.1, G has
a normal subgroup G0 of finite index that is of prosoluble type. Replacing G by
G0, we may as well assume that G is of prosoluble type. Then G satisfies the
hypotheses of Corollary 5 in the Linearity conditions window: this asserts
that a finitely generated group of prosoluble type and finite upper rank is virtually
nilpotent-by-abelian. Again replacing G by a finite-index subgroup, we may
therefore suppose that G is nilpotent-by-abelian; and Theorem 5.2 will follow
once we have established

Proposition 5.5.2 Let G be a finitely generated nilpotent-by-abelian group. If
urp(G) is finite for every prime p then G has finite rank.

Proof. Let A be the derived group of G, and A′ the derived group of A.
Thus A is nilpotent; if A/A′ has finite rank then A has finite rank (# Soluble
groups), so we may replace G by G/A′ and assume that A is abelian. Then A
may be considered as a module for the group ring Z[G/A] = S, with the elements
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of G/A acting via inner automorphisms of G (we shall write the group operation
in A as addition). According to P. Hall’s theory (# Soluble groups), we have
the following:

(i) every quotient of G is residually finite;
(ii) A is a Noetherian S-module;
(iii) A contains a free abelian subgroup F such that A/F is a π-torsion

group for some finite set π of primes.
Let T be the torsion subgroup of A. Since G is residually finite, each finite

subgroup of T maps injectively into some finite quotient of G, which implies
that for each prime p, the p-rank of T is at most urp(G). On the other hand, it
follows from (ii) that T has finite exponent, q say. We conclude that T is finite,
of order at most qr where r = max{urp(G) | p | q}.

Replacing G by G/T, we may therefore suppose that A is torsion-free. Let
p be any prime not in π. Then

pA ∩ F = pF, pA+ F = A

and so F/pF ∼= A/pA. Since G/pA is residually finite we see that rk(A/pA) ≤
urp(G). It follows that rk(F ) = rk(F/pF ) ≤ urp(G) is finite. Since the rank of
A is equal to rk(F ) and G/A is a finitely generated abelian group, G has finite
rank as claimed.

This concludes the proof of Theorem 5.2, and with it of the PSG Theorem.

5.6 The degree of polynomial subgroup growth

Recall that

α(G) = lim sup
log sn(G)

log n
,

which is finite if and only if G has polynomial subgroup growth. We call this
the degree of G. (The reader is warned, however, that this differs from the usage
of [Shalev 1999]: see the Notes below.) How does this invariant relate to the
structure of G?

It is not hard to see that
α(Z(d)) = d,

either directly by applying the lemma below, or by identifying α(G) as the
abscissa of convergence of the associated zeta function (see Chapter 15). In
general, a finitely generated residually finite PSG group is virtually soluble of
finite rank; for such a group G, the invariant corresponding to the dimension
of Z(d) is the Hirsch length h(G), defined as follows. Let T be the maximal
periodic normal subgroup of G. According to the structure theory (# Soluble
groups), there is a chain of subgroups

T = G0 C G1 C . . . C Gh C G (5.6)
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such that each factor Gi/Gi−1 is torsion-free abelian of rank 1, and G/Gh is
finite. Also T is finite if G is residually finite. We set h(G) = h (an invariant of
G by the Jordan-Hölder theorem).

Lemma 5.6.1 Let G be a group and N a normal subgroup such that G/N has
rank 1. Then for each n ≥ 1,

sn(G) ≤ n · sn(N).

Proof. Write Q = G/N . From Proposition 1.3.2(i) we have

am(G) ≤
∑
t|m

am/t(Q)at(N)trk(Q) ≤
∑
t|m

1 · at(N) · t.

Therefore
sn(G) ≤

∑
t≤n

[n
t

]
tat(N) ≤ n

∑
t≤n

at(N) = nsn(N).

Applying this to (5.6) we deduce that sn(Gh/G0) ≤ nh for each n, so
α(Gh/G0) ≤ h. The next two propositions will enable us to deal with the
‘missing’ factors G0 and G/Gh.

Proposition 5.6.2 Let G be a group of finite rank and T a finite normal sub-
group of G. Then α(G/T ) = α(G).

Proof. Write Q = G/T . Clearly α(Q) ≤ α(G), and we may assume that
α(Q) is finite. Put r = rk(Q). As above, we have

sn(G) ≤
∑
j≤n

∑
t|j

aj/t(Q)at(T )tr

≤ s(T ) |T |r
∑
t||T |

∑
j≤n

aj/t(Q)

≤ s(T ) |T |r+1
sn(Q),

since at(T ) = 0 when t - |T |. It follows that α(G) ≤ α(Q).

Lemma 5.6.3 Let Q be a finite group and S a finite soluble group of derived
length l. Then

der(Q,S) ≤ qrsl |S|
where s = rk(S), r = rk(Q) and q is the exponent of Q.

Proof. Suppose to begin with that S is abelian. From §1.3 we have

der(Q,S) ≤ |S| ·
∣∣H1(Q,S)

∣∣ ,
q ·H1(Q,S) = 0,

rk(H1(Q,S)) ≤ rs,
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the last because Der(Q,S) is isomorphic to a subgroup of S(d(Q)). It follows
that ∣∣H1(Q,S)

∣∣ ≤ qrs

and hence that der(Q,S) ≤ qrs |S| .
For the general case, let A1, . . . , Al be the successive factors in the derived

series of S. It is an elementary fact that then

der(Q,S) ≤
l∏
i=1

der(Q,Ai).

Applying the first part to each Ai we obtain

der(Q,S) ≤ qrsl
l∏
i=1

|Ai| = qrsl |S| .

Proposition 5.6.4 Let H be a subgroup of finite index in a virtually soluble
group G. Then

α(H) ≤ α(G) ≤ 1 + α(H).

Proof. Since sn(H) ≤ smn(G) for all n, where m = |G : H| , it is easy to
see that α(H) ≤ α(G). So we may assume that α(H) is finite and have to prove
the second inequality. Let N ≤ H be a soluble normal subgroup of finite index
in G, and put Q = G/N.

Now the first part of the proof of Proposition 1.3.2 shows that

an(G) ≤
∑
t|n

an/t(Q)at(N)ψ(t)

where ψ(t) denotes the maximum value taken by

der(Q1, S)

as Q1 ranges over subgroups of Q and S ranges over sections C/D of N such
that D C N and |N/D| = t. Writing q, r for the exponent and rank of Q and
l, s for the derived length and rank of N, respectively, we may deduce from the
preceding lemma that

ψ(t) ≤ qrslt.

Thus taking c = qrsls(Q) we get

an(G) ≤ c ·
∑
t|n

tat(N)
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whence

sn(G) ≤ c
∑
j≤n

∑
t|j

tat(N)

= c
∑
t≤n

[n
t

]
tat(N) ≤ cn

∑
t≤n

at(N)

= cnsn(N).

It follows that α(G) ≤ 1 + α(N), and this gives the result since α(N) ≤ α(H).

Putting these together gives

Proposition 5.6.5 Let G be a virtually soluble group of finite rank. Then

α(G) ≤ h(G) + 1.

This estimate is best possible, as shown for example by the infinite dihedral
group D which has α(D) = 2. The same example shows also that Proposition
5.6.4 is best possible.

In the other direction we have

Theorem 5.6.6 Let G be an infinite virtually soluble minimax group. Then

α(G) ≥ 1
6
h(G).

Proof. Replacing G by G0/T where T is periodic and |G : G0| is finite, we
may suppose that G is soluble and residually finite.

Suppose first that h(G) > 1. Let p be any prime not in spec(G). According
to Proposition 11 in the Soluble groups window, G then has a normal subgroup
H of finite index whose pro-p completion Ĥp is a pro-p group of finite rank and
of dimension equal to h(G). Now

α(Ĥp) ≥
1
6

dim Ĥp

by Theorem 4.1.3, and the result follows since

α(G) ≥ α(H) ≥ α(Ĥp).

If h(G) = 1 then G has a normal subgroup H of finite index such that
Ĥ ∼= Q̂π where Qπ = Z[ 1p | p ∈ π] and π = spec(G) is a finite set of primes.
Since sn(Qπ) ≥ n− (log n)|π| for each n, we have

α(G) ≥ α(H) ≥ 1

in this case.
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We do not know if this lower bound (or the slightly sharper one mentioned
in §4.1) is best possible, or even close. It is interesting to note that the proof
actually gives a lower bound for the growth of subnormal subgroups; it seems
likely that in general αCC(G) will be strictly less than α(G), but this is not
at present clear (most of the examples for which α(G) is known explicitly are
nilpotent groups, where of course all subgroups are subnormal).

5.7 Notes

The question of which finitely generated groups have PSG was first raised in
[Segal 1986a], and answered there for the special case of residually nilpotent,
soluble groups. New methods were introduced in [Lubotzky & Mann 1991],
which proved the same result without assuming solubility. Key contributions of
this paper were (1) the proof that pro-p groups with PSG are p-adic analytic,
which is then used to reduce to the case of linear groups; (2) the ‘Lubotzky
alternative’, reducing the problem further to arithmetic groups; and (3) the
lower estimate for congruence subgroup growth in arithmetic groups (given at
the end of Section 5.2 above).

The next step was taken in [Mann & Segal 1990]. The three main con-
tributions of this paper were (1) bringing finite simple groups into the picture,
and thereby essentially establishing the results of Section 5.3, above. (2) The
proof of Theorem 5.2, about groups of finite upper rank; this was based on
the methods of [Lubotzky & Mann 1989], which first introduced the use of
Tate’s theorem to deduce solubility from finite rank. Together, (1) and (2) suf-
ficed to establish the PSG theorem for groups that are residually finite-soluble.
(3) The construction of (infinitely-generated) groups with PSG that are direct
products of simple groups PSL2(Fp) (this was important for later developments
– see Chapter 10).

The full PSG theorem was finally established in [Lubotzky, Mann & Segal
1993], by combining the preceding arguments with an idea from [Wilson 1991]
(# Linearity conditions, Theorem 2). Further properties of PSG groups were
established in [Mann 1993]; the ideas of this paper were also important for later
developments, reported in Chapter 10, as were those of [Segal 1996b] which
introduced the concept of ‘weak PSG’.

Most of the above papers make a reduction to the case of linear groups
by showing that suitable pro-p completions are p-adic analytic, and then using
Ado’s theorem via p-adic Lie theory (the ‘Lubotzky linearity criterion’). A
simple alternative approach to this step was provided by [Segal 1996a] (#
Linearity conditions, Section 2). This is the approach we have followed in
this chapter.

Some estimates for the degree of finitely generated nilpotent groups were
obtained in [Grunewald, Segal & Smith 1988], where it is shown in par-
ticular that if G is such a group and H is a subgroup of finite index then
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α(G) = α(H). [Klopsch 2000] established the lower bound α(G) ≥ 1
7h(G) for

a PSG group G; the interesting proof is different from the one given above.
[Shalev 1999] studies a slightly different growth invariant:

deg(G) = lim sup(log an(G)/ log n);

it is easy to see that deg(G) ≤ α(G) ≤ deg(G) + 1, but the precise relation-
ship between the two degrees depends very much on the group in question. He
proves analogues of Propositions 5.6.2 and 5.6.4 (our proofs are based on his),
and determines deg(G) precisely for certain groups. Perhaps the most remark-
able result of this paper is that deg(G) never takes values in the open interval
(1, 3/2); the result of [Shalev 1997] stated below implies that (0, 1) is another
such interval. Whether any further gaps exist in the spectrum of deg(G) is an
interesting open problem. Shalev states that the α(G) never lies in the interval
(1, 2); beyond this, equally little is known about possible gaps in the spectrum
of α(G).

Residually finite groups with very slow subgroup growth have been charac-
terised. [Shalev 1999] shows that if G is finitely generated, then an(G) = O(n)
if and only if G is virtually cyclic, while in [Shalev 1997] it is shown that
an(G) = o(n) if and only if G has a central subgroup of finite index whose finite
quotients are all cyclic, in which case an(G) = O(1).
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Chapter 6

Congruence subgroups

Among the most interesting finitely generated groups that occur ‘in nature’
are the arithmetic groups. These come equipped with a distinguished family of
finite-index subgroups, the congruence subgroups, and the aim of this chapter is
to examine their growth rate. The results, as well as being satisfying in their own
right, have implications (via strong approximation methods) for linear groups
in general: a foretaste appeared in Chapter 5 and more will be seen in Chapter
8.

For background on arithmetic and S-arithmetic groups, the reader is referred
to the book [PR] of Platonov and Rapinchuk. However, readers unfamiliar with
algebraic groups may safely ignore the more technical details, as many of the
results to be discussed in this chapter make sense, and are of interest, when
applied to the ‘classical’ groups such as SLd(Z) or SLd(Z[1/m]).

Before stating the results let us fix some notation.
Let k be a global field: a finite extension field of Q or of Fp(x). We denote

by O or Ok the ring of integers of k. The set of all primes (equivalence classes
of valuations) of k is denoted Vk. The ‘infinite primes’ (non-archimedean valu-
ations) form a subset V∞, and the set of all ‘finite primes’ is denoted Vf (so Vf
may be identified with the set of non-zero prime ideals of O). We recall that
V∞ is a finite set, empty if chark 6= 0 (See e.g. [Cassels 1986].) For each v ∈ Vk
the v-completion of k is denoted kv.

Throughout, S will denote a finite subset of Vk containing V∞. The ring of
S-integers is

OS = {x ∈ k | v(x) ≥ 0 for all v /∈ S}.

Let G be a connected, simply-connected, simple, algebraic group defined over
k with a fixed embedding G ↪→ GLr. Our main interest in this chapter is the
S-arithmetic group

Γ = G(OS) = G ∩GLr(OS).

We assume throughout that Γ is infinite (or equivalently that
∏
v∈S G(kv) is

not compact).

115
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Typical examples of such Γ are the groups SLr(Z) or SLr(Z[1/m]) with
r ≥ 2, in characteristic zero, and SLr(Fq[x]) (with r ≥ 2) in characteristic p,
where q = pe.

For each non-zero ideal J of OS the principal congruence subgroup modulo
J is

Γ(J) = ker (Γ → GLr(OS/J))
= {g ∈ Γ | g ≡ 1r(modJ)} .

Any subgroup of Γ containing Γ(J) for some ideal J 6= 0 is called a congruence
subgroup.

Definition cn(Γ) denotes the number of congruence subgroups of index at most
n in Γ.

The first two theorems determine the strict growth type of cn:

Theorem 6.1 Suppose that char k = 0. Then there exist positive constants a
and b such that

na logn/ log logn ≤ cn(Γ) ≤ nb logn/ log logn

for all n > 1.

In other words, in the characteristic zero case Γ has congruence subgroup growth
of strict type nlogn/ log logn. On the other hand, in positive characteristic the
congruence growth type is (usually) nlogn:

Theorem 6.2 Suppose that char k = p > 0, that G is k-split, and if p = 2 that
G is not of type A1 or Cl. Then there exist positive constants a and b such that

na logn ≤ cn(Γ) ≤ nb logn

for all n.

The lower bound is valid also in the excluded cases (A1 and Cl in characteristic
2), but for these an upper bound is not known (apart from the exponential
bound provided by Theorem 3.1).

There is another way to look at these results. It follows from the Strong
Approximation Theorem (# Strong Approximation) that

lim
←−

Γ/Γ(J) ∼= lim
←−

G(OS/J) = G(ÔS),

where
ÔS =

∏
v/∈S

Ov

is the profinite completion of the ring OS . The profinite group Γ̃ = G(ÔS) is the
congruence completion of Γ, and its open subgroups are in 1 – 1 correspondence
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with the congruence subgroups of Γ; thus cn(Γ) = sn(Γ̃) for each n and thus the
‘congruence subgroup growth’ of Γ may be interpreted as the subgroup growth
of the profinite (‘adelic’) group Γ̃.

The congruence subgroups are the ‘obvious’ subgroups of finite index in
an arithmetic group; there may or may not be others as well. This question,
the ‘congruence subgroup problem’, will be addressed in depth in the following
chapter. The answer, for any particular arithmetic group Γ, depends on the
difference between Γ̃ and the profinite completion Γ̂ of Γ, and we shall see that
it can be detected from the subgroup growth type of Γ. As this is the same
as that of Γ̂, we may interpret the congruence subgroup problem as that of
comparing the subgroup growth types of two profinite groups.

Theorem 6.1 is proved in Section 1 and Theorem 6.2 in Sections 2 and 3.
In the final section we consider normal congruence subgroups. Here a startling
new phenomenon appears. Let

cCn (Γ)

denote the number of normal congruence subgroups of index at most n in Γ.
It turns out that the growth type of cCn (Γ) depends crucially on the ‘fun-

damental group’ of the adjoint group associated with G. This is the quotient
group π(G) of the lattice of weights of G modulo the sublattice generated by
the roots, and is isomorphic to the centre of the group scheme associated to the
simply-connected cover G̃ of G; usually (that is, unless chark | |π(G)|), π(G)
is isomorphic to Z(G̃(k)) where k denotes the separable closure of k). In any
case, π(G) depends only on the type (i.e. Dynkin diagram) of G, as shown in
the following table:

Al Bl, Cl or E7 Dl, l even Dl, l odd E6 G2, F4, E8

Z/(l + 1)Z Z/2Z Z/2Z× Z/2Z Z/4Z Z/3Z 0

We can now state:

Theorem 6.3 Let p ≥ 0 be the characteristic of k. Then the strict growth type
of cCn (Γ) is:

(i) n if G is of type G2, F4 or E8,

(ii) nlogn/(log logn)2 if π(G) 6= 0 and p - |π(G)|,

(iii) nlogn if p
∣∣ |π(G)|.

The proof of Theorem 6.3 partially depends on studying first the normal
subgroup growth of open compact subgroups in algebraic groups over local fields.
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Theorem 6.4 Let K be a non-archimedean local field of characteristic p ≥ 0
and OK its valuation ring. Let G be a connected, simply connected K-simple
subgroup of GLr. Let

∆ = G(OK) = G(K) ∩GLr(OK).

Then the normal subgroup growth of ∆ is of strict type

(i) nlogn if p
∣∣ |π(G)|

(ii) n if G is of Ree type, i.e., either p = 2 and G is of type F4 or p = 3 and
G is of type G2.

(iii) log n otherwise.

The proofs of Theorems 6.3 and 6.4 are sketched in section 6.4 below. The
proofs show that the groups of Ree type which play a special role in Theorem 6.4
appear for an entirely different reason than G2, F4, and E8 appear in Theorem
6.3. In fact, G2, F4 and E8 appear in Theorem 6.3 because their fundamental
group is trivial, while the groups of Ree type appear in 6.4 as exceptions because
their adjoint representations are reducible. There are other cases of reducibility,
e.g. when p = 2 and G is of type A1, but in all of them p divides |π(G)| and
so they are covered by case (i). In particular, this is the case for the groups of
Suzuki type.

The following two tables summarize the growth types of sn(∆), sC
n (∆), cn(Γ)

and cCn (Γ); in items marked (∗) we assume that G satisfies the hypotheses of
Theorem 6.2.

Table 1: Local Groups
∆ as in Theorem 6.4

p = 0 p > 0
sn(∆) : n sn(∆) : nlogn (∗)
sC
n (∆) : log n sC

n (∆) : nlogn if p
∣∣ |π(G)|

n if G is of Ree type
log n otherwise

The results on sn(∆) follow from results of Chapter 4. When K has charac-
teristic zero and residue characteristic q, ∆ is a linear group over Zq and hence
virtually a pro-q group of finite rank (# Pro-p groups). When charK = p > 0,
∆ is virtually an OK-perfect pro-p group in the sense of §4.4 (see [DDMS] Ex-
ercise 13.11).
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Table 2: S-Arithmetic Groups
Γ as in Theorems 6.1, 6.2, 6.3

G p = 0 p > 0

G2, F4, E8

cn(Γ) : nlogn/ log logn

cCn (Γ) : n

cn(Γ) : nlogn (∗)

cCn (Γ) : n

π(G) 6= 1,

p - |π(G)|

cn(Γ) : nlogn/ log logn

cCn (Γ) : nlogn/(log logn)2

cn(Γ) : nlogn (∗)

cCn (Γ) : nlogn/(log logn)2

p | |π(G)| cannot occur
cn(Γ) : nlogn (∗)

cCn (Γ) : nlogn

6.1 The characteristic 0 case

In this section we determine the strict congruence subgroup growth type of an
S-arithmetic group over a number field k. In this case, S \ V∞ = S0 may be
identified with a (finite) set of prime ideals of O.

To simplify matters, we shall assume that k = Q and S0 is a finite set of
rational primes. (The general case can be reduced to this one by ‘restriction of
scalars’; see [PR], §2.1.2. This needs some care in case S is not the full set of
primes lying over some set of rational primes.)

Thus Γ = G(ZS) where G ≤ GLr is a connected, simply-connected, simple
algebraic group defined over Q, (so in fact G ≤ SLr). Let d denote the dimension
of the algebraic group G (so d ≤ r2 − 1).

The notation G(Z/mZ) means the group of Z/mZ-rational points of the
algebraic group G. For present purposes we may as well take it to mean the
image of Γ in GLn(Z/mZ), as long as m is coprime to S; this is justified by the
Strong Approximation Theorem (# Strong Approximation) which ensures
that Γ maps onto G(ZS/mZS).

We begin by establishing the upper bound. The key to this is the following
fact:

Proposition 6.1.1 (“level ≤ index”) Let H be a congruence subgroup of Γ.
Then H ≥ Γ(m) for some m ≤ c · |Γ : H|, where c > 0 depends only on G.

Let us say that a subgroup H of M = G(Z/mZ) is essential if H does not
contain

M(r) = ker(M → G(Z/rZ))

for any r | m with r < m. The proposition is then clearly equivalent to
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Proposition 6.1.2 There exists a constant C > 0 such that for each m ∈ Z,
every essential subgroup H of M = G(Z/mZ) satisfies |M : H| ≥ Cm.

For the proof, we need the following facts: for almost all primes p,

(i) G(Z/pZ) is a perfect central extension of a product of finite simple groups
of Lie type in characteristic p. It is generated by elements of order p. No
non-abelian simple factor of G(Z/pZ) is involved in G(Z/qZ) for a prime
q 6= p.

(ii) K = ker(G(Zp) → G(Z/pZ)) is a uniform pro-p group of dimension
dim(G). The congruence subgroup modulo ps is equal to Φs−1(K) where
Φ0(K) = K and Φi+1(K) = Φ(Φi(K)) (the Frattini subgroup of Φi(K)).

(iii) Φ(G(Zp)) = K.

(iv) For each e ≥ 1 the group G(Z/peZ)) is perfect.

For (i), see the Finite simple groups window; (ii) and (iii) are proved in the
Strong approximation window. (iv) is a direct consequence of (i) and (iii).

We will argue as if (i) – (iv) hold for all primes, and show that C = 1 will
do in that case. It is left for the reader to verify that one can compensate for
the finitely many “bad” primes by making C smaller. Note that also for them,
(ii) is ‘essentially’ correct: G(Zp) has an open uniform pro-p subgroup and the
congruence sequence and the sequence Φi(K) are still “very close” to each other.

Note first that if p is a prime, then G(Z/pZ) is generated by its Sylow
p-subgroups and therefore every proper subgroup H of G(Z/pZ) satisfies

|G(Z/pZ) : H| ≥ |P : P ∩H| ≥ p

for some such Sylow subgroup P .
Now let m = pe11 . . . per

r where p1, . . . , pr are distinct primes. Then

M = M1 × · · · ×Mr

where
Mi = M(m/pei

i ) ∼= G(Z/pei
i Z).

We claim that for each i, the projection πi(H) of H to M(m/pi) is a proper
subgroup of M(m/pi). Indeed, suppose (w.l.o.g.) that π1(H) = M(m/p1).
SinceM(m/p1) is the Frattini quotient ofM1 it follows thatH projects ontoM1.
Then H has all the non-abelian composition factors of G(Z/p1Z) as composition
factors (with at least the same multiplicities), and as H/(H ∩M1) embeds into
M2 × · · · ×Mr all these composition factors occur already inside H ∩M1. But
H ∩M1 is a normal subgroup of M1 (because H projects onto M1); since M1 is
a perfect group it follows that H ∩M1 = M1. But this is impossible since H is
supposed to be essential.
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Therefore |Mi : πi(H)| ≥ pi for each i, and it follows that

|M : H| ≥
∏

|Mi : πi(H)| ≥
∏

pi.

If ei = 1 for each i this concludes the proof.
Suppose now that ei > 1 for some i, and put m′ =

∏r
i=1 pi, so that m′ < m.

Let H be an essential subgroup of M = G(Z/mZ), and let H ′ denote the
projection of H into G(Z/m′Z) =

∏r
i=1 G(Z/piZ). Then πi(H ′) = πi(H) is

a proper subgroup of G(Z/piZ) for each i, so H ′ is an essential subgroup of
G(Z/m′Z). Thus the index of H ′ in G(Z/m′Z) is at least m′, and it suffices
therefore to prove now that the index of H∩M(m′) in M(m′) is at least m/m′ =∏r
i=1 p

ei−1
i .

Now M(m′) is the direct product of the pi-groups Li =
ker (G(Z/pei

i Z) → G(Z/piZ)) and H ∩ M(m′) is the product of the H ∩ Li.
It will therefore suffice to show that |Li : H ∩ Li| ≥ pei−1

i for each i.
Fix i, put p = pi, e = ei, and M = G(Z/peZ). Then Li = M(p), and

H ∩ Li = D, say, does not contain M(pe−1). We claim that then DM(pj) does
not contain M(pj−1) for e > j > 1. Indeed, since M(pj) = Φ(M(pj−1)),

M(pj−1) ≤ DM(pj) =⇒M(pj−1) = (D ∩M(pj−1))Φ(M(pj−1))

=⇒M(pj−1) = D ∩M(pj−1)

=⇒ D ≥M(pj−1) ≥M(pj),

so our claim follows by reverse induction. It follows that

|M(p) : D| =
e∏
j=2

∣∣DM(pj−1) : DM(pj)
∣∣ ≥ pe−1.

Thus |Li : H ∩ Li| ≥ pei−1
i as required, and the proof is complete.

Corollary 6.1.3

cn(Γ) ≤
cn∑
m=1

sn (G(Z/mZ)) .

Thus the problem is reduced to estimating the number of subgroups in cer-
tain finite groups. This depends on the following information:

Proposition 6.1.4 Suppose that m is divisible by h distinct primes. Then for
each prime q we have

rq(G(Z/mZ)) < 3r2h. (6.1)

Proof. Since G is a subgroup of SLr,

rq(G(Z/mZ)) ≤ rq(SLr(Z/mZ))

≤
∑
p|m

(
rq(SLr(Fp)) + urq(SL1

r(Zp))
)

≤
∑
p|m

rq(SLr(Fp)) + (2r2 − 2),
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where SL1
r(Zp) is the kernel of SLr(Zp) → SLr(Fp) which is a pro-p group of

rank at most 2r2−2 (# Pro-p groups). The q-rank of SLr(Fp) is at most r2/2
for each prime p (# Finite group theory). Thus (6.1) follows.

Of course, sharper bounds can be given, depending on the dimension d of G.
See the Remark below.

Proof of Theorem 6.1: the upper bound. Let j ≤ n and m ≤ n.
Suppose that |G(Z/mZ)| = g is divisible by t distinct primes, and let s =
max
p

rp(G(Z/mZ)). Corollary 1.7.5 of Chapter 1 shows that

aj(G(Z/mZ)) ≤ jt+s.

Say m is divisible by h distinct primes. Now there exists an absolute constant
A such that

t ≤ A log g/ log log g,
h ≤ A logm/ log logm

(# Prime Numbers). From the preceding proposition we have s < 3r2h, and
g ≤ mr2 . It follows that t+ s ≤ r2(1 + 3A) logm/ log logm. Thus

sn(G(Z/mZ)) =
n∑
j=1

aj (G(Z/mZ)) ≤
n∑
j=1

jt+s ≤ nB logn/ log logn

where B = 1 + r2(1 + 3A).
With Corollary 6.1.3 this gives

cn(Γ) ≤ nb logn/ log logn,

where b depends only on B and c. This is the required upper bound.
(The argument can be simplified by quoting the fact that SLr(Fp) has rank

at most r2/2+1, together with the trivial estimate s(G) ≤ |G|rk(G) ; but the only
known proof for this rank estimate depends on CFSG: see the Finite simple
groups window.)

The lower bound for cn(Γ) given in Section 2 of Chapter 5 was of the form
nb logn/(log logn)2 . We need to sharpen this to obtain a lower bound of the correct
order. The group-theoretic part of the argument can remain much the same,
but we must appeal now to some more powerful number theory. Let us recall
the argument given in Chapter 5. Let x be a large real number, P(x) the set of
primes p with p ≤ x and m =

∏
p∈P(x) p. Then

Γ/Γ(m) ∼= G(Z/mZ) =
∏

p∈P(x)

G(Fp).
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The latter is the direct product of t = |P(x)| finite quasi-simple groups, hence
contains a subgroup isomorphic to F(t)

2 . This gives at least 2[t2/4] congruence
subgroups of index at most |G(Z/mZ)| ∼ md in Γ, and the Prime Number
Theorem provides estimates for m and t which suffice to yield the stated lower
bound. Now we present a slight variation on this argument. Let q be a prime
of size approximately x1/2, and put

P(x, q) = {p ≤ x | p ≡ 1 (mod q)}

(p ranging over primes). Now take m =
∏
p∈P(x,q) p. By Lang’s theorem (#

Linear groups), each G(Fp) contains a cyclic subgroup of order p − 1, and
hence if p ≡ 1 (mod q) a cyclic subgroup of oder q. It follows that

Γ/Γ(m) ∼=
∏

p∈P(x,q)

G(Fp)

contains a copy of F(t)
q where t = |P(x, q)| , and as above we infer that Γ has

at least q[t
2/4] congruence subgroups of index at most |G(Z/mZ)| ∼ md. Now

Dirichlet’s theorem on arithmetic progressions says that |P(x, q)| is approx-
imately equal to (q − 1)−1 · |P(x)|, and assuming the Generalised Riemann
Hypothesis it can be shown that the resulting estimates for m and t are good
enough to yield the stronger lower bound stated in Theorem 6.1.

We only have to get round the little difficulty that the number theorists
have so far failed to prove the Riemann Hypothesis! Fortunately, Bombieri has
proved that, in a suitable sense, the Riemann Hypothesis is ‘true in the average’;
that is, if one averages the error terms when estimating the number of primes
along arithmetic progressions, then one indeed obtains the result predicted by
the Riemann Hypothesis. This means that there does exist a prime q (though
we may not know which one!) for which the argument given above will work.

We now proceed to spell out the proof, using some precise consequences
of Bombieri’s theorem that are explained in the Primes window. For a real
number x, a Bombieri prime for x is a prime q such that∣∣∣∣ϑ(y; q, 1)− y

φ(q)

∣∣∣∣ ≤ 1
lnx

· x

φ(q)

for every y ≤ x, where ϑ(y; q, 1) =
∑
p∈P(y;q) ln p. We fix ρ ∈ (0, 1

2 ). Then
for every sufficiently large x, there exists a Bombieri prime lying in the inter-
val (xρ/ lnx, xρ), and we make a fixed choice qx of such a Bombieri prime.
Moreover, writing

Px =
∏

p∈P(x;qx)

p,

we have

|P(x; qx)| =
x

φ(qx) lnx
(1 + o(1)) ≥ x1−ρ

lnx
(1 + o(1)) , (6.2)

lnPx = ϑ(x; qx, 1) =
x

φ(qx)
(1 + o(1)) = x1−ρ (1 + o(1)) , (6.3)
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where o(1) stands for a number that tends to 0 as x → ∞ (the second line
follows directly from the definition of qx).

Proof of Theorem 6.1: the lower bound. We fix σ > 1. It follows from
(6.3) that for every sufficiently large integer n there exists x such that

(Px)d ≤ n ≤ (Pσx)d,

and then, writing λ = log2 e, we have

(log n)2

log log n
<
λ(lnn)2

ln lnn
≤ λd2σ2−2ρx(2−2ρ)

(1− ρ) lnx
(1 + o(1)) . (6.4)

Now put P = Px, q = qx and consider the congruence subgroup Γ(P ) of
Γ. From the Strong Approximation Theorem for arithmetic groups (# Strong
Approximation) it follows that

Γ/Γ(P ) ∼= G(Z/PZ) ∼=
∏

p∈P(x,q)

G(Fp).

We have shown above that Γ then has at least q[L
2/4] subgroups containing

Γ(P ), where L = |P(x, q)|. Each of these is a congruence subgroup of index at
most

|G(Z/PZ)| =
∏

p∈P(x,q)

|G(Fp)| ≤ P d

(# Finite simple groups).
As P d ≤ n it follows that cn(Γ) ≥ q[L

2/4], and using (6.2) and (6.4) we
obtain

log cn(Γ) ≥ λ
[
L2/4

]
ln q

≥ λ

4

(
x1−ρ

lnx

)2

· ρ lnx · (1 + o(1))

≥ (log n)2

log log n
· ρ(1− ρ)
σ(2−2ρ)4d2

· (1 + o(1)) .

Let a be any positive constant strictly smaller than 1/(16d2). Choosing ρ very
close to 1

2 and σ very close to 1, we infer that

cn(Γ) ≥ 2a(logn)2/ log logn = na logn/ log logn

for all sufficiently large n, as claimed.

Remark. Better estimates can be obtained by arguing more carefully. The pa-
per [Goldfeld, Lubotzky & Pyber] initiates the study of the constants appearing
in the exponent. We will not describe this work in detail, but we will review it
briefly.
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Let G be a Chevalley group scheme, k a number field, O and S as before.
Let Γ = G(Os) and

α+(Γ) = lim sup
logCn(Γ)

(log n)2/ log log n

α−(Γ) = lim sup
logCn(Γ)

(log n)2/ log log n
.

[Goldfeld, Lubotzky & Pyber] conjecture that

(a) α+(Γ) = α−(Γ).

(b) α+(Γ) depends only on G and not on O (it is relatively easy to see that
it does not depend on S).

(c) α+(Γ) = (
√
R(R+1)−R)2

4R2 where R = R(G) = dimG−rankG
2rankG .

(Here rankG denotes the Lie rank of G.) They prove all three conjectures for
G = SL2, and show that the expression given in (c) is at least a lower bound
for α−(Γ) in the general case.

The proof given above for the lower bound in Theorem 6.1 is a slight variation
of that in [Goldfeld, Lubotzky & Pyber]. The more careful treatment there gives
the optimal lower bound at least for SL2. The generalization to other number
fields is based on a corresponding extension of Bombieri’s work. The proof of
the upper bound (for SL2) is based on a series of reductions, which shows that
the dominant term of cn(Γ) comes from counting subgroups of SL2(Z/mZ) that

lie between B =
(
∗ ∗
0 ∗

)
and U =

(
−1 ∗
0 1

)
. The problem is then reduced to

one of counting subgroups in finite abelian groups.

6.2 The positive characteristic case

We turn now to the proof of Theorem 6.2. In this case when the characteristic
is positive we have added two assumptions: (a) G is k-split and (b) If p = 2,
G is not of type A1 or Cl. While the first assumption is just a question of
convenience, and it seems very likely that the theorem holds without it, the
second assumption is essential for the proof. We are not sure whether the
theorem holds without it: in any case, it will need a new idea. The crucial
point in assumption (b) is to ensure that the associated Lie algebra is perfect.
It should be stressed however that the two assumptions are only needed for the
proof of the upper bound. The lower bound holds unconditionally.

So let’s start with the lower bound whose proof is quite easy (and uses only
the local completion).

Choose one valuation ν /∈ S. Then G(ÔS) maps onto K = G(Oν). We
claim that K has subgroup growth of strict type at least nlogn (in fact it is
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equal to nlogn, by Theorem 4.4.3). Indeed, let mv be the maximal ideal of Ov
and for each i ≥ 1 put

Ki = ker
(
G(Ov) → G(Ov/mi

v)
)
.

For each i ≥ 1 the quotient Ki/Ki+1 is isomorphic to (Ov/mv)d (# Strong
approximation, Corollary 6). One then verifies easily that

(i) logp |K : Ki| ∼ ci for some constant c,

(ii) [Ki,Ki] ≤ K2i for each i,

(iii) Kp
i ≤ Kpi for each i.

This implies that Ki/K2i is an elementary abelian p-group of rank approxi-
mately ci. Thus there are at least p[c2i2/4] subgroups between Ki and K2i, all
having index at most p2ci in K, and the claim follows (essentially the same
argument was used to obtain lower bounds in §§4.3 and 4.4).

To prove the upper bound we note first that as G is split and simple over k,
it is absolutely simple. We write

M = G(ÔS)

and note that cn(Γ) = sn(M).

Proposition 6.2.1 There exists a constant c such that every open subgroup of
index n in M contains a subnormal subgroup of M having index at most nc in
M .

In other words, M satisfies the ‘polynomial subnormal core condition’.
Proof. Every non-abelian upper composition factor of L is a quotient of

G(Fq) for some power q of p, hence is a simple group of Lie type and bounded
Lie rank. Thus M lies in one the classes Bc′ of groups satisfying the ‘Babai-
Cameron-Pálfy condition’. The proposition follows by Proposition 10 of the
Permutation groups window .

Now given a subnormal subgroup of index at most nc in M , the number of
subgroups containing it is at most nc log(nc) = nc

2 logn, by Lemma 1.2.3. It will
therefore suffice to show now that M has at most nb logn subnormal subgroups
of index n, for some constant b (a similar bound will then of course follow for
those of index at most n).

Let us refresh our notations: Let V = Vk \S be the set of places of k outside
S. For v ∈ V , let Ov be the completion of OS with respect to v and let mv

be the unique maximal ideal of Ov. Thus Ov/mv is a finite field of order qe(v),
where q is the size of the maximal finite subfield of k.
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Put

Mv = G(Ov)
Kv(i) = ker

(
G(Ov) → G(Ov/mi

v)
)
.

Then
M = G(ÔS) =

∏
v∈V

Mv.

Write
πv : M →Mv

for the natural projection map.
Because G is absolutely simple, each of the groups Mv/Kv(1) ∼= G(Ov/mv)

is a finite quasi-simple group. Let W (Mv) be the ‘weak-Frattini subgroup’ of
Mv, namely the intersection of the maximal open normal subgroups. Then
W (Mv) contains Kv(1), and is in fact equal to the preimage Zv in Mv of the
centre Z (G(Ov/mv)).

Now let H be a subnormal open subgroup of M. Then Hv = H ∩Mv is a
subnormal subgroup of Mv. As Mv/W (Mv) is a simple group, it follows that
either Hv = Mv or Hv ≤W (Mv). Thus putting

V0(H) = {v ∈ V | H ∩Mv 6= Mv},

we have
πv(H) ≤ Zv for every v ∈ V0(H).

This shows that H is contained in the group
∏
v/∈V0(H)Mv ×

∏
v∈V0(H) Zv.

Suppose |M : H| = n. Since the order of |Mv/Zv| is approximately qe(v)d, where
d is a constant (the dimension of G), it follows that

n ≥
∏

v∈V0(H)

qe(v)d
′

(6.5)

(where d′ is slightly less than d). Applying the characteristic-p Prime Number
Theorem (# Primes) we deduce that V0 = V0(H) satisfies

|V0| ≤
A log n
log log n

(6.6)

for some constant A.
Note next that the number of possibilities for the set V0(H) is bounded as

a function of n. Indeed, if v ∈ V0(H), then |Ov/mv| = qe(v) ≤ n1/d′ , and
another application of the Prime Number Theorem shows that the number of
possibilities for v is O (n/ log n). With the preceding result this shows that the
number of possibilities for V0(H) is

O

((
n

log n

)A logn/ log logn
)

= o(nlogn).
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We may therefore fix a finite set V0 of places and count subnormal subgroups
H of index n in M for which V0(H) = V0. Each such H contains

∏
v/∈V0

Mv and
projects into

∏
v∈V0

Zv, so this amounts to counting the subnormal subgroups
of
∏
v∈V0

Zv that have index n in
∏
v∈V0

Mv.
Put

Y =
∏
v∈V0

Zv and K =
∏
v∈V0

Kv(1).

Then K is a pro-p group and Y/K ∼=
∏
v∈V0

Z (G(Ov/mv)) is a finite abelian
p′-group, of rank at most 2 |V0| and exponent E, say, depending only on G (each
of the direct factors is an image of the fundamental group π(G) discussed in
the introduction). It follows that

sn(Y/K) ≤ |Y/K|rk(Y/K) ≤ E4|V0|2 = no(logn),

in view of (6.6).
To each subnormal subgroup H of index ≤ n in Y we associate H ∩K ≤ K

and HK/K ≤ Y/K. Given H ∩K = D and HK = P, let N = NP (D); then
(N∩K)/D is a p-group becauseD is open in the pro-p groupK, whileN/(N∩K)
has order prime to p. Since H/D is a subnormal complement for (N ∩K)/D
in N/D it follows that H/D = Op(N/D). Thus H is uniquely determined by
H ∩K and HK, and so the number of possibilities for H is bounded above by

sn(Y/K) · sn(K) = no(logn)sn(K).

We are thus left with the problem of bounding sn(K).

Say V0 = {v1, . . . , vt}. Write ej = e(vj), so Ovj/mvj
∼= Fqej , and put

Kj(i) = Kvj
(i) for j = 1, . . . , t and each i ≥ 1. Now consider the graded Fp-Lie

algebra

Lj =
∞⊕
i=1

Kj(i)/Kj(i+ 1),

with Lie bracket induced on homogeneous elements by the group commutator
in Kj . It is shown in [DDMS], Chapter 13 (we used the same construction in
§4.4) that

Lj ∼= L0 ⊗ tFqej [t]

where L0 is the Lie algebra over Fp associated with G; that is, given the (split)
form of G, its Lie algebra has the well known Chevalley basis and multiplication
table with integral structure constants, and L0 is the Fp-Lie algebra with these
structure constants reduced modulo p. It is not always the case that L0 is a
simple Lie algebra; even worse, if p = 2 and G is of type A1 or Cl then L0 is not
even perfect. This is the reason we have excluded these cases (we won’t need
simplicity but we do require perfection).
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Put K(i) =
⊕t

j=1Kj(i). To the group K with its filtration (K(i)) we
associate the graded Fp-Lie algebra

L =
∞⊕
i=1

K(i)/K(i+ 1)

=
t⊕

j=1

Lj ∼=
t⊕

j=1

L0 ⊗ tFqej [t]

∼=

 t⊕
j=1

L0 ⊗ Fqej

⊗ tFp[t] = L⊗ tFp[t]

where L =
⊕t

j=1 L0 ⊗ Fqej .
To each closed subgroup H of K one associates the graded Fp-Lie subalgebra

L(H) =
∞⊕
i=1

(HK(i+ 1) ∩K(i))/K(i+ 1).

If |K : H| = pr then dimFp(L/L(H)) = r. It is easy to see that the derived
algebra L(H)′ = [L(H), L(H)] is contained in L(H ′) where H ′ = [H,H] is the
(closed) derived group of H.

Now the heart of the proof is the following proposition, which will be proved
in the next section:

Proposition 6.2.2 Let H be a graded Fp-Lie subalgebra of L. Then

dim(L/H′) ≤ dimL+ 4 dimL0 · dim(L/H)

(where all dimensions are over Fp).

Using this we can now finish the proof of Theorem 6.2. Let H be an open
subgroup of index pr in K. By the above proposition and the preceding remarks
we have

|K : H ′| ≤ pf(r)

where f(r) = dimL+ 4 dimL0 · r. It follows that |H : H ′| ≤ pf(r)−r and hence
that

d(H) = dim(H/H ′Hp) ≤ f(r)− r = h+ (4d− 1)r

where h = dimL and d = dimL0.
Now d = dimG, while

h = d ·
t∑

j=1

logp
∣∣Ovj

/mvj

∣∣ ≤ (d/d′) log n

by (6.5). Thus d(H) ≤ c′ log n+ cr where c′ and c are constants.
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In the notation of §1.6, we have established that dr(K) ≤ c′ log n + cr for
each r, and Proposition 1.6.2 now shows that for each m,

apm(K) ≤ p
∑

r<m dr(K) ≤ pc
′m logn+O(m2).

Since m ≤ log n if pm ≤ n it follows that

sn(K) ≤ pO((logn)2) = nO(logn).

This completes the proof, modulo Proposition 6.2.2.

6.3 Perfect Lie algebras

Let F be a field and L0 a perfect Lie algebra of dimension d over F . Let
F1, . . . , Ft be finite field extensions of F , and put

Lj = L0 ⊗ Fj

L =
t⊕

j=1

Lj

(all tensor products over F ). Thus L is a Lie algebra over F . For a subspace U
of L, dimU denotes the F -dimension of U and codimU = dimL− dimU . For
subspaces U and V of L, we write

[U, V ] = 〈[u, v] | u ∈ U, v ∈ V 〉

where for any subset X, 〈X〉 denotes the F -subspace spanned by X.

Proposition 6.3.1 Let U and V be F -subspaces of L. Then

codim [U, V ] ≤ d(codimU + codimV ).

Before proving this, let us deduce Proposition 6.2.2. This concerns the
graded Lie algebra

L⊗ tFp[t] = L

and a graded Fp-Lie subalgebra H of finite codimension in L.
Say

H =
∞⊕
i=1

Ui ⊗ ti

where each Ui is a subspace of L. Then

[H,H]=
∞⊕
i=2

(
i−1∑
n=1

[Un, Ui−n]

)
⊗ ti
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and so

dim(L/[H,H]) = dimL+
∞∑
i=2

codim

(
i−1∑
n=1

[Um, Un]

)

≤ dimL+
∞∑
n=1

(codim [Un, Un] + codim [Un, Un+1])

≤ dimL+
∞∑
n=1

d(3codimUn + codimUn+1) by Proposition 6.3.1

≤ dimL+ 4d
∞∑
n=1

codimUn = dimL+ 4d dim(L/H).

This establishes Proposition 6.2.2.

Remark In fact the same result holds for an arbitrary Fp-Lie subalgebra H of
L, graded or not. Taking Un to be the subspace of leading terms of elements of
degree n in H, the reader can easily verify that the argument still works.

Now let us prove Proposition 6.3.1. Let K be the algebraic closure of F.
Then for each j we have

Lj ⊗K = (L0 ⊗ Fj)⊗K ∼= L0 ⊗ (Fj ⊗K) ∼= L0 ⊗K(ej) ∼= (L0 ⊗K)(ej)

where ej = (Fj : F ). So L⊗K ∼= M (n) where M = L0 ⊗K is a d-dimensional
perfect Lie algebra over K, and n =

∑
ej . Since extending the base field

preserves the dimensions of subspaces, Proposition 6.3.1 will therefore follow
once we establish

Lemma 6.3.2 Let K be an infinite field and M1, . . . ,Mn perfect d-dimensional
Lie algebras over K. Let U and V be subspaces of L = M1 ⊕ · · · ⊕Mn. Then

codim [U, V ] ≤ d(codimU + codimV ).

Proof. Write πj : L→Mj for the projection map and put Uj = πj(U). Let
Sj be the set of d-tuples x ∈ U (d)

j such that

codimMj
([x1,Mj ] + · · ·+ [xd,Mj ]) ≤ dcodimMj

Uj .

We claim that each Sj is non-empty. Indeed, if Uj < Mj then dcodimMjUj ≥
d, while if Uj = Mj then codimMj ([x1,Mj ] + . . .+ [xd,Mj ]) = 0 whenever
{x1, . . . , xd} is a basis for Uj .

Now Sj is a Zariski-open set in U (d)
j (its complement is defined by the vanish-

ing of certain determinants whose entries are linear functions of the coordinates
of x1, . . . , xd); therefore π−1

j (Sj) is a non-empty Zariski-open subset in U (writ-

ing πj also for the projection L(d) → M
(d)
j ). The intersection of finitely many
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such sets is non-empty (because U is a vector space over an infinite field). Hence
there exist y1, . . . , yd ∈ U such that πj(y1, . . . , yd) ∈ Sj for every j.

Putting πj(yi) = xji , we have

[y1, L] + · · ·+ [yd, L] =
⊕
j

(
[xj1,Mj ] + · · ·+ [xjd,Mj ]

)
;

the codimension of this subspace in L =
⊕

jMj is at most

d
∑
j

codimMj
Uj ≤ dcodimU.

Now let W be a complementary subspace to V in L. Then

d∑
i=1

[yi, L] =
d∑
i=1

[yi, V ] +
d∑
i=1

[yi,W ].

Since dim[yi,W ] ≤ dimW = codimV for each i this implies that the codi-
mension of

∑
[yi, V ] in

∑
[yi, L] is at most dcodimV . The result follows since∑

[yi, V ] ⊆ [U, V ].

6.4 Normal congruence subgroups

We will start with sketching the proof of Theorem 6.4. We won’t give a complete
proof, sending the reader to [Larsen & Lubotzky] for details. Instead we describe
a special case which illustrates the general method.

Let ∆ = SLd(Fp[[t]]). For r ∈ N put

∆(r) = ker (SLd(Fp[[t]]) → SLd(Fp[[t]]/(tr))) .

Then ∆/∆(1) ∼= SLd(Fp) and for every i, j ≥ 1, [∆(i),∆(j)] ⊆ ∆(i + j) and
∆(i)p ⊆ ∆(pi). Thus for each r ≥ 1, ∆(r)/∆(r + 1) is an elementary abelian
p-group of rank d2 − 1, central in ∆(1)/∆(r + 1). The action of ∆/∆(1) on
∆(r)/∆(r + 1) is equivalent to the adjoint action of SLd(Fp) on its Lie algebra
sld(Fp).

Now, if p - d, then sld(Fp) is a simple SLd(Fp)-module. Using this one can
easily prove that for every proper open normal subgroup N of ∆, there exists
r ∈ N such that ∆(r) ⊆ N ⊆ Z(r) where Z(r)/∆(r) = Z(∆/∆(r)). So N is of
index approximately p(d2−1)r. As Z(r)/∆(r) has order bounded independently
of r, it follows that for a given r there is only a bounded number of possibilities
for such N . This implies that sC

n (∆) is bounded above, as well as below, by
constant multiples of log n.

On the other hand, if p | d, then for r ≥ 1 the group ∆/∆(pr) has a large
centre: this consists of all the scalar matrices of the form (1 + y)Id where y ∈
(tr)/(tpr). Note that (1+ y)p = 1 in the ring Fp[[t]]/(tpr), so det((1+ y)Id) = 1.
Now, |(tr)/(tpr)| = p(p−1)r and so ∆/∆(pr) has a central elementary abelian
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p-subgroup of rank (p−1)r. Hence ∆ has at least p[(p−1)2r2/4] normal subgroups
of index at most |∆/∆(pr)| ∼ p(d2−1)pr. Therefore sC

n (∆) grows at least as fast
as nlogn. As this is the fastest possible normal subgroup growth type (Corollary
2.8), it follows that the strict growth type of sC

n (∆) is nlogn.
Note that SLd is of type Ad−1 whose fundamental group is of order d, so

p | |π(G)| if and only if p | d and we have proved Theorem 6.4 for the special
case of ∆ = SLd(Fp[[t]]). The general case is based on similar considerations but
it is technically much more complicated. The groups of Ree type in particular
need special consideration. Here ∆(r)/∆(r+1) is not a simple ∆/∆(1) module,
which leaves room for more normal subgroups. In the positive characteristic
case (in contrast to G2(Z3) and F4(Z2)) there are indeed many more normal
subgroups, though their number is still polynomially bounded. There are more
cases for which the finite Fp-Lie algebra is not a simple module for G(Fp) – (see
[Hogeweij 1982]), but in all of them p | |π(G)| which already gives the maximal
possible normal subgroup growth type nlogn.

For later use we make another remark. There is another difference between
the cases p | d and p - d. In the first case the centres of the finite quotients can
be arbitrarily large, as we saw above for ∆ = SLd(Fp[[t]]). In the second case,
we have the following:

Proposition 6.4.1 Let G be a simply connected, simple algebraic group over
a local field k of characteristic p ≥ 0. If p - |π(G)| then for every open compact
subgroup ∆0 of G(k) there exists a constant C = C(∆0) such that |Z(Q)| < C
for every finite quotient Q of ∆0.

This is not difficult to check when ∆ = SLd(Fp[[t]]), p - d; for the general case
see [Larsen & Lubotzky].

Before we turn to the proof of Theorem 6.3, we illustrate the main idea of
the proof by treating the example

Γ = SL3(Z).

If p ≡ 1 (mod 3) then the centre of SL3(Fp), the group of scalar matrices, is
a cyclic group of order 3. Now let x be a large real number and p1, . . . , p` the
primes of size at most x with pi ≡ 1 (mod 3). By the Prime Number Theorem
along arithmetic progressions (# Primes), ` ∼ x/2 lnx and

∑`
i=1 ln pi ∼ x/2.

Let m =
∏`
i=1 pi so m is approximately ex/2. The Strong Approximation theo-

rem shows that SL3(Z) maps onto SL3(Z/mZ) ∼=
∏`
i=1 SL3(Fpi

); this group has
order at most m9, while its centre is an elementary abelian 3-group of rank `. It
follows as usual that Γ has at least 3[`2/4] normal subgroups of index ≤ m9, and
with the preceding estimates for ` and m this shows that the normal subgroup
growth of Γ is of strict type at least nlogn/(log logn)2 . It is also not difficult to
prove an upper bound of the same type.

Note however that SL3(Z) has trivial centre. Its Zariski closure SL3(C) has a
centre of order 3, but the argument would work equally well for PSL3(Z) whose
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Zariski closure PSL3(C) has no centre. What really matters is the centre of the
simply connected cover, i.e. the fundamental group of the adjoint group, which
ensures that for sufficiently many primes p the centre of the mod p congruence
quotient is non-trivial.

Now we sketch the proof of Theorem 6.3 in general. Recall that the congru-
ence completion of Γ = G(OS) is

M = G(ÔS) =
∏
v/∈S

G(Ov),

and that cCn (Γ) = sC
n (M).

Let us start with part (iii). By Theorem 6.4.(i), already for one single v /∈ S,
the normal subgroup growth type of G(Ov) is of type at least nlogn, hence so
is that of sC

n (M). As this is the maximal possible, this establishes (iii).
Next, we consider the lower bounds in parts (i) and (ii).
For (i): OS has at least cn ideals of index at most n, for some fixed c > 0

(depending on OS) and for all n sufficiently large. The principal congruence
subgroup ker(Γ → G(OS/I)) associated to an ideal I of index ≤ n is normal,
and has index at most nd for some constant d. This shows that the growth type
of cCn (Γ) is at least n.

For (ii): Note first that we are in the case where p - |π(G)|. Recall that π(G)
in this case is isomorphic to the centre of G(k), where k denotes the separable
closure of k, as G is simply connected. There exists a finite Galois extension k′

of k such that G(k′) contains Z(G(k)). Let P1 be the set of primes in k that
split completely in k′ and P = P1 \ S. By the Chebotarev density theorem (#
Primes) the set P1 has positive density, and as S is finite so does P. For a
large real number x, let Px be the set of all primes in P of norm at most x. By
the Prime Number Theorem and the positive density of P, each of the functions

π(x)
x/ lnx

and
ψ(x)
x

is bounded away from both zero and infinity, where

π(x) = |Px|, ψ(x) =
∑
P∈Px

ln |P |

and |P | denotes the norm of P (i.e. the index |O : P |).
Put J(x) =

∏
P∈Px

P and let M(J(x)) denote the principal congruence
subgroup modulo J(x). Now |OS/J(x)| =

∏
P∈Px

|P | = eψ(x). It follows that

M/M(J(x)) ∼=
∏

P∈Px

G(OS/P ) is of order approximately Cdx1 where C1 is some

constant and d = dimG. Now fix a (rational) prime q dividing |π(G)|. For
each P ∈ Px, the group G(OS/P ) contains a central element of order q. Thus∏
P∈Px

G(OS/P ) has a central elementary abelian q-subgroup of rank |Px|. It
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follows that M/M(J(x)) has at least q[π(x)2/4] central subgroups and hence that
M has at least

q[π(x)2/4] ≥ q
1

4C2 · x2

(ln x)2

normal subgroups of index at most Cdx1 . This proves that the normal subgroup
growth of M is of type at least nlogn/(log logn)2 as claimed.

We turn finally to the proof of the upper bounds.
Let P be the set of all primes of k which are not in S. Let P1 be the set of

all primes v ∈ P such that:

(a) G(Fv) is a quasi-simple group, where Fv = Ov/mv and G(Fv) is the image
of G(Ov) in GLr(Fv);

(b) if Qv(i) = ker(G(Ov) → G(Ov/mi
v)), then

[Qv(1), Qv(i)] = Qv(i+ 1)

for every i ≥ 1;

(c) the elementary abelian p-group Qv(1)/Qv(2) is a simple G(Fv)-module,
and

(d) If p = 0, the rational prime below v does not divide |π(G)|.

Now, unless G is of Ree type (i.e., p = 2 and G of type F4 or p = 3 and
G of type G2), the set P1 contains almost all primes in P. This is well known
when G splits, but also holds in general (the reader is referred to [Larsen &
Lubotzky] for details and references).

We will leave aside the two exceptional cases when G is of Ree type. Consider
S1 = S ∪ {v | v /∈ P1} and H1 = G(ÔS1) =

∏
v∈P1

G(Ov). One proves by
induction, using properties (a), (b) and (c), that for each open normal subgroup
N of H1, there exists an ideal I of OS1 such that Q(I) ⊆ N ⊂ Z(I) where

Q(I) = kerG(ÔS1) → G(ÔS1/I)

and Z(I) is the preimage in H1 of the centre of G(ÔS1/I) (here I denotes the
closure of I in ÔS1). It now follows, by a similar computation to the one carried
out above for the lower bound, that the normal subgroup growth type of H1 is
n in case (i) and nlogn/(log logn)2 in case (ii).

Now M = H1×H2 where H2 =
∏
v/∈P1∪S G(Ov). The latter is a product of

finitely many groups, each of them having at most polynomial normal subgroup
growth . We claim:

(A) The normal subgroup growth of H2 is at most polynomial.

(B) The normal subgroup growth of M is at most polynomial in case (i) and
at most nlogn/(log logn)2 in case (ii).
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Claim (B) completes the proof of Theorem 6.3, except for groups of Ree type.
For these cases the proof is similar but more care is needed as the modules in
condition (c) are not simple. The reader is referred to [Larsen & Lubotzky] for
details.

Applying Proposition 1.3.6 of Chapter 1 to a group extension of the form
A C A×B we obtain

Lemma 6.4.2 Let H = A×B be a product of two groups. Then

sC
n (H) ≤ sC

n (B)2sC
n (A)zn(A)δn(A)

where

zn(A) = max{|Z(A/D)|
∣∣D C A and |A : D| ≤ n},

δn(A) = max{d(Z(A/D))
∣∣N / A and |A : D| ≤ n}.

To prove Claim (A), we combine this with Theorem 6.4 and Proposition
6.4.1.

Now for Claim (B).
Case (i): the only open normal subgroups of H1 in this case are the prin-

cipal congruence subgroups, and the finite quotients have no centre. It follows
therefore that

sC
n (M) = sC

n (H1 ×H2) ≤ sC
n (H1)sC

n (H2)2,

and so it is polynomially bounded.
Case (ii): We observed above that the normal subgroups of H1 lie be-

tween Q(I) and Z(I) for some I C OS1 . Now if I is an ideal of index ns

which is a product of m prime powers then the Prime Number Theorem im-
plies that m ≤ c log n/ log log n, where c is a constant. So the abelian group
Z(I)/Q(I) has order at most zC logn/ log logn, where z = |π(G)|, and its rank
is at most C ′ log n/ log log n. Thus in the notation of Lemma 6.4.2, zn(H1) ≤
zC logn/ log logn and δn(H1) ≤ C ′ log n/ log log n, while sC

n (H1) ≤ zCC
′(logn/ log logn)2 .

It follows that
sC
n (H) ≤ sC

n (H2)2 · z2CC′(logn/ log logn)2 ,

and the claim follows by (A) (since z is constant).

Notes

Theorem 6.1 is from [Lubotzky 1995a], but the proof of the lower bound
given there relies on a version of the Prime Number Theorem along arithmetic
progressions which is known only modulo the Generalized Riemann Hypothesis.
This gap was subsequently filled in [Goldfeld, Lubotzky & Pyber], where it is
shown that by a different choices of the parameters one can appeal to a theorem
of Linnik and make the proof unconditional. We have preferred, however, to
use Bombieri’s result (also following [Goldfeld, Lubotzky & Pyber]) as that
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result (a) enables to present the proof in a cleaner way and (b) gives a better
constant (in fact the same constant one would get using the GRH). There is,
though, one disavantage to this approach: the prime chosen in the proof, though
its existence is assured by Bombieri, is not explictly specified, and hence nor is
the set of arithmetic subgroups presented to demonstrate the lower bound. To
this extent the proof is non-constructive.

Proposition 6.1.1, comparing level and index, is due to [Lubotzky 1995a].
It has a long history, going back to Galois for the case of SL2(Z) and prime
level; see [Jones 1986] for further references.

The lower bound in Theorem 6.2 is from [Lubotzky 1995a], where a weaker
upper bound (n(logn)2) was also established. The sharp upper bound in Theorem
6.2, and the material on Lie algebras in Section 6.3, are due to Nikolay Nikolov
(unpublished); the short proof of Lemma 6.3.2 given here was suggested by M.
Abért and B. Szegedy.

[Abért, Nikolov & Szegedy] establish a stronger version of Proposition
6.2.2, showing that

dim(L/H′) ≤ dimL+ 7 dim(L/H).

(The proof only applies to the Lie algebras arising, as above, from split simple
algebraic groups.) This implies that the number of subnormal congruence sub-
groups of index at most n in Γ is bounded above by nb logn where the constant
b is independent of the group G; whether the same can be said for the number
of all congruence subgroups of index at most n is at present unclear, because
the constant c in Proposition 6.2.1 does depend on the Lie rank of G.

The results on normal subgroups are all from [Larsen & Lubotzky].
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Chapter 7

The generalized congruence
subgroup problem

We keep the notation of the preceding chapter, restricting attention now to an
algebraic number field k, with ring of integers O = Ok. The set of all primes
(equivalence classes of valuations) of k is denoted Vk, the finite subset of ‘infinite
primes’ (non-archimedean valuations) is V∞, and Vk \ V∞ = Vf ; so Vf may be
identified with the set of non-zero prime ideals of O. For each v ∈ Vk the
v-completion of k is denoted kv.

Throughout, S will denote a finite subset of Vk containing V∞. The ring of
S-integers is

OS = {x ∈ k | v(x) ≥ 0 for all v /∈ S}.

Let G be a connected, simply-connected, simple, algebraic group defined over
k with a fixed embedding G ↪→ GLr. We assume throughout that

• G(kv) is non-compact for every v ∈ S \ V∞

• G(kv) is non-compact for at least one v ∈ S.

In the preceding chapter we determined the congruence subgroup growth of
the S-arithmetic group

Γ = G(OS);

it is of type nlogn/ log logn. What about its subgroup growth? Obviously this
will be the same if every subgroup of finite index is a congruence subgroup, and
it is easy to see that it will still be the same if the following slightly weaker
condition holds: the natural map

Γ̂ → G(ÔS)

has finite kernel (it is an epimorphism, by the Strong Approximation Theorem).
In this case Γ is said to have the congruence subgroup property (CSP). We remark
that if G(kv) were compact for some v ∈ S \ V∞, then the CSP would fail for

139



140CHAPTER 7. THE GENERALIZED CONGRUENCE SUBGROUP PROBLEM

formal reasons (because in that case, G(OS) is commensurable with G(OS′)
where S′ = S \ {v}); so our global hypothesis that G(kv) be non-compact for
each finite v ∈ S is no real loss of generality. (If G(kv) were compact for every
v ∈ S then Γ, being a discrete subgroup of

∏
v∈S G(kv), would be a finite

group.)
The first main result shows that if Γ does not have CSP then its subgroup

growth is significantly faster. In Section 1 we prove

Theorem 7.1 Let Γ = G(OS) be as above and assume that G(k) has the
‘ standard description of normal subgroups’. Then Γ has the congruence sub-
group property if and only if Γ has subgroup growth of type strictly less than
nlogn; that is, if and only if

sn(Γ) = O(nε logn)

for every ε > 0.

The extra hypothesis imposed on G is explained in §7.1; it is conjectured to
hold in all cases, and known to hold in almost all cases.

The theorem shows that when Γ fails to have the congruence subgroup prop-
erty, most of its finite-index subgroups are not congruence subgroups: for in-
finitely many integers n, Γ has at least nc1 logn subgroups of index ≤ n, but no
more than nc2 logn/ log logn of these are congruence subgroups (where c1 and c2
are positive constants). We actually believe (and many known examples support
this) that when the congruence subgroup property fails the subgroup growth is
in fact much faster than nlogn (probably super-exponential).

It follows from the theorem, but is easy to see anyway, that if Γ has the CSP
then no subgroup of finite index in Γ can have a non-abelian free quotient. It is
less obvious but also true that in fact no subgroup of finite index can have an
infinite cyclic quotient; as Γ is finitely generated this is equivalent to saying that
if Γ has the CSP then every finite-index subgroup of Γ has finite abelianisation.
The proof of this is sketched in §7.1 below.

The interest of Theorem 7.1 is that it provides a characterisation of the
arithmetically-defined congruence subgroup property in purely group-theoretic
terms (for further results of this nature, see Chapter 12). An important appli-
cation is that it enables one to formulate the ‘congruence subgroup problem’
without referring to the arithmetic structure of Γ; this is of particular interest
for lattices in semisimple Lie groups. The classical congruence subgroup prob-
lem concerns S-arithmetic groups as above. Such an S-arithmetic group is a
lattice (a discrete subgroup of finite covolume) in a suitable semisimple group.
Here by semisimple group we mean a product H =

∏r
i=1 Gi(Ki) where each Ki

is a local field and Gi is a simple algebraic group defined over Ki. A famous the-
orem of Margulis shows that in many cases, every lattice in H is S-arithmetic.
On the other hand, when r = 1 and G1 has K1-rank equal to 1, it is possible
(sometimes) that H also has non-arithmetic lattices. (The Ki-rank of Gi is the
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maximal dimension of a Ki-split torus in Gi). Using Theorem 7.1 as a guide,
it makes sense to formulate the

Generalized congruence subgroup problem Let Γ be a lattice in a semisim-
ple group over local fields of characteristic 0. Is the subgroup growth type of Γ
strictly less than nlogn? In this case we say that Γ has the generalized congruence
subgroup property.

Serre’s conjecture, which is largely proved by now, asserts, loosely speaking,
that an S-arithmetic lattice in a semi-simple group H has the congruence sub-
group property if and only if the rank of H is at least 2 (see §7.1 for a precise
formulation). In particular, the conjecture implies that the validity of the con-
gruence subgroup property for (arithmetic) lattices Γ in H depends only on H
and not on Γ. This is compatible with other known properties of lattices. Ex-
tending this philosophy to arbitrary lattices in H, it is natural to conjecture that
non-arithmetic lattices never have the generalized congruence subgroup property
(these only exist in groups of rank one, by Margulis’s theorem mentioned above).

In Section 2 we summarize what is known about the subgroup growth of
lattices in rank-1 groups. This is not sufficient to establish the ‘generalized
conjecture’, but all the results support it. Taken together they amount to

Theorem 7.2 Let H = G(K) where K is a local field of characteristic 0 and
G is a simple, connected algebraic group defined over K with K-rank 1. Let Γ
be a lattice in H. Then Γ does not have the generalized congruence subgroup
property in each of the following cases:
(1) if K is non-archimedean;

(2) if K = R and one of the following holds:

(2a) H is locally isomorphic to SO(2, 1) or SO(3, 1);
(2b) H is locally isomorphic to SO(m, 1),m ≥ 4, and either Γ is arithmetic

and m 6= 7 or Γ is one of the (currently) known non-arithmetic lattices;
(2c) H = SU(m, 1) and Γ is an arithmetic lattice of ‘ simple type’, or H =

SU(2, 1) and Γ is one of several non-arithmetic lattices constructed by Livne.

In most cases, one actually proves that Γ has a subgroup of finite index
that has a non-abelian free quotient ; this implies (by Corollary 2.2) that Γ has
subgroup growth of strict type nn. It seems likely that this always holds for
such lattices, the only doubtful cases in the above list being SO(3, 1), some
arithmetic lattices (of ‘complex type’) in SO(m, 1), m odd, and the arithmetic
lattices of simple type in SU(m, 1).

When K is a local field of positive characteristic, uniform lattices in rank-
one groups are virtually free, while the non-uniform ones are not even finitely
generated, and have uncountably many subgroups of finite index.

The arguments in §7.2 are topological and geometric. The debt to geometry
is repaid by the following application, discussed in the final section:
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Theorem 7.3 For n ≥ 4 and r > 0 let ρn(r) denote the number of isomorphism
classes of n-dimensional hyperbolic manifolds of volume at most r. Then there
exist positive constants a = a(n) and b = b(n) such that

rar ≤ ρn(r) ≤ rbr

for all sufficiently large r.

7.1 The congruence subgroup problem

In many cases, for example if G splits over k, it is known that G(k) = G is a
projectively simple group, i.e. G/Z(G) is simple. This is not the case in general.
For example, let H be the Hamiltonian quaternion algebra and G = H1 the
group of quaternions of norm 1. It is well known that if p is an odd prime then
H splits in Qp and hence G(Qp) ∼= SL2(Qp), but H does not split in Q2 and
G(Q2) is a compact, indeed profinite, group. As G(Q2) contains G(Q) this
group is also residually finite, hence has many normal subgroups of finite index.

The Platonov-Margulis conjecture asserts that essentially all normal sub-
groups of G(k) are obtained this way. More formally, let

T = {v ∈ Vf | G(kv) is compact}.

It is known that T is a finite set, and our standing assumption is that

T ∩ S = ∅.

Let δ : G(k) → GT =
∏
v∈T G(kv) be the diagonal embedding of G(k) into the

profinite group GT =
∏
v∈T G(kv).

Platonov-Margulis Conjecture For every non-central normal subgroup N
of G = G(k) there exists an open normal subgroup Ñ of GT such that N =
δ−1(Ñ). In this case one says that G has the standard description of normal
subgroups.

The Platonov-Margulis conjecture has been proved in almost full generality
(see [PR], Chapter 9 and [Segev 1999]). Margulis has also proved that in any
case, every non-central normal subgroup of G = G(k) has finite index. We will
assume throughout the section that G has the standard description of
normal subgroups. Note that if T is empty, as is the case for example if G
splits or even quasi-splits, this implies that G is projectively simple.

The standing assumption that GS =
∏
v∈S G(kv) is non-compact, which is

equivalent to
rankSG =

∑
v∈S

rankkv (G) ≥ 1,

implies that the S-arithmetic group Γ = G(OS) is infinite; in this case Γ is a
lattice (i.e. a discrete subgroup of finite covolume) in GS .
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The congruence subgroup problem concerns the family of all finite-index sub-
groups of Γ. As every non-zero ideal of OS has finite index, the principal con-
gruence subgroups Γ(J), and hence all congruence subgroups of Γ, have finite
index. The classical congruence subgroup problem asks whether these are all
the subgroups of finite index in Γ.

A modern reformulation is due to Serre. Consider G = G(k) as a topological
group with two topologies. The arithmetic topology is defined by taking as a
base of neighbourhoods of the identity the family of all finite-index subgroups of
Γ. The S-congruence topology is defined similarly by taking just the congruence
subgroups of Γ. Let Ĝ (resp. G̃) be the completion of G with respect to the
arithmetic (resp: S-congruence) topology. Note that Ĝ is not the profinite
completion of G, which may have no proper subgroups of finite index; but the
closure Γ̂ of Γ in Ĝ is indeed the profinite completion of Γ. By the strong
approximation theorem for G (# Strong Approximation), G(k) is dense in
G(AS), where AS is the ring of S-adeles of k; then G̃ is isomorphic to G(AS)
and the closure Γ̃ of Γ in G̃ is isomorphic to G(ÔS); this is the congruence
completion of Γ.

The arithmetic topology is stronger than the S-congruence topology and
hence the identity map on G extends to an epimorphism π : Ĝ→ G̃. We put

C = C(G, S) = kerπ.

It follows from the definitions that C ≤ Γ̂, and we have the exact sequence

1 → C → Γ̂ → Γ̃ → 1.

If indeed every finite-index subgroup of Γ is a congruence subgroup, then the
two topologies are the same and π is an isomorphism, so C = 1. Otherwise C
is non-trivial. In any case, C is a profinite group.

Proposition 7.1.1 One of the following holds:
(a) C(G, S) is finite and central, or
(b) C(G, S) is not finitely generated as a topological group.

In view of this strong dichotomy, and since for most applications (e.g. super-
rigidity – see [Bass, Milnor & Serre 1967]) the finiteness of kerπ suffices, we make
the following

Definition Γ = G(OS) is said to have the congruence subgroup property (CSP)
if C(G, S) is finite (and hence central).
Warning: some authors call this the “weak congruence subgroup property”,
keeping “congruence subgroup property” to its original meaning, i.e. kerπ = 1.

If Γ has CSP then it has subgroup growth of strict type nlogn/ log logn, by
Theorem 6.1 and Proposition 1.11.2. So to complete the proof of Theorem 7.1
it remains to establish

Proposition 7.1.2 If Γ = G(OS) does not have CSP then Γ has subgroup
growth of type at least nlogn.
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This will occupy the rest of this section. We shall assume for simplicity that
in fact T is empty, so that G is projectively simple; for the general case see
[Lubotzky 1995a].

We begin by sketching the proof of Proposition 7.1.1. Suppose that (b) does
not hold, i.e. that C is finitely generated as a profinite group. The infinite
simple group G/Z(G) acts on C via conjugation in Ĝ, and the action cannot
be faithful because the group of (continuous) automorphisms of C is residually
finite (indeed a profinite group; see for example [DDMS], §5.3). Hence the action
is trivial, which means that C is centralized by G, and hence central in Ĝ as G
is dense.

Before proceeding we remark that the same argument shows the following
(whether or not C is finitely generated):

(\) If M is an open subgroup of C which is invariant under conjugation by G

(or equivalently normal in Ĝ) then [C, Ĝ] ≤M.

In the present case, we see that Ĝ is a central extension of the adelic group G̃ ∼=
G(AS). This implies that C is a quotient of the ‘metaplectic kernel’ M(G, S),
which is always a finite group: see [PR], §9.5, [Prasad & Raghunathan 1983].
Thus (a) holds.

The next step is the following result, which was essentially proved in [Rap-
inchuk 1990] and called ‘Rapinchuk’s Lemma’ in [Lubotzky 1995a]:

Proposition 7.1.3 If Γ does not have the congruence subgroup property, then
there exist the following: a subgroup Γ0 of finite index in Γ, a profinite group E
containing Γ0 as a dense subgroup, and an exact sequence of profinite groups

1 →W → E → H → 1, (∗)

where
� W is the Cartesian product of infinitely many copies of a fixed non-trivial
finite simple group F , and
� H is an open subgroup of the congruence completion Γ̃ of Γ.
Furthermore, if F is abelian then
� H can instead be taken to be a pro-p group of finite rank, for some prime p.

Proof. (Sketch) Let K = [C,G] denote the closure of [C,G] in Ĝ. Then
1 → C/K → Ĝ/K → G̃ → 1 is a central extension of G̃, since G is dense in
Ĝ. It follows from the ‘Metaplectic Theorem’ mentioned above that C/K is
finite. So K is open in C and normal in Ĝ. Let M be a maximal proper open
normal subgroup of K, so K/M = F is a non-trivial finite simple group. Now
N =

⋂
g∈GM

g is a closed normal subgroup in Ĝ. If N has finite index in C,
then by (\) we have M ≥ N ≥ [C, Ĝ] = K, a contradiction; N therefore has
infinite index in K. Moreover K/N is a subcartesian product of copies of F (a
subgroup of

∏
g∈GK/M

g which maps onto each factor). As F is a finite simple
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group, it follows that K/N is isomorphic to an infinite Cartesian product of
copies of F (actually the number of factors is countable because G = G(k) is a
countable group).

We now have the exact sequence

1 → C/N → Ĝ/N → G̃→ 1,

and as C ≤ Γ̂ ≤ Ĝ this induces an exact sequence

1 → C/N → Γ̂/N → Γ̃ → 1.

Replacing Γ with a suitable finite index subgroup Γ0 which satisfies Γ̂0∩C = K,
we get

1 → K/N → Γ̂0/N → Γ0 → 1

where Γ0 is the closure of Γ0 in G̃ = G(ÔS). So the main part of the proposition
is proved with E = Γ̂0/N and W = K/N ∼= Fℵ0 .

When F is abelian, one can take H to be a suitable open subgroup of Γ̃ ∩
G(kv), for some v ∈ V \S. The latter is virtually a pro-p group for the rational
prime p lying under v, so its sufficiently small open subgroups are pro-p groups.
For details of the proof see [Lubotzky 1995a], (5.3).

We can now complete the proof of Proposition 7.1.2. Suppose that Γ does
not have the congruence subgroup property. We have to show that the subgroup
growth type of Γ is at least nlogn. Now let E be the profinite group given in
Proposition 7.1.3. Since the profinite completion of Γ0 maps onto E, it will
suffices to prove that the subgroup growth of E is at least that fast. Given what
we know about E, the argument now follows a pattern familiar from Sections 3
and 4 of Chapter 5.

Case 1. Where the finite simple group F is non-abelian. Now the upper
composition factors of E are either congruence images of G(OS) or else isomor-
phic to F ; consequently every finite quotient of E belongs to the class Bc of
groups satisfying the ‘Babai-Cameron-Pálfy condition’, relative to some bound
c (# Permutation groups). We now apply

Lemma 7.1.4 Let Q be a finite group belonging to the class Bc, and suppose
that Q has a normal subgroup N isomorphic to F (m) for some non-abelian simple
group F. Let n = |Q : CQ(N)| . Then

sn(Q) ≥ nA logn

where A > 0 depends only on c and F .

This is proved below. Now let K be any open normal subgroup of E. Then
KW/K ∼= F (m) for some m, and applying the lemma to Q = E/K we deduce
that sn(E) ≥ nA logn where n = |E : CE(KW/K)|. Since F (m) has trivial
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centre, it is clear that n ≥ |KW/K| = |K : K ∩W | ; as W is infinite, n takes
arbitrarily large values as K ranges over all the open normal subgroups of E,
and it follows that the subgroup growth type of E is at least nlogn.

Proof of lemma 7.1.4 Replacing Q by Q/CQ(N) we may assume that
Q acts faithfully by conjugation on N, and n = |Q|. Now Q permutes the m
simple factors of N , with kernel K, say. Then K is isomorphic to a subgroup
of Aut(F )(m), so |K| ≤ |F |2m because F can be generated by 2 elements (#
Finite simple groups). Also Q/K is isomorphic to a subgroup of Sym(m),
and Theorem 8 of the Permutation groups window implies that |Q/K| ≤ bm

for some b depending only on c. Thus n ≤ bm |F |2m and log n ≤ mB where
B = b |F |2 .

On the other hand, N contains an elementary abelian subgroup of order pm

for some prime p | |F | (of course we can take p = 2, by the Odd Order theorem);
hence Q has at least p[m

2/4] subgroups. Then

log sn(Q) = log s(Q) ≥
[
m2/4

]
≥ A(log n)2

where A = (8B)−1, say. The lemma follows.

Case 2. Where F is abelian. In this case W is an infinite elementary abelian
q-group for some prime q, and we have the exact sequence (∗) in which H is
now a pro-p group.

If p = q then E is a pro-p group of infinite rank, hence E has subgroup
growth type at least nlogn, by Theorem 4.2.

We are left with the case where p 6= q. Let K be any open normal subgroup
of E and put Y = CE(KW/K). Then KW/K ∼= Fmq for some m, and E/Y is a
finite p-group acting faithfully on KW/K. It follows that |E/Y | ≤ (2q)m ≤ q2m

(# Finite group theory). Now Y/KW is also a p-group, so Y/K is nilpotent
and therefore equals KW/K × D/K for some open normal subgroup D of E.
Then Y/D ∼= Fmq contains at least q[m

2/4] subgroups, each of which corresponds
to an open subgroup of index at most |E : D| ≤ q3m in E. Hence for n = q3m

we have

log sn(E) ≥
[
m2/4

]
log q

≥ A(log n)2

where A = (72 log q)−1, say. As above, the fact that W is infinite implies that n
takes arbitrarily large values, and again we conclude that the subgroup growth
type of E is at least nlogn. This completes the proof of Proposition 7.1.2, and
with it the proof of Theorem 7.1.

Remark. A sufficient condition for C(G, S) = C to be infinite is that Γ possess
an infinite virtually abelian quotient. Indeed, if this holds and C is finite then
Γ̃ = Γ̂/C also has such a quotient. Since Γ̃ ∼=

∏
p6∈S G(Op) it follows that G(Op)

has a non-trivial abelian qotient for infinitely many p; this contradicts the fact
that G(Op) is a perfect group for almost all p (see §6.1).
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7.2 Subgroup growth of lattices

By a semisimple group we mean a product H =
∏r
i=1 Gi(Ki) where for each i,

Ki is a local field and Gi is a connected simple algebraic group over Ki. The
rank of H is defined to be

rank(H) =
r∑
i=1

rankKi
(Gi)

where rankK(G) denotes the maximal dimension of a K-split torus in G. We
assume throughout that none of the Gi(Ki) is compact (this is equivalent
to rankKi

(Gi) ≥ 1 for each i).
A discrete subgroup Γ of a locally compact topological group H is called a

lattice if H/Γ carries a finite H-invariant measure. Γ is uniform (or cocompact)
if H/Γ is compact, and non-uniform otherwise. A lattice Γ in H is called
irreducible if no finite index subgroup of Γ can be represented in the form of a
direct product of two infinite groups.

Irreducible lattices in a semisimple group H are always finitely generated
except when r = 1, K1 is a local field of positive characteristic, and Γ is a
non-uniform lattice in H = G1(K1). For this, and other facts about lattices,
see the book [M] of Margulis.

The S-arithmetic groups discussed above provide important examples of
irreducible lattices. Let k be a global field, S ⊇ V∞ a finite subset of Vk, and G
an absolutely almost simple algebraic group defined over k. Then Γ = G(OS) is
an irreducible lattice of G =

∏
v∈S G(kv), via the diagonal embedding. This is

a well known result of Borel and Harish-Chandra (in the characteristic 0 case)
and Behr and Harder (in the positive characteristic case).

Now let H be a semisimple group and Γ an irreducible lattice of H. Then Γ
is called arithmetic if there exist k,G and S as above and a continuous epimor-
phism ϕ : G =

∏
v∈S G(kv) → H, with compact kernel, such that ϕ(G(OS)) is

commensurable to Γ.
The celebrated theorem of Margulis is

Theorem 7.2.1 If rank(H) ≥ 2 then every irreducible lattice in H is arith-
metic.

Our main focus in this section is the subgroup growth of lattices in semisim-
ple groups. For arithmetic lattices there is the

Conjecture [Serre 1972] Let G be a simple simply connected algebraic group
over a global field k, satisfying our non-compactness assumptions w.r.t. the
set S. Then Γ = G(OS) has the congruence subgroup property if and only if
rankSG ≥ 2.

Recall that
rankSG = rank(G) =

∑
v∈S

rankkv
(G(kv)).
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Now, the affirmative part of Serre’s conjecture (i.e. that Γ has the congruence
subgroup property if rankS(G) ≥ 2) has been proved in many cases (see [PR]
§9.5 and [Rapinchuk 1997]). In these cases Theorems 6.1 and 6.2 give the
subgroup growth of Γ. We should mention that the assumptions of simple
connectedness and non-compactness of G(kv) for v ∈ S \ V∞ are not really
essential as regards the subgroup growth of Γ (for the first, Γ may be replaced
by a suitable covering group with finite kernel, and for the second by a suitable
subgroup of finite index).

For groups of S-rank 1 the situation is less clear. Note also that Margulis’s
Theorem allows for the existence of non-arithmetic lattices.

Before going further, let us call the attention of the reader to the fact that
Serre’s conjecture on the congruence subgroup problem implies in particular that
the answer to this problem for an arithmetic group G(OS) does not depend on
the arithmetic group, but rather on the ambient semisimple group in which it
sits as a lattice (and actually only on its rank). We have seen in Theorem 7.1
that the congruence subgroup property is eventually a question of the subgroup
growth type of the arithmetic group. Putting this together, we would expect
that all lattices SO(n, 1) and SU(n, 1) should fail to have the generalized CSP,
as we know that some of them do; as these are the simple real Lie groups that
have non-arithmetic lattices, we should therefore expect that the generalized
CSP fails for every non-arithmetic lattice. This would be so if the following
conjecture is verified:

Conjecture Let H be a semisimple group and Γ1, Γ2 two irreducible lattices
in H. Then the subgroup growth type of Γ1 is the same as the subgroup growth
type of Γ2, unless one of them is not finitely generated.

(Recall that H can contain a non-finitely generated lattice only if it is a rank-1
group over a local field of positive characteristic.)

We should mention however that the conjecture is not true for more general
topological groups H. For example, some arithmetic groups are also lattices
in H = Aut(Xp+1) × Aut(Xq+1), where p and q are primes and Xr denotes
the r-regular tree, while [Burger & Mozes 2000] have constructed lattices in H
which are simple groups and so have no proper subgroups of finite index.

If indeed Serre’s conjecture is valid and arithmetic lattices in higher rank
semisimple groups do have the congruence subgroup property, then combining
this with Margulis’s arithmeticity result and using Theorem 6.1, one can see
that our conjecture holds at least in the case of higher-rank groups. Thus its
main new content concerns rank one groups, where non-arithmetic lattices are
possible. Let us see what can be said in this case.

We shall say that a group Γ is of VF type if Γ contains a normal subgroup
Γ0 of finite index such that Γ0 has a non-abelian free quotient.
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Case 1: Non-archimedean fields

Theorem 7.2.2 Let K be a non-archimedean local field and H = G(K) a
simple group of K-rank 1. Let Γ be a lattice in H.

(i) If Γ is uniform then Γ is virtually free.

(ii) If Γ is non-uniform then Γ is not finitely generated, and there exists n
such that Γ has uncountably many subgroups of index n.

Case (ii) only occurs when char(K) is positive (see e.g. [Tits 1979]).
Proof. (See [Sr] Chapter II, §§1.7, 2.6). To each simple K-group H is

associated a Bruhat-Tits building : this is an aspherical building X of dimension
equal to rank(H), on which H acts so that H \ X is a finite complex. In our
case X is a tree. If Γ is cocompact then Γ \ X is a finite graph, and Γ is
the fundamental group of a finite graph of finite groups. Hence it is finitely
generated and virtually free.

If Γ is a non-uniform lattice, then it is a “non-uniform tree lattice” in the ter-
minology of [Bass & Lubotzky 2001], and hence not finitely generated. Moreover
from the structure theorem proved in [Lubotzky 1991] it follows that Γ has a
subgroup of finite index m with an infinite elementary abelian p-quotient, where
p = char(K). Evidently Γ then has uncountably many subgroups of index mp.

Case 2: K = C
Here there is (up to local isomorphism) just one rank-one group.

Proposition 7.2.3 Let Γ be a lattice in SL2(C). Then Γ has subgroup growth
of type at least n(logn)2−ε

for every ε > 0.

We will deduce this from Theorem 4.6.4: this says that if P is a finitely
presented pro-p group having subgroup growth of type at most n(logn)2−ε

for
some ε > 0, then every minimal pro-p presentation of P must satisfy the Golod-
Shafarevich inequality. Suppose we can show that Γ has a subgroup ∆ of finite
index such that (some minimal presentation of) P = ∆̂p does not satisfy the
Golod-Shafarevich inequality: that is, P has a pro-p presentation on d(P ) gen-
erators and r relations where r < d(P )2/4. We may then conclude that the
subgroup growth type of P is at least n(logn)2−ε

for every ε > 0, and hence that
the same holds for ∆ and for Γ.

We may assume that Γ is torsion-free. Now Γ is not a virtually soluble
group because it is Zariski-dense in SL2(C) ([Ra], Cor. 5.16). It follows that
Γ has infinite upper p-rank for every prime p, by Corollary 18 in the Strong
approximation window; in fact we only need the fact that Γ has upper p-rank
at least 5 for one prime p. In any case this means that some subgroup ∆ of finite
index in Γ satisfies

d(∆̂p) ≥ 5.

We now appeal to the following result due to [Epstein 1961]:
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Proposition 7.2.4 If ∆ is a torsion-free lattice in SL2(C) then ∆ has a finite
presentation 〈X;R〉 such that |R| ≤ |X|.

We sketch the proof for the case where ∆ is uniform, i.e. ∆\SL2(C) is compact.
Let H = SL2(C)/SU(2) denote the 3-dimensional hyperbolic space. Then M =
∆ \H is a 3-dimensional hyperbolic manifold, compact by our hypopthesis, and
∆ ∼= π1(M). Take a cell decomposition for M with Ci i-cells, i = 0, 1, 2, 3, where
C3 = 1. A presentation for π1(M) can be obtained from this decomposition:
the generators correspond to edges outside a maximal subtree and the relations
are given by the 2-cells. This gives C1 − (C0 − 1) generators and C2 relations,
so we only need to show that

C1 − C0 + 1− C2 ≥ 0.

But C1 − C0 + 1− C2 is equal to the Euler characteristic of M, which is equal
to 0 by Poincaré duality.

The proof for the non-uniform case is similar. In fact [Epstein 1961] proves
more precisely that the deficiency of ∆, namely the maximum of |X| − |R| over
all finite presentations 〈X;R〉 of ∆, is equal to 0 if ∆ is uniform and equal to 1
otherwise.

The same presentation 〈X;R〉 may be taken as a pro-p presentation for the
pro-p completion P = ∆̂p of ∆ (# Profinite groups). It is shown in the
Pro-p groups window that P then has a pro-p presentation 〈Y ;S〉 such that

|Y | = d(P )
|S| = |R| − (|X| − |Y |).

Since |X| ≥ |R| and d(P ) ≥ 5 this gives

|S| ≤ |Y | < |Y |2 /4.

Thus we have a minimal presentation for P that violates the Golod-Shafarevich
inequality, and the proof is complete.

Proposition 7.2.3 shows that, as expected, lattices in SL2(C) don’t have
the generalized CSP. However it gives only a rather weak lower bound for the
subgroup growth. In many cases (probably all in fact), the growth is much
faster. In particular, the following are known:

(i) Every non-uniform lattice in SL2(C) is of VF type [Cooper, Long & Reed
1997], [Grunewald & Noskov].

(ii) Let Γ be a torsion-free uniform lattice in SL2(C) such that Γ/[Γ,Γ] is finite.
Then there exists α > 0 such that sn(Γ) ≥ 2n

α

for infinitely many values
of n [Reznikov & Moree 1997].



7.2. SUBGROUP GROWTH OF LATTICES 151

Since SL2(C) is locally isomorphic to SO(3, 1), some of the examples dis-
cussed in the next subsection provide further instances of (uniform) lattices in
SL2(C) that are of VF type. It is not known however if every uniform lattice
in SL2(C) has this property. A well-known conjecture of Thurston asserts that
every lattice in SL2(C) has a subgroup of finite index that maps onto Z (or in
geometric formulation: every compact hyperbolic 3-manifold has a finite-sheeted
cover with positive first Betti number). But at present this conjecture is wide
open.

Case 3: K = R
We turn finally to the most interesting case, where H is a real rank-one group. It
is known that H is locally isomorphic to one of the following: SO(m, 1) (m ≥ 2),
SU(m, 1) (m ≥ 2), Sp(m, 1) (m ≥ 2) or F (−20)

4 .
Now SO(2, 1) is locally isomorphic to SL2(R) and SO(3, 1) is locally isomor-

phic to SL2(C). The second case has been dealt with above, and the first is
easy:

Proposition 7.2.5 Every lattice in SL2(R) is of VF type .

Proof. Let Γ be a lattice in SL2(R). Replacing Γ by a subgroup of finite
index, we may suppose that Γ is torsion-free. Then identifying the upper half-
plane H with SL2(R)/SO(2), we find that Γ is isomorphic to the fundamental
group π1(M), where M = Γ\H is a Riemann surface of genus g ≥ 2 with r
puncture points say. Now π1(M) has a presentation〈

a1, b1, . . . , ag, bg, c1, . . . , cr ;
g∏
i=1

[ai, bi]
r∏
j=1

cj = 1

〉
.

IfM is compact, then r = 0 and π1(M) maps onto the free group on g generators:
add the relations ai = bi, i = 1, . . . , g. (Note that g ≥ 2 because the the torus
of genus 1 is not covered by H.) If M is not compact then r ≥ 1 and π1(M) is
free on the 2g + r − 1 generators a1, b1, . . . , ag, bg, c1, . . . , cr−1.

Next we consider the groups SO(m, 1) where m ≥ 3. First the arithmetic
lattices: except when m = 3 or m = 7, these are of two kinds:

I The lattices of simple type: Let k be a totally real number field with ring
of integers O, and σ1 = id, σ2, . . . , σr the r = (k : Q) distinct embeddings
of k into R. Let f be a diagonal quadratic form in m + 1 variables over
k, say f =

∑m+1
i=1 aix

2
i . Assume that f is of type (m, 1) while fσi is

positive definite (i.e. of type (m + 1, 0)) for i = 2, . . . , r, (where fσj =∑m+1
i=1 σj(ai)x2

i ). Then SO(f,O) is a lattice in
∏r
i=1 SO(fσi ,R). As the

last r−1 factors are compact (isomorphic to SO(m+1)), the projection of
SO(f,O) into the first factor SO(f,R) ∼= SO(m, 1) is an arithmetic lattice
there.
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II The lattices of complex type (which exist only if m is odd). Let k be a
totally real number field, D a quaternion algebra over k with the involution
σ given by σ(x) = tr(x)− x (x ∈ D). Let m = 2d− 1, V a d-dimensional
D-vector space and h : V × V → D a a non-degenerate skew-Hermitian
form (so that for λ, µ ∈ D and v, w ∈ V , h(λv, µw) = σ(λ)h(v, w)µ.) Let
G = SU(h) be the special unitary group of this form h. Assume that h
was chosen in such a way that G(k ⊗ R) ∼= SU(m, 1) × C where C is a
compact group. If O is the ring of integers of k, then the projection Γ
of G(O) to SU(m, 1) is an arithmetic lattice (see [Vinberg & Shvartsman
1993] or [Li & Millson 1993] for details).

Proposition 7.2.6 Every arithmetic lattice of simple type in SO(m, 1) (m ≥
3) is of VF type .

Proposition 7.2.7 If Γ is an arithmetic lattice of complex type in SO(m, 1)
(m ≥ 3) then Γ does not have the congruence subgroup property.

Proposition 7.2.7 is the accumulation of the work of several authors; see
[Lubotzky 1996a)] for a unified approach. As the proof does not give any new
information on the subgroup growth we won’t go into the details here; the main
point of the proof is to show the existence of some congruence subgroup of Γ
with an infinite abelianization. It is well known that this suffices to contradict
the congruence subgroup property.

On the other hand we will prove Proposition 7.2.6, as the method will also
be used again below. The proof depends on the following observation:

Lemma 7.2.8 Let Γ be group and assume that one of the following holds:
(i) Γ = A1 ∗

B
A2, a free product with amalgamation, or

(ii) Γ = A∗B, an HNN-extension of A over a subgroup B.
Suppose that there exists an epimorphism π : Γ → C of Γ onto a finite group C
such that

• in case (i) π(B) is a proper subgroup of both π(A1) and π(A2) and has
index at least 3 in one of them,

• in case (ii) π(B) is a proper subgroup of π(A).

Then Γ has a subgroup of finite index that maps onto a non-abelian free
group.

This is a consequence of the universal properties of amalgamated free prod-
ucts and HNN extensions, and the fact that the groups π(A1) ∗

π(B)
π(A2) and

π(A)∗π(B) are virtually free when the constituents are finite groups and their
relative indices satisfy the given inequalities (see for example [Sr] Chapter II,
§2.6).

If B is closed in the profinite topology of Γ, then the epimorphisms from Γ
onto finite groups separate the cosets of B, and we may infer
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Corollary 7.2.9 Let Γ be as in Lemma 7.2.8. Assume that B is closed in the
profinite topology of Γ and that (|A1 : B| − 1)(|A2 : B| − 1) > 1 in case (i) or
|A : B| > 1 in case (ii). Then Γ has a subgroup of finite index that maps onto
a non-abelian free group.

We now apply this to prove Proposition 7.2.6. We may choose an ideal J of
O so that the congruence subgroup Γ(J) is contained in the identity component
SO0(m, 1) of SO(m, 1), see [Millson 1976]. Write Γm = Γ(J). As explained in
Millson’s paper, there is a reflection τ through the hyperplane x1 = 0 which
normalizes Γm. Let Γm−1 be the centralizer of τ in Γm; then Γm−1 is the
principal congruence subgroup modulo J in the subgroup of SO(m− 1, 1) that
preserves the restriction of f to the hyperplane x1 = 0, and Γm−1 is a lattice in
SO0(m−1, 1). Moreover, Ym−1 = Γm−1\SO0(m−1, 1)/SO(m−1) is an embed-
ded totally geodesic hypersurface of the manifold Ym = Γm \SO0(m, 1)/SO(m).
This implies that Γm = π1(Ym) is equal to either A1 ∗

B
A2 or A∗B , where

B = Γm−1 and A1 and A2 (or A) are subgroups of Γm: the first case occurs
if Ym−1 separates Ym, the second case otherwise. In either case, B = Γm−1,
being a congruence subgroup of a Zariski-closed subgroup of Γm, is closed in
the profinite topology of Γm. We may therefore apply Corollary 7.2.9 and infer
that Γm has a subgroup of finite index that maps onto a non-abelian free group.
The proposition follows since Γm has finite index in Γ.

The lattices of simple type for m = 3 include the groups SL2(Z[
√
−d) where

d is a square-free positive integer, so these groups also virtually map onto free
groups (a result proved by different methods in [Grunewald & Schwermer 1981];
see also [Elstrodt, Grunewald & Mennicke 1998], Chapter 7). There are further
arithmetic lattices in SO(3, 1), which are of neither simple nor complex type,
coming from the units of some quaternionic algebras; Proposition 7.2.3 shows
that they all have subgroup growth of type at least n(logn)2−ε

, but in general
their precise growth type is not known.

For m = 7 there are also some additional lattices, coming from the triality
phenomenon of D4. Nothing is known about the congruence subgroup problem
(or the subgroup growth) for these lattices.

There are two known methods to construct non-arithmetic lattices in SO(m, 1).

I. Certain groups generated by reflections; these exist for small values of m
(2 ≤ m ≤ 10); see [Vinberg & Shvartsman 1993] for history and details.

II. The so-called “interbreeding lattices” constructed for every m by [Gromov
& Piatetskii-Shapiro 1988]; see also [Vinberg & Shvartsman 1993].

As we are going to use the interbreeding lattices in §7.3, we will sketch their
construction. Let f and f ′ be two diagonal quadratic forms defined over the
same number field k. Let f0 and f ′0 be their restrictions to the hyperplane x1 =
0. We will assume that f and f ′ are not equivalent over k, but that f0 and f ′0
are equivalent. We now take an ideal J and Γm,Γ′m, Γm−1, Γ′m−1, Ym, Y

′
m, Ym−1
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and Y ′m−1 to be as in the above proof, where symbols with ′ refer to f ′. Our
assumptions mean that Ym and Y ′m are not isometric to each other but Ym−1

and Y ′m−1 are. Assume for simplicity that Ym−1 (resp. Y ′m−1) separates Ym
(resp. Y ′m) into two disjoint pieces Z1 and Z2 (resp. Z ′1 and Z ′2). Now let
M be the m-dimensional manifold obtained by gluing Z1 and Z ′2 along their
boundaries (which are Ym−1 and Y ′m−1 respectively – these are isometric so the
gluing is possible). Being hyperbolic manifolds means that the curvature at
every point is −1. As curvature is a local property, M is a hyperbolic manifold
whose fundamental group Γ0 = π1(M) is a lattice in SO(m, 1). As explained in
[Gromov & Piatetskii-Shapiro 1988], Γ0 is a non-arithmetic lattice.

In group theoretic terms Γ0 is obtained as follows: after suitable conjugation
in SO(m, 1) we can assume that Γm−1 = Γ′m−1 and then Γm = A1 ∗

Γm−1
A2 and

Γ′m = A′1 ∗
Γ′m−1

A′2 where Ai = π1(Zi) and A′i = π1(Z ′i) for i = 1, 2. Now, Γ0 is the

subgroup generated by A1 and A′2, and as Ym−1 separates M , Γ0 = A1 ∗
Γm−1

A′2.

Also Γm−1 = Γ0 ∩ SO(m − 1, 1) is Zariski-closed in Γ0, hence closed in the
profinite topology of Γ0. So Corollary 7.2.9 implies that Γ0 has a subgroup of
finite index that maps onto a non-abelian free group.

A common generalization of what we have shown so far is

Theorem 7.2.10 Let M be an oriented m-dimensional hyperbolic manifold of
finite volume. Assume that M has a codimension-one totally geodesic subman-
ifold. Then π1(M) is of VF type .

The proof, which is quite similar to the special cases seen above, can be found
in [Lubotzky 1996(b)]. This result includes also the case where the lattice
Γ in SO(m, 1) is inside a group generated by reflections (or just contains a
reflection), since in that case the fixed-point set of the reflection is a totally
geodesic submanifold of codimension one. We can therefore deduce:

Corollary 7.2.11 Let Γ be a non-arithmetic lattice in SO(m, 1) which is either
generated by reflections or else of ‘interbreeding’ type. Then Γ is of VF type .

Let us mention that this corollary covers all the known examples of non-
arithmetic lattices in SO(m, 1) for m ≥ 4.

So far we have summarized what we know on the subgroup growth of lattices
in SO(m, 1). We turn now to SU(m, 1). Here the story is much shorter as we
know very little.

In SU(m, 1) there are also arithmetic lattices similar to those of simple type
in SO(m, 1), namely the integral matrices preserving suitable Hermitian forms.
For these, it was shown by Kazhdan, Shimura and Borel & Wallach that there
exists a congruence subgroup with an infinite abelian quotient (see [Lubotzky
1996a)]. Hence, again, they do not have the congruence subgroup property and
so have subgroup growth type at least nlogn. But there are more arithmetic
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groups. It is interesting to mention that for some of these, every congruence
subgroup has finite abelianisation (though it is not known if the same holds for
all subgroups of finite index) – see [Rogawski 1990], Theorem 15.3 and [Clozel
1993]. It is therefore difficult to predict at this point whether they have the
congruence subgroup property or not (of course, Serre’s conjecture predicts that
they do not!). Nor can we say anything about their subgroup growth (beyond
the fact that it is of type at least nlogn/ log logn, provided by the congruence
subgroups).

For m = 2 and 3, some non-arithmetic lattices in SU(m, 1) are known (see
[Deligne & Mostow 1993]. Also for them we do not know the subgroup growth,
except for one of the lattices in SU(2, 1) constructed by Livne and described in
[Deligne & Mostow 1993], §16. This lattices has a non-abelian free quotient; it
is the only lattice in SU(m, 1) whose subgroup growth type is known.

We turn now to the last remaining cases Sp(m, 1) and F (−20)
4 . Let us recall

right away that by results of [Corlette 1992] and [Gromov & Schoen 1992], all
lattices in Sp(m, 1) and in F

(−20)
4 are arithmetic. According to Serre’s conjec-

ture, these arithmetic lattices are not supposed to have the congruence subgroup
property. But it should be mentioned that Serre’s conjecture is in doubt for these
cases: since 1972 when Serre made his conjecture, it has been discovered that
lattices in Sp(m, 1) and in F (−20)

4 behave in many ways (though not in all ways)
like lattices in higher rank groups, e.g. they have Kazhdan’s property (T ) and
super-rigidity. (Recall also that super-rigidity follows from the CSP). On the
other hand, there are good reasons to believe that these lattices do not have
the CSP: the cocompact ones are hyperbolic groups and as such have plenty of
normal subgroups of infinite index, while in all cases where the CSP has been
proved, it has also been proved that every non-central normal subgroup is of
finite index. Anyway, the answer to the congruence subgroup problem is not
known for any single lattice in these groups. Neither do we know the subgroup
growth type.

7.3 Counting hyperbolic manifolds

The following was proved by [Wang 1972]:

Theorem 7.3.1 For m ≥ 4 and 0 < r ∈ R, there is only a finite number of
m-dimensional hyperbolic manifolds of volume at most r (up to isomorphism).

[Carlip 1997] and [Carlip 1998], motivated by questions from theoretical
physics, raised the question of quantitative estimates for these finite numbers.

Isomorphism classes of m-dimensional hyperbolic manifolds of volume r are
in one-to-one correspondence with conjugacy classes of torsion-free lattices of
covolume r (with respect to a suitable fixed normalization of the Haar measure)
in SO(m, 1). In fact, Wang’s Theorem is much more general than our statement:
it applies to all lattices (not necessarily torsion free) and most semisimple Lie
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groups. Writing ρG(r) to denote the number of conjugacy classes of lattices of
covolume at most r in a group G, his result is

Theorem 7.3.2 Let G be a semisimple real Lie group without compact fac-
tor, and assume also that no factor of G is locally isomorphic to PSL2(R) or
PSL2(C). Then ρG(r) is finite for every positive real number r.

Counting conjugacy classes of lattices in Lie groups can be thought of as a
generalisation of counting finite index subgroups, since in a discrete group (for
which the Haar measure of a finite subset is its cardinality) the finite index
subgroups are exactly the subgroups of finite covolume. Moreover, it turns out
that subgroup growth plays a crucial role in the proof of the lower bound of the
following result, which is the response to Carlip’s question:

Theorem 7.3.3 For each m ≥ 4, there exist positive real numbers a = a(m)
and b = b(m) such that

rar ≤ ρm(r) ≤ rbr

for all large r, where ρm(r) is the number of (isomorphism types of) m-dimensional
hyperbolic manifolds of volume at most r.

We give here only the proof of the lower bound, which is based on subgroup
growth. For the proof of the upper bound see [Burger, Gelander, Lubotzky &
Mozes]. The proof depends on the following theorem of Margulis:

Theorem 7.3.4 [M] Let Γ be a finitely generated irreducible lattice in a semisim-
ple group H without compact factors. If Γ has infinite index in its commensu-
rator then Γ is arithmetic.

Here, the commensurator of Γ is the group

commH(Γ) =
{
h ∈ H | Γh ∩ Γ has finite index in both Γ and Γh

}
.

Fix m ≥ 4 and let Γ be one of the “interbreeding lattices” in SO(m, 1)
described in the preceding section. Thus Γ is a torsion-free non-arithmetic
lattice, of finite covolume v0 say in SO(m, 1), and by Corollary 7.2.11 there
exists c > 0 such that

sn(Γ) ≥ ncn

for all large n.
Let Hm = SO(m, 1)/SO(m); this is the m dimensional hyperbolic space

which is the universal cover of every m-dimensional hyperbolic manifold. Γ acts
on Hm, and v0 is the volume of the hyperbolic manifold Γ\Hm. Each subgroup
∆ of index t in Γ gives rise to an m-dimensional hyperbolic manifold M∆ =
∆\Hm which is a t-fold cover of Γ\Hm and has volume tv0. Now suppose ∆ and
∆′ are two such subgroups of Γ. If M∆ and M∆′ are isomorphic (=isometric)
then an isomorphism ϕ : M∆ → M∆′ lifts to an isometry ϕ̃ : Hm → Hm.
Now the group of isometries of Hm is G = O(m, 1) and hence ϕ̃ is given by an
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element g of G which conjugates ∆ = π1(M∆) to ∆′ = π1(M∆′). As ∆ and
∆′ are of finite index in Γ, it follows that Γg is commensurable with Γ, that is,
g ∈ CommG(Γ) = Γ1, say.

Now, as Γ is a non-arithmetic lattice, Margulis’s Theorem 7.3.4 implies that
the index |Γ1 : Γ| = h, say, is finite. Then for a given ∆ of index t in Γ0, there
are at most ht subgroups of Γ which are conjugate to ∆ in Γ1. In view of the
preceding paragraph, this implies that the manifolds of the form M∆ lie in at
least at(Γ)/ht isomorphism classes when ∆ ranges over the at(Γ) subgroups of
index t in Γ.

It follows that for each positive integer n,

ρm(nv0) ≥
n∑
t=1

at(Γ)/ht ≥ sn(Γ)
hn

≥ ncn−1

h
.

Let r be a large positive number, and put n = [r/v0]. Then

ρm(r) ≥ ρm(nv0) ≥ rar

where a is any positive constant strictly smaller than c/v0, provided r is large
enough. This is the required lower bound.

Remark One can give explicit estimates for c and v0 in this proof, and thereby
obtain an explicit bound for a = a(m).

An interesting aspect of the proof of Theorem 7.3.3 is that the rate of growth
of the number of hyperbolic manifolds is governed by the subgroup growth of
one lattice. One may wonder whether this is the case in more general circum-
stances. If G is a simple Lie group of rank at least 2 and Γ is a lattice in G,
then by Margulis’s Theorem 7.2.1, Γ is arithmetic and by Serre’s conjecture
(which is proved in most cases) Γ has the congruence subgroup property; hence
its subgroup growth is of type nlogn/ log logn by Theorem 6.1. These observa-
tions motivate the following conjecture posed in [Burger, Gelander, Lubotzky
& Mozes].

Conjecture Let G be a simple Lie group of R-rank at least 2. Let ρ∗G(r) be
the number of manifolds covered by X = G/K of volume at most r, where K
is a maximal compact subgroup of G. (Equivalently, ρ∗G(r) is the number of
conjugacy classes of torsion-free lattices of covolume at most r in G). Then the
function ρ∗G(r) has strict growth type

rlog r/(log log r).

A similar conjecture can be stated for ρG(r) as defined at the beginning of
this section. The connection between ρG(r) and ρ∗G(r) needs some clarification.
It is quite likely that they have similar growth type. For more results on ρG(r)
see [Gelander].
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Notes

Theorem 7.1 is from [Lubotzky 1995a]. Part 1 of Theorem 7.2 follows readily
from well-known results, as does the case of SO(2, 1) in part 2(a). The case of
SO(3, 1) ≈ SL2(C) is treated in [Lubotzky 1995a], but the critical ingredients
are from [Lubotzky 1983] and the unpublished result of Shalev, Theorem 4.6.4.

As mentioned in §7.2, [Cooper, Long & Reid 1997] and [Grunewald
& Noskov] give sharp results for non-uniform lattices, while [Reznikov &
Moree 1997] give a sharper result for some cocompact lattices. We mention in
passing that a standard way to contradict the CSP for arithmetic groups is to
provide a finite-index subgroup having infinite abelianisation. Indeed, according
to a well-known conjecture of Thurston it is expected that all lattices in SO(n, 1)
have such a subgroup. This is still wide open in the case of SO(3, 1), even for
arithmetic lattices; for the case of arithmetic lattices in SO(n, 1) with n 6= 3, 7
see [Lubotzky 1996a].

On the other hand, for n ≥ 4, a strong form of Thurston’s conjecture (prop-
erty VF) for the known non-arithmetic lattices in SO(n, 1) is established in
[Lubotzky 1996b], giving Part 2(b) of Theorem 7.2. However, Thurston’s
conjecture (and the subgroup growth type) is not known as yet for arbitrary
non-arithmetic lattices (if any more exist!).

As for Part 2(c), the failure of the CSP for some of the arithmetic lattices
in SU(n, 1) was established by Kazhdan, Shimura, Borel and Wallach; see
[Lubotzky 1996a)]. The claim about Livne’s non-arithmetic lattices follows di-
rectly from their construction. There are further non-arithmetic lattices, about
which nothing is known.

Theorem 7.3 is established in [Burger, Gelander, Lubotzky & Mozes].



Chapter 8

Linear groups

Given a major result such as the PSG Theorem, it is usually worth while to try
and deconstruct its proof: by following up various intermediate steps one may
achieve deeper insights and, possibly, be led to new results. The material of
Chapter 6 is a case in point, as are some of the methods described in the Lin-
earity conditions and Strong Approximation windows. Here we consider
the subgroup growth of finitely generated linear groups, and will see that for
these, a stronger form of the PSG Theorem holds.

Theorem 8.1 Let G be a finitely generated linear group over a field of charac-
teristic 0. Then either G is virtually soluble of finite rank (hence has PSG) or
there exists b > 0 such that

sn(G) ≥ nb logn/ log logn

for all sufficiently large n.

Thus for such groups there is a gap in the possible growth types: a finitely
generated characteristic-0 linear group has subgroup growth of strict type at
least nlogn/ log logn or at most n.

In positive characteristics the gap is even wider:

Theorem 8.2 Let G be a finitely generated linear group over a field of positive
characteristic. Then either G is virtually abelian (hence has PSG) or there
exists b > 0 such that

sn(G) ≥ sCC
n (G) > nb logn

for all sufficiently large n.

Both Theorems 8.1 and 8.2 are best possible. As shown in Chapter 6,
the groups SL3(Z) and SL3(Fp[t]) have congruence subgroup growth of type
nlogn/ log logn and nlogn respectively; as both groups also have the congruence
subgroup property, these are also the respective subgroup growth types.

159
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Although they cannot be sharpened, these results can be generalized. Every
f.g. linear group has a residually nilpotent normal subgroup N of finite index:
that is, the lower central series (γi(N)) intersects in the identity. For groups in
this wider class we still have a ‘gap theorem’:

Theorem 8.3 Let G be a finitely generated group that is virtually residually
nilpotent. If G has subgroup growth of type strictly less than nlogn/ log logn then
G is virtually soluble of finite rank (hence has PSG).

Theorem 8.1 is proved in Section 1; more precisely, it is reduced to the
special case of metabelian groups, which is postponed to the following chapter.
Theorem 8.3 is deduced from it in Section 2. The proof of Theorem 8.2 is given
in Section 3. Unlike the PSG Theorem, these results do not depend on CFSG,
which was invoked only in the ‘reduction to the linear case’.

In Section 4 we turn to normal subgroup growth. We saw in Chapter 2 that
the normal subgroup growth type of a free group is nlogn. This is just slightly
faster than polynomial, so one cannot expect polynomial normal subgroup growth
(PNSG) to imply very strong structural restrictions in the way that PSG does.
Indeed, the examples produced in Chapter 13 below have normal subgroup
growth that is slower than linear, and they are far from being soluble. In spite
of this, we have

Theorem 8.4 Let G be a finitely generated linear group. Let G be the Zariski
closure of G, G0 its identity component and R(G) the maximal soluble normal
subgroup of G0. Write

G0/R(G) =
r∏
i=1

Si

where each Si is a simple algebraic group. If G has normal subgroup growth of
type strictly less than nlogn/(log logn)2 then one of the following holds:

(i) r = 0, in which case G and G are virtually soluble, or

(ii) each Si is of type G2, F4 or E8.

This theorem is quite surprising in two ways. First, it shows that unlike the
situation for residually finite groups in general, even a slight limitation on normal
subgroup growth (weaker than PNSG) does imply strong structural restrictions
on a linear group. Moreover, these restrictions are of a subtle nature: they
manifest themselves only in the algebraic group generated by the linear group;
like the congruence subgroup property discussed in the last chapter, this is
another case of an abstract group-theoretic property influencing how a group
can sit as a group of matrices.

Secondly, one may wonder about the distinguished role played by the ex-
ceptional simple groups G2, F4 and E8. What is so special about them? These
are the only simple algebraic groups whose fundamental group is trivial : this
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means that they have a trivial centre over any field. After reading Chapter 6 the
reader may not find the occurrence of G2, F4 and E8 all that surprising, since
we have already seen there that they behave differently when we count normal
congruence subgroups. In fact Theorem 6.3 shows that G2(Z), F4(Z) and E8(Z)
each have polynomial normal congruence subgroup growth; since they are also
known to have the congruence subgroup property, this is the same as saying that
they have PNSG. Theorem 8.4 is thus best possible in the sense that G2, F4 and
E8 indeed appear as exceptions.

The result proved in Section 4 is actually even stronger, and reflects the
trichotomy for normal congruence subgroup growth given in Theorem 6.3.

8.1 Subgroup growth, characteristic 0

Let G be a finitely generated linear group over a field of characteristic zero. We
separate two cases.

Case 1. Where G is not virtually soluble.
Just as in §5.2, it follows by the ‘Lubotzky alternative’ (# Strong approx-

imation) that there exist a subgroup G1 of finite index in G, a finite set of
primes S, and a connected, simply connected simple algebraic group S over Q
such that every congruence quotient of Γ = S(ZS) appears as a quotient of G1

(and Γ is infinite). Then by Theorem 6.1 we have

sn(G1) ≥ cn(Γ) ≥ na logn/ log logn

for all n, where a > 0 is a constant (and cn(Γ) denotes the number of congruence
subgroups of index at most n in Γ). Since sn(G) ≥ s[n/m](G1) where m =
|G : G1| it follows in this case that

sn(G) ≥ nb logn/ log logn

for all large n, for a suitable constant b > 0.

Case 2. Where G is virtually soluble, of infinite rank.
This case depends on the following result, which will be established in Section

1 of the following chapter:

Proposition 8.1.1 Let H be a finitely generated virtually metabelian group of
infinite rank. Then there exist c > 1 and d ∈ N such that

sCC
n (H) ≥ cn

1/d

for all large n.

Now according to the Lie-Kolchin-Mal’cev Theorem (# Linear groups),
G has a nilpotent normal subgroup N such that G/N is virtually abelian. Since
G is finitely generated, the quotient G/N has finite rank, so N must have
infinite rank. As N is nilpotent, this implies that N/N ′ also has infinite rank
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(# Soluble groups). Hence the virtually metabelian group G/N ′ has infinite
rank. Proposition 8.1.1 now shows that there exist c > 1 and d ∈ N such that

sCC
n (G/N ′) ≥ cn

1/d

for all large n. Since sCC
n (G) ≥ sCC

n (G/N ′) and cn
1/d

> nlogn/ log logn for large
n, we see that

sn(G) ≥ sCC
n (G) > nlogn/ log logn

for all large n.
This completes the proof of Theorem 8.1, modulo Proposition 8.1.1.

Remark The argument in Case 2 does not depend on the characteristic being
zero; it shows that any f.g. linear group that is virtually soluble and of infinite
rank has subnormal subgroup growth of strict type at least 2n

ε

for some ε > 0.
This will be used in Section 8.3.

8.2 Residually nilpotent groups

Let G be a finitely generated group that is virtually residually nilpotent, and
assume that G has subgroup growth of type strictly less than nlogn/ log logn. Let
H be a residually nilpotent normal subgroup of finite index m in G, and let p
be any prime. Then for all sufficiently large n we have

sn(Ĥp) ≤ sn(H) ≤ smn(G) < n(logp n)/16.

It follows by Theorem 4.2 that for each prime p, the pro-p completion Ĥp of
H is a pro-p group of finite rank. Now Theorem 8 of the Linearity condi-
tions window shows that H is a linear group over a field of characteristic zero.
Therefore so is G.

We may therefore apply Theorem 8.1 and infer that G is virtually soluble of
finite rank, thus establishing Theorem 8.3.

8.3 Subgroup growth, characteristic p

Since a finitely generated linear group in any characteristic is virtually residually
nilpotent, we already know that such a group is either virtually soluble of finite
rank or else has subgroup growth of type at least nlogn/ log logn. When the
characteristic is positive, however, we can say more. Here we prove

Theorem 8.2 Let F be a field of characteristic p > 0 and Γ a finitely generated
subgroup of GLm(F ). Then one of the following holds:

(a) Γ is virtually abelian, hence has PSG;
(b) there exists a constant c > 0 such that sn(Γ) ≥ sCC

n (Γ) ≥ nc logn for
all sufficiently large n.

This depends on the following important structure theorem for linear groups
over local fields:
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Theorem 8.3.1 [Pink 1998] Let K be a local field of characteristic p > 0 and
L a compact subgroup of GLm(K). Then there exist closed normal subgroups
L3 ≤ L2 ≤ L1 of L such that:

1 L/L1 is finite;

2 L1/L2 is abelian of finite exponent;

3 if L2/L3 is infinite, there exist a local field E of characteristic p, a connected
adjoint semi-simple algebraic group H over E with universal covering $ :
H̃ → H, and an open compact subgroup ∆ ≤ H̃(E), such that L2/L3 is
isomorphic as topological group to $(∆);

4 L3 is a soluble group of derived length at most m.

Now let Γ be a finitely generated subgroup of GLm(F ). As Γ is finitely
generated it is contained in GLm(A) for some finitely generated subring A of
F . Now A can be embedded into the ring of integers R of some local field K of
characteristic p, so we may suppose that Γ is a subgroup of M = GLm(R). Also
M is virtually a pro-p group, so by passing to a normal subgroup of finite index
we may assume that the closure L of Γ in M is a pro-p group. In this case, L
is a homomorphic image of the pro-p completion Γ̂p of Γ, and sn(L) ≤ sCC

n (Γ)
for every n.

Suppose first that Γ is virtually soluble. Then Γ has a unipotent normal
subgroup U such that Γ/U is virtually abelian (The Lie-Kolchin Theorem, #
Linear groups). U is a nilpotent group of exponent dividing pm, so if Γ has
finite rank then U is finite; as Γ is residually finite it follows that Γ is virtually
abelian, and we are in Case (a) of Theorem 8.2. If Γ has infinite rank then the
remark at the end of Section 8.1 shows that the subnormal subgroup growth of
Γ is of strict type at least 2n

ε

where ε > 0, and we are in Case (b).
Suppose next that Γ is not virtually soluble. Then L is not virtually soluble.

We apply Pink’s theorem. Since L is a finitely generated pro-p group, L/L2 is
finite and therefore L2/L3 is infinite. Let O be the valuation ring of the local
field E given in the theorem. Then ∆ is commensurable with H̃(O), and the
argument given in §6.2 shows that H̃(O) has subgroup growth of strict type at
least nlogn. The same therefore holds for ∆, and as ker$ is finite it holds for
L2/L3

∼= $(∆), and hence for L since L/L2 is finite. Thus there exists c > 0
such that sCC

n (Γ) ≥ sn(L) ≥ nc logn for all large n, and we are in Case (b).
This completes the proof of Theorem 8.2.

Remark It is interesting to observe that the proof of Theorem 8.2 given
here is very different from the proof of Theorem 8.1. In the characteristic 0
case we used “global” arithmetic groups and the strong approximation theorem
for linear groups. Here we apply only “local” methods, and yet get a stronger
result. On the other hand, there is some formal similarity in the structure of
the proofs: Pink’s theorem in the one case, and the Weisfeiler-Nori theorem in
the other, being used to replace an arbitrary linear group by an ‘arithmetically
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defined’ subgroup of some semisimple algebraic group, where the structure can
be seen fairly explicitly.

8.4 Normal subgroup growth

In this section we outline the proof of the following theorem, which is a stronger
form of Theorem 8.4. Let us fix some notation.

F is an algebraically closed field of characteristic p ≥ 0, G is a finitely
generated subgroup of GLr(F ), and G is the Zariski closure ofG, with connected
component G0. The maximal soluble normal subgroup of G0 is denoted R(G),
and we have a decomposition

G0/R(G) =
r∏
i=1

Si

where each Si is a simple algebraic group over F . The fundamental group of the
adjoint group scheme associated to Si is denoted π(Si) – recall from Chapter 6
that π(Si) = 0 if and only if Si is of type G2, F4 or E8; otherwise it is a finite
group of order l + 1 if Si is of type Al, of order 2, 3 or 4 in all other cases.

Theorem 8.4.1 (i) If π(Si) 6= 0 for at least one i then there exists c > 0 such
that

sC
n (G) ≥ nc logn/(log logn)2

for all n.
(ii) If p | |π(Si)| for at least one i then there exists c > 0 such that

sC
n (G) ≥ nc logn

for all n.

A serious technical difficulty in the proof comes from the fact that we do not
know the answer to the following simple question:

Problem. Let G be a finitely generated group and H a normal subgroup of
finite index in G. Is the normal subgroup growth type of H the same as that of
G?

(It is easy to see that the normal subgroup growth type of H is at least that of
G.)

When studying subgroup growth we often pass without loss of generality to
a subgroup of finite index. The fact that we are not allowed (as of now) to do
so with normal subgroup growth is a real headache.

Let us first prove the theorem assuming that the problem has an affirmative
answer. Then we will indicate how the proof is carried out even without this
assumption.

One of the advantages in assuming that the problem has an affirmative
answer is that we are allowed to replace G by G0, and so assume that G is
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connected. As we need to prove only lower bounds on the normal subgroup
growth, we may also replace G (and hence also G) by any suitable quotient.
Without loss of generality, we shall therefore assume that G is a connected
simple algebraic group with π(G) 6= 0, and in case (ii) that p | |π(G)|.

Recall now that a specialisation of G means a group homomorphism ψ : G→
GLr(k) that is induced by some ring homomorphism from R into some field k,
where R is a subring of F such that G ≤ GLr(R); note that if char(F ) = p 6= 0
then also char(k) = p. We now quote the following ‘specialisation theorem’,
which appears in the Strong approximation window:

Theorem 8.4.2 Let G be a finitely generated subgroup of GLr(F ) whose Zariski
closure G is a connected simple algebraic group. Then there exist a global field
k and a specialisation ψ : G→ GLr(k) such that the Zariski closure of ψ(G) in
GLr(k) is isomorphic to G.

Applying this theorem, we may replace G by ψ(G), and so reduce to the
case where G ≤ GLn(k) where k is a global field of characteristic p. As G is
finitely generated, there exists a finite set of primes S of k (containing all the
archimedean ones) such that G ≤ G(OS) = G ∩ GLr(OS), where OS denotes
the ring of S-integers of k.

According to the Strong Approximation Theorem for linear groups (# Strong
Approximation), there is a finite set S′ ⊇ S of primes of k such that G is dense
in G(ÔS′). It follows that G has at least as many normal subgroups of index n
as G(OS′) has normal congruence subgroups of index n; according to Theorem
6.3, this is at least nc logn/(log logn)2 for some constant c > 0. This establishes
(i) (and also Theorem 8.4), under our simplifying assumption.

Suppose now that we are in case (ii), i.e., p | |π(G)|. We again apply Pink’s
theorem, Theorem 8.3.1 stated in the preceding section.

Choose a prime v of k outside S and take K to be the completion kv, with
valuation ring Oν . Then G is contained in G(Oν), and the closure L of G in
G(Oν) is a compact subgroup of GLr(K) (topological terms refer here to the v-
topology on kv, which makes G(Oν) a profinite, indeed virtually pro-p, group).
We therefore have closed normal subgroups L3 ≤ L2 ≤ L1 of L such that

L/L2 is virtually abelian of finite exponent;

if L2/L3 is infinite, there exist a local field E of characteristic p, a connected
adjoint semi-simple algebraic group H over E with universal covering $ :
H̃ → H, and an open compact subgroup ∆ ≤ H̃(E), such that L2/L3 is
isomorphic as topological group to $(∆);

L3 is soluble.

Since G is finitely generated, L is topologically finitely generated and so
L/L2 is finite. Also L3 is finite and L2/L3 is infinite, since L is Zariski dense
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in the simple algebraic group G, and L2 is Zariski-dense in G because G is
connected.

It follows (see [Pink 1998]) that the algebraic group H̃ is isogenous to G
and hence that |π(H̃)| is also divisible by p. Now Theorem 6.4(i) shows that
the group H̃(OE) has normal subgroup growth of strict type nlogn. Using our
simplifying assumption (twice!) we may infer that the commensurable group ∆
has the same strict normal subgroup growth type, and hence so does L2/L3

∼=
$(∆), as ker$ is finite. Using the simplifying assumption once more we deduce
that L/L3, and hence L, has at least nc logn normal subgroups of index at most
n for each n, where c > 0 is a constant. Since L is an image of the profinite
completion of G it follows that G has at least this many normal subgroups, and
case (ii) is established.

Let us now indicate how one still proves Theorem 8.4.1 without knowing
that the open problem has an affirmative answer in general. Whenever we pass
from G to a finite index normal subgroup H, we have to make sure that at least
a good proportion of the finite-index normal subgroups of H are still normal in
G. We illustrate the basic idea by considering a special case.

Let G be a simple Chevalley group with Z-structure and put H = G(Z).
The outer automorphism group Out(G) is a finite group acting on H. Let
G = H o Out(G). Now, if G is not of type G2, F4 or E8 (i.e., if π(G) 6= 0),
we have produced many normal congruence subgroups in the following way (see
the proof of Theorem 6.3, and the example preceding it, in §6.4): let P be a
finite set of primes with |P| = ` (in the example of §6.4, P consists of all primes
p ≤ x with p ≡ 1(mod 3)). Put m =

∏
p∈P p, so G(Z/mZ) =

∏
p∈P G(Fp).

Let H(m) = ker(H → G(Z/mZ)). The group H(m) is also normal in G =
H o Out(G). Now Z(G(Z/mZ)) is not necessarily central in G/H(m), and the
subgroups of Z(G(Z/mZ)) may not all be normal in G/H(m). However, if we
fix a prime q such that q | |Z(G(Fp))| for each p ∈ P, then for each such p
the set Vp of elements of order dividing q in Z(G(Fp)) is an elementary abelian
q-group (it is usually cyclic, unless H is of type Dn, in which case q = 2 and
Vp ∼= C2×C2), and it is Out(G)-invariant. Hence we get in G(Z/mZ) a central
subgroup W =

∏
p∈P Vp

∼= V ⊗F`q (where V is the common isomorphism type of
the Vp). The action of Out(G) on W is its action on V tensored with the trivial
action on F`q. So, while not every subgroup of W is Out(G)-invariant, every
Fq-subspace U of F`q gives rise to a subgroup V ⊗U which is Out(G)-invariant,
and hence gives a normal subgroup of G. It is now easy to count and to show
that this gives a supply of at least q[`

2/4] normal subgroups in G = HoOut(G)
of index at most mdim(G) · |Out(G)|. This suffices to ensure that the normal
subgroup growth of G is (at least) of the same strict type as the the normal
congruence subgroup growth of H (though possibly with a smaller constant).

The proof in general involves considerable technicalities; the reader is re-
ferred to [Larsen & Lubotzky] for details.
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Notes

Theorem 8.1 appeared in [Lubotzky 1995a]. A slightly weaker form of Theo-
rem 8.2 appears in [Abért, Lubotzky & Pyber]. All the material on normal
subgroup growth is from [Larsen & Lubotzky].



Chapter 9

Soluble groups

The first version (historically) of the PSG Theorem to be proved dealt with
the very special case of groups that are assumed to be both soluble and resid-
ually nilpotent; under these hypotheses, an elementary argument sufficed for
the proof, involving none of the sophisticated mathematics that we have seen
in Chapter 5. In section 2 of this chapter we give a slightly more sophisticated
(though still elementary) proof of the following sharper result:

Theorem 9.1 Let G be a finitely generated virtually soluble group that is vir-
tually residually nilpotent. Then either G has finite rank (and hence PSG), or
there exist c > 1 and d ∈ N such that

sn(G) ≥ sCC
n (G) ≥ cn

1/d

for all large n.

This shows that the subgroup growth gap for residually nilpotent soluble
groups is much larger than that for residually nilpotent groups in general, which
was given in Theorem 8.2. In Section 3 we show that this theorem is best
possible, by constructing for every integer d ≥ 2 a finitely presented metabelian
group having subgroup growth, and subnormal subgroup growth, of strict type
2n

1/d

.
Whether a similar (or perhaps smaller) gap occurs in the growth types of

finitely generated soluble groups that are not virtually residually nilpotent is
a major open problem, and present techniques seem to shed little light on this
question; for more on this see the notes at the end of this chapter. It is worth
remarking that no example is known ( to us) of a finitely generated residually
finite soluble group that is not virtually residually nilpotent. If the two conditions
in fact turn out to be equivalent, then of course Theorem 9.1 will provide a
positive solution to this ‘soluble gap problem’.

Among finitely generated soluble groups, the metabelian ones are the easiest
to understand; questions about these often reduce to commutative algebra. This
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is illustrated by the construction given in Section 3, and also in the rest of the
chapter. We begin in Section 1 by proving the special case of Theorem 9.1
where G is virtually metabelian; as well as introducing in simplified form the
ideas needed for the general case, this fills the gap left in the proof of Theorem
8.1 in the preceding chapter.

In Section 4 we consider normal subgroup growth. While little is known about
this for soluble groups in general, the metabelian case is fairly well understood.
To each finitely generated metabelian group G we associate an invariant κ(G),
which is the Krull dimension of the ring

Z[Gab]/ann(G′);

here G′ denotes the derived group of G, considered as a module for the group
ring of Gab = G/G′. When G is infinite, κ(G) is a positive integer.

Theorem 9.2 Let G be a finitely generated metabelian group with κ(G) = k ≥
1. Then there exist positive constants a and b such that

nb(logn)1−2/k

≤ sC
n (G) ≤ na(logn)1−1/k

for all large n.

Thus we have an infinite sequence of normal subgroup growth types, faster
than polynomial and slower than those exhibited by arithmetic groups (see
Chapter 6). This theorem is a litte imprecise (a statement of our ignorance, not
of mathematical fact!); but for polynomial normal subgroup growth (PNSG)
the result is definitive:

Theorem 9.3 Let G be a finitely generated metabelian group. Then G has
PNSG if and only if κ(G) ≤ 2.

Analogous results hold for metabelian pro-p groups. The proofs are not
given in full, but we explain how these results are deduced from corresponding
results in commutative ring theory.

9.1 Metabelian groups

Here we prove the special case of Theorem 9.1 dealing with virtually metabelian
groups. This step will suffice to complete the remaining case of Theorem 8.1,
concerning virtually soluble linear groups (see Chapter 8).

The essential idea of the proof has already been used in Section 2 of Chapter
3, where we considered the group Cp o C∞; it merely requires some technical
elaboration. Let G be a finitely generated virtually metabelian group of infinite
rank. Thus G has an abelian normal subgroup A and a normal subgroup G0

of finite index, containing A, such that G0/A ∼= Zd for some d ∈ N. The group
ring R = Z(G0/A) is Noetherian, and the action of G0/A by conjugation makes
A into a finitely generated R-module (which we shall write additively). Since
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G/A has finite rank, A must have infinite rank, and it follows that for at least
one prime p the quotient A/pA = A has infinite rank; this follows from Hall’s
‘generic freeness lemma’ (# Soluble groups, §3). There exist prime ideals
P1, . . . , Pk of R and a filtration 0 = M0 < M1 < . . . < Mk = A such that
for each i the factor module Mi/Mi−1 is a torsion-free R/Pi-module; we fix an
index j such that Mj/Mj−1 is infinite and put M = Mj/Mj−1, P = Pj . Let L
be a maximal ideal of R containing P, and put

K/A = (1 + L) ∩ (G0/A).

Note that L has finite index in R (# Soluble groups, §3); it follows that K
has finite index in G0, so K contains a subgroup H of finite index which is
normal in G, with H ≥ A.

Since M is a torsion-free Noetherian module for R/P, Krull’s Intersection
Theorem ([AM], Theorem 10.17) shows that

∞⋂
n=1

MLn = 0.

AsM/MLn is finite for each n it follows thatMLn > MLn+1 for each n, whence

dimFp
(M/MLn) ≥ n.

The Artin-Rees Lemma ([AM], Chapter 10) says that for some fixed k, we have
ALn+k ∩Mj ⊆MjL

n for every n. Therefore

dimFp
(A/ALn+k) ≥ n.

Now if x ∈ H and n ≥ 1 then xp
m − 1 ≡ (x − 1)p

m

(mod p) . Since H/A is
abelian and pA = 0 it follows that

A(Hpm

− 1) ⊆ A(H − 1)p
m

⊆ ALp
m

and hence that
dimFp(A/A(Hpm

− 1)) ≥ pm − k

whenever pm > k.
Let us translate this back into group-theoretic notation. Given m as above,

put Hm = AHpm

and Bm = Ap[A,Hm]. Then Bm < A < Hm, Hm/A ∼= Zd
and A/Bm is an elementary abelian p-group of rank at least pm − k, central in
Hm/Bm. Now let x, y ∈ Hm. If p ≥ 3 then xpyp ≡ (xy)p (modBm), while if
p = 2 then x4y4 ≡ (xy)4 (modBm). It follows (putting p = p if p ≥ 3, p = 4
if p = 2) that the subgroup Hp

mBm/Bm consists of pth powers in Hm/Bm and
hence that

Hp
mBm ∩A = Bm.

Therefore Hp
mA/H

p
mBm

∼= A/Bm is an elementary abelian p-group of rank at
least pm − k. Thinking of this as an Fp-vector space we see that it contains at
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least pp
m−k−1 subgroups of index p (and each of these is normal in Hm, which

in turn is normal in G).
On the other hand,

|G : Hp
mA| = |G : H| · |H : Hm| · |Hm : Hp

mA|
= a · pdm · pd

≤ apd(m+2)

where a = |G : H| is a constant independent of m.
Now given a large positive integer n let m be such that

apd(m+2)+1 ≤ n < apd(m+3)+1.

From the above we see that G contains at least pp
m−k−1 (2-step subnormal)

subgroups of index at most n. If n is sufficiently large this number exceeds cn
1/d

where c = p(2a)−1/d

> 1.
This completes the proof of Theorem 9.1 for the case where G is virtually

metabelian.

The reader familiar with commutative algebra will have realised that we
used less than full information about the R-module A in the above argument.
Using the Hilbert-Samuel Theorem, one can show that in fact

dimFp
(M/MLn) ≥ nr

where r is the Krull dimension of the local ring (R/P )L/P ; and we could have
worked with the group ring Fp(G0/CG0(M)) instead of Z(G0/A). In this way,

one can show that G has at least cn
r/d′

2-step subnormal subgroups of index at
most n, for all large n, where r (in general > 1) and d′ (in general less than d) are
appropriate invariants of G. For details, see [Segal & Shalev 1993]. We believe
that in this form, the result obtained is sharp, in the sense that there exist
metabelian groups G, with these invariants, for which sn(G) is also bounded
above by cn

r/d′

1 for some c1 > 1; however, the only examples so far constructed
have either r = 1 or r = d− 1 (for the former, see Section 3, below).

9.2 Residually nilpotent groups

Here we prove Theorem 9.1. The heart of the argument is similar to that in
the metabelian case, but we shall need to go a little deeper into the structure
of soluble groups of finite rank.

Let G be a finitely generated soluble group that is residually nilpotent, and
suppose that G has infinite rank. We shall show that

sCC
n (G) ≥ cn

1/d

(9.1)
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for some c > 1, d ∈ N and all large n. This will imply Theorem 9.1, for if G is
normal and of finite index m in a group G1 we then have

sCC
n (G1) ≥ cn

1/d

1

for all large n, where c1 = c(2m)−1/d

> 1. The proof will in fact show that G
has at least cn

1/d

2-step subnormal subgroups of index at most n, so we get
the corresponding result for 3-step subnormal subgroups in G1; however, a few
small adjustments to the proof – left for the interested reader – will suffice to
show that the subgroups to be counted can be taken 2-step subnormal in G1.

We need an elementary lemma:

Lemma 9.2.1 Let G be a residually nilpotent group. If A is a maximal abelian
normal subgroup of G then G/A is residually nilpotent.

Proof. Write Gn = γn(G). Then

[GnA,GnA] ≤ [Gn, G][A,A] = Gn+1

for each n. So if B =
⋂∞
n=1(GnA) then

B′ ≤
∞⋂
n=1

Gn+1 = 1.

Thus B is an abelian normal subgroup of G containing A, and so B = A. The
lemma follows since

⋂∞
n=1 γn(G/A) = B/A.

The proof now proceeds by induction on the derived length of the soluble
group G. Let A be maximal among the abelian normal subgroups of G that
contain the last non-trivial term of the derived series. The lemma ensures that
then G/A is again residually nilpotent; and G/A has smaller derived length than
G. So if G/A still has infinite rank, we may assume that (16.2) holds with G/A
in place of G. The result now follows since sCC

n (G) ≥ sCC
n (G/A) for each n.

Henceforth, we may therefore assume that G/A is a soluble group of finite
rank. We now separate two cases.

Case 1: Suppose that for every prime p, the pro-p completion Ĝp of G has
finite rank. Then Lemma 9 of the Linearity conditions window shows that G
embeds in

∏
l∈π Ĝl for some finite set π of primes. It follows that G is residually

(finite nilpotent of rank ≤ r) where r = maxl∈π rk(Ĝl) is finite. Since G is also
soluble, we may now deduce from Corollary 5 of the same window that G is
virtually nilpotent-by-abelian. Since G has infinite rank, this implies that G
has a virtually metabelian quotient of infinite rank (# Soluble groups), and
(16.2) now follows by the result of Section 9.1.

Case 2 : For some prime p, the pro-p completion Ĝp of G has infinite rank.
Writing

Gn = γn+1(G)Gp
n

,
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this means that rk(G/Gn) tends to ∞ as n→∞. Since G/A has finite rank, it
follows that rk(A/(A∩Gn)) tends to ∞. But A/(A∩Gn) is an abelian p-group,
so putting

An = [A,G, . . . , G︸ ︷︷ ︸
n

]Ap ≤ (A ∩Gn)Ap

we have
rk(A/An) ≥ rk(A/(A ∩Gn)) →∞

as n→∞. Now it is clear that if An+1 = An for some n then the chain (Ai) is
stationary from i = n onwards; hence either A/An has infinite rank for some n,
or else An+1 < An for all n. In either case, it follows that

rk(A/An) ≥ n

for all n.
Now fix m ∈ N for the moment and put t = pm, H = AGp

m

. Since A/At is
abelian of exponent p we see that [A,H] ≤ At. It follows from the lemma to be
proved below that there exists a normal subgroup S/At of H/At such that

S ∩A = At

|H : AS| ≤ k

where k ∈ N depends only on the group G/A, not on m. Then AS/S ∼= A/At
is an elementary abelian p-group of rank at least t, hence contains at least pt−1

subgroups of index p (each of which is normal in H, hence 2-step subnormal in
G).

Let us denote by d the sum of the ranks of the (abelian) factors in the derived
series of G/A. As G/H has exponent pm we have |G : H| ≤ pmd. Hence G has
at least pt−1 2-step subnormal subgroups of index at most k · pmd+1.

Now put
c = p(kpd+1)−1/d/2 > 1.

Given a large positive integer n, let m ∈ N satisfy

kpmd+1 ≤ n < kp(m+1)d+1.

Then

n1/d log c < (kpd+1)1/dpm log c

=
1
2
pm log p < (t− 1) log p

where t = pm. Thus G has at least cn
1/d

2-step subnormal subgroups of index
at most n, and (16.2) follows.

The existence of the normal subgroup S of H is assured by the following
lemma, which we apply to the group G/At; note that G/A is virtually torsion-
free because it is finitely generated and residually nilpotent, hence residually
finite (# Soluble groups).
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Lemma 9.2.2 Let G be a group and A ≤ H normal subgroups of G such that
(i) G/A is soluble of finite rank and virtually torsion-free,
(ii) Ap[A,H] = 1, where p is a prime.
Then there exists S C H with S ∩ A = 1 and |H : AS| ≤ k, where k depends
only on G/A.

Proof. The group G/A has normal subgroups G1/A > G2/A such that
G/G1 is finite, G1/G2 is free abelian, and G2/A is torsion-free nilpotent (#
Soluble groups). Write b− 1 for the nilpotency class of G2/A, and let d be as
defined above.

Since A is central in H, the group G2∩H is nilpotent of class at most b; this
implies that every element of S1 := (G2 ∩H)p

b

is the pth power of an element
of G2 ∩H (a lemma of Mal’cev, see [Sg], Chapter 6 §B, Prop. 2). As G2/A is
torsion-free it follows that

S1 ∩A ⊆ Ap = 1.

Now put
H1 = CH((G2 ∩H)/AS1) ∩G1.

Then H1/(G2 ∩H1) is free abelian and H1/S1 is nilpotent of class at most 3. It
follows as above that every element of S/S1 := (H1

p3b

S1)/S1 is the pbth power
of an element of H1/S1, and hence that

S ∩ (G2 ∩H1) ⊆ (G2 ∩H1)p
b

⊆ S1.

Therefore S ∩A = 1, and it remains to bound the index |H : AS| . We claim
that |H : AS| ≤ k where k = |G : G1| pbd

2+3bd. Indeed, |H : H ∩G1| ≤ |G : G1|.
Next, the group (H ∩ G1)/H1 acts faithfully on (G2 ∩H)/AS1; this has order
at most pbd and rank at most d, hence has at most pbd

2
automorphisms, which

implies that |H ∩G1 : H1| ≤ pbd
2
. Finally, H1/AS has order at most p3bd, and

our claim follows.

9.3 Some finitely presented metabelian groups

In this section we construct, for each integer d ≥ 2, a finitely presented metabelian
group G having subgroup growth (and subnormal subgroup growth) of type
2n

1/d

. This shows that Theorem 9.1 is best possible. Given any prime p, we can
choose G so that its pro-p completion also has this growth type; thus taking
d = 2, we obtain examples of finitely presented metabelian pro-p groups with
growth type 2

√
n, which shows that Theorem 4.3 is also best possible.

Our construction is also interesting for a different reason. As we shall see
in Chapter 13, the ‘growth spectrum’ of finitely generated groups in general
essentially contains no gaps; that is, there is a continuous range of growth types
between PSG (type n) and nn; in particular, there is a continuum of distinct
growth types. If we restrict attention to groups in any of the following classes,
however – (a) finitely presented groups, (b) f.g. soluble groups, (c) f.g. pro-p
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groups – the picture is dramatically different: only a countable family of growth
types is known to occur, namely

• PSG (type n)

• finitely many ‘particular’ types, such as nlogn in pro-p groups, nlogn/ log logn

in arithmetic groups

• the sequence of types 2n
1/d

exhibited here, and the sequence 2n
(d−1)/d

,
obtained by B. Klopsch using a variation of the same construction.

One of the most challenging open problems is to discover whether there are
any, or infinitely many, or uncountably many further growth types achieved by
groups in classes (a), (b) and (c). (As there are only countably many isomor-
phism types of finitely presented groups, the third possibility is of course ex-
cluded in case (a); the same applies to the classes of finitely generated metabelian
groups and finitely generated linear groups.)

The construction is as follows. We fix a prime p and an integer d ≥ 2, and
let

Γ = 〈x1, . . . , xd〉

be a free abelian group of rank d. Choose distinct monic irreducible polynomials
fi(X) (i = 1, . . . , d − 1) of degree at least 2 over Fp, write R = FpΓ for the
group ring and let P be the ideal of R generated by

{fi(xd)− xi | 1 ≤ i ≤ d− 1} .

Thus writing x = xd + P we have

R/P = Fp[x][x−1, f1(x)−1, . . . , fd−1(x)−1]. (9.2)

The action of Γ by mutiplication on R makes R/P into a Γ-module M , and we
now set

G = M o Γ.

Theorem 9.3.1 (i) The group G is a (d+1)-generator finitely presented metabelian
group. There exist constants b, c > 1 such that
(ii)

bn
1/d

≤ sCC
n (G) ≤ sn(G) ≤ cn

1/d

for all large n, and
(iii) G has a normal subgroup K of finite index such that

bn
1/d

≤ sn(K̂p) ≤ cn
1/d

for all large n.
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Proof of the lower bounds The lower bound in (ii) is a special case of
the result established in Section 1. For (iii), we choose a maximal ideal L/P of
R/P and let K be the inverse image in G of

(1 + L) ∩ Γ.

Then the argument of Section 1 shows that for large values of n, K has at least
bn

1/d

two-step subnormal subgroups of p-power index at most n, where b > 1 is
a suitable constant. The same therefore holds for K̂p.

The proof of the upper bounds is a little longer, and more interesting.
The key step is the following lemma, where we write

µ = (d!)1/d · max
1≤j<d

deg fj .

Lemma 9.3.2 Let ∆ be a subgroup of finite index in Γ and let N be an FpΓ-
submodule of finite index in M. Then

dFp∆(M/N) ≤ µ |Γ : ∆|1/d .

Here, dFp∆(M/N) denotes the number of generators required by M/N as
an Fp∆-module. Before proving this, let us deduce the upper bound in (ii).
This will also imply the upper bound in (iii) (replacing c by a larger constant if
necessary).

To each subgroup H of index n in G we associate

D = D(H) = H ∩M,

∆ = ∆(H) = (MH) ∩ Γ.

Then D is an Fp∆-submodule of finite index m = pl, say, in M , and |Γ : ∆| =
n/m. Also H/D is a complement to M/D in M∆/D; so the number of possi-
bilities for H, given the pair (∆, D), is equal to

|Der(∆,M/D)| ≤ md

since ∆ is a d-generator group.
Note that D contains the FpΓ-submodule M(n) = M ∩ G(n) where G(n)

is the intersection of all subgroups of index n in G; as G is finitely generated,
G(n) has finite index in G and so M(n) has finite index in M .

Now suppose ∆ is given, and put r =
[
µt1/d

]
where t = |Γ : ∆|. By the

lemma, M/M(n) is an r-generator Fp∆-module. The number of isomorphism
types of Fp∆-modules of dimension l is at most

|Hom(∆,GLl(Fp))| < pdl
2
,

hence the number of Fp∆-submodules of codimension l in the free Fp∆-module
(Fp∆)r is at most pdl

2 · plr. It follows that the number of possibilities for D is
at most

pdl
2+lr = md logp m+µt1/d

.
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The number of possibilities for ∆ is at(Γ) ≤ nd. Putting everything together
we obtain

an(G) ≤
∑
mt=n

md · nd ·md logp m+µt1/d

≤ n(2+logn)d · cn
1/d

1

where c1 is a suitable constant; we leave it as an exercise for the reader to verify
that

mt = n =⇒ mt1/d

≤ σn
1/d

where σ = ed/e (e the base of the natural logarithms). It follows that sn(G) ≤
cn

1/d

for all large n if c is any constant strictly larger than c1.

Proof of Lemma 9.3.2 To begin with, identify Γ with Z(d) using the
basis x1, . . . , xd. Then ∆ is a lattice in R(d) with determinant |Γ : ∆|. It fol-
lows by Minkowski’s theorem (see [HW], Theorem 447) that there exist integers
a1, . . . , ad such that

d∑
i=1

|ai| ≤ (d! |Γ : ∆|)1/d,

1 6=
∏

xai
i = y ∈ ∆.

Suppose for clarity that a1, . . . , as are non-negative and as+1, . . . , ad are nega-
tive. Write x = fd(x) = xd. Then in the ring R = FpΓ we have

s∏
i=1

fi(x)ai ≡ y ·
d∏

i=s+1

fi(x)|ai| (modP ). (9.3)

Now N is an R-submodule of finite index in M = R/P , so M = M/N is a
finite ring image of R/P and from (9.2) we have M = Fp[x] where x denotes the
image of x in M . Suppose L is a maximal ideal of Fp∆ such that ML = 0. Then
(9.3) shows that x satisfies an equation of degree at most q =

∑d
i=1 |ai|deg(fi)

over the field F = (Fp∆)/L, and hence that dimF (M) ≤ q.
In general, we may deduce that M/ML can be generated as an Fp∆-module

by q elements, for every maximal ideal L of Fp∆. This implies that the same
holds for M/MLn for every n, and then by the Chinese Remainder Theorem
that dFp∆(M) ≤ q.

The lemma follows since

q =
d∑
i=1

|ai|deg(fi) ≤ (d! |Γ : ∆|)1/d ·max
i

deg(fi)

= µ |Γ : ∆|1/d .
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To complete the proof of Theorem 9.3.1, it remains only to show that G
has a finite presentation on d + 1 generators. Denote by u the element of G
corresponding to 1 ∈ R/P, so u generates M as a Γ-module, and put x = xd.
Thus

G = 〈u, x, x1, . . . , xd−1〉 .

We claim that the following relations present G on these generators:

up = 1
[x, xj ] = 1 (1 ≤ j ≤ d− 1)
[xi, xj ] = 1 (1 ≤ i < j ≤ d− 1) (9.4)

uxi = ufi(x) (1 ≤ i ≤ d− 1)

[u, ux
n

] = 1 (1 ≤ n ≤ deg f1)

where uf(x) =
∏h
n=0(u

xn

)cn for a polynomial f(X) =
∑h
n=0 cnX

n.
It is straightforward to verify that these relations together with the infinitely

many additional relations

[u, ux
n

] = 1 (n > deg f1)

do give a presentation for G; it remains to show is that these additional relations
are consequences of (9.4). So let us assume (9.4), and suppose inductively that
[u, ux

n

] = 1 for 1 ≤ n ≤ k where k ≥ h = deg f1. Write

f1(X) = chX
h + ch−1X

h−1 + · · ·+ c1X + c0.

Then

ux1 =
h∏
n=0

(ux
n

)cn

commutes with

ux
k+1−hx1 =

h∏
n=0

(ux
n+k+1−h

)cn .

Since [ux
i

, ux
j

] = 1 whenever |i− j| ≤ k, it follows that uc0 commutes with
(ux

k+1
)ch . As ch = 1 and c0 is a non-zero element of Fp this implies that

[u, ux
k+1

] = 1. Our claim follows by induction, and the proof of Theorem 9.3.1
is complete.

9.4 Normal subgroup growth in metabelian groups

In this section we discuss Theorems 9.2 and 9.3. Throughout this section,
G denotes either a finitely generated metabelian group (case 1), or a finitely
generated metabelian pro-p group (case 2 ).
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Let Gab = G/G′ be the abelianisation of G, and let

R = Z
[
Gab

]
in case 1

R = Zp
[[
Gab

]]
in case 2

(in case 2, R is the ‘completed group algebra’ of the pro-p group Gab, see
[DDMS], Chapter 7). The conjugation action of G on the derived group G′

(which is closed in case 2) makes G′ into a Noetherian R-module that we de-
note by M . We now define a structural invariant of G by setting

κ(G) = Dim(R/annR(M))

(here Dim denotes the Krull dimension of a ring).

Theorem 9.3 G has polynomial normal subgroup growth if and only if κ(G) ≤
2.

In general, as remarked in the preceding chapter, it seems difficult to relate
the normal subgroup growth of a group with that of a finite-index subgroup (in
contrast to the question of subgroup growth). In the metabelian case, however,
we can deduce

Corollary 9.4.1 If H is a subgroup of finite index in G then H has polynomial
normal subgroup growth if and only if G does.

This follows from Theorem 9.3 together with the easily verified fact that κ(H) =
κ(G).

Theorem 9.2 Suppose that κ(G) = k ≥ 1. Then there exist positive constants
a and b such that

nb(logn)1−2/k

≤ sC
n (G) ≤ na(logn)1−1/k

for all large n.

It must be admitted that the second theorem is not quite satisfactory: it should
be possible to obtain the same exponent for log n on both sides of the inequality,
but this is still an open problem. In any case, since it is easy to construct
metabelian groups G where κ(G) takes any positive integral value, we see that
there are infinitely many distinct types of normal subgroup growth, both in f.g.
metabelian groups and in f.g. metabelian pro-p groups.

Example Let p be a prime. Then the wreath products

G = Cp o Z(k), H = Z o Z(k−1)

are metabelian groups with κ(G) = κ(H) = κ(Ĝp) = κ(Ĥp) = k (provided
k ≥ 1 for G, k ≥ 2 for H).

Both theorems are reduced to ring theory by means of the next lemma,
where sn(M) denotes the number of R-submodules of index at most n in M :
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Lemma 9.4.2 There exist positive constants h, f and g such that

sn(M) ≤ sC
nhf (G)

sC
n (G) ≤ ngsn(M)

for all n.

Proof. The abelian group Γ = Gab contains a torsion-free subgroup Γ0 of
finite index f, say. Let r denote the rank of Γ and m the number of generators
required by M as an R-module. Put h = m+ 2r + 1.

To each submodule N of finite index in M we associate a normal subgroup
N∗ of G as follows. Let e be the exponent of M/N, let

C/G′ = CΓ0(M/N),

and put
N∗ = Ce

2
N.

It is then easy to verify thatN∗∩G′ = N, so the mappingN 7→ N∗ is one-to-one;
and

|G : N∗| = |Γ : Γ0| · |Γ0 : C| ·
∣∣∣C : Ce

2
G′
∣∣∣ · ∣∣∣Ce2G′ : Ce2N ∣∣∣

≤ f · nm · e2r · n
≤ nhf

since Γ0/C ≤ AutR(M/N) which has order at most nm, and e ≤ n. This implies
the first claim.

For the second claim, we associate to each normal subgroup N of finite n
in G the pair (K = G′N, D = G′ ∩ N). Given |G : K| = q and |M : D| = s,
the number of possibilities for D is at most ss(M), and that for K is at most
aq(Gab) ≤ qr. Moreover, N/D is a complement for M/D in K/D, so the number
of possibilities for N is at most

|Hom(K/M,M/D)| ≤ sr.

It follows that

sC
n (G) ≤

∑
qs≤n

ss(M) · qr · sr ≤ nr+1sn(M).

Theorems 9.3 and 9.2 now follow from the corresponding results in ring
theory. For these, R can be either a finitely generated commutative ring or
a commutative local ring with finite residue field, M is a finitely generated
R-module, and Dim(M) denotes the Krull dimension of R/annR(M).
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Theorem 9.4.3 (i) sn(M) is bounded above by a polynomial in n if and only
if Dim(M) ≤ 2.

(ii) If Dim(M) = k ≥ 1 then there exist positive constants a and b such that

nb(logn)1−2/k

≤ sn(M) ≤ na(logn)1−1/k

for all large n.

Let us sketch the proof of the lower bound in (ii); this also implies the ‘only
if’ direction on (i). Suppose, then , that M is a finitely generated R-module. We
may assume that annR(M) = 0 and that Dim(R) = k ≥ 1. If R is not already a
local ring, we may localize at a maximal ideal of height k and so reduce to the
case where R is local, with maximal ideal q; let F = R/q be the (finite) residue
field. According to the Hilbert-Samuel theory (see e.g. [E], §12.1 and Lemma
1.12), there exist polynomials P (X), P (X) of degrees k− 1, k respectively, and
positive constants α and β, such that

dimF (Mqm/Mqm+1) = P (m) ≥ αmk−1

m∑
j=0

dimF (Mqj/Mqj+1) = P (m+ 1) ≤ βmk

for all sufficiently large integersm. Hence if |F | = q then for largem,Mqm/Mqm+1

contains at least q[(αm
k−1)2/4] distinct F -subspaces. Each of these corresponds

to an R-submodule of index at most qβm
k

in M .
Now let n be a large positive integer. There exists m such that

βmk ≤ logq n < β(m+ 1)k ≤ 2kβmk,

and then

logq(sn(M)) ≥ [(amk−1)2/4]

> γ(logq n)2−2/k

where γ > 0 is a suitable constant. Thus sn(M) ≥ nb(logn)1−2/k

where b =
γ/ log q.

The upper bounds in theorem 9.4.3 are harder to prove; in case (ii) they
depend on estimates for the number of generators needed by ideals of finite
index in local rings, due to [Boratynski, Eisenbud & Rees 1979]. For details see
[Segal 1997].

Notes

The original PSG Theorem for residually nilpotent soluble groups appeared in
[Segal 1986a]; the sharper Theorem 9.1 was announced in [Mann & Segal
1996].
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The results on subgroup growth of metabelian groups in Sections 1 and 3
are from [Segal & Shalev 1993]. Benjamin Klopsch (in unpublished work)
has modified the construction of Section 3 to obtain metabelian groups with
subgroup growth of type 2n

1−1/d

for every positive integer d. We conjecture that
2n

ε

should occur for every rational ε ∈ (0, 1), but this remains to be established.
The results on normal subgroup growth of metabelian groups are from [Segal

1997].

The subgroup growth of finitely generated soluble groups is discussed in
[Segal (a)] and [Segal 2000b]. The latter paper states the conjecture that
if a finitely generated soluble group has finite upper p-rank for every prime p,
then it has finite rank. In the former paper it is shown that if this conjecture is
true, then there is a gap in the possible subgroup growth types of f.g. soluble
groups, between PSG and type nlogn. The bulk of the second paper is devoted
to establishing the conjecture in a special case: namely for f.g. groups G that
have a chain of normal subgroups 1 < A ≤ K < G such that A is abelian and
finitely generated as a G/A-module, K/A is abelian of finite rank, and G/K is
polycyclic. It follows that there is a ‘subgroup growth gap’ for groups in this
class (which includes in particular all soluble groups of derived length 3 with
the maximal condition on normal subgroups). While this result is too special
to be of great interest, the proof introduces new methods; these may lead to
further progress on this problem, as well as to other applications in the theory
of f.g. soluble groups.
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Chapter 10

Profinite groups with
polynomial subgroup
growth

We showed in Chapter 5 that the finitely generated, residually finite groups with
polynomial subgroup growth are just those that are virtually soluble of finite
rank. The proof involved two kinds of argument: a ‘local’ part, analysing the
finite quotients of the group, and a ‘global’ part which involved representing
the group as a linear group. The latter depended crucially on the group being
finitely generated, and the result is not true without that hypothesis. However,
it makes sense to ask: can one characterize the general PSG group, including
those that are not finitely generated? The answer is a qualified ‘yes’, in the
sense that we can describe its profinite completion.

In this chapter, we determine precisely which profinite groups have PSG. To
begin with, let us consider some examples. As mentioned in the introduction
to Chapter 5, we already know that soluble groups of finite rank, and hence
also their profinite completions, are among the PSG groups. More generally, we
shall establish

Theorem 10.1 Every profinite group of finite rank has PSG.

In terms of abstract group theory, this says that every group of finite upper rank
has PSG.

What about the other examples mentioned in Chapter 5, namely infinite
products of finite simple groups? On studying such examples, it becomes clear
that a product of finite simple groups has ‘few’ subgroups of finite index if there
is minimal ‘overlapping’ between the orders of the simple factors: if many of
the factors have order divisible by a prime p, for example, then their direct
product will contain a large elementary abelian p-subgroup which in turn has
many subgroups relative to its order; and knowing enough about the structure

187
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of finite simple groups one can see that this is essentially the main obstacle to
the group having PSG. To formalize these vague ideas, we make the following

Definition Let N be a family of natural numbers. Then N satisfies the gcd
condition if there exists a positive number γ such that for every finite subfamily
F of N, ∏

x∈F

∏
y∈F

gcd(x, y) ≤

(∏
x∈F

x

)γ
.

Our second family of examples is provided by

Theorem 10.2 Let (Ti) be a sequence of finite nonabelian simple groups of
bounded ranks, each occurring with bounded multiplicity, and suppose that the
sequence of orders (|Ti|) satisfies the gcd condition. Then the profinite group∏

Ti

has PSG.

Some examples of this type are exhibited at the end of Section 10.3, below.
Now we can ask the question: do the two preceding theorems between them

provide all possible profinite PSG groups? Liberally interpreted, the answer
turns out be ‘yes’. The complete characterisation of profinite groups with PSG
is given in the following theorem, whose terminology is explained below:

Theorem 10.3 (The Profinite PSG Theorem) Let G be a profinite group. Then
G has PSG if and only if G has closed normal subgroups S ≤ G1 such that S is
prosoluble of finite rank, G/G1 is finite, and G1/S is a quasi-semisimple group
of bounded type such that N (G1/S) satisfies the gcd condition.

Here, a profinite group Q is said to be quasi-semisimple of bounded type if Q
is perfect (equal to the closure of its derived group) and Q/Z(Q) ∼=

∏
Ti where

(Ti) is a sequence of finite groups of bounded rank, each occurring with bounded
multiplicity, and each Ti is a simple group of Lie type; and N (Q) denotes the
numerical sequence (|Ti|).

It is worth noting that the simple groups Ti have bounded ranks if and
only if (1) they are of bounded Lie rank and (2) the underlying fields have
bounded degree over their prime fields. This follows from the classification of
finite simple groups, and it means that in principle, we can recognise ‘on sight’
whether a group is quasi-semisimple of bounded type. (The groups we term
‘quasi-semisimple’ are more usually called ‘semisimple’; we use the longer term
to emphasize the possible presence of a non-trivial centre, which in the present
context may be of infinite rank.) Of course Theorem 10.3 includes Theorem
10.2 as a special case. That it also generalizes Theorem 10.1 is less obvious:
this follows from the profinite version of Theorem 5.2, namely the fact that
every profinite group of finite rank is virtually prosoluble (see Section 1 below).

This theorem has two remarkable consequences.
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Corollary 10.4 The class of all PSG groups is extension-closed.

It is striking that (at present) no direct proof of this simple statement is known.

Corollary 10.5 If G is a profinite group with PSG then every (topologically)
finitely generated closed subgroup of G has PSG.

The restriction to finitely generated subgroups in this corollary is certainly nec-
essary, as we shall see in a moment. It is worth remarking that Corollary 10.5 is
a special property of polynomial subgroup growth; for example, the pro-p group
Cp oZp has exponential subgroup growth type, but embeds as a closed subgroup
in SL2(Fp[[t]]) which has the much slower growth type nlogn (see Chapter 4).

Another result that may be regarded as a consequence of Theorem 10.3 is
the following; though in fact it has a surprisingly simple probabilistic proof,
given in Chapter 11:

Theorem 10.6 Every profinite group with PSG is finitely generated.

The proof of Theorem 10.3 is long, and we shall omit some of the more
technical details. For these, and the proofs of the two corollaries, the reader is
referred to [Segal & Shalev 1997].

Now let us outline the broad structure of the argument. As in Chapter 5, we
work mostly with the concept of weak PSG (wPSG); whereas before this was
merely a flourish, it seems to be an essential tool for the considerations of this
chapter. Recall that G has wPSG if there exists α such that

s(G) ≤
∣∣G∣∣α

for every finite quotient G of G.
The first stage in the proof of Theorem 10.3, given in Section 10.2, is to show

that every profinite group with weak PSG is virtually an extension of a prosol-
uble group of finite rank by a quasi-semisimple group of bounded type. Having
established this, we are left with three (more or less logically independent) tasks:

• the characterisation of quasi-semisimple groups with wPSG (in Section
10.3);

• proving that every extension of a prosoluble group of finite rank by a group
with wPSG has wPSG, a special case of Corollary 10.4 (in Section 10.4);

• proving that wPSG is equivalent to PSG (in Section 10.5).

Most theorems of this chapter are initially proved in the form of results
about finite groups, saying that certain structural invariants of a finite group
G can be effectively bounded in terms of α†(G), the ‘exponent of weak PSG’
defined in Chapter 5. This is true in particular of the invariant α∗(G) defined
as follows (we also recall the definition of α†(G)):
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Definition

α∗(G) = inf {α > 0 : sn(G) ≤ nα for all n}

α†(G) = inf
{
α > 0 : s(G) ≤

∣∣G∣∣α for every finite quotient G of G
}
,

where conventionally inf ∅ = ∞.

Thus G has PSG if α∗(G) is finite, while G has weak PSG if α†(G) is finite.
We shall write f, f1 etc. to denote certain functions, whose existence is

supposed to be asserted when they occur in a statement (the same symbol may
denote different functions in different sections).

10.1 Upper rank

Theorem 10.1 follows directly from part (ii) of

Proposition 10.1.1 (i) If G is a prosoluble group then

α∗(G) ≤ rk(G) + 2.

(ii) There is a function f : N → N such that

α∗(G) ≤ f(rk(G))

for all profinite groups G.

Proof. Since both sides of the stated inequalities depend only on the finite
quotients of G, we may assume that G is a finite group.

(i) This is merely a slightly weaker version of Corollary 1.7.2.
(ii) Put r = rk(G). Suppose to begin with that G has no non-trivial soluble

normal subgroup, and put

K =
⋂

M∈M
M · CG(M),

where M denotes the set of all minimal normal subgroups of G. Now if
M ∈ M then M ∼= S(m), where S is a finite simple group of rank at most
r and m ≤ r because S has even order, whence S(m) contains an elementary
abelian 2-subgroup of rank m. The outer automorphism group of M embeds in
Out(S)oSym(m), and |Out(S)| is bounded by some function of r (# Finite sim-
ple groups); therefore |Out(M)| ≤ f1(r), and it follows that |G : MCG(M)| ≤
f1(r). Now G is a quotient of the free group F on r generators; F has only a fi-
nite number of normal subgroups of index f1(r), and their intersection therefore
has finite index, f2(r) say, in F . It follows that

|G : K| ≤ f2(r).
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Now suppose that M ∈M is contained in K. Then

K = K ∩MCG(M) = M × CK(M)

(because M ∩ CK(M) is an abelian normal subgroup of G). It follows that
K = M1 × · · · ×Mk for some M1, . . . ,Mk ∈ M, and hence that K is a direct
product of non-abelian simple groups. Now we apply Corollary 1.9.2 to deduce
that

sn(K) ≤ nf3(r).

With Proposition 1.3.2(ii) this gives

sn(G) ≤ nf3(r)+f2(r)

for all n.
Now consider the general case, and let R denote the soluble radical of G.

The special case above gives sn(G/R) ≤ nf3(r)+f2(r), and from part (i) we have
sn(R) ≤ n2+r for all n. We conclude by Proposition 1.3.2(i) that

sn(G) ≤ nf(r)

for all n, where
f(r) = (2 + r) + (f3(r) + f2(r)) + r.

This completes the proof.
Part (ii) depends implicitly on CFSG. A more elementary derivation of The-

orem 10.1 goes by way of Tate’s theorem (# Finite group theory), which
implies

Theorem 10.1.2 Let G be a profinite group whose Sylow pro-2 subgroups are
finitely generated. Then G is virtually prosoluble.

Recall that this depends on the Odd Order Theorem but not CFSG. This reduces
Theorem 10.1 to an application of part (i) of Proposition 10.1.1. It should be
noted, however, that this is weaker than Proposition 10.1.1 (ii), since the proof of
Theorem 5.5.1 does not provide an effective bound for the index of a prosoluble
subgroup.

10.2 Profinite groups with wPSG: structure

In this section we elucidate the structure of the general profinite group with
weak PSG. This will enable us, In Section 10.5, to show finally that weak PSG
is the same as PSG. It also prepares the ground for the exact characterisation
of these groups.

Throughout this section, G will denote a profinite group with wPSG, and
α = α†(G). We begin with two elementary lemmas.
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Lemma 10.2.1 Let K Co G with |G : K| = m <∞. Then

α†(G)− logm ≤ α†(K) ≤ (1 + logm)α†(G)
α∗(G) ≤ α∗(K) +m.

Proof. As usual we may assume that G is finite. Proposition 1.3.2(iii) shows
that

s(G) ≤ s(K) |G|rk(G/K)
.

Since rk(G/K) ≤ logm this gives

s(G) ≤ |K|α
†(K) |G|logm ≤ |G|α

†(K)+logm
,

whence the first inequality. For the second inequality, note that

s(K) ≤ s(G) ≤ |G|α
†(G)

= (m |K|)α
†(G) ≤ |K|(1+logm)α†(G)

provided |K| ≥ 2. The final inequality is immediate from Proposition 1.3.2(ii).

Lemma 10.2.2 Put

G(n) =
⋂
{N Co G | |G : N | divides n} .

Then
|G : G(n)| ≤ f(α, n).

Proof. If we can prove this under the assumption that G/G(n) is finite,
it will follow in general. So let us make this assumption; then replacing G by
G/G(n) we may suppose that G is finite and that G(n) = 1. Now choose normal
subgroups K1, . . . ,Kt of index dividing n in G so that K1 ∩ . . . ∩Kt = 1 and t
is minimal, and put

Li =
⋂
j 6=i

Kj .

Then |Li| divides |G : Ki| and hence divides n.
Now suppose that n is divisible by µ = µ(n) distinct primes. Then at least

one prime, p say, must divide |Li| for at least [t/µ] distinct values of i. Since
the groups Li generate their direct product in G it follows that G contains an
elementary abelian p-subgroup of rank at least [t/µ] . Consequently

p[[t/µ]2/4] ≤ s(G) ≤ |G|α ≤ ntα.

This implies (crudely) that
t ≤ 8µ2α log n
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(since p ≥ 2). As |G| ≤ nt this shows that we can take

f(α, n) = n8µ(n)2α logn.

Now we recall some notation and a result from Section 5.3.

S0 denotes the set of sporadic finite simple groups

A(β) denotes the set of alternating groups of degree at least 5 and at most β

X (β) denotes the set of all simple groups of Lie type X∗n(Fpe) where the Lie
rank n and the field degree e are at most β.

For any group G, β(G) denotes the least natural number β such that every
non-abelian upper composition factor of G belongs to S0 ∪ A(β) ∪ X (β) (or ∞
if there is no such β); and w(G) denotes the supremum of all natural numbers
m such that some finite quotient of G hs a normal subgroup isomorphic to S(m)

for some non-abelian simple group S.
Proposition 5.3.4 asserts that if G has wPSG, then both β(G) = β and

w(G) = w are finite, and bounded by some function of α†(G) = α. This fact is
the key to our first major structural observation:

Proposition 10.2.3 G has closed normal subgroups R ≤ G0 such that R is
prosoluble, G/G0 is finite (of order bounded by some function of α), and

G0/R ∼=
∏
T∈T

T (m(T )),

where T ⊆ X (β) and m(T ) ≤ w for each T ∈ T .

Proof. This is very similar to the proof of Proposition 10.1.1(ii). Let M
be a non-abelian upper chief factor of G. Then M ∼= S(m) where m ≤ w and
S ∈ S0 ∪ A(β) ∪ X (β). If S ∈ S0 ∪ A(β) put GM = CG(M), while if S ∈ X (β)
let GM be the kernel of the natural map G → Out(M). Then |G : GM | ≤ n
where n is bounded by some function of β and w; this is clear in the first case,
and in the second case follows as in the proof of Proposition 10.1.1. So putting

G0 =
⋂
GM

where M ranges over all the non-abelian upper chief factors of G, we see by
Lemma 10.2.2 that |G : G0| is finite and bounded by some function of α.

For each N Co G with N ≤ G0, let RN/N be the maximal soluble normal
subgroup of G0/N , and put

R =
⋂
{RN | G0 ≥ N Co G} .
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Then R is a closed, prosoluble normal subgroup of G contained in G0, and

G0/R ∼= lim
←−

G0/RN .

The proposition will therefore follow if we can show that, for each N Co G with
N ≤ G0, the group G0/RN is a direct product of simple groups belonging to
X (β).

So replacing G by G/RN and changing notation, we may as well assume that
G is finite and that G0 contains no non-identity soluble normal subgroup of G.
Now let K be the product of all minimal normal subgroups of G contained in
G0. Each of these minimal normal subgroups is a non-abelian upper chief factor
of G, so the definition of G0 ensures that G0 = KCG0(K); and K∩CG0(K) = 1.
As CG0(K) C G it follows that CG0(K) = 1 and hence that G0 = K, a direct
product of simple groups in S0 ∪ A(β) ∪ X (β). However, any chief factor of G
which is a product of groups in S0 ∪A(β) is centralized by G0, hence cannot lie
inside K; hence G0 is a product of groups in X (β) as required.

Now Lemma 10.2.1 shows that G0 has wPSG, and that α†(G0) is bounded
by some function of α†(G) and |G : G0|; to simplify notation, we may as well
replace G by G0 and so assume in the following discussion that G has a closed
prosoluble normal subgroup R such that G/R is a Cartesian product of simple
groups in X (β). Can we now deduce that the prosoluble group R has finite
rank? Unfortunately things are not quite that simple, as we shall see in Section
10.3. The correct statement is given in the following proposition.

Proposition 10.2.4 The group [R,G] has finite rank, bounded by a function
of α.

Here, [R,G] denotes the closure in R of the subgroup [R,G].
Proof. This is an elaboration of the proof of Proposition 5.4.2. In that

proposition, the hypothesis of solubility was used essentially in bounding the
order of a completely reducible linear group. Although we cannot invoke this
here, we do know that G has restricted composition factors, and fortunately,
thanks to the linear version of the theorem of Babai, Cameron and Pálfy, that
suffices to provide a similar bound at the corresponding point in the argument.

As in Proposition 5.4.2, we may assume that G is finite and that p is a prime
such that Op′(G) = 1, and have to show that rp([R,G]) is bounded in terms
of α. Note that R is now the maximal soluble normal subgroup of G and that
G/R is a direct product of simple groups belonging to X (β).

Let E = E(G) be the subgroup generated by all the quasi-simple subnormal
subgroups of G. Recall (# Finite group theory) that the generalized Fitting
subgroup

F ∗(G) = Fit(G)E(G)

has the property CG(F ∗(G)) = Z(F ∗(G)). We also need the fact that

CG(E) = CG(E/Z(E)) ≥ R.
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Let us suppose to begin with that

E(G) = Op′(G) = 1.

Then Op(G) = Fit(G) = F ∗(G) = F, say. We now repeat the proof of Proposi-
tion 5.4.2, with just one change: the derivation of the inequality |G : F | ≤ p3d,
where d = dimFp(V ) and V denotes the direct sum of the FpG-composition
factors of F/F ′F p, depended on the solubility of G; instead of the Pálfy/Wolf
theorem we now quote Theorem 4 of the Permutation groups window, which
gives instead

|G : F | ≤ phd,

where h is a number that depends only on β(G). The rest of the argument goes
exactly as before, to show that

rp(R) ≤ rp(G) ≤ f(α)

for a suitable function f .
We now return to the general case, still assuming that Op′(G) = 1. Put

Z = Z(E) and C = CG(E) = CG(E/Z). Then G/Z = E/Z × C/Z, because
E/Z is a product of non-abelian chief factors of G and G induces only inner
automorphisms on each such chief factor. It follows in particular that Z ≤ Z(G).

Now write
: G→ G/E

for the quotient mapping. We claim that E(G) = Op′(G) = 1. To see this, sup-
pose that X/E is a quasi-simple subnormal subgroup of G/E. Then
(X ∩ C)/Z = Y/Z, say, is quasi-simple and it follows easily that Y ′ is a quasi-
simple group. But Y ′ is also subnormal in G, so Y ′ ≤ E; this now implies that
X/E is abelian, a contradiction. Thus X cannot exist, and so E(G) = 1 as
claimed. Next, suppose that X/E is a minimal normal p′-subgroup of G/E,
and define Y as above. Since E(G) = 1, the group X/E is elementary abelian;
hence so is Y/Z, whence Y is nilpotent. But Y C G so Op′(Y ) ≤ Op′(G) = 1;
thus Y is a p-group, and therefore so is X/E ∼= Y/Z, a contradiction. Thus
again X cannot exist, and Op′(G) = 1 as claimed.

The special case done above now shows that

rp(R) ≤ f(α).

Since R ≤ C we have
R ∩ E = Z ≤ Z(R);

and hence in particular that R/Z ∼= R. It follows from the definition of E that
Z is a quotient of the Schur multiplier M(E/Z). Also E/Z is a direct product of
simple groups belonging to X (β), and the multiplier of each such group has order
at most 16(β + 1) (# Finite simple groups); consequently Z has exponent
dividing (16(β + 1))!. On the other hand, Z is a p-group since Op′(G) = 1. If
p > 16(β + 1) it follows that Z = 1, in which case

rp([R,G]) ≤ rp(R) = rp(R) ≤ f(α),
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and we are done. We may therefore suppose henceforth that

p ≤ 16(β + 1).

The Schur multiplier M(R/Z) has p-rank bounded by a number depending
only on rp(R) (# Finite group theory). This implies that

rp(R′ ∩ Z) ≤ rp(M(R/Z)) ≤ f1(α)

for some function f1, and hence that

rp(R′) ≤ rp(R′) + rp(R′ ∩ Z) ≤ f(α) + f1(α).

It remains to deal with the factor [R,G]/R′. Now let pn be the p-part of the
exponent of R/R′, and let m = rp(R/R′), so m ≤ f(α). Consider the group

K = CG(R/R′RpZ).

This is the kernel of the action of G on an Fp-vector space of dimension m. Since
p ≤ 16(β+1) it follows that k = |G : K| ≤ |GLm(Fp)| is bounded by some f2(α)
depending only on α. On the other hand, K/CK(R/R′Rp) is abelian (since Z
is central in G), and CK(R/R′Rp)/CK(R/R′Rp

n

) is a p-group; but G/R is a
product of non-abelian simple groups and R ≤ CK(R/R′Rp

n

), so we must have
K = CK(R/R′Rp

n

) = CG(R/R′Rp
n

).
Let x1, . . . , xm generateRmoduloR′Rp

n

Z and let {y1, . . . , yk} be a transver-
sal to the cosets of K in G. Then

[R,G]Rp
n

= 〈[xi, yj ] | 1 ≤ i ≤ m, 1 ≤ j ≤ k〉R′Rp
n

.

Since the p-part of [R,G]/R′ is isomorphic to [R,G]Rp
n

/R′Rp
n

it follows that

rp([R,G]/R′) ≤ mk ≤ f(α)f2(α)

and hence that rp([R,G]) ≤ f(α)f2(α) + f(α) + f1(α).
This completes the proof.

We are now ready to state the main structure theorem. A profinite group H
is said to be quasi-semisimple of bounded type if H is perfect (that is, H = H ′)
and

H/Z(H) ∼=
∏
X∈X

X(m(X)),

where for some finite β we have X ⊆ X (β) and m(X) ≤ β for each X. The
least such β is called the type of H. The fact that the Schur multiplier M(X)
has order at most 16(β + 1) for each such X, alluded to in the preceding proof,
implies that Z(H) is then an abelian group of exponent dividing (16(β + 1))!.

Theorem 10.2.5 Let G be a profinite group with wPSG. Then
(i) G is finitely generated;
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(ii) G has closed normal subgroups S ≤ G1 such that S is prosoluble of finite
rank, G/G1 is finite, and G1/S is a quasi-semisimple group of bounded type
having wPSG.
Moreover, d(G), the index |G : G1| , the rank of S, the type of G1/S and α†(G1/S)
are all bounded by functions of α†(G).

Proof. We shall say that a number is ‘bounded’ if it is bounded in terms of
α†(G). Let R ≤ G0 be the closed normal subgroups ofG provided by Proposition
10.2.3, and put e = (16(β + 1))!. Now put

S = [R,G0]Re

G1 = G′0R
e.

Note first that α†(G0) is bounded, by Lemma 10.2.1. Applying Proposition
10.2.4, with G0 in place of G, we see that [R,G0] has bounded rank, so factoring
out this closed normal subgroup we may suppose for the rest of the proof that
[R,G0] = 1.

Write D = R ∩ G′0. Since G0/R is a product of non-abelian simple groups
we have G0 = RG′0. By Proposition 5.4.2 (or an elementary argument!), the
abelian group G0/G′0 has bounded rank r, say, so R/D ∼= G0/G′0 also has rank
r. On the other hand, G′0 is perfect since R is central in G0, so in fact G′0 is
quasi-semisimple of bounded type (at most β) with centre D, and it follows that
De = 1. As R is abelian, this now implies that rk(Re) ≤ r. This completes
the proof that S = [R,G0]Re has bounded rank; and of course S is prosoluble
because S ≤ R.

Now
G1/S = G′0R

e/Re ∼= G′0/(G
′
0 ∩Re)

is the quotient of G′0 by a central closed subgroup; hence G1/S is again quasi-
semisimple of bounded type at most β. Finally,

G0/G1
∼= R/DRe

which has order at most er, and so |G : G1| ≤ |G : G0|er is bounded.
This completes the proof of (ii). Part (i) now follows, because

d(G) ≤ d(G/G0) + d(G0/S) + d(S)
≤ log |G : G0|+ 2β + rk(S).

To see that d(G0/S) ≤ 2β, note first that d(G0/S) = d(G0/Z) where Z/S =
Z(G0/S), because G0/S is perfect. On the other hand, we can write G0/Z as
the direct product of at most β closed subgroups, each of which is a Carte-
sian product of pairwise non-isomorphic non-abelian simple groups; since every
simple group can be generated by 2 elements the same holds for each of these
cartesian products. (The fact that profinite PSG groups are finitely generated
can be proved very simply by a quite different method, given in Chapter 11).

The significance of this theorem is that, to a large extent, it reduces the
characterisation of profinite groups with wPSG to the case of quasi-semisimple
groups, which can be described in terms of certain numerical parameters.
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10.3 Quasi-semisimple groups

A quasi-semisimple group with trivial centre is a Cartesian product of finite
simple groups. Such a groupG is determined, up to a small amount of ambiguity,
just by the orders of its simple factors, with their multiplicities (the ambiguity
results from the occasional coincidence of the orders of non-isomorphic simple
groups). Ignoring the ambiguity, it follows that (roughly) any property of G is
equivalent to some arithmetical property of the corresponding family of natural
numbers. Which arithmetical property expresses the condition that G have
wPSG? There is no a priori reason to expect that this property should have a
concise arithmetical definition; quite remarkably, however, it does. Moreover, it
applies to all quasi-semisimple groups, even those with non-trivial centres.

Let G be a quasi-semisimple group of bounded type. Thus for some finite β
we have G/Z(G) =

∏
i∈I Ti, where Ti ∈ X (β) for each i and no factor occurs

more than β times. Define

N (G) = (|Ti|)i∈I .

We say that a family N of natural numbers satisfies the gcd condition if there
exists a positive number γ such that for every finite subfamily F of N,

∏
x∈F

∏
y∈F

gcd(x, y) ≤

(∏
x∈F

x

)γ
.

We can now state

Proposition 10.3.1 Let G be a quasi-semisimple profinite group of bounded
type. Then G has wPSG if and only if the family N (G) satisfies the gcd condi-
tion.

The appearance of the gcd condition is explained by Proposition 1.10.2,
which relates s(A) for an abelian group A ∼=

⊕
Cei

to

|End(A)| =
∏
i,j

gcd(ei, ej).

The idea behind the proof of Proposition 10.3.1 is that we can ‘model’ a finite
quotient of G by a suitable abelian group.

The argument in the ‘only if’ direction depends on the following property of
simple groups:

Lemma 10.3.2 ([Segal & Shalev 1997], Lemma 6.2). Let T ∈ X (β). Then T
contains elements g1, . . . , gm, where m depends only on β, such that

m∏
j=1

o(gj) = |T | .
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We omit the rather technical proof, but illustrate the result with an example:

Example Let T = PSL2(Fp) where p ≥ 5 is a prime. Then m = 4 will do: let

g1 =
(

0 1
−1 0

)
, g2 =

(
1 1
0 1

)
, g3 =

(
λ 0
0 λ−1

)
where λ is a generator for the multiplicative group F∗p, and g4 = σp−1 where σ is
a Singer-cycle (acting like multiplication by a generator of F∗p2 on Fp2 ∼= Fp⊕Fp).
The images of g1, . . . , g4 in T have orders 2, p, (p−1)/2 and (p+1)/2 respectively,
while |T | = p(p2 − 1)/2.

Now suppose that G as above has wPSG, and let F be a finite subfamily of
N (G). To simplify notation, we may as well assume that F = (|T1| , . . . , |Tk|).
Then T1 × · · · × Tk = G is a quotient of G. For each i, put ni = |Ti| and let
gi1, . . . , gim be the elements of Ti provided by Lemma 10.3.2.

The idea is to ‘model’ G with the correponding abelian group B = Cn1 ×
· · · × Cnk

. For j = 1, . . . ,m, let

Aj = 〈gij | i = 1, . . . , k〉 ≤ G.

Then Aj ∼= Ce(1,j) × · · · × Ce(k,j) where e(i, j) = o(gij), and we may construct
a filtration

B = Bm ≥ Bm−1 ≥ . . . ≥ B1 ≥ B0 = 1

so that Bj/Bj−1
∼= Aj for j = 1, . . . ,m.

Now on the one hand,

|End(Aj)| ≤ |Aj | s(Aj)4 ≤ |Aj | s(G)4

for each j. On the other hand,

k∏
i=1

k∏
j=1

gcd(ni, nj) = |End(B)| ≤
m∏
j=1

|End(Aj)|m .

For both of these, see §1.10. Putting them together and noting that
∏m
j=1 |Aj | =∣∣G∣∣ we obtain

k∏
i=1

k∏
j=1

gcd(ni, nj) ≤
∣∣G∣∣m · s(G)4m

2

≤
∣∣G∣∣m+4m2α

=

(
k∏
i=1

ni

)m+4m2α

where α = α†(G).
It follows that N (G) satisfies the gcd condition with constant γ = m+4m2α.

The converse will be deduced from the following general result about finite
linear groups:
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Proposition 10.3.3 Let p1, . . . , pk be primes and m ∈ N. For each i let Xi be
a subgroup of GLm(Fpi) of even order, and let H = X1×· · ·×Xk. Suppose that

k∏
i=1

k∏
j=1

gcd(|Xi| , |Xj |) ≤

(
k∏
i=1

|Xi|

)ν
.

Then
s(H) ≤ |H|f(m,µ,ν)

where µ is the maximum multiplicity of any prime in the sequence p1, . . . , pk.

Before giving the proof, let us complete the deduction of Proposition 10.3.1.
So letG be quasi-semisimple of bounded type β, and suppose thatN (G) satisfies
the gcd condition with the constant γ. We have to show that if G is any finite
quotient of G then s(G) ≤

∣∣G∣∣s where s is bounded in terms of β and γ.
Now G is a finite perfect group and G/Z(G) = T1 × · · · × Tk where each

Ti ∈ X (β). It follows that G is an epimorphic image of T̃1 × · · · × T̃k = H,
say, where T̃i denotes the universal covering group of Ti. For each i we have∣∣∣T̃i∣∣∣ < |Ti|2 (the order is actually very much less: # Finite simple groups); so

|H| <
∣∣G∣∣2, and as s(G) ≤ s(H) it will therefore suffice to show that s(H) ≤ |H|s

where s is bounded in terms of β and γ. This we do by verifying that Proposition
10.3.3 is applicable, taking Xi = T̃i for each i. That is, we find m, µ and ν as
in the proposition and check that each is bounded in terms of β and γ.

What is m? Suppose Ti = X∗ni
(Fpei

i
). Then Xi = T̃i has a faithful linear

representation over Fpei
i

of degree bounded in terms of ni ≤ β. Since also ei ≤ β

for each i, there exists m, bounded in terms of β, such that Xi ≤ GLm(Fpi) for
each i.

What is µ? There are at most 14β possibilities for the symbol ∗Xni
, at most

β possibilities for ei, and each Ti occurs at most β times up to isomorphism. It
follows that no prime occurs more than 14β3 times in the sequence p1, . . . , pk,
and so µ ≤ 14β3.

What is ν? The Schur multiplier M(Ti) is the kernel of the covering map
T̃i → Ti. Let h be the least common multiple of the orders |M(Ti)|, so |Xi|
divides h |Ti| for each i. Then

gcd(|Xi| , |Xj |) ≤ h gcd(|Ti| , |Tj |) ≤ gcd(|Ti| , |Tj |)1+log h

since gcd(|Ti| , |Tj |) ≥ 2; thus

k∏
i=1

k∏
j=1

gcd(|Xi| , |Xj |) ≤
k∏
i=1

k∏
j=1

gcd(|Ti| , |Tj |)1+log h

≤

(
k∏
i=1

|Ti|

)γ(1+log h)

≤

(
k∏
i=1

|Xi|

)ν
,
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where ν = γ(1 + log h). Since each Ti ∈ X (β), we know that h is bounded in
terms of β (# Finite simple groups); hence ν is bounded in terms of β and
γ.

This completes the deduction of Proposition 10.3.1, and it remains to prove
Proposition 10.3.3. We shall use Proposition 1.8.1, which we restate here (recall
that for a finite group G, nil(G) denotes the number of nilpotent subgroups of
G):

Lemma 10.3.4 Let H be a finite group, and let l be the maximum Fitting height
of any soluble subgroup of H. Then

s(H) ≤ nil(H)l+1.

Proof of Proposition 10.3.3. We shall say that a number is ‘bounded’ if
it is bounded in terms of m, µ and ν. The soluble subgroups of H have bounded
derived lengths, by Zassenhaus’s Theorem (# Linear groups), and a fortiori
bounded Fitting heights; in view of the above Lemma, it will therefore suffice
to show that nil(H) ≤ |H|s where s is bounded.

Write πi : H → Xi for the ith projection mapping. Let Y be a nilpotent
subgroup of H. Then πi(Y ) = Pi(Y ) × Qi(Y ) where Pi(Y ) is a pi-group and
Qi(Y ) is a p′i-group, and we have Y ≤ P (Y )×Q(Y ) where

P (Y ) =
∏

Pi(Y ), Q(Y ) =
∏

Qi(Y ).

Now for each i, the rank of Pi(Y ) is at most m2 (# Finite group theory).
Since the rank of a nilpotent group is just the maximum of the ranks of its
Sylow subgroups, it follows that rk(P (Y )) ≤ µm2. Therefore Y is generated by
Y ∩Q(Y ) and at most µm2 further elements. Thus given Y ∩Q(Y ), the number
of possibilities for Y is at most |H|µm

2

.
Let us call a subgroup Y of H non-modular if πi(Y ) is a p′i-group for each i,

and suppose thatH contains n nilpotent non-modular subgroups. The preceding
discussion shows that

nil(H) ≤ |H|µm
2

n.

To each nilpotent p′i-subgroup Qi of Xi we assign one of its maximal abelian
normal subgroups Ai. Then Ai is a diagonalisable group and Qi/Ai embeds
in Sym(m), which implies that rk(Ai) ≤ m and rk(Qi/Ai) ≤ m (# Linear
groups). Hence Qi has rank at most 2m. It follows that the number of such
subgroups Qi of Xi is at most |Xi|2m. To estimate n, we now associate to each
nilpotent non-modular subgroup Y of H the k-tuple

Q(Y ) = (π1(Y ), . . . , πk(Y )) .

The number of such k-tuples is at most
∏
|Xi|2m = |H|2m, so it will suffice

now to estimate the number n(Q) of such Y for a fixed choice of Q(Y ) =
(Q1, . . . , Qk).
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Put A = A1 × · · · × Ak and Q = Q1 × · · · ×Qk. Then Y ≤ Q; we estimate
separately the number of possibilities for A ∩ Y , for AY , and then, given these
two groups, for Y itself.

Since each Ai has rank at most m, the abelian group A is isomorphic to a
subgroup of

(Ct1 × · · · × Ctk)(m)

where ti = |Xi| for each i. It follows by Proposition 1.10.2 and Corollary 1.10.7
that

s(A) ≤ |End(Ct1 × · · · × Ctk)|m
2

=

 k∏
i=1

k∏
j=1

gcd(ti, tj)

m2

≤

(
k∏
i=1

ti

)νm2

= |H|νm
2

.

This gives an upper bound to the number of possibilities for A ∩ Y .
The group Q/A ∼= Q1/A1 × · · · ×Qk/Ak has rank at most km and order at

most (m!)k, hence contains at most (m!)k
2m subgroups. However, since each ti

is even we have

2k
2
≤

k∏
i=1

k∏
j=1

gcd(ti, tj) ≤ |H|ν ,

which implies that
(m!)k

2
= 2k

2 logm! ≤ |H|ν logm!
. (10.1)

Hence the number of possibilities for the subgroup AY of Q is bounded above
by |H|νm logm!.

Finally, having fixed A ∩ Y = B and AY = E, we estimate the number of
possibilities for Y . Since Y/B is a complement to A/B in E/B, this number is
at most

d = |Der(E/A,A/B)| .

Put B0 = A ∩ Y and, for i ≥ 1, let Bi = Bi−1Ai. Put Ci = CE(Bi/Bi−1) and
write di = |Der(E/A,Bi/Bi−1)|. Then d ≤ d1 . . . dk, and for each i we have

di ≤ |Der(E/Ci, Bi/Bi−1)| · |Hom(Ci/A), Bi/Bi−1| .

Now Ci/A ≤ Q/A has exponent dividing m! and rank at most km, while
Bi/Bi−1

∼= Ai/(Ai ∩Bi−1) is abelian and has rank at most m; therefore

|Hom(Ci/A), Bi/Bi−1| ≤ (m!)km
2
.

On the other hand, since Ci ≥
∏
j 6=iAj , the quotient E/Ci is isomorphic to a

section of Qi/Ai and so has rank at most m. Therefore

|Der(E/Ci, Bi/Bi−1)| ≤ |Bi/Bi−1|m ≤ |Ai|m .
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Putting these together we get

d ≤
k∏
i=1

(
|Ai|m (m!)km

2
)
≤ |H|m (m!)k

2m2
≤ |H|m+m2ν logm!

.

The conclusion is that
n(Q) ≤ |H|s

where
s = νm2 + νm logm! + (m+m2ν logm!).

The result follows.

To conclude this section, let us show how Proposition 10.3.1 may be used to
construct many groups with wPSG (which is equivalent to PSG, as we show in
§10.5 below). Let (pi) be a sequence of distinct primes greater than 3 such that
for each i,

pi ≥ 2i

pi ≡ ±3 (mod 8)

pi 6≡ 1 (mod q) for each prime factor q of
∏
j<i

pj(p2
j − 1).

The existence of such sequences is guaranteed by Dirichlet’s theorem on arith-
metic progressions. Now put

Li = PSL2(Fpi
), L̃i = SL2(Fpi

).

Then |Li| = pi(p2
i − 1)/2 for each i, so for i > j we have

gcd(|Lj | , |Li|) = 12,

and a short calculation shows that the sequence (|Li|) satisfies the gcd condition
with γ = 4. It follows that the profinite groups

G =
∞∏
i=1

Li and G̃ =
∞∏
i=1

L̃i

both have (w)PSG. Note that the centre of G̃ is an infinite group of exponent 2;
this explains the remark made in an earlier section that the prosoluble radical
of a PSG group need not necessarily have finite rank.

Now let R = Z[{p−1 : p ∈ S}] where S is the complement of {pi | i ∈ N} in
the set of all primes. The group SL2(R) has the congruence subgroup property
(see Chapter 6), so its profinite completion is isomorphic to

SL2(R̂) ∼=
∞∏
i=1

SL2(Zpi).
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Let Ki be the principal congruence subgroup ker(SL2(Zpi) → SL2(Fpi)). Then
Ki is a pro-pi group of rank 3, and so K =

∏∞
i=1Ki is pronilpotent of rank 3

(# Pro-p groups). The exact sequence

1 → K → SL2(R̂) →
∞∏
i=1

SL2(Fpi
) = G̃→ 1

now shows that SL2(R̂) is an extension of K by G̃; Proposition 10.4.3, to be
proved below, now implies that SL2(R̂) has (w)PSG, and hence that SL2(R)
also has PSG. Thus we obtain a plentiful supply of countable, non-soluble linear
groups with PSG.

10.4 Profinite groups with wPSG:
characterisation

We now have all the ingredients, and it remains to put them together. The
main step is the following result about group extensions, similar to Proposition
1.3.3:

Proposition 10.4.1 Let G be a finite group and S a soluble normal subgroup
of rank r. Then

s(G) ≤ s(G/S)f1(l) |S|f2(l,r)

where l denotes the maximal Fitting height of all soluble subgroups of G.

This will be proved below. For the present application we also need

Lemma 10.4.2 Let Q be a finite group and H a soluble subgroup of Q. Then

l(H) ≤ min{f3(rk(H)), f4(α†(Q))}.

Recall that l(H) denotes the Fitting height of H.

Proof. Put r = rk(H), and let K denote the intersection of the centralizers
of all chief factors of H. Since these chief factors are elementary abelian of rank
at most r, we see that H/K is a subdirect product of soluble linear groups of
degree at most r. It follows by Zassenhaus’s Theorem (# Linear groups) that
the derived length of H/K is bounded by a function of r. As K is nilpotent this
shows that l(H) ≤ f3(r).

Now applying Theorem 10.2.5 to the group Q, we find normal subgroups
S ≤ R ≤ Q1 of Q such that S is soluble, R/S is central in Q1/S and Q1/R is a
product of simple groups in X (β), where rk(S), β and |Q : Q1| are all bounded
in terms of α†(Q). In particular, Q1/R is a product of linear groups of bounded
degree, so as above it follows that l((Q1 ∩ H)/(R ∩ H)) is bounded (where
‘bounded’ now means in terms of α†(Q)). Clearly l((Q1∩H)/(S∩H)) = l((Q1∩
H)/(R∩H)). Also l(H/(Q1∩H)) ≤ log |Q : Q1| , while l(S∩H) ≤ f3(rk(S)) by
the preceding paragraph. Since the Fitting height is sub-additive on extensions
we deduce that l(H) is bounded in terms of α†(Q).
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Corollary 10.4.3 Let S Cc G where G is a profinite group, S is prosoluble of
finite rank r, and α†(G/S) = α is finite. Then

α†(G) ≤ f(r, α).

Proof. We may assume that G is finite, and have to bound s(G) in terms
of |G|. Put Q = G/S. Since Fitting height is sub-additive on extensions, we
see from Lemma 10.4.2 that the Fitting height of every soluble subgroup of G
is bounded by f3(r) + f4(α) = l, say. Then Proposition 10.4.1 gives

s(G) ≤ s(Q)f1(l) |S|f2(l,r)

≤ |Q|αf1(l) |S|f2(l,r) ≤ |G|f(r,α)

where f(r, α) = max{αf1(f3(r) + f4(r)), f2(f3(r) + f4(r))}.
Combining this with Theorem 10.2.5, Proposition 10.3.1 and Lemma 10.2.1,

we obtain the characterisation of profinite groups with wPSG:

Theorem 10.4.4 Let G be a profinite group. Then G has wPSG if and only if
G has closed normal subgroups S ≤ G1 such that S is prosoluble of finite rank,
G/G1 is finite, and G1/S is a quasi-semisimple group of bounded type such that
N (G1/S) satisfies the gcd condition.

The proof of Proposition 10.4.1 depends on a further lemma (cf. Lemma
1.3.4):

Lemma 10.4.5 Let A and B be finite nilpotent groups, with A acting on B.
Let r = rk(B). Then

|Der(A,B)| ≤ sC(A) · |B|1+(7r2+r)/2
.

Proof. Write Ap, Bp to denote the Sylow p-subgroups of A, B respectively,
and Ap′ for the (normal) p-complement of A. Then

|Der(A,B)| =
∏
p

|Der(A,Bp)| =
∏
p

|Der(Ap′ , Bp)| |Der(Ap, Bp)|

where the product ranges over all primes p. Now every derivation Ap′ → Bp is
inner (the conjugacy part of the Schur-Zassenhaus theorem), so |Der(Ap′ , Bp)| ≤
|Bp|.

Fix p and put P = Bp, Q = Ap. Let δ ∈ Der(Q,P ) and put K = Kδ =
CQ(P )∩ker δ. It is easy to verify thatK C Q. Since the restriction of δ to CQ(P )
is a homomorphism with kernel K, we deduce that CQ(P )/K is isomorphic to
a subgroup of P, hence has rank at most r. On the other hand, according
to Proposition 9 in the Pro-p groups window, every p-subgroup of Aut(P )
has rank at most 1

2 (7r2 − r), so this is an upper bound for rk(Q/CQ(P )). It
follows that Q/K has rank at most 1

2 (7r2 + r). Now δ is determined by the
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induced derivation Q/K → P, so once Kδ is given there are at most |P |(7r
2+r)/2

possibilities for δ. This shows that

|Der(Q,P )| ≤ sC(Q) · |P |(7r
2+r)/2

.

The lemma follows since sC(A) =
∏
p s

C(Ap) and |B| =
∏
p |Bp|.

Proof of Proposition 10.4.1. Recall that s(G) ≤ nil(G)l+1 by Lemma
10.3.4, so it will suffice to find an upper bound for nil(G).

Let F be the Fitting subgroup of S and put n1 = nil(G/F ). To each nilpotent
subgroup H of G we associate YH = HF and DH = H ∩ F . Given a nilpotent
subgroup Y/F of G/F and a subgroup D of F , the number of possibilities for
H such that YH = Y and DH = D is at most

der(NY (D)/NF (D), NF (D)/D),

becauseH/D is a complement to NF (D)/D in NY (D)/D. Since NY (D)/NF (D) ∼=
Y/F and NF (D)/D is a section of F, Lemma 10.4.5 shows that this number is
at most

s(Y/F ) · |F |1+(7r2+r)/2 ≤ n1 |F |1+(7r2+r)/2
.

The number of possible choices for Y is at most n1, and there are at most |F |r
possibiities for D. It follows that

nil(G) ≤ n2
1 |F |

1+(7r2+3r)/2
.

To get rid of n1 we now repeat this argument, going up the Fitting series of
S, which has length at most l; the conclusion is that

nil(G) ≤ nil(G/S)2
l

· |S|2
l−1(1+(7r2+3r)/2)

.

Thus
s(G) ≤ s(G/S)f1(l) |S|f2(l,r)

where f1(l) = (l+1)2l and f2(l, r) = (l+1)2l−1(1+(7r2+3r)/2). This completes
the proof.

For the proofs of Corollaries 10.4 and 10.5, we refer the reader to [Segal &
Shalev 1997]. The first of these, which says that extensions of PSG groups again
have PSG, is quite easily reduced using Corollary 10.4.3 to the case of quasi-
semisimple groups; in that case, it comes down to the elementary arithmetical
fact that if two sequences satisfy the gcd condition then so does their union,
by Corollary 1.10.5. Corollary 10.5 depends on a slightly tricky application of
Jordan’s theorem (# Linear groups) .
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10.5 Weak PSG = PSG

To complete the proof of the Profinite PSG Theorem it only remains to establish

Theorem 10.5.1 Every group with weak PSG has PSG. More precisely, there
exists a function f such that

α†(G) ≤ α∗(G) ≤ f(α†(G)) (10.2)

for all groups G.

We have already remarked that α†(G) ≤ α∗(G) holds trivially. Now let
G be a group with α = α†(G) finite. Since α∗(G) depends only on the finite
quotients of G, to complete the proof of (10.2) we may replace G by one of its
finite quotients, and so assume henceforth that G is finite. As before, we shall
call a number ‘bounded’ if it is bounded above by some function of α. According
to Theorem 10.2.5, G has a normal subgroup G1 of bounded index and a soluble
normal subgroup S ≤ G1 of bounded rank such that G1/S is quasi-semisimple
of bounded type β,say. Now Lemma 10.2.1 shows that α†(G1) is bounded, and
that α∗(G) is bounded by a function of α∗(G1). Thus it will suffice to show that
α∗(G1) is bounded in terms of α†(G1); so we may replace G by G1 and assume
henceforth that G = G1. In this case, we have

S ≤ R C G

where S C G is soluble of bounded rank r, R/S = Z(G/S), G/S is perfect and
G/R is a product of simple groups in X (β), each occurring with multiplicity at
most β.

Suppose we can show

A that G has at most nf1(α) normal subgroups of index at most n, for each
n, and

B that if H ≤ G and |G : H| = n then |G : HG| ≤ nf2(α), for each n,

where HG =
⋂
g∈GH

g. Then every subgroup of index n in G contains a normal
subgroup of index at most nf2(α); there are at most nf2(α)f1(α) such normal
subgroups, and each of them is contained in at most nf2(α)α subgroups of G.
Consequently

an(G) ≤ nf2(α)f1(α)nf2(α)α = nf2(α)(f1(α)+α).

Therefore sn(G) ≤ nf(α) where f(α) = 1+f2(α)(f1(α)+α), and (10.2) follows.
The proof of (A) depends on the following simple lemma.

Lemma 10.5.2 Let H be a direct product of non-abelian simple groups, each of
which appears at most β times. Then the number of normal subgroups of index
at most n in H is bounded above by

n2+2β .



208CHAPTER 10. PROFINITE GROUPS WITH POLYNOMIAL SUBGROUP GROWTH

Proof. Let cm denote the number of isomorphism types of images of H
of order m, and bm the number of normal subgroups of index m in H. Since
d(H) ≤ 2β there are at most m2β epimorphisms from H to a given group F of
order m. However, since Z(F ) = 1, the group F has at least m automorphisms,
so at least m epimorphisms from H to F share the same kernel. It follows that

bm ≤ m2β−1cm.

NowH =
∏
S

(fi)
i where S1, S2, ... are pairwise non-isomorphic simple groups,

fi ≤ β for each i, and, putting si = |Si|, we may suppose that

60 ≤ s1 ≤ s2 ≤ . . . .

Since there are at most 2 non-isomorphic simple groups of each order, no integer
appears more than twice in the sequence (si). Now cm is just the number
N(m) of sequences (ei) such that 0 ≤ ei ≤ fi and

∏
sei
i = m. We claim that

N(m) < m2. The lemma will follow, since we then have

n∑
m=1

bm <
n∑

m=1

m2β−1.m2 ≤ n2β+2.

The claim is proved by induction on m. If m < 60 then N(m) = 0. Suppose
that m ≥ 60. Then

N(m) ≤
∑
si|m

N(m/si) ≤
∑
si|m

(m/si)2 ≤ 2m2
∑
r≥60

r−2 < m2.

(The fact that there are at most 2 simple groups of each order depends on the
classification; for the present application it suffices to know this for groups in
X (β).)

Proof of (A). Let N C G have index ≤ n. The preceding lemma shows
that there are at most n2+2β possibilities for the subgroup RN/R in G/R. So
given K/R C G/R with |G : K| ≤ n, it will suffice to bound the cardinality of
the set

⋃
m≤nN (m) where

N (m) = {N C G | RN = K, |K : N | = m} .

Fix m ≤ n and put D =
⋂
N (m). Since R is soluble, each of the quotients

K/N with N ∈ N (m) is soluble, of exponent dividing m, so K/D is also soluble
of exponent dividing m. As K/R is a product of non-abelian simple groups,
this implies in particular that RD = K.

Put T = SD. Then G/T is perfect with centre RD/T = K/T, and G/K
is a product of at most log n simple groups in X (β). It follows that K/T is an
image of M(G/T ) which has order at most

(16(β + 1))logn = nlog(16(β+1)).
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On the other hand, T/D is a soluble group of rank at most r and exponent at
dividing m, hence

|T/D| ≤ mr(3+log r)

(# Finite group theory, Proposition 21). Putting these together we deduce
that

|G/D| ≤ nt

where t = 1 + log(16(β + 1)) + r(3 + log r). It follows that

|N (m)| ≤ ntα,

and hence that
∣∣∣⋃m≤nN (m)

∣∣∣ ≤ n1+tα.

The conclusion is that G has at most n(2+2β)+(1+tα) normal subgroups of
index at most n; this concludes the proof of (A).

The statement (B) is another application of the Babai-Cameron-Palfy Theo-
rem; specifically, we use Proposition 12 in the Permutation groups window
which bounds the product of the orders of the non-abelian composition factors
of a transitive permutation group with restricted composition factors.

Let H ≤ G with |G : H| = n. Replacing G by G/HG, we may assume that in
fact HG = 1, and have to show that |G| ≤ nf2(α). In this case G acts faithfully
as a transitive permutation group of degree n on the right cosets of H. Now the
non-abelian composition factors of G are just the simple direct factors of G/R,
so each one occurs with multiplicity at most β; the result just quoted shows
that

|G : R| ≤ nβ·f(β)

for a certain function f . Put k = β · f(β). Since R/S is a quotient of the Schur
multiplier M(G/R), it now follows as in the proof of (A), above, that

|R : S| ≤ nk log(16(β+1)).

Now put F = Fit(S). Since F is nilpotent and |F : H ∩ F | divides n we have
Fn ≤ H, and as Fn C G it follows that Fn = 1. As above, this implies that
|F | ≤ nr(3+log r), and Theorem 7 in the Finite group theory window now
shows that

|S| ≤ n4r(3+log r).

Altogether we deduce that

|G| ≤ nf2(α)

where f2(α) = k(1 + log(16(β + 1))) + 4r(3 + log r).
This establishes (B), and so completes the proof of Theorem 10.5.1.
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Notes

The ‘Profinite PSG theorem’ and its corollaries were proved in [Segal & Shalev
1997]. Important ingredients were obtained earlier: the equivalence of weak
PSG and PSG was established in [Segal 1996b], and the structure Theorem
10.2.5 (essentially) in [Shalev 1997]. (These two latter papers were being
written at around the same time, and their authors realized serendipitously that
a combination of their methods might point the way to the full characterisation
of profinite PSG groups.)

The paper [Shalev 1997] also presents a delicate analysis of the subgroup
growth of profinite groups of the form

G =
∏
i

PSL2(Fpi
).

Using some powerful analytic number theory, Shalev shows that the sequence
(pi) can be chosen so as to ensure that the corresponding group G can have
polynomial subgroup growth of any specified degree, or that G can be made to
have arbitrarily slow non-polynomial subgroup growth. Much easier (pronilpo-
tent) examples of groups with slow non-polynomial subgroup growth are given
in [Mann & Segal 1995]; yet different examples are given in Chapter 13,
below.

The paper [Segal 1996b] was inspired by the methods of [Mann 1993],
which showed how the Babai-Cameron-Pálfy theorem and the generalized Fit-
ting subgroup could be used to bound the ranks of abelian upper chief factors
in a PSG group.



Chapter 11

Probabilistic methods

Probability has entered into group theory along several paths. One, initiated
by Erdős and Turan in the 1960s, is the investigation of probabilistic properties
of finite groups; a typical example of this is the classic theorem of Dixon that a
random pair of elements generates the alternating group Alt(n) with probability
that tends to 1 as n → ∞, and its recent extension by Kantor, Lubotzky,
Liebeck and Shalev to the definitive result: a random pair of elements generates
a finite simple group with probability that tends to 1 as the group order tends
to ∞. Another path is based on the fact that a profinite group G, being a
compact topological group, has a finite Haar measure µ. Normalising this so
that µ(G) = 1, we may consider G as a probability space: this means that
the measure of a subset X of G is construed as the probability that a random
element of G lies in X. It is now natural to ask questions such as: what is
the probability that a random k-tuple of elements generates G? Formally, this
probability is defined as

P (G, k) = µ
{

(x1, . . . , xk) ∈ G(k) | 〈x1, . . . , xk〉 = G
}
, (11.1)

where µ denotes also the product measure on G(k).
When G is finite we have µ(X) = |X| / |G| for each subset X, so the concept

of probability in profinite groups reduces to the usual one in finite groups.
Indeed, this second path is really a special case of the first one, because (under
certain reasonable conditions)

µ(X) = inf
|XN/N |
|G/N |

(11.2)

as N ranges over the open normal subgroups of G, so the probability of an
event in G is a limit of probabilities associated to some family of finite groups.
However, as usual, the profinite language provides a suggestive framework for
articulating questions and constructing proofs.

The connection of these ideas to subgroup growth is made by associating to
each tuple of elements in the profinite group G the (closed) subgroup generated

211
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(topologically) by that tuple. (Henceforth, when talking about profinite groups
we shall understand ‘subgroup’ to mean ‘closed subgroup’ and ‘generated’ to
mean ‘topologically generated’.) The most striking applications of probabilistic
methods to subgroup growth questions (though by no means the only ones) con-
cern maximal subgroup growth; these are based on the following major theorem:

Theorem 11.1 Let G be a profinite group. Then G has polynomial maximal
subgroup growth if and only if P (G, k) is positive for some natural number k.

A profinite group G is said to be positively finitely generated, or PFG, if
P (G, k) is positive for some natural number k. We call G a PMSG group if G
has polynomial maximal subgroup growth. Thus the theorem asserts that PFG
is equivalent to PMSG. The ‘only if’ direction is easy, and will be proved in
Section 2.

Now to say that P (G, k) is positive means that the set of generating k-tuples
in G has positive measure (in G(k)), hence is certainly non-empty; so it implies
in particular that G can be generated by k elements. Thus we immediately
derive the following corollary (from the easier implication in Theorem 1!); this
makes no mention of probability and may be taken as justifying the chapter
heading:

Corollary 11.2 Every profinite group with PMSG is finitely generated. In par-
ticular this holds for every profinite group with PSG.

Applying this to the profinite completion of an abstract group gives

Corollary 11.3 Let G be a group with polynomial maximal subgroup growth.
Then there exists k ∈ N such that every finite quotient group of G can be gen-
erated by k elements.

In fact the proof will show that if mn(G) ≤ nγ for all n then we can take
k = dγ + 2e.

Applying Theorem 11.1 in conjunction with Theorem 3.5, we see that very
many groups are positively finitely generated:

Corollary 11.4 Let G be a finitely generated profinite group. Then G is PFG
unless every finite group occurs as an upper section of G.

This applies, for example, to the congruence completion of every arithmetic
group. However, it is not the whole story: it is shown in [Mann & Shalev 1997]
that the Cartesian product of any collection of distinct finite nonabelian simple
groups has PMSG; further examples are provided by the following theorem,
proved in section 3:

Theorem 11.5 Let G be a group (abstract or profinite) such that

sC
n (G) ≤ (log n)γ
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for all n, where γ is a constant. Then

mn(G) ≤ cn5+2γ

for all n, where c is an absolute constant.

Thus ‘logarithmic’ normal subgroup growth implies polynomial maximal sub-
group growth, so every profinite group with this property is PFG, and hence
in particular is finitely generated. Finitely generated abstract groups with this
property that have arbitrarily large finite alternating groups as upper composi-
tion factors are described at the end of §13.4.

The harder implication in Theorem 11.1 depends on detailed information
about the subgroup structure of finite simple groups, and in particular on CFSG;
the proof is outlined in Section 3. It shows in fact that if P (G, k) > 0 then
mn(G) = o(nk+6).

In Section 2 we establish

Proposition 11.6 The class of profinite PFG groups is closed under exten-
sions.

This now gives

Corollary 11.7 The class of PMSG groups is closed under extensions.

Like the analogous result for polynomial subgroup growth (Corollary 10.4), this
applies to all groups, not just profinite groups; indeed, suppose that N C G
and both N and G/N have PMSG. Then Ĝ is an extension of N by Ĝ/N,

where N is the closure of N in Ĝ; now Ĝ/N is isomorphic to Ĝ/N and N is
a homomorphic image of N̂ , so both N and Ĝ/N are profinite PMSG groups,
hence Ĝ has PMSG and then so does G. We do not know a non-probabilistic
proof for this corollary – a striking result, since a maximal subgroup of G does
not generally intersect N in a maximal subgroup of N .

The probabilistic approach also yields other kinds of information. Write

an,d(G)

to denote the number of d-generator subgroups of index n in a group G. In
Section 4 we establish

Theorem 11.8 Let G be a group that does not involve Alt(m+ 1) as an upper
section. Then for each d ∈ N there exist C = C(m, d) and k = k(m, d) such
that

an,d(G) ≤ Cnk

for all n.
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The proof is given for a profinite group G. Applied to the profinite completion
of an abstract group, it yields the analogous estimate for the number an,d of
index-n subgroups H such that every finite quotient of H can be generated by
d elements; of course, an,d ≤ an,d. This result is a broad generalisation of the
fact, established in Chapter 10, that every group of finite upper rank has PSG
– since if G has upper rank r then an(G) = an,r(G) for every n.

In the reverse direction, we saw in that chapter that if the PSG group G is
prosoluble then the numbers d(H) are bounded by a constant (the rank of G),
but in general they need not be. The next theorem shows that their growth
is in any case extremely slow (compared for example with the linear growth
d(H) ∼ |F : H| d(F ) for a free profinite group F ):

Theorem 11.9 Let G be a profinite PSG group. Then there exists a constant
C such that

d(H) ≤ C
√

log |G : H|
for every open subgroup H of G.

Like Corollary 11.2, this is derived from elementary probabilistic considerations
quite independent of the difficult classification theorem of Chapter 10.

The quantity P (G, k) is particularly transparent when G is a pro-p group.
This is discussed in Section 5, where we give two applications. The first, anal-
ogous to Theorem 11.8, concerns the number aC

n,r(G) of normal subgroups of
index n in G that can be generated (as normal subgroup) by r elements:

Theorem 11.10 Let G be a finitely generated pro-p group. Then for each r,

aC
n,r(G) = o(nr) as n→∞.

This (perhaps rather recondite) result has the following interesting consequence:

Corollary 11.11 Let h(pk, r) denote the number of (isomorphism types) of
groups of order pk that have a finite presentation with r relations. Then

h(pk, r) = o(pkr) as k →∞.

For comparison, recall that the number of d-generator groups of order pk grows
roughly like pk

2
(Chapter 3). The corollary follows on applying the theorem

to the free pro-p group G on r generators: for every finite presentation of a
finite group needs at least as many relations as generators, so the groups being
counted take the form G/N where N is the normal subgroup of G generated
normally by the r relators.

The final, rather surprising, application shows how probabilistic considera-
tions can sometimes deliver exact results, not just estimates. It is a (virtually
one-line) proof of the formal Dirichlet series identity

∞∑
n=1

an(Zd)
ns

=
d−1∏
i=0

ζ(s− i) (11.3)



11.1. THE PROBABILITY MEASURE 215

where ζ(s) is the Riemann zeta function This will be proved again, in several
different ways, in Chapter 15, where it is the starting point for the theory of
‘subgroup-counting zeta functions’.

We begin in Section 1 by recalling some essential features of the Haar mea-
sure on profinite groups.

11.1 The probability measure

The distinguishing features of a Haar measure µ on a compact topological group
are (1) finiteness and (2) translation-invariance (left or right, each of which
implies the other). If the group G is profinite and we fix µ(G) = 1, in which
case µ is said to be normalized, it follows that

µ(gH) = µ(Hg) =
1

|G : H|

for every coset of every open subgroup H of G. Let us call such cosets basic
open sets. If the set

X =
⋃
xijHj ∪

⋃
Klykl

is the union of a finite collection of basic open sets, we can find an open normal
subgroup N of G contained in

⋂
j Hj ∩

⋂
lKl, and then X is equal to the union

of finitely many, say n, cosets of N, in which case

µ(X) = nµ(N) =
n

|G : N |
.

If X is the union of a countable family of basic open sets, we can write X as
an ascending union X =

⋃∞
i=1Xi where each Xi is a finite union as above, and

obtain
µ(X) = lim

i→∞
µ(Xi).

In particular, if the set N of all open normal subgroups is countable, this de-
termines the measure of every open set in G, and thus also of every closed set
since

µ(G \X) = 1− µ(X).

In this case G is said to be countably based ; this applies for example when G is
finitely generated.

For a detailed justification of these observations, including a proper definition
of the Haar measure in the general case of a non-countably-based profinite group,
the reader is referred to Chapter 16 of the book [FJ] by Fried and Jarden. We
shall make tacit use of several basic facts established there in the general context
of measurable sets, but will usually apply them only to sets that are closed or
open. These facts include the existence and uniqueness of the normalized Haar
measure µ, as well as
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(1) the product measure on G(k) is the same as the Haar measure of G(k) ([FJ],
Prop. 16.10);

(2) if X ⊆ Y are measurable sets then µ(X) ≤ µ(Y );

(3) if the measurable sets Xi are pairwise disjoint then

µ(
∞⋃
i=1

Xi) =
∞∑
i=1

µ(Xi);

(4) if the sets Xi are measurable then

µ(
∞⋃
i=1

Xi) ≤
∞∑
i=1

µ(Xi);

this follows from (3) and (2) on replacing Xi by Xi \ (X1 ∪ . . .∪Xi−1) for
each i > 1;

(5) if the sets Xi are measurable then

µ(
∞⋃
i=1

Xi) = lim
i→∞

µ(Xi) = supµ(Xi) if Xi ⊆ Xi+1 for all i

µ(
∞⋂
i=1

Xi) = lim
i→∞

µ(Xi) = inf µ(Xi) if Xi ⊇ Xi+1 for all i.

As an illustration, let us derive the identity (11.2) stated in the introduction,
assuming that G is countably based and that X is a closed subset of G. In this
case, X =

⋂∞
i=1XNi where N1 > N2 > . . . is a descending chain in N . From

(5) we have

µ(X) = inf
i
µ(XNi)

≥ inf
N∈N

µ(XN) ≥ µ(X)

since X ⊆ XN for each N ; so µ(X) = infN∈N µ(XN). Now for each N ∈ N
the set XN is the union of |XN/N | cosets of N, so µ(XN) = |XN/N |µ(N) =
|XN/N | / |G : N | , and (11.2) follows.

Lemma 11.1.1 Assume that G is countably based. Let K be a closed nor-
mal subgroup of G and π : G → G/K the natural epimorphism. If X is a
closed subset of G then µ(π(X)) ≥ µ(X); if Y is a closed subset of G/K then
µ(π−1(Y )) = µ(Y ).

Proof. Using (11.2) we reduce to the case where G is a finite group. In
that case, if X ⊆ G then |π(X)| ≤ |X| / |K| , with equality if X = π−1(Y ); both
claims follow directly.
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11.2 Generation probabilities

Throughout this section, G denotes a profinite group and µ the normalized Haar
measure, on G or on some direct power G(k). Now fix k and write

X(G, k) =
{
x ∈ G(k) | 〈x〉 = G

}
,

where x = {x1, . . . , xk} when x = (x1, . . . , xk) (and 〈x〉 means the closed sub-
group topologically generated by the set x). Since a subset T fails to generate
G if and only if T is contained in some maximal open subgroup of G, it is clear
that

G(k) \X(G, k) =
⋃

M maxG

M (k), (11.4)

where M maxG means ‘M is a maximal (proper) open subgroup of G’. This
is an open subset of G(k), so X(G, k) is closed, hence measurable. We may
therefore define

P (G, k) = µ(X(G, k)) :

the probability that a random k-tuple generates G. Thus 0 ≤ P (G, k) ≤ 1, and
if P (G, k) > 0 then d(G) ≤ k (for if d(G) > k then the set X(G, k) is empty).
Using (11.2) we can interpret P (G, k) in the following way:

P (G, k) = inf {P (G/N, k) | N C G, N open} ; (11.5)

when G/N is a finite group, of course, P (G/N, k) is simply the proportion of
all k-tuples in G/N that generate G/N . If G is finitely generated this follows
directly from (11.2), since in that case G is countably based (and X is a closed
set). If G is not finitely generated then P (G, k) = 0, as we have just observed;
on the other hand, there exist finite quotients of G that cannot be generated
by k elements, since d(G) = sup d(G/N); consequently P (G/N, k) = 0 for some
open normal subgroup N of G and the right-hand side of (11.5) is also equal to
zero.

Proposition 11.2.1 Let K be a closed normal subgroup of G and let H be an
open subgroup of G. Then

(i) P (G/K, k) ≥ P (G, k);
(ii)P (G, k + l) ≥ P (G/K, l)P (K, k);
(iii) P (G, k + d) ≥ |G : H|−(k+d)

P (H, k) for any integer d ≥ log |G : H| .

Proof. We may assume that G is finitely generated, since otherwise the
right-hand side of each inequality is zero. Write πk : G(k) → (G/K)(k) for the
natural map. Then πk maps X(G, k) into X(G/K, k), and applying Lemma
11.1.1 to the pair K(k) C G(k) we deduce that

µ(X(G/K, k)) ≥ µ(X(G, k)),

which is (i).
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For (iii), note that G = 〈H, y1, . . . , , yd〉 for suitable elements yi, since d is
an upper bound for the length of any subgroup chain between H and G. Now
put X = X(H, k). Then

X ×Hy1 × · · · ×Hyd ⊆ X(G, k + d).

Now (iii) follows since µ(X) = P (H, k)µ(H(k)) = |G : H|−k P (H, k) and µ(Hyi) =
|G : H|−1 for each i.

The proof of (ii) is more transparent when G is a finite group; the general
case follows from this one on applying (11.5). Suppose that x ∈ X(K, k) and
y ∈ π−1

l (X(G/K, l); then the subgroup
〈
y
〉

of G covers the quotient G/K, so∣∣〈y〉∣∣ ≥ |G : K| . If u1, . . . , uk ∈
〈
y
〉

then

〈x1u1, . . . , xkuk, y1, . . . , yl〉 = G;

therefore P (G, k + l) is at least equal to |G|−(k+l) times the number of such
k + l-tuples. This number is at least

|K|l |X(G/K, l)| · |G : K|k |X(K, k)| = |G|k+l P (G/K, l)P (K, k).

Thus the class of profinite groups with PFG is closed under extensions. In
particular it follows that a profinite group is PFG if it has an open normal
PFG subgroup; intriguingly, however, the answer to the following question is
unknown:

Problem Is every open subgroup of a PFG group itself a PFG group?

If we assume that G has only a finite number mn(G) of maximal open
subgroups of index n for each n, then the set of all maximal open subgroups is
countable, and we obtain the following estimate from (11.4):

1− P (G, k) = µ

( ⋃
M maxG

M (k)

)
≤

∑
M maxG

µ(M (k)) (11.6)

=
∑

M maxG

|G : M |−k =
∑
n>1

mn(G)n−k.

This is all that is needed to establish the easier direction of Theorem 11.1:

Proposition 11.2.2 Let γ be a positive constant, and suppose that mn(G) ≤ nγ

for every n. Then P (G, k) > 1
3 for every integer k ≥ γ + 2.

Proof. Indeed,

1− P (G, k) ≤
∑
n>1

mn(G)n−k ≤
∞∑
n=2

nγ−k ≤
∞∑
n=2

n−2 = π2/6− 1 < 0.65

so P (G, k) > 0.35.
Essentially the same argument shows that ifG has PMSG then in fact P (G, k) →
1 as k →∞.
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11.3 Maximal subgroups

The proof of (the harder direction in) Theorem 11.1 depends on some deep
finite group theory and on some further probability theory. Let us begin with
the latter, which is quite elementary. The result we need is the so-called Borel-
Cantelli Lemma (we use the notation introduced in Section 1):

Proposition 11.3.1 Let (Xi) be a sequence of measurable subsets of G, and
put

X =
∞⋂
n=1

( ∞⋃
i=n

Xi

)
.

(i) If the series
∑∞
n=1 µ(Xi) is convergent then µ(X) = 0.

(ii) If the sets Xi are pairwise independent and the series
∑∞
n=1 µ(Xi) is

divergent then µ(X) = 1.

Note that the set X consists precisely of those elements that belong to infinitely
many of the Xi. Here two sets X and Y are said to be independent if

µ(X ∩ Y ) = µ(X)µ(Y ).

The proof of Proposition 11.3.1 is given in the Probability window.
When applying part (ii) of the Borel-Cantelli Lemma, we need to recognise

when certain sets are independent. The relevant case is

Lemma 11.3.2 Let A and B be maximal open subgroups of G with distinct
cores. Then for each k, the subsets A(k) and B(k) of G(k) are independent.

Proof. Put A0 = coreGA and B0 = coreGB. If A0 ≤ B then A0 ≤ B0,
so B0 is not contained in A0 and hence also not contained in A. Thus we may
suppose without loss of generality that A0 is not contained in B, in which case
A0B = G, and hence AB = G. This implies that |G : A ∩B| = |G : A| |G : B| ,
whence

µ(A(k) ∩B(k)) = |G : A ∩B|−k = |G : A|−k |G : B|−k = µ(A(k))µ(B(k)).

Suppose now that P (G, k) > 0. Then G is finitely generated, so has only a
countable collection of maximal subgroups. Let us call two maximal subgroups
equivalent if they have the same core, and in each equivalence class choose a
representative having minimal index in G. Let this set of representatives be
(Mi)i∈N, and let qn denote the number of indices i such that |G : Mi| = n.

Now consider the series

∞∑
i=1

µ(Mi
(k)) =

∞∑
i=1

|G : Mi|−k =
∑
n>1

qnn
−k.
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We claim that this series is convergent. Indeed, according to Borel-Cantelli (ii)
and the preceding lemma, if the series diverges then the subset of G(k) consisting
of tuples x that lie in only finitely many of the sets Mi

(k) has measure zero. But
if x ∈ X(G, k) then x lies in none of the Mi

(k); thus P (G, k) = µ(X(G, k)) = 0,
contradicting hypothesis.

It follows that
qn = o(nk).

To deduce that G has PMSG, it now remains to bound mn(G) in terms of qn.
This is where finite group theory comes in.

Theorem 11.3.3 There is an absolute constant c such that, in any group G,
the number of core-free maximal subgroups of index n in G is at most cn5 for
each n.

A subgroup M of G is core-free if coreGM = 1; of course, if G has any such
subgroup M of finite index then G is a finite group. The theorem implies
that a group has at most cn5 inequivalent faithful primitive permutation rep-
resentations of degree n. For the proof, we must refer to the paper [Mann &
Shalev 1997]. The result established there is slightly weaker, with the exponent
5 replaced by d(G); the present version may be obtained by combining their
proof with that of Lemma 2.8(a) in [Lucchini & Morini 2002] and a little extra
argument. (The original, weaker, theorem suffices for the present application.)

Given Theorem 11.3.3 we can now complete the

Proof of Theorem 11.1. Suppose that the profinite group G satisfies
P (G, k) > 0. Then d(G) ≤ k. Let Ni = coreGMi. If M is a maximal subgroup
of index n inG then coreGM = Ni for some i such that |G : Mi| ≤ n; the number
of possibilities for i is therefore at most q2 + · · ·+ qn. Applying Theorem 11.3.3
to G/Ni we see that given Ni, the number of such maximal subgroups M is
at most cn5. On the other hand, we have shown above that qn = o(nk). The
number of possibilities for M is therefore

mn(G) ≤ cn5(q2 + · · ·+ qn) = o(nk+6).

Thus G has polynomial maximal subgroup growth, and the proof is complete.

Now suppose that G is a profinite group with

sC
n (G) ≤ (log n)γ

for all n. Since |G : coreGM | ≤ n! when |G : M | = n, Theorem 11.3.3 gives

mn(G) ≤ cn5 · sC
n!(G)

≤ cn5(log n!)γ ≤ cn5+2γ ,

and Theorem 11.5 follows.

Before leaving this topic, we should mention a striking application of Theo-
rem 11.3.3, due to L. Pyber.
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Theorem 11.3.4 [Pyber (a)] There is an absolute constant c such that for
every finite group G, the number of maximal subgroups of G is at most |G|c.

It is interesting to compare this with Theorem 10.5.1. We showed there that
if s(G) ≤

∣∣G∣∣c for every finite quotientG of a groupG, thenG has PSG, of degree
bounded in terms of c; thus a polynomial bound for the number of all subgroups
is a strong structural restriction on a finite group, whereas Pyber’s theorem
shows that a corresponding bound for maximal subgroups is no restriction at
all: adapting the language of Chapter 10 one can say that every group has ‘weak
PMSG’. This is another aspect of the principle illustrated by Theorem 3.1, that
polynomial maximal subgroup growth is a relatively mild condition on groups.

11.4 Further applications

As before G denotes a profinite group and µ the normalized Haar measure on
G. Define

X ′(G, k) =
{
x ∈ G(k) | 〈x〉 ≤o G

}
where H ≤o G means H is an open subgroup of G. Thus X ′(G, k) is the disjoint
union

X ′(G, k) =
•⋃

H≤oG

X(H, k).

If X ′(G, k) is non-empty then G has at least one k-generator open subgroup, so
G is finitely generated and hence countably based, and the union on the right
has countably many terms. So writing

Q(G, k) = µ(X ′(G, k))

we have

Q(G, k) =
∑
H≤oG

µ(X(H, k)) (11.7)

=
∑
H≤oG

P (H, k)µ(H(k)) =
∑
H≤oG

P (H, k) |G : H|−k .

From this we may draw several conclusions.

(1)

P (G, k) ≤ Q(G, k),
Q(G, k) > 0 =⇒ P (G, k + d) > 0 for some d;

so Q(G, k) is positive for some k if and only if G is PFG. The first inequal-
ity is clear, and the second follows from Proposition 11.2.1(iii), taking d =
dlog |G : H|e where H is some open subgroup of G for which P (H, k) > 0.
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(2) Fix a real number c ∈ (0, 1] and let H(k, c) denote the set of all open
subgroups H of G such that P (H, k) ≥ c. Write an(k, c) for the number of
H ∈ H(k, c) such that |G : H| = n. Then

c ·
∞∑
n=1

an(k, c)n−k ≤
∞∑

H∈H(k,c)

P (H, k) |G : H|−k ≤ Q(G, k) ≤ 1.

Consequently
an(k, c) ≤ c−1nk

for each n. Thus we have the polynomial growth of certain families of open
subgroups in G.

Suppose for example that G does not involve Alt(m+1)as an upper section.
Then every finite quotient of G belongs to the class Cm of finite groups that do
not involve Alt(m+1). Now fix a positive integer d and let F be the free pro-Cm
group on d generators. Theorem 11.4 tells us that F is a PFG group: so for
some k we have P (F, k) > 0. Now every d-generator open subgroup H of G is
an image of F, hence satifies

P (H, k) ≥ P (F, k)

by Proposition 11.2.1(i), and so lies in H(k, c) where c = P (F, k). It follows that

an,d(G) ≤ an(k, c) ≤ c−1nk

for each n, and we have established Theorem 11.8 (with C = c−1); note that c
and k here depend only on m and d.

(3) Suppose G has the property that P (H, k) = qk is constant over all open
subgroups H of G. Then from (11.7) we have

∞∑
n=1

an(G)n−k =
∑
H≤oG

|G : H|−k = q−1
k Q(G, k). (11.8)

As we shall see in the next section, this can be used in some circumstances to
determine the numbers an(G).

For the rest of this section, we assume that the profinite group G has poly-
nomial subgroup growth, so there exists c ∈ N such that

an(G) ≤ nc

for all n.

Lemma 11.4.1 If an(G) = O(nk−1−ε) where ε > 0 then Q(G, k) = 1.
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Proof. Let x ∈ G(k). If the closed subgroup 〈x〉 is not open in G then it is
contained in infinitely many open subgroups; from the Borel-Cantelli Lemma,
Proposition 11.3.1(i), the probability of this event is zero if the series

∑
H≤oG

µ(H(k)) =
∞∑
n=1

an(G)n−k

is convergent, which indeed it is.

Now we give the

Proof of Theorem 11.9. Let H be an open subgroup of index n ≥ 2
in G. We shall show that d(H) ≤ C

√
log n where C depends only on c. For

k, m ∈ N let
P (H, k,m)

denote the probability that a random k-tuple in H generates a subgroup of
index > m in H. Thus P (H, k,m) = µH(Y ) where µH is the normalized Haar
measure on H and

Y =
⋃

L≤oH
|H:L|>m

L(k) ⊆ H(k)

(note that each closed subgroup of infinite index is contained in open subgroups
of arbitrarily large finite index). It follows that

P (H, k,m) ≤
∑
L≤oH
|H:L|>m

|H : L|−k ≤
∑
j>m

aj(H)j−k

≤
∑
j>m

anj(G)j−k ≤ nc
∑
j>m

jc−k.

Now choose

r =
⌈√

c log n
⌉
, m =

⌈
2
√
c logn

⌉
, k = c+ r + 1.

Then ∑
j>m

jc−k ≤
∑
j>m

j−(r+1) <

∫ ∞
m

x−(r+1)dx = r−1m−r ≤ m−r,

and
mr ≥ 2r

√
c logn ≥ 2c logn = nc,

so P (H, k,m) < ncm−r ≤ 1.
It follows that H contains at least one k-generator open subgroup L of index

at most m. Then H is generated by L together with at most log |H : L| ≤ logm



224 CHAPTER 11. PROBABILISTIC METHODS

further elements, so

d(H) ≤ k + logm

≤ c+ (1 +
√
c log n) + 1 + (1 +

√
c log n)

≤ C
√

log n

where C = 2
√
c+ c+ 3, say. This completes the proof.

11.5 Pro-p groups

Let G be a pro-p group, with d(G) = d finite. A set {x1, . . . , xk} generates G if
and only its image {x1Φ(G), . . . , xkΦ(G)} in G/Φ(G) generates G/Φ(G); so

P (G, k) = P (G/Φ(G), k)

by Lemma 11.1.1. Now G/Φ(G) ∼= F(d)
p = V , say. The generating k-tuples in V

are represented by d×k matrices of rank d over Fp; since row rank equals column
rank, the number of such matrices is just the number of linearly independent
d-tuples in F(k)

p , which is

(pk − 1)(pk − p) . . . (pk − pd−1)

(this is zero if k < d). Dividing by
∣∣V (k)

∣∣ = pkd we get

P (G, k) = P (V, k) =
d−1∏
j=0

(1− pj−k) (11.9)

= Πp(d, k), say.

Thus every finitely generated pro-p group is positively finitely generated. Of
course, this is a very special case of Theorem 11.1, since every maximal subgroup
has index p; but here we have the added feature that if G can be generated by
d elements, then d elements generate G with positive probability – this is not
the case e.g. for G = Ẑ, a one-generator group for which P (G, 1) = 0 (as we
shall see below).

Let us consider now the number aC
n,r(G) of normal subgroups of index n in

the pro-p group G that can be normally generated by r elements. Let

PG(N, k)

denote the probability that a random k-tuple in the (closed) normal subgroup
N of the pro-p group G generates N as a normal subgroup: that is, the measure
(w.r.t. µN(k)) of the set {

x ∈ N (k) |
〈
xG
〉

= N
}
.
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Let N (k, c) denote the set of all open normal subgroups N of G such that
PG(N, k) ≥ c, and write bn(k, c) for the number of N ∈ N (k, c) such that
|G : N | = n. Just as in the preceding section we infer that

c ·
∞∑
n=1

bn(k, c)n−k ≤
∞∑

N∈N (k,c)

PG(N, k) |G : N |−k ≤ 1,

and hence that bn(k, c) = o(nk) provided c > 0.
To estimate the numbers PG(N, k), note that

〈
xG
〉

= N if and only if〈
xG
〉
ΦG(N) = N where ΦG(N) = [N,G]Np, and that this holds if and only if

〈x〉ΦG(N) = N. It follows by a now familiar argument that

PG(N, k) = P (N/ΦG(N), k)
= Πp(s, k)

where s = d(N/ΦG(N)); and reversing this argument we see that s is exactly
the minimal number of generators required by N as a normal subgroup of G.
If N can be normally generated by r elements then s ≤ r and so PG(N, k) =
Πp(s, k) ≥ Πp(r, k); thus N ∈ N (k, c) where c = Πp(r, k).

Taking k = r we deduce that

aC
n,r(G) ≤ bn(r, c) = o(nr)

where c = Πp(r, r) > 0; and we have proved Theorem 11.10.

Next, consider the example G = Z(d)
p . In this case, every open subgroup H

of G is isomorphic to G, so P (H, k) = P (G, k) = Πp(d, k). Also Q(G, k) = 1 for
every k > d+ 1, by Lemma 11.4.1, so for such k the formula (11.8) reads

∞∑
n=1

ann
−k = Πp(d, k)−1

where an = an(Z(d)
p ). Writing X = p−k and noting that an = 0 when n is not

a power of p this becomes

∞∑
i=0

apiXi =
d−1∏
j=0

(1− pjX)−1. (11.10)

On the right we have a rational function of X and on the left a power series
in X, which converges to the same value when X = p−k for any large integer
k. Therefore (11.10) is an identity, and by multiplying out the geometric series∑
n(p

jX)n we obtain explicit formulae for the numbers api .
Let us replace X by p−s where s is a complex variable. Then (1−X)−1 =

(1 − p−s)−1 is just the p-factor ζp(s) in the Euler product expansion of the
Riemann zeta function ζ(s), so we can restate our conclusion as

∞∑
i=0

apip−is = ζp(s)ζp(s− 1) . . . ζp(s− d+ 1).
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Leaving pro-p groups now, let us apply this to the group Z(d). It is easy to
see that if n = pe11 . . . per

r where p1, . . . , pr are distinct primes then

an(Z(d)) =
r∏
j=1

a
p

ej
j

(Z(d)) =
r∏
j=1

a
p

ej
j

(Z(d)
pj

).

This now implies the following identity of formal Dirichlet series:

∞∑
n=1

an(Z(d))n−s =
∏
p

∞∑
i=0

api(Z(d)
p )p−is

=
∏
p

ζp(s)ζp(s− 1) . . . ζp(s− d+ 1)

= ζ(s)ζ(s− 1) . . . ζ(s− d+ 1).

The first equality, a formal consequence of unique factorisation, generalizes to
all nilpotent groups. It will be discussed in Chapter 15, where we exhibit several
different ways of deriving this remarkable identity.

As an exercise, the reader may derive the same identity by applying the
above method directly to the group Ẑ(d), rather than going via the factors Z(d)

p .
The main step is to establish that

P (Ẑ(d), k) = (ζ(k)ζ(k − 1) . . . ζ(k − d+ 1))−1
,

(this includes the cases k ≤ d, interpreting ζ(1)−1 as 0). Applying (11.5) reduces
this to evaluating P (A, k) for a finite abelian group A; then note that

P (A, k) =
∏
p

P (Ap, k),

where Ap is the p-component of A, and use (11.9). This approach replaces the
multiplicative property of an with that of P (A, k), and the identity theorem
for power series with the identity theorem for Dirichlet series; the essential –
combinatorial – content is of course the same in both approaches.

Notes

The study of generation probabilities in the style of this chapter was initiated
by [Jarden 1975], who introduced the use of the Borel-Cantelli lemma in such
investigations and applied it to examine the probability of generating a pro-
cyclic group. See [FJ], §16, where Fried and Jarden also raised the question of
probabilistic generation for free profinite groups. This was taken up by [Kantor
& Lubotzky 1990], who determine several families of PFG groups, and show
that non-abelian free profinite groups are not PFG.

Most results of this chapter that are not otherwise attributed are due to
[Mann 1996]. This paper was the first to develop the topic systematically
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(and introduced the term PFG). In particular, Mann proved the easier direction
of Theorem 11.1 and many special cases of the harder direction, including the
case of virtually prosoluble groups. The paper introduces several other ideas,
including the definition of a ‘probabilistic zeta function’ (see §15.2 below), and
raises a number of problems.

Theorem 11.1 is due to [Mann & Shalev 1997]. They prove that if G is
a finite almost-simple group, then mn(G) ≤ cn1.9 for every n, where c is an
absolute constant; using this, they deduce that a finite d-generator group has at
most 2nd core-free maximal subgroups of index n, if d is sufficienetly large; as
remarked above this suffices for Theorem 11.1. The stronger Theorem 11.3.3 is
due to L. Pyber (unpublished); by a more careful argument he obtains the still
sharper bound cn2. Further applications of this result appear in [Lubotzky
(a)], where the “expected number” of random elements required to generate a
finite d-generator group is determined.

[Bhattacharjee 1994] proves directly that infinitely iterated wreath prod-
ucts of finite alternating groups are PFG; this shows that Corollary 11.4 does
not have a converse.

Surveys of probabilistic methods and results in group theory, particularly
finite group theory, are given in [Kantor 1992], [Shalev 1998] and [Shalev
1999b]. Further results and problems, closer to the spirit of this chapter, are to
be found in [Mann (b)].
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Chapter 12

Other growth conditions

Subgroup growth is one way to measure the growth of finite images of a group.
Of course there are other, equally natural, ways to do this. One that has received
a certain amount of attention is known (not quite accurately) as ‘index growth’:
that is, the growth of |G : Gn| as a function of n. Novikov and Adian showed
that this index is in general infinite, even for finitely generated groups G (the
negative solution of the original Burnside problem); as we are concerned here
primarily with finite quotients, we concentrate rather on

|Ĝ : Ĝn| = sup
{
|G̃ : G̃n| : G̃ a finite quotient of G

}
,

(here Ĝn denotes the closed subgroup generated by all nth powers in the profinite
completion of G). The positive solution of the restricted Burnside problem
by Zelmanov shows that if G is finitely generated then this number is indeed
finite, for every n. However, it can grow exceedingly fast – a multiply-iterated
exponential function of n (see [Vaughan-Lee & Zelmanov 1999], §2). Thus the
following should be a strong restriction: a group G has polynomial index growth,
or PIG, if there exists γ > 0 such that |Ĝ : Ĝn| ≤ nγ for all n.

However, the problem of characterising finitely generated, residually finite
groups with PIG seems to be harder than the corresponding question for PSG
groups, and may in a real sense be intractable (see the remarks following The-
orem 12.8 below). In this chapter, we discuss what is known on the topic, and
take the opportunity to examine the relationships between PSG, PIG and other
conditions that, in one way or another, restrict the size of the finite quotients
of a group. Not unexpectedly, the PIG condition imposes weaker restrictions
on a group than PSG does; remarkably, it turns out that PIG is actually a
consequence of PSG – this is far from obvious, and comes at the end of a long
chain of reasoning that relies in particular on CFSG.

A profinite group G is boundedly generated, or BG, if it is equal to the
product of finitely many procyclic subgroups; this holds if and only if there
exists k such that every finite quotient of G is the product of at most k cyclic
subgroups (by a familiar inverse-limit argument that we recall in Section 1,

229
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below). In that case, a finite quotient of exponent dividing n clearly has order at
most nk. Thus for profinite groups, bounded generation is a sufficient condition
for PIG.

On the other hand, many interesting profinite groups turn out to be bound-
edly generated. Important classes of such groups are provided by the first two
theorems.

Theorem 12.1 Every profinite group of finite rank is boundedly generated.

A profinite groupG is said to be adelic ifG is isomorphic to a closed subgroup
of

SLm(Ẑ) =
∏
p

SLm(Zp),

for some m ≥ 2.

Theorem 12.2 Every finitely generated adelic group is boundedly generated.

Further examples of BG profinite groups are described in Section 12.8.
Now suppose that G is a profinite group with polynomial subgroup growth.

We saw in Chapter 10 that G has closed normal subgroups R ≤ G0 such that
G/G0 is finite, R is prosoluble of finite rank, and G0/R is a ‘quasi-semisimple
group of bounded type’. It is not hard to deduce (see Section 2 below) that
G0/R is a homomorphic image of an adelic group A. Also G, hence also G0/R,
is finitely generated (see Corollary 11.2), so G0/R is an image of some finitely
generated (closed) subgroup of A. It follows by Theorem 12.2 that G0/R is BG,
and by Theorem 12.1 that R is BG. Hence G itself is boundedly generated, and
we have the second implication in

Theorem 12.3 For a profinite group the following implications hold:

finite rank =⇒ PSG =⇒ BG =⇒ f.g. and PIG. (12.1)

Moreover, each of these implications is strict.

The easy third implication was established above, while the first was proved as
Theorem 10.1.

Profinite groups with PSG but of infinite rank were exhibited at the end
of §10.3. In view of Theorem 12.2, an example of a BG profinite group that
does not have PSG is SLm(Ẑ) itself (for any m ≥ 2); that this group has faster
than polynomial subgroup growth follows from the proof of Theorem 6.1 (or the
easier argument in §5.2), and it is finitely generated because its dense subgroup
SLm(Z) is finitely generated. The fact that the third implication in (12.1) is
strict will follow from Theorem 12.8, stated below.

On the other hand, in the domain of pro-p groups all four conditions in (12.1)
are equivalent (see Section 12.6 below). We shall see that some of these condi-
tions also turn out to be equivalent within various classes of finitely generated
(abstract) groups.

The circle of implications (12.1) is completed with
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Theorem 12.4 Let G be a profinite group. Then
(i) if G is BG then G has subgroup growth of type at most nlogn, and poly-

nomial maximal subgroup growth;
(ii) if G has PIG then G has subgroup growth of type at most n(logn)2 , and

if G is also finitely generated then G has maximal subgroup growth of type at
most nlogn.

It is interesting to note that the first claim in (ii) applies to profinite PIG groups
that need not be finitely generated. An example in §12.8 will show that the claim
about subgroup growth in (i) is best possible.

The theorem will be deduced from the next proposition, which concerns
composition factors. We saw in Chapter 10 that a profinite group of finite
rank has only finitely many non-abelian upper composition factors, because it
is virtually prosoluble; while the upper composition factors of a PSG group have
bounded ranks (Chapter 5). It turns out that the finiteness conditions BG and
PIG also impose (successively weaker) restrictions on composition factors. Let
us say that

• G ∈ CC if G does not have arbitrarily large alternating groups as upper
composition factors, and that

• G ∈ B if among the upper composition factors of G, the alternating ones
have bounded degrees and those that are classical simple groups of Lie
type have bounded Lie ranks.

It is shown in the Permutation groups window that G ∈ B if and only if G
does not involve every finite group as an upper section.

Proposition 12.5 Let G be a profinite group.
(i) If G is BG then G ∈ B.
(ii) If G has PIG then G ∈ CC.

This is proved in Section 12.4, along with some further related properties of BG
and PIG groups. It leads to the following structure theorem (which falls short,
however, of complete characterisations):

Theorem 12.6 Let G be a finitely generated profinite PIG group. Then G has
closed normal subgroups

1 ≤ R ≤ N ≤ G (12.2)

such that G/N is virtually metabelian, R is prosoluble, and N/R is a Carte-
sian product of finite simple groups of Lie type, each occurring with bounded
multiplicity.

If G is boundedly generated then the simple factors of N/R have bounded
Lie ranks, and N may be taken so that G/N is virtually abelian.

In discussing profinite groups, we have limited ourselves to ‘local informa-
tion’, that is, information that is implicit in the structure of the finite images
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of a group. How much further can we go if we start from a finitely generated
(abstract) group? The magic key that unlocked the PSG theorem was lineari-
sation: the methods of the Linearity Conditions window show that a finitely
generated group satisfying a sufficiently strong upper finiteness condition has a
linear representation with a relatively harmless kernel (of ‘prosoluble type’, say).
However, the condition PIG is not sufficiently strong; the underlying reason for
this is

Proposition 12.7 There exists a universal constant R such that

|S| ≤ exp(S)R

for every finite simple group S of Lie type,

where exp(S) denotes the exponent of S. Using this, it is easy to see that a
Cartesian product of such simple groups whose orders grow suitably fast will be
a PIG group. To find a finitely generated group whose profinite completion is
such a product is not so easy, but in Section 12.8 we sketch the proof of

Theorem 12.8 There exists a finitely generated residually finite PIG group Γ
such that

(i) Γ̂ is not BG;
(ii) Γ is not linear, indeed every linear quotient of Γ is virtually cyclic.

In fact, the proof will show that there are 2ℵ0 non-isomorphic such groups;
this is in stark contrast to the case of finitely generated residually finite PSG
groups, of which there are only countably many, since by the PSG theorem they
are all linear over Q. Thus it is probably hopeless to look for a characterisation
of f.g. residually finite PIG groups analogous to the PSG theorem.

It would be interesting to investigate further the class of BG (abstract)
groups – an abstract group is said to be BG if it is equal to the product of
finitely many cyclic subgroups. These groups include the f.g. soluble minimax
groups [Kropholler 1984] and many arithmetic groups [Tavgen 1991] (see below).
Are there any essentially different examples?

Problems

• Are there uncountably many residually finite boundedly generated groups?

• If G is a f.g. residually finite group, does Ĝ BG imply that G is BG?

• Is every residually finite BG group linear?

• Is every just-infinite BG linear group isomorphic to an S-arithmetic group?

• Does every soluble f.g. residually finite group with PIG have finite rank?
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Some properties of boundedly generated (abstract) groups are established in
[Abért, Lubotzky & Pyber]; in particular, it is shown that every BG linear
group over a field of positive characteristic is virtually abelian. We shall not go
into this further, as bounded generation (for abstract groups) is not primarily
a condition on the finite quotients.

As might be expected, pathologies like Theorem 12.8 cannot arise in resid-
ually nilpotent groups:

Theorem 12.9 Let G be a finitely generated virtually residually nilpotent group
with PIG. Then

(i) G is a linear group in characteristic zero;
(ii) if G is virtually soluble, then G has finite rank, and G is the product of

finitely many cyclic subgroups.

Thus for finitely generated virtually residually nilpotent groups that are
virtually soluble, all the conditions (12.1) are equivalent. This is certainly not
the case without assuming solubility, in view of the following theorem, which
should be compared with the results of Chapter 7:

Theorem 12.10 Let Γ be an S-arithmetic group in a simply-connected, abso-
lutely almost simple algebraic group G over a number field k. Then the following
are equivalent:

(a) Γ has the congruence subgroup property
(b) Γ̂ is BG
(c) Γ has PIG.

Of course, (b) implies (c). Assuming without loss of generality that Γ is a
subgroup of SLm(Z[1/t]) for some t, we may consider the congruence completion
Γ̃ of Γ as a closed subgroup of SLm(Ẑ), so by Theorem 12.2 it is always true that
Γ̃ is BG. If Γ also has the congruence subgroup property then Γ̃ differs from Γ̂
by at most a finite kernel, and this is enough to establish that (a) implies (b).
The proof of remaining implication is given in Section 12.7.

It is known [Tavgen 1991] that if G is quasi-split and has k-rank at least 2
then Γ is itself boundedly generated; this gives an alternative, group-theoretic
proof for the congruence subgroup property in this large class of arithmetic
groups.

Before concluding this introduction we should mention another growth con-
dition. The rank function of a profinite group G is

dn(G) = sup {d(H) : H ≤o G, |G : H| ≤ n} .

Thus G has finite rank if dn(G) is bounded; in general, the slow growth of dn(G)
as a function of n is another upper finiteness condition of a similar type to PSG
and PIG. We have seen in Chapter 1 that when G is a pro-p group, there is
a tight relation between the rank function and the subgroup growth (warning :
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the notation dn(G) was used there in a slightly different sense). In general,
Theorem 11.8 showed if the profinite group G has PSG then

dn(G) = O
(√

log n
)
.

A number of other results relating to the rank function have been obtained, but
to avoid overloading this chapter we do not discuss most of them. However, let
us state

Theorem 12.11 [Lubotzky 1995] Let Γ be as in Theorem 12.10. Then Γ has
the congruence subgroup property if and only if dn(Γ̂) = o(log n).

The proof is along similar lines to that of Theorem 12.10.

Little is known about the ‘index growth’ |Ĝ : Ĝn| in general, beyond the
case of PIG. It remains to be seen whether a theory as rich as that of subgroup
growth is waiting to be developed; the same applies to the study of the ‘rank
function’.

Let us conclude with some speculative remarks. In chapter 5, we character-
ized the PSG-groups: these are the “smallest” groups from the point of view of
subgroup growth. We shall see in Chapter 13 that right above PSG there is a
continuous spectrum of possible growth types, so in general one cannot expect
to have a “next type of growth” after PSG.

Still, a very remarkable class of groups stands out as a candidate to be the
“next class”, namely the S-arithmetic groups in higher rank semi-simple alge-
braic groups over algebraic number fields (see Chapters 6 and 7). Conjecturally
these groups have the congruence subgroup property (this has been proved in
most cases), and hence according to Theorem 6.1 have subgroup growth of type
nlogn/ log logn. Among finitely generated linear groups this is indeed the next
possible growth type above PSG (see Chapter 8).

It is now natural to wonder whether a finitely generated linear group with
subgroup growth of type nlogn/ log logn is necessarily of arithmetic type. This
question reminds one of the Platonov conjecture: if a characteristic-zero linear
group is rigid (i.e. has for each n only finitely many irreducible representations
of degree n) then it is of arithmetic type (see [PR], [Bass & Lubotzky 2000]
and references therein). This conjecture, widely believed for a number of years,
was recently disproved in [Bass & Lubotzky 2000]. We therefore have to look
for other characterizations of these arithmetic groups. One such is given in
[Lubotzky & Venkataramana 2002], but it is not very natural or satisfactory. It
may be hoped that a more natural algebraic characterization of these arithmetic
groups, among the finitely generated linear groups, will be found in terms of
subgroup growth or one of the other finiteness conditions discussed above, as
suggested by Theorems 12.10 and 12.11 (in view of the history of Platonov’s
conjecture, however, one should be rather cautious about making too specific a
conjecture!).



12.1. RANK AND BOUNDED GENERATION 235

12.1 Rank and bounded generation

We begin by sketching the proof of

Theorem 12.1.1 If G is a finite group of rank r then G is a product of f(r)
cyclic subgroups, where f(r) depends only on r.

The first step is the following lemma, which was essentially proved as part
of Proposition 10.1.1:

Lemma 12.1.2 If G is a finite group of rank r then G has normal subgroups
R ≤ K such that

|G/K| ≤ f1(r),

K/R is a direct product of at most r non-abelian simple groups, and R is soluble.

Now if R is a product of a cyclic groups and each simple factor of K/R is a
product of b cyclic groups, it follows that G is a product of a+ rb+ log(f1(r))
cyclic groups. So it will suffice to prove the theorem in the special cases (a)
where G is soluble, and (b) where G is simple.

Step 1. Where G is a p-group. Now G has a powerful normal subgroup P of
index dividing pr(1+dlog re). The group P is a product of r cyclic subgroups, and
G/P is a product of at most r(1 + dlog re) cyclic subgroups. So G is a product
of f2(r) = r(2 + dlog re) cyclic subgroups. (# Finite group theory).

Step 2. Where G is nilpotent. Since the direct product of cyclic groups
of coprime orders is cyclic, it follows from Step 1 that G is a product of f2(r)
cyclic subgroups.

Step 3. Where G is soluble. Lemma 10.4.2 shows that the Fitting height
of G is bounded by some function f3(r) of r. It follows that G is the product of
f3(r) · f2(r) cyclic subgroups.

Step 4. Where G is simple (and non-cyclic). If G is sporadic or alternating
then G has bounded order. Otherwise, G is of Lie type, and the Lie rank is
bounded in terms of r. It follows that the Weyl group W of G has bounded
order. Now G has a Bruhat decomposition

G = UNU

where U is nilpotent and N is the normalizer of a maximal torus H; here H
is abelian and N/H ∼= W . Hence N is a product of at most r · log |W | cyclic
groups; and by Step 2, U is the product of f2(r) cyclic subgroups. It follows
that G is the product of f4(r) cyclic subgroups, where f4(r) depends only on r.
(For the Weyl group and Bruhat decomposition, see [GLS] Theorem 2.3.5.)

This concludes the proof of Theorem 12.1.1. Theorem 12.1 is a formal con-
sequence, in view of the following routine argument:
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Lemma 12.1.3 Let G be a profinite group. If every finite quotient of G is a
product of k cyclic subgroups then G is a product of k procyclic subgroups, and
conversely.

Proof. For each open normal subgroup N of G let X (N) denote the set of
all k-tuples

(x1N, . . . , xkN)

in G/N such that G = N 〈x1〉 . . . 〈xk〉. If M ≤ N are open normal subgroups
then the quotient mapping G/M → G/N induces a map πM,N : X (M) →
X (N). Thus we obtain an inverse system of finite sets X (N), ordered by reverse
inclusion of open normal subgroups of G. If every finite quotient of G is a
product of k cyclic subgroups, each of the sets X (N) is non-empty; it follows
that the inverse limit of this system is non-empty (see for example [DDMS],
Chapter 1). This means that there exists a family (xN ), labeled by the open
normal subgroups N of G, such that xN ∈ X (N) for each N and πM,N (xM ) =
xN whenever M ≤ N . Thus if xN = (x1,NN, . . . , xk,NN) and M ≤ N then
xi,MM ⊆ xi,NN for each i. Since cosets of open subgroups are compact, it
follows by the finite intersection property that for each i = 1, . . . , k,⋂

N

xi,NN 6= ∅.

Now choose gi ∈
⋂
N xi,NN for each i, and let 〈gi〉 denote the procyclic subgroup

of G generated by gi. Then G = N 〈g1〉 . . . 〈gk〉 for each N Co G, and as
〈g1〉 . . . 〈gk〉 is a closed subset of G (being a product of compact subsets) it
follows that

〈g1〉 . . . 〈gk〉 =
⋂
N

N 〈g1〉 . . . 〈gk〉 = G.

The converse is evident.

12.2 Adelic groups

The following general structure result for finite linear groups is proved in [Liebeck
& Pyber 2001]; some of the key ingredients in its proof are sketched in the next
section.

Proposition 12.2.1 Let X ≤ GLm(Fp), where p is sufficiently large compared
to m. Then X has normal subgroups X1 ≥ X2 ≥ X3 such that

(a) |X : X1| ≤ f1(m) where f1(m) depends only on m,

(b) X1/X2 is abelian,
(c) X2/X3 is a p-group,
(d) X3 is equal to a product of at most 25m(m− 1)/2 subgroups of order p,

and every simple quotient of X3 is a group of Lie type in characteristic p.
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Now let p1, . . . , pk be sufficiently large, distinct primes and for each i let
Xi be a subgroup of GLm(Fpi). Suppose that G is a subdirect product in
X1× · · · ×Xk (a subgroup that maps onto each of the direct factors), and that
G can be generated by d elements. We claim that G is the product of at most
g(d,m) cyclic subgroups, where g(d,m) depends only on d and m (but not on
k).

For j = 1, 2, 3 write Xi
j for the normal subgroup of Xi given in Proposition

12.2.1, and put
Gj = G ∩

(
X1
j × · · · ×Xk

j

)
.

Step 1. The free group Fd on d generators has only finitely many nor-
mal subgroups of index at most f1(m). Let K be their intersection and put
f2(d,m) = |Fd : K|. Fixing an epimorphism ψ : Fd → G we obtain composed
epimorphisms

ψi : Fd → G→ Xi/Xi
1.

Evidently kerψi ≥ K for each i, so ψ(K) ≤ G1. It follows that

|G : G1| ≤ f2(d,m).

Step 2. The group G1/G2 is abelian, and can be generated by d · f2(d,m)
elements, by Schreier’s formula.

Step 3. The group G2/G3 is isomorphic to a subgroup of
∏
Xi

2/X
i
3. The or-

der ofXi
2/X

i
3 divides that of a Sylow p-subgroup of GLm(Fpi), namely pm(m−1)/2

i ,
so Xi

2/X
i
3 is a pi-group of rank at most m(m − 1)/2. Consequently G2/G3 is

nilpotent of rank at most m(m− 1)/2.
Step 4. We claim that G3 = X1

3 × · · · ×Xk
3 . To see this, note that G/G3 is

an extension of a soluble group by a group of order at most f2(d,m); provided
the prime pi is sufficiently large this implies that G/G3 has no section that is a
simple group of Lie type in characteristic pi, and it follows that the projection
G → Xi maps G3 onto Xi

3. This holds for each i, and so G3 is a subdirect
product in X1

3 × · · · ×Xk
3 . However, since the primes pi are distinct and large,

the groups Xi
3 have no common simple quotients, and this implies that the only

subdirect product in X1
3 × · · · ×Xk

3 is the full direct product.

Now it follows from Step 4 that G3 is a product of at most 25m(m − 1)/2
cyclic subgroups. Steps 1 – 3 together imply that G/G3 has rank at most
m(m − 1)/2 + df2(d,m) + log f2(d,m). With Theorem 12.1.1 these together
imply that G is the product of at most g(d,m) cyclic subgroups, where g(d,m)
depends only on d and m (it suffices to quote here the easier case of Theorem
12.1.1 concerning nilpotent groups).

To complete the proof of Theorem 12.2, letH be a closed subgroup of SLm(Ẑ)
and N an open normal subgroup of H. Suppose that H/N can be generated by
d elements. Since N is open it contains H ∩

∏
p/∈S SLm(Zp) where S is some

finite set of primes; so writing H1 for the projection of H in
∏
p∈S SLm(Zp) we
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may identify H/N with a finite quotient H1/N1. Next, consider the natural
projection

π :
∏
p∈S

SLm(Zp) →
∏
p∈S

SLm(Fp)

and let K = H1 ∩ kerπ. Now the kernel of π is
∏
p∈S SL1

m(Zp), a pronilpotent
group of rank at most m2 (# Pro-p groups); by (an easy case of) Theorem
12.1.1, it follows that KN1/N1 is a product of at most f(m2) cyclic groups.

On the other hand, H1/KN1 is a d-generator image of π(H1), hence it is an
image of some d-generator subgroup Y of

∏
p∈S SLm(Fp). Write S = S1 ∪ S2

where S1 consists of primes that are not sufficiently large, in the sense used
above, and let ϕ : Y →

∏
p∈S2

SLm(Fp) denote the projection mapping. The
result established above shows that ϕ(Y ) is the product of at most g(d,m) cyclic
subgroups; while the order of kerϕ is bounded by a function of m alone (namely
the product over all ‘insufficienly large’ primes p of |SLm(Fp)|).

Putting everything together we infer that H1/N1, and hence H/N, is equal
to the product of at most g1(d,m) cyclic subgroups, where g1(d,m) depends
only on d and m.

Thus if H is a d-generator group then every finite quotient of H is a product
of at most g1(d,m) cyclic subgroups, and it follows by Lemma 12.1.3 that H
is the product of g1(d,m) procyclic subgroups. This completes the proof of
Theorem 12.2, modulo Proposition 12.2.1.

To conclude this section, we recall the following definition from Chapter 10:
a profinite group Q is said to be quasi-semisimple of bounded type if Q is perfect
and Q/Z(Q) ∼=

∏
Ti where (Ti) is a sequence of finite groups of bounded rank,

each occurring with bounded multiplicity, and each Ti is a simple group of Lie
type. It follows that Q is a quotient of

Q̃ =
∏

T̃i

where T̃i is the univeral cover of Ti. Since the groups Ti have bounded rank,
each Ti is of the form ∗Xl(Fpe) where the Lie rank l and the field degree e are
bounded (# Finite simple groups). Thus only finitely many, say t, different
Lie types ∗Xl occur. For each of these, the universal group ∗X̃l(Fpe) has a
faithful representation in SLm(Fpe), and we may take m to be the same for
all of them. If f is a bound for the field degrees e and w is a bound for the
multiplicity of each simple factor, we see that

Q̃ ≤
∏
p

SLm(Fpf )(tw) ≤
∏
p

SLr(Fp) (12.3)

where r = twfm. Let G be the inverse image of Q̃ in
∏
p SLr(Zp) = SLr(Ẑ).

Since Q̃ is a product of subgroups in the individual factors, it is a closed subgroup
of the product (12.3), so G is a closed subgroup of SLr(Ẑ). Thus we have
established
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Lemma 12.2.2 Let Q be a profinite group. If Q is quasi-semisimple of bounded
type then Q is a homomorphic image of an adelic group.

With the remarks in the introduction, this completes the proof that every
profinite group with PSG is boundedly generated. (As the reader will have
noticed, this proof does not need to go via adelic groups: the relevant part of
of the proof of Theorem 12.2 can be applied directly.)

12.3 The structure of finite linear groups

Here we state without proof some of the results established in [Liebeck & Pyber
2001], that lie behind Proposition 12.2.1.

By a delicate analysis of the Bruhat decomposition (cf. §12.1 above), Liebeck
and Pyber established

Proposition 12.3.1 Let H be a quasi-simple group of Lie type over a finite
field of characterstic p, other than 2F4(2)′. Then H is equal to the product of
25 of its Sylow p-subgroups.

The transition to linear groups in general relies on the following theorem of
[Larsen & Pink]:

Theorem 12.3.2 Let G be a finite subgroup of GLm(F ), where F is a field of
characteristic p. Then G has normal subgroups

G1 ≥ G2 ≥ G3

such that
(a) |G : G1| is bounded by a function of m,
(b) G1/G2 is a direct product of simple groups of Lie type in characteristic

p,
(c) G2/G3 is an abelian p′-group, and
(d) G3 = Op(G).

Combining these results, Liebeck and Pyber prove

Theorem 12.3.3 Let G be a finite subgroup of GLm(F ), where F is a field of
characteristic p and p is sufficiently large relative to m. If G is generated by
elements of order p then G is equal to the product of 25 of its Sylow p-subgroups.

Note that as long as p > m, every element of p-power order in GLm(F )
has order p, so any subgroup G of GLm(F ) without nontrivial p′-quotients is
generated by elements of order p. Moreover, if F = Fp and P is a p-subgroup of
G then |P | divides pm(m−1)/2, so P is a product of at most m(m − 1)/2 cyclic
subgroups (each having order p). It follows that G is the product of at most
25m(m − 1)/2 subgroups of order p. This conclusion is applied, together with
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another application of the Larsen-Pink theorem, to establish Proposition 12.2.1,
stated in the preceding section.

A remarkable feature of these results is that, although the simple groups
of Lie type play a central role, the proofs are all independent of CFSG: this is
possible thanks to the powerful theorem of Larsen and Pink, which can often
be used to eliminate the need for CFSG.

12.4 Composition factors

Here we establish some consequences of BG and PIG. Let G be a profinite group,
and suppose to begin with that G has PIG. Thus there exists γ = γ(G) such
that

|Q : Qn| ≤ nγ

for every finite quotient Q of G.
Let L be a non-abelian upper composition factor of G. Then G has an upper

chief factor N ∼= L(k) for some k. Consider the finite group Q = G/CG(N).
Identifying N with its image in Q we have

1 < N ≤ K C Q

where K is the kernel of the permutation action of Q (by conjugation) on the
k simple factors of N . Thus Q/K is a transitive subgroup of Sym(k) and
K ≤ Aut(L)(k).

Suppose that L ∼= Alt(m) for some m ≥ 7. Then Aut(L) ∼= Sym(m). Since
the exponent of Sym(n) is at most 3n for each n (# Finite group theory, §9)
it follows that the exponent of Q is at most 3k · 3m, and hence that

|Q| ≤ 3(k+m)γ .

On the other hand,

|N | =
(
m!
2

)k
≥
(m

2

)mk/2
.

Hence
mk(logm− 1) ≤ 2(k +m)γ log 3.

This implies that m < 2 · 33γ .
It follows that G has no alternating upper composition factor of degree ex-

ceeding 2 · 33γ , and we have proved part (ii) of Proposition 12.5.

Assume now that G is the product of m procyclic subgroups. We claim that
the upper composition factors that are simple of classical Lie type have bounded
Lie ranks. As above, let

L(k) ∼= N ≤ K C Q (12.4)

where Q is a finite quotient of G, N is a minimal normal subgroup of Q and K
is the kernel of Q→ Sym(k).
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The maximal order of an element of Sym(k) is at most 2k (# Finite group
theory, §9), so if g ∈ Q then gn ∈ K for some n ≤ 2k, and if h is an upper
bound for the orders of automorphisms of L it follows that g has order at most
(2h)k. As Q is the product of m cyclic subgroups this implies that |Q| ≤ (2h)km.

Suppose now that L = ∗Xl(q) is a classical simple group of Lie type, with
l > 4 say. Then Out(L) has exponent dividing 2e(q ± 1) (where q = pe) and
L ≤ PSL2l+1(Fq) (# Finite simple groups). Since elements of GL2l+1(Fq)
have order at most q2l+1 − 1 (# Finite group theory, §9) it follows that the
maximal order of any automorphism of L is at most

2e(q ± 1)(q2l+1 − 1) < q3l,

say. On the other hand,

|L| ≥ ql(l+2)(1− o(1)) > ql
2

if l is large (# Finite simple groups). With the result of the previous para-
graph this gives

qkl
2
< |L|k ≤ |Q| ≤ (2q3l)km.

Thus l < 4m.
We conclude that the Lie rank of any classical simple upper composition

factor of G is at most max{4m, C} where C is some absolute constant. Since
the alternating upper composition factors have bounded degrees, because G has
PIG, it follows that G belongs to the class B, and Proposition 12.5 is proved.

As a consequence we can derive another finiteness property of BG groups.
A group G is said to satisfy the polynomial core condition, or PCC, if there
exists c such that

|G : coreG(H)| ≤ |G : H|c

for every (open) subgroup H of finite index in G.

Proposition 12.4.1 Let G be a profinite group. If G has PIG and G ∈ B then
G satisfies PCC.

Proof. If G ∈ B then there exists k such that every finite quotient of G
belongs to the class Bk (# Permutation groups) Let H be an open subgroup
of index n in G and put Q = G/coreG(H). Then Q is a transitive permutation
group of degree n, and Q ∈ Bk. It is shown in the Permutation groups
window that under these conditions, the exponent of Q is at most nf1(k). If
G also has PIG it follows that |Q| ≤ nf1(k)γ where γ = γ(G). The proposition
follows.

In view of Proposition 12.5, this implies that every profinite BG group sat-
isfies PCC.

In §5.3 we defined the invariant w(G) as the supremum of natural numbers
k such that G has a normal upper section (normal subgroup of a finite quotient)
of the form L(k) with L a non-abelian simple group. Proposition 5.3.4 shows
that w(G) is finite if G has PSG; the next result generalizes this:
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Proposition 12.4.2 Let G be a profinite group. If G has PIG then w(G) is
finite.

Proof. Let Q be a finite quotient of G and L(k) ∼= N C Q where L is an
arbitrary non-abelian simple group. In order to bound k, we may replace Q by
Q/CQ(N), and so assume as above that CQ(N) = 1. Let K be as in (12.4).

Suppose to begin with that N is a minimal normal subgroup of Q. Then
Q/K is a transitive permutation group of degree k, and by Proposition 12.5(ii),
proved above, Q/K has no alternating composition factors of degree exceeding
δ, say, where δ depends only on G. It follows (# Permutation groups) that
the exponent of Q/K is at most kc log k, where c depends only on δ. Also the
exponent of Aut(L) is bounded by |Aut(L)| ≤ |L|2 (# Finite simple groups).
As above it follows that

|L|k ≤ |Q| ≤
(
|L|2 kc log k

)γ
where γ = γ(G). Hence

k − 2γ < (k − 2γ) log |L| ≤ cγ(log k)2,

which implies that k ≤ f(γ) where f(γ) depends only on γ.
In the general case, we have N = M1 × · · · ×Mt where each Mi is a chief

factor of G. Thus Mi
∼= Lki where ki ≤ f(γ) for each i. Put Di = CQ(Mi) and

let Ki be the kernel of the permutation action of Q on the set of simple factors
of Mi. Then

Q/Ki ≤ Sym(ki) ≤ Sym(f) where f = max{k1, . . . , kt} ≤ f(γ).

Let e denote the exponent of Aut(L) and h the exponent of Sym(f). Then each
Q/Di has exponent dividing eh, and as D1 ∩ . . . ∩Dt = CQ(N) = 1 it follows
that the exponent of Q divides eh. As e ≤ |L|2 and h ≤ 3f(γ) we deduce that

|L|k ≤ |Q| ≤ |L|2γ 3γfγ) < |L|γ(2+f(γ))
.

Thus
k ≤ γ(2 + f(γ)),

and so γ(2 + f(γ)) is an upper bound for w(G).

Remark. In §13.3 we exhibit profinite groups G having arbitrarily slow
non-polynomial subgroup growth. Each of them has w(G) = ∞, so G does not
have PIG. This shows that the implication “PSG =⇒ PIG” in Theorem 12.3 is
strict. This is true even among finitely generated abstract groups, because for G
as above, a finitely generated abstract group Γ such that Γ̂ = G is constructed
in §13.4.

Theorem 12.6 is a formal consequence of what we have proved so far in
this section, together with the classification of finite simple groups. Indeed, the
following is true:
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Proposition 12.4.3 Let G be a profinite group such that an(G) is finite for all
n. Assume that G ∈ CC and that w(G) is finite. Then G has closed normal
subgroups

R ≤ N ≤ H

such that G/H is finite, H/N is metabelian, R is prosoluble, and N/R is
a Cartesian product of finite simple groups of Lie type, each occurring with
bounded multiplicity.

If also G ∈ B then the simple factors of N/R have bounded Lie ranks, and
H may be taken so that H/N is abelian.

We omit the proof, which is very similar to that of Proposition 10.2.3. The
key extra facts required concern the structure of Out(L) where L is simple of
Lie type: namely, Out(L) has a metabelian normal subgroup of index dividing
6, and if L is of bounded Lie rank then Out(L) has an abelian normal subgroup
of bounded index (# Finite simple groups). For details, see [Balog, Pyber
& Mann 2000], Theorem 2.3 and Corollary 2.4.

12.5 BG, PIG and subgroup growth

We can now deduce Theorem 12.4. The claims about maximal subgroup growth
follow directly from Proposition 12.5, in view of Theorem 3.3 and (the proof of)
Theorem 3.2 (see Chapter 3).

Proposition 12.5.1 Let G be a profinite group satisfying PCC. If G either has
PIG or else is finitely generated then there exists c such that

sn(G) ≤ nc logn for all n.

Proof. Let H be an open subgroup of index n in G. Then H contains an
open normal subgroup H0 of G having index at most na in G, where a is a
constant; therefore H contains Gm for some m ≤ na. Now suppose that G has
PIG. Then |G/Gm| ≤ mγ where γ is a constant, and so by Corollary 1.7.5 we
have

an(G/Gm) ≤ n2 log|G/Gm|

≤ n2γ logm.

It follows that
an(G) ≤

∑
m≤na

n2γ logm ≤ nc
′ logn

where c′ = (2γ + 1)a, giving the result with c = c′ + 1.
If G is finitely generated then there exists b such that sC

k (G) ≤ kb log k for
every k, by Corollary 2.8. So in this case there are at most na

2b logn possibilities
for H0, and applying Corollary 1.7.5 in a similar way we obtain

an(G) ≤ na
2b logn · n2a logn.
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The result follows as before with c = 1 + 2a+ a2b.
This applies in particular if G is a boundedly generated profinite group, by

Propositions 12.5 and 12.4.1, and this completes the proof of Theorem 12.4(i).

Now let G be a profinite group with PIG. By Proposition 12.5, there exists k
such that every finite quotient of G lies in the class CC

k (groups with no alternat-
ing composition factors of degree exceeding k). It is shown in the Permutation
groups window that if Q ∈ CC

k is a transitive permutation group of degree n
then the exponent of Q is at most nb logn, where b depends only on k. It follows
as in the proof of Proposition 12.4.1 (in §12.4) that if H is an open subgroup
of index n in G then H contains an open normal subgroup of index at most
nbγ logn, where γ is a constant. Arguing as above we deduce that

sn(G) ≤
∑

m≤nbγ log n

n2γ logm ≤ nc(logn)2

where c = bγ(2γ + 1).
This completes the proof of Theorem 12.4(ii).

12.6 Residually nilpotent groups

For any group G let

γ(G) = inf
{
β : |G̃ : G̃n| ≤ nβ for every finite quotient G̃ of G

}
.

The results of the last two sections all effectively bound various invariants of a
finite group G in terms of γ(G). We begin this section with another such result,

Proposition 12.6.1 There is a function f such that

rk(G) ≤ f(γ(G))

for every finite p-group G.

Proof. Let G be a finite p-group and put

k = max{d(K) | K C G}.

It follows from the theory of powerful p-groups that rk(G) ≤ k(2 + dlog ke)
(# Finite group theory, Cor. 19), so it will suffice to bound k in terms of
γ = γ(G).

Choose K C G maximal subject to d(K) = k. A simple argument (see the
proof of Lemma 4.1.2) shows that K = CG(K/Φ(K)), so G/K acts faithfully
by conjugation on K/Φ(K) ∼= Fkp. Hence if g ∈ G and pm ≥ k then gp

m ∈ K.
Taking m = dlog ke we thus have

Gp
m+1

≤ Kp ≤ Φ(K).
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It follows that
pk = |K/Φ(K)| ≤ |G/Φ(K)| ≤ p(m+1)γ ,

so k ≤ γ(dlog ke+ 1), and this implies an upper bound for k depending only on
γ.

A similar result (Proposition 5.4.2) was proved for finite soluble groups with
a given degree of polynomial subgroup growth; however, this can not be carried
over to the present context, as is shown by the example

G = Fpd o F∗pd , (12.5)

a finite metabelian group with γ(G) ≤ 2 and arbitrarily large rank d.

Corollary 12.6.2 A pro-p group has PIG if and only if it has finite rank.

Now Theorem 8 of the Linearity conditions window asserts that a finitely
generated residually nilpotent group Γ is linear over a field of characteristic zero
if each of its pro-p completions Γ̂p has finite rank. In view of the last corollary,
this holds if Γ has PIG. Since a subgroup of finite index in a PIG group clearly
has PIG, and a finite extension of a linear group is linear, it follows that a f.g.
PIG group that is virtually residually nilpotent is linear in characteristic zero.

Suppose now that G is a finitely generated soluble group, that G is virtually
residually nilpotent and that G has PIG. We claim that then G has finite rank.

We have just shown that G is a linear group. It follows by the Lie-Kolchin-
Mal’cev theorem (# Linear groups) that G is virtually nilpotent-by-abelian
(alternatively, apply Corollary 5 of the Linearity conditions window). Re-
placing G by a suitable normal subgroup of finite index and factoring out the
second derived group, we reduce to the case where G is a finitely generated
metabelian group (# Soluble groups, Proposition 1).

Let A = G′ be the derived group of G. According to Hall’s theory (#
Soluble groups, §3), if A has infinite rank then there exists a prime p such
that A/Ap has infinite rank. So replacing G by G/Ap we may assume that
Ap = 1. The group G is still virtually residually nilpotent (loc.cit.), so let G1 be
a residually nilpotent normal subgroup of finite index in G, put Gn = γn(G1)
for each n, and let A1 = A ∩ G1. Then for each n ≥ 2, G1/Gn is a finitely
generated nilpotent group with torsion subgroup A1/Gn. It follows that G1/Gn
is residually a finite p-group and hence that A1/Gn embeds into some finite
p-quotient of G1. Now Proposition 12.6.1 shows that

rk(A1/Gn) ≤ f(γ)

where γ = γ(G1) is finite. As
⋂∞
n=2Gn = 1 this implies that

|A1| = sup
n
|A1/Gn| ≤ pf(γ).

Thus A1 is finite, so A is finite, and G has finite rank.
Thus G is a f.g. minimax group (# Soluble groups); [Kropholler 1984]

shows that such a group is equal to a product of finitely many cyclic subgroups.
This completes the proof of Theorem 12.9.
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12.7 Arithmetic groups and the CSP

In this section we sketch the proof that for arithmetic groups, PIG implies the
congruence subgroup property; as remarked in the introduction, this will com-
plete the proof of Theorem 12.10. The proof is similar to that of the correspond-
ing subgroup growth result in Chapter 7, and depends likewise on ‘Rapinchuk’s
lemma’ Proposition 7.1.4. Throughout, Γ denotes an S-arithmetic group that
satisfies the hypotheses of Theorem 12.10. We restate Rapinchuk’s lemma:

Proposition 12.7.1 If Γ does not have the congruence subgroup property, then
there exist the following: a subgroup Γ0 of finite index in Γ, a profinite group E
containing Γ0 as a dense subgroup, and an exact sequence of profinite groups

1 →W → E → H → 1,

where
� W is the Cartesian product of infinitely many copies of a fixed non-trivial
finite simple group F , and
� H is an open subgroup of the congruence completion Γ̃ of Γ.
Furthermore, if F is abelian then
� H can instead be taken to be a pro-q group for some prime q.

Let us assume that Γ has PIG but not CSP. Then Γ0 has PIG, and it follows
that the profinite group E has PIG. Proposition 12.4.2 now shows that w(E) is
finite, so F cannot be a non-abelian simple group. Therefore W is an elementary
abelian p-group of infinite rank, for some prime p. If H is a pro-p group then E
is a pro-p group with PIG, which contradicts Corollary 12.6.2. We may therefore
suppose that H is a pro-q group for some prime q 6= p.

Let Q be a finite quotient of E, and let A be the image of W in Q. We claim
that the rank of A is bounded, independently of Q. Now A is a p-group and
Q/A is a q-group, so Q = AoY for some subgroup Y, and CQ(A) = A×CY (A).
So factoring out the normal subgroup CY (A) we may assume that CQ(A) = A.
Suppose now that A ∼= Fkp, where k ≥ 2 say. Then Q/A is a q-subgroup
of GLk(Fp), hence has exponent dividing pk − 1 (each element is semisimple
and has eigenvalues in Fpk). At first glance, this looks unhelpful – compare
the example (12.5); however, the fact that we are dealing with powers of a fixed
prime q makes all the difference, in view of the following elementary observation:

Lemma 12.7.2 Let p 6= q be fixed primes. Then there exists a constant c
(depending on p and q) such that for k ≥ 2,

pk ≡ 1 (mod qn) =⇒ n ≤ c log k.

Accepting this for now, we see that the exponent of Q/A is at most qc log k.
Thus Q has exponent at most p · qc log k and so

pk = |A| ≤ |Q| ≤ (pqc log k)γ
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where γ = γ(E). This implies that k is bounded above in terms of p, q, c and
γ, and our claim is established.

Since W, as a closed subgroup of E, is the inverse limit of its images such as
A, it follows that W has finite rank, a contradiction. This completes the proof
of Theorem 12.10.

Proof of Lemma 12.7.2. If q is odd put v = pq−1, if q = 2 put v = p2.
Then v = 1 + aqs with s ≥ 1 (s ≥ 2 if q = 2) and q - a. Now for each m ≥ 1,

vq
m

≡ 1 + aqs+m (mod qs+m+1)

(induction on m and the binomial theorem). It follows that if n > s, then the
order of v modulo qn is exactly qn−s. Hence if pk ≡ 1 (mod qn) then qn−s divides
k and it follows that

n ≤ s+ logq k ≤ c log k

where c depends only on p and q.

12.8 Examples

The following somewhat easier variation on Theorem 12.3.3 is established in
[Abért, Lubotzky & Pyber]:

Proposition 12.8.1 Let d ≥ 2 and let q > 3 be a prime power. Then SLd(Fq)
is a product of 10d(d− 1) cyclic subgroups of order q − 1.

Now let (pi) be a sequence of distinct primes and put qi = 2pi . Then qi − 1
and qj − 1 are relatively prime whenever i 6= j, so any finite direct product of
the form

∏
i Cqi−1 is a cyclic group. With the preceding proposition this gives

Theorem 12.8.2 Let d ≥ 2. Then the Cartesian product

G =
∞∏
i=1

PSLd(Fqi)

is equal to the product of 10d(d− 1) procyclic subgroups.

Thus G is a boundedly generated profinite group, rather different from the adelic
groups considered earlier. It is again clear, from the results of Chapter 10, that
G is not a PSG group.

Next, let us examine a metabelian example. For a field F let A(F ) denote
the 1-dimenional affine group over F , that is the semidirect product F+ o F ∗.

Lemma 12.8.3 For each finite field F with |F | > 2 the group A(F ) is equal to
the product of 3 cyclic subgroups of order |F | − 1.
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Proof. Let λ be a generator for the cyclic group F ∗. Then µ = λ − 1 6= 0,
so each non-zero element of F is equal to µλi for some i. Write A(F ) = V 〈x〉
where V is the additive group of F and x acts like multiplication by λ, and let
e = 1F ∈ V . Then

µλi = x−i(e−1ex)xi = x−i(x−1)exi+1.

Thus V ⊆ 〈x〉 · 〈x〉e · 〈x〉 and so A(F ) = 〈x〉 · 〈x〉e · 〈x〉.
Taking qi = 2pi as above, we deduce the first claim in

Theorem 12.8.4 The Cartesian product

G =
∞∏
i=1

A(Fqi)

is equal to the product of 3 procyclic subgroups. For each c < 1/8 there exist
infinitely many integers n such that

sn(G) > nc logn.

This shows that Theorem 12.4 (i) is best possible. To establish the second
claim, observe that if p = pi and 1 ≤ r < p then Fqi

has at least 2r(p−r) additive
subgroups of index 2r (Proposition 1.5.2), so for n = 2p+r we have

sn(G) ≥ sn(A(Fqi)) ≥ 2r(p−r).

This exceeds nc logn as long as r(p− r)/(p+ r)2 > c. Now taking r = [p/3] one
verifies that

r(p− r)
(p+ r)2

=
1
8
− o(

1
p
),

and the claim follows.

Now we turn to index growth. Let us begin by estimating the exponent of
GLd(q), where q = pe. It is easy to see that for each r ≤ d this group contains
an element of order qr − 1 (a ‘Singer cycle’, a generator for the multiplicative
group F∗qr acting on the additive group of Fqr , considered as an Fq-subspace of
Fdq). Writing

qr − 1 =
∏
m|r

Φm(q),

where Φm(X) denotes the mth cycloctomic polynomial, we deduce that the
exponent of GLd(q) is divisible by

L(d, q) = lcm
1≤m≤d

Φm(q).

In fact L(d, q) is exactly the p′-part of the exponent, since an element of p′-order
is semisimple with eigenvalues in F∗qr for some r ≤ d. Now we want to compare
L(d, q) with

P (d, q) =
∏

1≤m≤d

Φm(q).
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Let l 6= p be a prime, and let f be the order of q modulo l. The following
fact of elementary number theory is proved in [HB], Chapter IX, Lemma 8.1:

• if m 6= fli for any i then l does not divide Φm(q)

• if m = fli with i ≥ 1 then l2 does not divide Φm(q).

Hence if lk is the exact power of l dividing Φf (q), then the l-part of P (d, q) is
lk+s(l) where s(l) ≤ logl d. It follows that

P (d, q) ≤ L(d, q)
∏

ls(l) ≤ d! · L(d, q) < qd log d · L(d, q). (12.6)

Next, note that

|Φm(q)| =
∏
ζ

|q − ζ| ≥ (q − 1)φ(m)

where ζ ranges over the primitive mth roots of unity and φ denotes the Euler
function. According to [HW], Theorem 330,

d∑
m=1

φ(m) =
3
π2
d2 +O(d log d).

Hence
P (d, q) ≥ (q − 1)ad

2−bd log d

where a = 3/π2 and b is a constant. With (12.6) this gives

L(d, q) ≥ (q − 1)ad
2−(b+1)d log d

≥ qcd
2

for some absolute constant c.
If the exponent of PSLd(Fq) is E then the exponent of GLd(q) divides

2(q − 1)E. So replacing c by a suitable smaller constant we have

Lemma 12.8.5 Let E(d, q) denote the exponent of PSLd(Fq). Then there exists
an absolute constant c > 0 such that

E(d, q) ≥ qcd
2

for all d ≥ 2 and all prime-powers q.

We can now deduce

Proposition 12.7 There exists a universal constant R such that

|S| ≤ exp(S)R
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for every finite simple group S of Lie type.

Proof. Let S = ∗Xl(q) in the notation of the Finite simple groups
window. Then

|S| = qd(1 + o(1)) < q2d

where d is the dimension of the associated Lie algebra.
If S is of exceptional type then d ≤ 248.Also S contains a copy of (P)SL2(Fq),

hence an element of order q + 1 or (q + 1)/2. Thus the exponent of S exceeds
q1/2, say.

If S is a classical group then l >
√
d/3 and S contains a copy of (P)SLm(Fq)

where m > l/2. It follows by the preceding lemma that the exponent of S it at
least qcd/12.

The result follows, with R the maximum of 4× 248 and 24/c.

Thus, although as we have seen the PIG condition imposes various structural
restrictions on the finite images of a group, it has no implications for the finite
simple images, apart from excluding large alternating groups.

Now let (Sn) be an infinite sequence of finite simple groups of Lie type and
suppose that

n−1∏
i=1

|Si| ≤ |Sn|

for each n > 1. Then the profinite group

G =
∏
n

Sn

has PIG. Indeed , if Q is any finite quotient of G then Q ∼= Sn1 × · · · × Snk
for

some n1 < n2 < . . . < nk and

|Q| =
k∏
i=1

|Sni
| ≤

nk−1∏
i=1

|Si| · |Snk
| ≤ |Snk

|2 ≤ exp(Snk
)2R ≤ exp(Q)2R; (12.7)

so γ(G) is at most 2R. On the other hand, if the groups Sn have unbounded
Lie ranks then G is not boundedly generated, according to Proposition 12.5.

It is easy to find a sequence of the required kind. For example, let q be a
fixed prime-power and take

Sn = PSLd(n)(Fq)

where d(1) ≥ 2 (or ≥ 3 if q = 2) and for each n > 1,

d(n) ≥ d(1) + · · ·+ d(n− 1);

then Sn contains a copy of S1 × · · · × Sn−1. Thus for profinite groups BG is a
strictly stronger condition than PIG.

To show that this is true also for finitely generated abstract groups, we
appeal to the following construction due to [Lubotzky, Pyber & Shalev 1996]:
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Proposition 12.8.6 Let q be a fixed prime-power and (d(n)) an arbitrary strictly
increasing sequence of integers ≥ 2. Then there exists a finitely generated resid-
ually finite group Γ such that

Γ̂ ∼= Ẑ×
∏
n

PSLd(n)(Fq).

Choosing (d(n)) as above, we obtain a finitely generated group Γ such that
Γ̂ is not boundedly generated; and a trivial adjustment to the argument (12.7)
shows that γ(Γ) ≤ 2R + 1, so Γ has PIG. This establishes the first claim of
Theorem 12.8.

Now let ∆ be a quotient of Γ and suppose that ∆ is a linear group. Then ∆
has a residually finite-nilpotent normal subgroup ∆0 of finite index (# Linear
groups). Let N < ∆0 be a normal subgroup of finite index ∆ such that ∆0/N

is nilpotent. Then ∆/N is an image of Γ̂, hence takes the form

∆/N = C ×M

where C is cyclic and M is a product of non-abelian simple groups. Then
M ∩ (∆0/N) = 1 so ∆0/N is cyclic. It follows that ∆0 is residually cyclic, hence
abelian; and moreover every finite quotient of ∆0 is cyclic. As ∆0 is also finitely
generated it follows that ∆0 is a cyclic group.

Thus every linear quotient of Γ is virtually cyclic, and this completes the
proof of Theorem 12.8.

Notes

The problem of characterising (soluble) PIG groups was raised in [Segal 1986b],
where Theorem 12.9(ii) was proved. It was also shown in that paper that for a
f.g. residually finite soluble group G of finite rank, the invariant defined by

inf{γ : |G : Gn| ≤ nγ for all large n}

(an asymptotic version of our γ(G)) is equal to the Hirsch length of G.
Theorem 12.9(i) was proved in [Mann & Segal 1990], where it was also

shown that groups of finite upper rank satisfy PIG.
The equivalence of finite rank, BG, PSG and PIG in pro-p groups was proved

partly by [Lazard 1965] and partly by [Lubotzky & Mann 1991]; for further
variations see [DDMS], Chapter 3.

The topic of bounded generation in arithmetic groups has received consid-
erable attention; see [PR] §4.4, page 203 and references therein. The charac-
terisation of arithmetic groups with the congruence subgroup property in terms
of PIG, and hence Theorem 12.10, is due to [Platonov & Rapinchuk 1993]
and to [Lubotzky 1995a].

[Pyber & Shalev 1997] proved that a finite group of rank r is the product
of f(r) cyclic subgroups; this implies Theorem 12.1. [Pyber 2000] proved
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that profinite groups with PSG are boundedly generated. His proof is based on
the following theorem of [Hrushovski & Pillay 1995], which was proved by
model-theoretic techniques:

Theorem Let G be a subgroup of GLn(Fp), and G+ the normal subgroup of G
generated by the elements of order p. Then G+ is a product of k subgroups of
order p, where k depends only on n.

The fact that BG profinite groups have subgroup growth of type at most nlogn

is proved in the same paper of Pyber.
The proof that adelic groups are boundedly generated, and all the material

of §12.3, is due to [Liebeck & Pyber 2001].

Theorems 12.8.2 and 12.8.4 are due to [Abért, Lubotzky & Pyber].
Among many other results, this paper establishes further restrictions on the
structure of a boundedly generated profinite group (in the spirit of Theorem
12.6) if it is the completion of a BG abstract group, as well as results on the
representation theory of BG abstract groups.

All the remaining main results on PIG groups are due to [Balog, Mann &
Pyber 2000].

The group given in Proposition 12.8.6 was constructed in [Lubotzky, Py-
ber & Shalev 1996] to give the first example of a finitely generated group
having subgroup growth type nlogn; it was not then known that this is also
the growth type for arithmetic groups in positive characteristic having CSP.
The same paper gave a construction of a f.g. group with subgroup growth type
nlogn/(log logn)2 , the slowest non-polynomial type known at that time.

Various forms of the ‘rank function’ dn(G) were introduced in [Lubotzky
1986], where a number of conjectures are proposed.



Chapter 13

The growth spectrum

The group Z has subgroup growth of type n, while the free group on two gen-
erators has growth type nn, and this is the upper limit for finitely generated
groups. In earlier chapters we have seen many intermediate types of subgroup
growth; we have also seen that among ‘reasonable’ classes of groups, such as
linear groups, certain intermediate types cannot occur. If one considers arbi-
trary finitely generated groups, however, then essentially every type of growth
between these limits is possible. The main result we establish in this chapter is

Theorem 13.1 Let g : R>0 → R>0 be a non-decreasing function that satisfies
the condition (∗). Then there exists a 4-generator group having subgroup growth
of type ng(n).

The condition (∗) is as follows:

either (∗)1 : log x = O(g(x)) and g(x) = o(x)

or (∗)2 : g(xlog x) = O(g(x)).

Condition (∗)1 corresponds to subgroup growth of types ranging from nlogn up
to (though not including) nn. Condition (∗)2 allows a range of growth types
down to (though not including) polynomial growth, type n. It means that g
must grow rather gently, and implies in particular that

g(x) = O((log log x)k)

for some k > 0, and so excludes examples such as g(x) = (log x)ε with 0 < ε < 1.
However, every function of the form

g(x) = (log log . . . log x)k

(at least two iterations of log, and any k > 0) does satisfy (∗)2. The possible
small gap in the ‘growth spectrum’ left by the above statement is partially filled
by the

253
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Scholium For each positive integer k there exists a 4-generator group having
growth type at most n(logn)1/k

and at least n(logn)1/(k+1)
.

It should be said that the condition (∗) is merely a technical requirement of the
proof, and is probably not really necessary for the theorem.

The proof of Theorem 13.1 consists of two quite different constructions.
These have a common strategy, however. Let us call growth of type ng(n) ‘fast’
if log n = O(g(n)), and ‘slow’ if g(n) = o(log n). In each case, we begin by con-
structing a profinite group G having the requisite growth type: fast in Section
1, slow in Section 3. Then in Sections 2 and 4 we exhibit a finitely generated
dense subgroup Γ of G whose profinite completion Γ̂ is not too different from
G: the construction of Section 4 actually gives Γ̂ ∼= G, while in Section 2 we
obtain Γ̂ ∼= G × Ẑ. In each case, the subgroup growth of Γ will be determined
by that of G.

In the case of fast subgroup growth, the results obtained are sharper: the
group Γ actually has growth of strict type ng(n) and maximal subgroup growth
type ng(n), provided the function g grows fairly smoothly.

The results stated above exhibit a wide range of subgroup growth types.
Within any given growth type, of course, there is room for finer classification;
for example, groups of exponential growth type were further distinguished in
chapter 3 by the invariant σ, and we shall see that this can take every positive
value. Of particular interest is the class of groups with polynomial subgroup
growth, where the relevant invariant is the degree, that is,

α(G) = inf {α | sn(G) = O(nα)} .

Some suggestive results about the ‘degree spectrum’ – the possible range af
values taken by α(G) – are discussed in the Notes at the end of the chapter.

13.1 Products of alternating groups

Here we establish

Theorem 13.1.1 Let J be a set of integers ≥ 5 and let g : R>0 → R>0 be a
non-decreasing function. For j ∈ J put f(j) =

⌈
jg(j)

⌉
. Then the profinite group

G = G(J, f) =
∏
j∈J

Alt(j)(f(j))

satisfies

mn(G) ≥ ng(n) for all n ∈ J
mn(G) ≤ sn(G) ≤ ng(n)+20 logn+29 for all n.
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Thus provided J is infinite and log n = O(g(n)), both the subgroup growth
and the maximal sugroup growth of G are of type ng(n). (Exercise: supposing
g(n) grows much faster than n, why does this not contradict the absolute upper
bound nn established in Chapter 2?) If J contains all large integers then G
even has subgroup growth of strict type ng(n); the same holds as long as J is
infinite and log f(jk+1)/ log f(jk) is bounded, where jk is the kth element of J
in ascending order.

Example Let g(j) = cj/ log j, where c is a positive constant. Then (provided
J is infinite) the group G has exponential subgroup growth, and

σ(G) = lim sup
log sn(G)

n
= c.

Thus the invariant σ takes the full spectrum of values.

The lower bound in Theorem 13.1.1 is easy to see. Indeed, since Alt(j) has
a maximal subgroup Alt(j − 1) of index j, it is clear that G has at least f(j)
maximal (open) subgroups of index j for each j ∈ J .

The rest of this section is devoted to the proof of the upper bound. This
depends on the following concept:

Definition Let Ω be a finite set. A standard subgroup of Sym(Ω) is a subgroup
of the form

Alt(Ω1)× · · · ×Alt(Ωr)

where Ω1, . . . ,Ωr are disjoint subsets of Ω of cardinality at least 5. We allow
r = 0, corresponding to the identity subgroup.

Here and below, the convention is that for a subset ∆ of Ω, we identify Alt(∆)
with the pointwise stabilizer of Ω \∆ in Alt(Ω). Now the key to understanding
subgroup growth in products of alternating groups is the next theorem, whose
proof is sketched in the Permutation groups window, §3:

Theorem 13.1.2 Let Ω be a finite set and S a standard subgroup of Sym(Ω).
Then each subgroup H of S contains a standard subgroup H∗ of Sym(Ω) such
that

|S : H∗| ≤ |S : H|5 .

To prove the upper bound in Theorem 13.1.1 we proceed in steps.

Step 1 Let Ω be a finite set and S = Alt(Ω1)×· · ·×Alt(Ωr) a standard subgroup
of Sym(Ω). Then the number NS(m) of core-free standard subgroups of index
m in S is at most m4.

A subgroup H of S is core-free if it contains no non-identity normal subgroup of
S; since the direct factors Ai = Alt(Ωi) are simple, this is equivalent to saying
that Hi = H ∩ Ai < Ai for each i. Moreover, it is clear that H is standard if
and only if H = H1 × · · · ×Hr and Hi is a standard subgroup of Ai for each i.
So

NS(m) =
∑

NA1(m1) . . . NAr
(mr),
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summed over all factorisations m = m1 . . .mr with each mi ≥ 2.
An elementary exercise shows that the number of such factorisations of m is

less than m2. We claim that for each i,

NAi
(mi) ≤ m2

i . (13.1)

Once established, this will complete the proof of Step 1, since it implies

NS(m) ≤
∑

m2
1 . . .m

2
r =

∑
m2 ≤ m2 ·m2 = m4.

It remains to prove (13.1). Write ni = |Ωi|. Modulo even permutations,
the number of proper partitions of Ωi that give rise to a standard subgroup of
index mi in Alt(Ωi) is at most the number of (unordered) tuples (b1, . . . , bt),
with t ≥ 2 and each bj ≥ 1, such that

ni = b1 + · · ·+ bt (13.2)

and
1
2
ni! = mi ·

∏
(
1
2
bj !).

Using induction on k, it is a simple exercise to show that for any k > 1, there
are no more than k (ordered) tuples (b1, . . . , bt), with t ≥ 2 and each bj ≥ 1,
such that (13.2) holds and ni!/

∏
bj ! < k. We may infer that the number of

conjugacy classes of standard subgroups of index mi > 1 in Alt(Ωi) is at most
mi, and (13.1) follows since each such subgroup has at most mi conjugates.

Step 2 With S as in Step 1, the number of core-free subgroups of index n in S
is at most n25+20 logn.

According to Theorem 16.4.17, each subgroup H of index n in S contains a
standard subgroup H∗ having index at most n5 in S. Of course H∗ is core-free
if H is, and by Step 1 the number of possibilities for such an H∗ is at most
n5×n20 = n25. On the other hand, given H∗, the number of subgroups of index
n in S that contain H∗ is at most |S : H∗|log(|S:H∗|/n) ≤ n20 logn (see Lemma
1.2.3). Putting these together gives the stated bound.

Step 3 Conclusion.

Let H be an open subgroup of G with |G : H| ≤ n. Put K = coreG(H), the
biggest normal subgroup of G contained in H. Now each open normal subgroup
of G is the product of all but finitely many of the direct factors Alt(j) (as these
are all simple groups), so

G/K ∼=
∏
j∈J

Alt(j)(tj)

where tj ≤ f(j) for all j and tj = 0 for almost all j. On the other hand, G/K
acts faithfully and transitively on the right cosets of H.
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Lemma 13.1.3 If Sym(m) contains a transitive subgroup isomorphic to∏
Alt(j)(tj) then ∏

jtj ≤ m.

Postponing the proof of this, we apply it with m = |G : H| ≤ n and deduce
that n ≥

∏
jtj = q, say. Now given q, the number of factorisations of this form

is at most q2 ≤ n2, and there are at most n possibilities for q. So the number
of possibilities for the sequence t = (tj) is at most n3.

Given tj , there are
(
f(j)
tj

)
ways to choose a normal subgroup Alt(j)(f(j)−tj)

in Alt(j)(f(j)). Hence the number of possibilities for K, given the sequence t, is∏(
f(j)
tj

)
≤
∏

f(j)tj =
∏⌈

jg(j)
⌉tj

≤
∏

j(g(j)+1)tj

≤
(∏

jtj
)g(n)+1

= qg(n)+1 ≤ ng(n)+1;

here we may replace g(j) by g(n) because g is non-decreasing and tj = 0 when-
ever j > n.

Altogether, the number of possibilities for K is thus at most ng(n)+4. Given
K, the number of possibilities forH is equal to the number of core-free subgroups
of index at most n in the standard group G/K, which by Step 2 is at most
n× n25+20 logn. Thus

sn(G) ≤ ng(n)+20 logn+30.

This completes the proof, apart from

Proof of Lemma 13.1.3 Suppose A1 × · · · × Ak is a transitive subgroup of
Sym(m), where Ai ∼= Alt(ni) and

5 ≤ n1 ≤ n2 ≤ . . . ≤ nk.

We have to show that
∏k
i=1 ni ≤ m, and argue by induction on m. We may

clearly assume that k ≥ 2.
Case 1. Suppose that each Ai is transitive. Then both A1 and A2×· · ·×Ak

are regular, so
1
2
n1! =

k∏
i=2

(
1
2
ni!) = m,

which forces k = 2, n1 = n2 and n1n2 < m since n1 ≥ 5.
Case 2. Suppose that Aj is intransitive. Put B =

∏
i 6=j Ai and let U1, . . . , Ur

be the orbits of Aj . Then B permutes the set U = {U1, . . . , Ur} transitively,
with kernel K say. Now B = K × C where

K =
∏
i∈X

Ai, C =
∏
i∈Y

Ai

and X ∪ Y = {1, . . . , k} \ {j}. Moreover, C acts faithfully and transitively on
U so inductively we have ∏

i∈Y
ni ≤ r.
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On the other hand, Aj ×K acts faithfully and transitively on U1, giving∏
i∈X∪{j}

ni ≤ m/r.

The result follows.

13.2 Some finitely generated permutation groups

Let
G = G(J, f) =

∏
j∈J

Alt(j)(f(j))

be the profinite group discussed in the preceding section. Under suitable con-
ditions on J and f, we shall see that G contains a finitely generated dense
subgroup Γ that has essentially the same subgroup growth as G.

We assume that f takes the form f(j) =
⌈
jg(j)

⌉
for some non-decreasing

function g : R>0 → R>0 such that

log x = O(g(x)) and g(x) = o(x). ((∗)1)

Theorem 13.2.1 Suppose that J is an infinite set of sufficiently large odd in-
tegers. Then there exists a 4-generator group Γ such that

Γ̂ ∼= G(J, f)× Ẑ.

Before embarking on the proof let us deduce

Corollary 13.2.2 Let g : R>0 → R>0 be a non-decreasing function that sat-
isfies I. Then there exist a 4-generator group Γ and a constant a > 0 such
that

ng(n) ≤ mn(Γ) ≤ sn(Γ) for all large odd n

sn(Γ) ≤ nag(n) for all large n.

Proof. We take J to consist of all odd integers ≥ j1. According to Theorem
13.1.1, G = G(J, f) satisfies

ng(n) ≤ mn(G) for all n ∈ J
sn(G) ≤ ng(n)+20 logn+29 for all n.

Since G is isomorphic to a quotient of Γ̂ we deduce that sn(Γ) ≥ mn(Γ) ≥ ng(n)

for all odd n ≥ j1.
On the other hand, Proposition 1.3.6(i) shows that

sn(Γ) = sn(Γ̂) = sn(G× Ẑ)
= sn(G× Z) ≤ sn(Z) · sn(G) · n

≤ ng(n)+20 logn+31 ≤ nag(n)
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for large values of n, where a > 0 depends on the constant implied in log x =
O(g(x)).

Remarks (i) Suppose that the function g is reasonably smooth in the sense
that g(n)/g(n− 1) is bounded above for all n (this further restriction on g is a
pretty mild one). Then Γ actually has subgroup growth of strict type ng(n): for
when n is large and even we have sn(Γ) ≥ mn−1(Γ) ≥ (n − 1)g(n−1) ≥ nεg(n)

where ε is some positive constant.
(ii) Take g(n) = cn/ log n, where c > 0. Then

g(n) + 20 log n+ 31 = g(n)(1 + o(1)),

so the finitely generated group Γ satisfies

σ(Γ) = lim sup
log sn(Γ)

n
= c.

The rest of this section is devoted to the proof of Theorem 13.2.1. We have
to set up some notation. J is an infinite set of odd integers greater than or
equal to some constant c ≥ 5, and f : J → N is a function. Define f(n) = 0
for n /∈ J, and let n1 ≤ n2 ≤ . . . be the non-decreasing sequence in which each
integer n occurs exactly f(n) times. Let

Ω = {(i,m) | i ∈ N, 1 ≤ m ≤ ni}

=
∞⋃
i=1

Ωi ⊂ N× N

where Ωi = {(i,m) | 1 ≤ m ≤ ni} , and let G be the subgroup of Sym(Ω) con-
sisting of permutations g such that Ωig = Ωi and g|Ωi

is an even permutation,
for each i. Identifying Ωi with the set {1, . . . , ni} via the second component
gives an isomorphism θi : Alt(Ωi) → Alt(ni), and for g ∈ G we write

gi = ψi(g) = θi(g|Ωi
) ∈ Alt(ni).

Evidently g 7→ (gi)i∈N gives an isomorphism

G ∼= G(J, f) =
∏
j∈J

Alt(j)(f(j)).

The support of g is

supp(g) = {ω ∈ Ω | ωg 6= ω} .

Let D denote the set of all elements of G having finite support; thus D is just
the restricted direct product of the groups Alt(Ωi). It is a normal subgroup of
G.
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Fix a sequence (ki) of positive integers such that ki + 1 ≤ ni/2 for each i
and ni/ki is unbounded as i→∞. Put

li =
[

ni
1 + ki

]
, (13.3)

so kili ≤ ni − li, and (li) is an unbounded sequence of integers ≥ 2. Now let

Li = {i} × {li, 2li, . . . , kili} ⊆ Ωi,

L =
∞⋃
i=1

Li ⊂ Ω.

Let Q be a subgroup of G such that

supp(g) ⊆ L for every g ∈ Q,
Q ∩D = 1, (13.4)

if ni = nj and i 6= j then ψi|Q 6= ψj|Q.

The existence and nature of such a subgroup is a point we shall return to later.
Now define two elements µ, τ of G by setting

µi = (123) for all i
τi = (123 . . . ni) for all i,

and let

Γ = 〈µ, τ, Q〉 ≤ G

N =
〈
µΓ
〉
, H = D 〈 τ, Q〉 .

Proposition 13.2.3 The following hold:

Γ = NH and N ∩H = D;

N/D ∼= Alt(Z);

H/D ∼= Q o Z.
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Corollary 13.2.4 Let K be the kernel of the map ι : Γ̂ → G induced by the
inclusion Γ → G and let D be the closure of D in Γ̂. Then

Γ̂ = D ×K ∼= G× Q̂ o Z.

Proof. We may identify the profinite completion D̂ of D with G. The
universal property of D̂ gives a commutative diagram

D

↙
j

↘
D̂

π−→ D
ι|D−→ G

,

where j denotes the inclusion D → D. Then π is surjective and ι|D ◦ π is the

identity map D̂ → G, and it follows that ι|D is an isomorphism. Hence D ∼= G

and D ∩ K = 1. Since ι|D is surjective we also have Γ̂ = DK; but D C Γ̂

because D C Γ, so Γ̂ = D ×K as claimed.
Finally,

K ∼= Γ̂/D ∼= (̂Γ/D) = (̂Γ/N)

since N/D ∼= Alt(Z) is an infinite simple group, and Γ/N ∼= H/D ∼= Q o Z by
the proposition.

Before proving Proposition 13.2.3 let us complete the
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Proof of Theorem 13.2.1. Recall that f(j) =
⌈
jg(j)

⌉
where g : R>0 →

R>0 is non-decreasing and

log x = O(g(x)), g(x) = o(x).

Since the function x 7→ x log x is strictly increasing, we may define ki by

ki log ki = d8g(ni) log nie .

The conditions on g ensure that ni/ki is unbounded as i → ∞ and that 5 ≤
ki ≤ ni/2−1 for each i provided n1 is large enough. Now we need the following
observation:

Lemma 13.2.5 Let k ≥ 5. Then there are at least kk/4 distinct monomor-
phisms from Alt(5) into Alt(k).

Proof. Write k = 5r + e where 0 ≤ e ≤ 4. Let A ∼= Alt(5) be the diagonal
subgroup in

r−1∏
j=0

Alt(Ej) ≤ Alt(k)

where Ej = {5j + 1, 5j + 2, . . . , 5j + 5}. It is easy to see that CSym(k)(A) ∼=
Sym(r)×Sym(e), so that by applying inner automorphisms of Sym(k) we obtain
k!/r!e! distinct monomorphisms A→ Alt(k). The lemma follows since

k!
r!e!

≥ k!
(r + e)!

≥
(
k

2

)k/2
≥ kk/4.

It follows that for each i, there are at least f(ni) distinct monomorphisms
from Alt(5) into Alt(ki). Indeed,

log f(ni) ≤ 2g(ni) log ni ≤
1
4
ki log ki = log

(
k
ki/4
i

)
.

Given n ∈ J, let i, i+1, . . . , i+f(n)−1 be all the indices t for which nt = n,
and let ηi, . . . , ηi+f(n)−1 be distinct monomorphisms from Alt(5) into Alt(ki).
Let u = (123) and v = (12345) ∈ Alt(5), and for i ≤ t ≤ i + f(n) − 1 define
elements αt, βt ∈ Alt(Lt) by

θt(αt) = ηt(u)
θt(βt) = ηt(v).

Now take α = (αi) and β = (βi) ∈ G and put Q = 〈α, β〉.
Then Q satisfies the conditions (13.4), and by Corollary 13.2.4 we have

Γ̂ = G × Q̂ o Z. Evidently, u 7→ α, v 7→ β gives an isomorphism Alt(5) ∼= Q, so
Q is a perfect group. This implies that

Q̂ o Z = Ẑ.
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To see this, write Q oZ = Q o 〈x〉 , and note that if π is any homomorphism from
Q o 〈x〉 to a group of finite order n > 1, then

π(Q) = π([Q,Q]) = π([Q,Qx
n

]) = 1,

which implies that the profinite completion of Q o 〈x〉 is the same as that of 〈x〉.
Thus in fact Γ̂ ∼= G × Ẑ as claimed. This completes the proof of Theorem

13.2.1, modulo Proposition 13.2.3.

Proof of Proposition 13.2.3. Write Ai = Alt(Ωi) < G, and for each
subset I of N let

πI : G→ AI =
∏
i∈I

Ai

denote the projection mapping (and πi = π{i}). Recall that N =
〈
µΓ
〉
.

Step 1. We claim that πI(N) = AI for every finite set I. When |I| = 1
this is clear since πi(N) ≥

〈
µ
〈τi〉
i

〉
= Ai for each i. Now we argue by induction

on |I|; suppose that |I| > 1 and that B = πI(N) < AI . Let i ∈ I and put
K = I \ {i}. Inductively we may suppose that πK(B) = AK . Since Ai is simple
and |B| < |AI | it follows that B ∩ Ai = 1 and that πK|B is an isomorphism
B → AK . Composing its inverse with πi|B we obtain an epimorphism AK → Ai,
which restricts to an isomorphism

φki : Ak → Ai

for some k ∈ K. Certainly nk = ni = n, say, in this case, and we obtain a
commutative diagram

N
πk

↙
πi

↘
Ak

φki−→ Ai
↓ ↓

Alt(n) σ−→ Alt(n)

,

the vertical maps being θk and θi and σ some automorphism of Alt(n). Now let
0 ≤ m ≤ n− 3 and observe that

σ(m+ 1,m+ 2,m+ 3) = σθkπk((µt
m

))

= θiπi((µt
m

)) = (m+ 1,m+ 2,m+ 3).

It follows that σ is the identity automorphism of Alt(n), and hence that ψk =
θkπk and ψi = θiπi have the same restriction to N . Now let x ∈ Q and let
γ ∈ Alt(n), so γ = ψk(a) = ψi(a) for some a ∈ N . Then

γψk(x) = ψk(ax) = ψi(ax) = γψi(x);
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hence ψk(x) = ψi(x) since Alt(n) has trivial centre. This contradicts (13.4),
and the claim follows.

Step 2. Next we show that N ≥ D. It will suffice to show that N ≥ Ai for
each i. Fix i and put

γ(i) = [µ, µτ
ni−2

].

Then γ(i) ∈ N and

πj(γ(i)) = 1 if nj > ni

πj(γ(i)) = σj if nj = ni

where σj = θ−1
j (1, ni − 1, 2) 6= 1. In particular, γ(i) ∈ AI where I = {j | nj ≤

ni}. Now let α ∈ Ai. Step 1 shows that there exists x ∈ N such that πI(x) = α.
Then [γ(i), x] ∈ N and

πj([γ(i), x]) = 1 if nj > ni

πj([γ(i), x]) = [σj , 1] = 1 if nj = ni and j 6= i

πi([γ(i), x]) = [σi, α].

Thus [σi, α] = [γ(i), x] ∈ Ai ∩ N, and as σi 6= 1 it follows that Ai ≤ N as
required.

Step 3. We claim that for each t 6= 0,

[Q,Qτ
t

] ⊆ D.

It suffices to verify this for t ≥ 1. Note now that Li ∩Liτ t = ∅ whenever li > t.
This implies that the support of [Q,Qτ

t

] is contained in the finite set⋃
li≤t

Li,

and the claim follows.
Hence there is a natural epimorphism

φ :
∞
Dr

t=−∞
Qτ

t

→
〈
Q〈τ〉

〉
D

D
.

Since supp(Qt) ∩ supp(Qs) is finite whenever s 6= t, while every non-identity
element of Q has infinite support, we see that kerφ = 1. Thus φ is an isomor-
phism.

It is easy to see that no positive power of τ lies in
〈
Q〈τ〉

〉
D. Thus

H/D = D 〈 τ, Q〉 /D =

〈
Q〈τ〉

〉
D

D
· 〈τ〉 ∼= Q o Z.

Step 4. To show that N/D ∼= Alt(Z), let T denote the set of all integer
sequences (t) = (ti)i∈N with

1 ≤ ti ≤ ni
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for all i. Define an equivalence relation on T by setting

(t) ∼ (s) ⇐⇒ ti = si for sufficiently large i.

We denote the equivalence class of (t) by t. The group G permutes T by
(t)g = (s) where

(i, si) = (i, ti)g

for each i, and this action respects ∼ . Clearly D is contained in the kernel
of the induced action of G on T / ∼. For each n ∈ Z we define the element
n ∈ T / ∼ to be the equivalence class of a sequence (t) such that for sufficiently
large indices i,

ti = ni if n = 0
ti = n if n > 0
ti = ni + n if n < 0

(the value of ti for small i is immaterial). The set Z = {n | n ∈ Z} is naturally
bijective with Z. Our aim is to show that the action of N on T / ∼ preserves
the subset Z, induces on it the full alternating group Alt(Z) (consisting of all
even permutations of finite support), and that the kernel of the induced action
is exactly D.

Now N =
〈
µ〈Q,τ〉

〉
. It is straightforward to verify that Q acts as the identity

on Z, that τ acts as the shift n 7→ n + 1, and that µ acts as the three-cycle
(1,2,3). Since Alt(Z) is generated by the three-cycles (n, n+1, n+2) it follows
that the action of N induces Alt(Z) on Z. That the kernel of this action is
exactly D is not quite as obvious as it seems, and we leave it as an exercise
for the reader: the key point is to show that if y ∈ N then there exists b,
independent of i, such that

supp(yi) ⊆ {i} × ({1, 2, . . . , b} ∪ {ni − b, ni − b+ 1, . . . , ni})

for all large i. It follows that if y /∈ D then y must move n for some n with
|n| ≤ b.

Step 5. It only remains to show that N ∩ H ≤ D. This follows from the
preceding step: for if h ∈ H = D 〈τ, Q〉 then h acts on Z as some power of the
shift n 7→ n + 1, while N acts by permutations of finite support; so if h ∈ N ∩H
then h acts as the identity on Z and hence belongs to D. This concludes the
proof of Proposition 13.2.3.

13.3 Some profinite groups with restricted com-
position factors

In Section 1 we obtained groups with relatively fast subgroup growth by putting
together arbitrarily large finite alternating groups. Results from several earlier
chapters suggest that groups having relatively slow subgroup growth are likely
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to have more restricted (upper) composition factors; here we consider some
examples where these factors are of uniformly bounded rank.

Let (Tk)k≥0 be a sequence of finite groups, satisfying the following conditions
for all k, where τk = |Tk| and r and t are fixed positive constants:

τk ≥ τk−1; (i)
rk(Tk) ≤ r; (ii)

Tk contains an elementary abelian subgroup Ak such that

τk ≤ |Ak|t ; (iii)

if µk is the minimal index of any proper subgroup in Tk then

µk ≥ µk−1 and τk ≤ µtk. (iv)

For example, we could have Tk = X(Fpe
k
) where X(F ) is a simple group of

fixed Lie type over the field F, (pk) is an increasing sequence of primes and e is
constant: see the Finite simple groups window.

Let (lk)k≥0 be a sequence of integers ≥ 2, for k ≥ 1 put

mk =
k−1∏
j=0

lj , (13.5)

and write
Bk = T

(mk)
k .

Now let W1 = T0, and for k > 1 let Wk be an extension group of Bk−1 by Wk−1.
Thus we have an exact sequence

1 → Bk−1 →Wk →Wk−1 → 1,

and we may form the inverse limit

W = W ((T ), (l)) = lim
←−

Wk.

This is a profinite group, whose finite quotients are just the images of the various
groups Wk.

Let us estimate the subgroup growth of W , assuming for simplicity that l0
is even.

Lemma 13.3.1 If n < µk+1 then sn(W ) ≤ n2trmk .

Proof. Note to begin with that

k∑
j=0

mj < 2mk, (13.6)
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since mj = lj−1mj−1 ≥ 2mj−1 for each j ≥ 1. Now if i > k then µi ≥ µk+1 > n
so Bi has no proper subgroup of index n or less. It follows that every subgroup
of index ≤ n in Wi+1 contains Bi, and hence that

sn(Wi+1) = sn(Wi) = . . . = sn(Wk+1).

Now Wk+1 has a subnormal series of length
∑k
j=0mj < 2mk, whose factors Tj

satisfy conditions (ii) and (iv). Applying Proposition 1.9.1 from Chapter 1 we
deduce that

sn(Wk+1) ≤ n2trmk .

The lemma follows since sn(W ) is the supremum of the sn(Wi).

Lemma 13.3.2 For n = τ2mk

k we have

sn(W ) ≥ nmk/8t.

Proof. Let us write τ = τk and m = mk. Using (13.6) we have

|Wk+1| =
k∏
j=0

τ
mj

j ≤ τ
∑
mj < τ2m = n.

On the other hand,
Wk+1 ≥ Bk ≥ A

(m)
k .

If Ak ∼= Cep then pet ≥ τ , and A
(m)
k has at least pe

2m2/4 subgroups. Since
|Wk+1| < n it follows that

sn(W ) ≥ sn(Wk+1) = s(Wk+1)

≥ pe
2m2/4 ≥ τm

2/4t = nm/8t.

The two lemmas show that we can control the subgroup growth of W by
fine-tuning the growth of mk as against τk and µk. Let us apply this to a specific
example. Let g be an unbounded, non-decreasing positive real-valued function
such that

g(xlog x) ≤ Ag(x) (13.7)

for all large x, where A is a positive constant. Then the following holds:

Lemma 13.3.3 There are constants B,C > 0 such that for each integer m ≥ C
there exists a prime p > m with

g(p) ≥ 2m ≥ Bg(pm). (13.8)
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This will be proved below. Now choose a sequence of primes recursively as
follows. Let p0 ≥ max{12, C} be a prime such that g(p0) ≥ 12. Having chosen
p0, . . . , pk−1, put li = 1 + pi for i < k and let m = 6mk where mk is given by
(13.5) above. Then take pk = p where p > m is a prime satisfying (13.8). Thus

g(pk) ≥ 12mk ≥ Bg(p6mk

k ) (13.9)

for every k ≥ 1. Now let

Tk = PSL2(Fpk
).

Then Tk has rank 2, µk = 1 + pk = lk, and

p2
k < τk = pk(p2

k − 1)/2 < |Ak|3 < µ3
k,

where Ak is a subgroup of order pk (# Finite simple groups). Thus conditions
(i) – (iv) are satisfied with t = 3 and r = 2. (We could use X(Fpe

k
) instead of

PSL2(Fpk
), for any fixed Lie type X and any constant e, by suitably adjusting

the parameters in the following proofs.)

Theorem 13.3.4 If (Tk), (lk) are as above then the profinite group W ((T ), (l))
has subgroup growth type ng(n).

Proof. Let n = p6mk

k ,where k ≥ 1. Then n > τ2mk

k = n′, say, so according
to Lemma 13.3.2, we have

sn(W ) ≥ n′mk/24 > p
m2

k/6
k = nmk/36.

Now (13.9) gives mk ≥ Bg(n)/12, so taking c = B/(12× 36) we have

sn(W ) ≥ ncg(n).

Thus the growth type of W is not less than ng(n).
For the upper bound, let n > p0. There exists k such that µk ≤ n < µk+1,

and then Lemma 13.3.1 gives

sn(W ) ≤ n12mk .

But
12mk ≤ g(pk) ≤ g(n)

by (13.9), since pk < µk ≤ n and g is non-decreasing. Thus sn(W ) ≤ ng(n) for
all large n.

The condition (13.7) on g excludes some perfectly nice functions such as
(log n)ε with 0 < ε < 1, and it is worth mentioning two variations of the above
construction, that allow for a wider range of growth types but for which we have
less precise information.
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Variation 1 Let g be any unbounded function. Then the sequence of primes
(pk) can be chosen so that sn(W ) ≤ ng(n) for all large n, while W does not
have polynomial subgroup growth. The proof is similar but simpler: it suffices
to ensure that pk ≥ p

6mk−1
k−1 and g(pk) ≥ 72m2

k for each k ≥ 1.

Variation 2 Let h be a positive integer, put g(n) = (log n)1/h and g∗(n) =
(log n)1/(h+1). Then the sequence of primes (pk) can be chosen so that

sn(W ) ≤ ng(n) for all large n,

sn(W ) ≥ ncg∗(n) for infinitely many n,

where c is a positive constant. Again the proof is similar: it suffices to ensure
that

(12mk)h ≤ log pk ≤ 2 · (12mk)h

for each k ≥ 1. The details are left to the reader.

Before proving Lemma 13.3.3, let us establish

Lemma 13.3.5 If g(xlog x) = O(g(x)) then g(x) = O((log log x)k) for some k.

Proof. Suppose that g(xlog x) ≤ Ag(x) for all x ≥ x0, where x0 ≥ 4 and
A > 1. Put k = logA, N0 = 1 + xlog x0

0 and let

B = sup
{

g(x)
(log log x)k

| x ∈ [x0, N0]
}
.

We claim that then g(x) ≤ B(log log x)k for all x ≥ x0. Indeed, suppose that
this holds for all x ∈ [x0, N ] where N ≥ N0. Let y ∈ [N,N logN ]. Then y = xlog x

where x ∈ [x0, N ], and

g(y) = g(xlog x) ≤ 2kg(x)

≤ 2kB(log log x)k = B(log log y)k.

The claim follows since N logN > N2.

Proof of Lemma 13.3.3. Recall that g is an unbounded, non-decreasing
positive real-valued function that satisfies (13.7). Let m be a large positive
integer and let n be the least positive integer such that g(n) ≥ 2m. There exists
a prime p with n ≤ p < 2n (‘Bertrand’s postulate’, # Prime numbers). Then

g(p) ≥ g(n) ≥ 2m.

Since g(x) = o(log x) by the preceding lemma, this implies also that p >
log p > g(p) > m provided m is large enough. Then

g(pm) ≤ g(plog p) ≤ Ag(p).



270 CHAPTER 13. THE GROWTH SPECTRUM

Finally,

g(p) ≤ g(2n) ≤ Ag(n− 1) < 2Am

provided 2n ≤ (n− 1)log(n−1), which holds if m ≥ 10 since 2n > p > m.
Thus provided m is large enough we obtain (13.8) with B = A−1, and the

lemma is proved.

Note that we never specified the group extensions in the construction of W
from the sequence of groups (Tk); for example, W could simply be the product
of all the groups T (mk)

k . However, such a group would not be finitely generated
(as a profinite group). A more interesting example is the following: noting that
each Tk has a natural doubly-transitive permutation representation of degree lk,
on the points of the projective line over Fpk

(or equivalently, on the right cosets
of a maximal subgroup of index lk), we form the groups Wk as a sequence of
iterated permutational wreath products. That is, W1 = T0, a permutation group
of degree l0 = m1; having obtained Wi for i ≤ k as a permutation group of
degree mi, we take

Wk+1 = Tk oWk

to be the permutational wreath product of Tk with Wk. This is the semi-direct
product of Bk = T

(mk)
k by Wk, which acts by permuting the mk direct fac-

tors, and Wk+1 has a natural faithful imprimitive permutation representation
of degree lk ·mk = mk+1.

The inverse limit W of these iterated wreath products turns out to be a
finitely generated profinite group; indeed, we shall see in the next section that
W is the profinite completion of a finitely generated (abstract) group.

13.4 Automorphisms of rooted trees

A rooted tree is a tree T with a distinguished vertex v0, the root. A vertex of
T is said to have level n if n is the distance from v0 to v, that is, the length of
the unique path from v0 to v. We consider an infinite spherically homogeneous
rooted tree T, that is one where for each n ≥ 1, all vertices of level n have the
same (finite) valency ln + 1. In this case we say that T is of type (ln)n≥0, where
l0 is the valency of v0. Thus if v is a vertex of level n ≥ 1 then a unique edge e
leads out of v towards v0 (upwards, let us say), and the component of T\{e} not
containing v0 is a spherically homogeneous rooted tree of type (lk)k≥n having
v as its root. This subtree is denoted Tv. We picture T as growing downwards
(‘a peculiarity of the Northern hemisphere’ according to M. F. Newman), and
embedded in the plane; this fixes an ordering (left to right, say) on the vertices
of each level.
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T[2]

We denote by T[n] the finite rooted subtree containing of all the vertices of
level at most n.

Let Ω(n) denote the set of all vertices of level n; thus Ω(n) is the ‘bottom
layer’ of T[n], and each automorphism of T[n] is determined by the permuta-
tion it induces on Ω(n); we use this to identify Aut(T[n]) with a subgroup of
Sym(Ω(n)). We may identify Ω(n + 1) with the set {1, . . . , ln} × Ω(n). Hav-
ing done this, we see that Aut(T[n + 1]) is precisely the permutational wreath
product

Sym(ln) oAut(T[n]).

Starting with Aut(T[1]) = Sym(l0) we deduce that for each n ≥ 1,

Aut(T[n]) = Sym(ln−1) o Sym(ln−2) o . . . o Sym(l0).

(Another way to see this is to observe that Aut(T[n]) consists of all permutations
of Ω(n) that respect the sequence of equivalence relations

d(v, w) ≤ 2r

for r = 1, . . . , n− 1, where d denotes the distance between two vertices.)
Finally, since each automorphism of T is determined by a sequence of com-

patible automorphisms of the subtrees T[n], we have

Aut(T) = lim
←−
n→∞

Aut(T[n]) = lim
←−
n→∞

( Sym(ln−1) o Sym(ln−2) o . . . o Sym(l0))

We write πn : Aut(T) → Aut(T[n]) ≤ Sym(Ω(n)) to denote the restriction
mapping.

Suppose that for each n ≥ 0 we have a subgroup Tn ≤ Sym(ln). Then

Wn = Tn−1 o Tn−2 o . . . o T0 ≤ Aut(T[n]), (13.10)

and the profinite group

W = W ((T ), (l)) = lim
←−
n→∞

Wn (13.11)
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is naturally embedded in Aut(T).

For a subgroup Γ of W, let stΓ(n) denote the pointwise stabilizer in Γ of
Ω(n); this is the kernel of the restriction map (πn)|Γ. We say that Γ has the
congruence subgroup property if every subgroup of finite index in Γ contains
stΓ(n) for some n, and that Γ is dense in W if

πn(Γ) = Wn

for every n, that is if Γ is dense in the natural profinite topology of W . The
following is now clear, since the subgroups stΓ(n) form a base for the neighour-
hoods of 1 in Γ relative to the topology induced from the natural topology of
W :

Lemma 13.4.1 Let ι : Γ̂ → W be the map induced by the inclusion Γ → W .
Then ι is surjective if and only if Γ is dense in W, and ι is injective if and only
if Γ has the congruence subgroup property.

We need some notation for tree automorphisms.

g = (g1, . . . , gm)n

indicates that g ∈ stAut(T)(n) and that gi is the restriction of g to the subtree
Tvi

, where vi is the ith vertex in Ω(n) (in our chosen order, reading from left
to right); here m = |Ω(n)| . For any α ∈ Sym(ln) and any vertex v ∈ Ω(n), we
write

·
α to denote the automorphism of Tv that induces α on the vertices of

level 1 in Tv and preserves the ordering of vertices within all the subtrees Tw
for vertices w 6= v of Tv; in other words,

·
α corresponds to α ∈ Sym(ln) when

Aut(Tv) is identified with . . . o Sym(ln+1) o Sym(ln); we say that
·
α is rooted at

v. For example, taking n = 0, we can write any automorphism g of T as

g = (h1, . . . , hl0)1 ·
·
α

where hi ∈ Aut(Tvi
) and α ∈ Sym(l0) is the action of g on Ω(1) = {v1, . . . , vl0}.

For each n ≥ 1, let u(n) denote the rightmost vertex of level n in T and
u(n, 1) the leftmost vertex immediately below u(n) (that is, the vertex ln+1− 1
steps to the left of the rightmost vertex in Ω(n+ 1)).
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Now let us get down to specifics. Let P = 〈x, y〉 be a two-generator perfect
group, and suppose that for each n ≥ 0 we have an epimorphism

φn : P → Tn,

where Tn is a doubly-transitive subgroup of Sym(ln). Write αn = φn(x) and
βn = φn(y). We now define four automorphisms of T.

ξ =
·
α0 rooted at v0

η =
·
β0 rooted at v0

a and b

where a acts on each of the disjoint subtrees Tu(n,1) for n ≥ 0 by
·
αn+1 rooted

at u(n, 1), and b acts likewise with
·
βn+1 in place of

·
αn+1.

Theorem 13.4.2 The group Γ = 〈ξ, η, a, b〉 is a dense subgroup of W (defined
by (13.11) and (13.10)) and Γ has the congruence subgroup property.

Before proving this, let us complete the proof of Theorem 13.1. Given a
function g that satisfies condition (∗)2, Theorem 13.3.4 asserts that we can
choose a sequence of primes (pk) so that the profinite group W = W ((T ), (l))
has subgroup growth type ng(n), where lk = 1 + pk and Tk = PSL2(Fpk

). Now
pk ≥ 5 for each k, so Tk is a quotient of the group P = SL2(Z[ 16 ]). Moreover, P
is generated by the two matrices(

1 0
1 1

)
,

(
1 1

6
0 1

)
,

and P is a perfect group [Bass 1964]. Also the natural action of Tk on the lk
points of the projective line over Fpk

is doubly transitive. Now Theorem 13.4.2
provides a 4-generator subgroup Γ ofW, which by Lemma 16.4.1 satisfies Γ̂ ∼= W .
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Thus sn(Γ) = sn(W ) for all n and Γ has growth type ng(n), as required. The
same applies if g is a function of the type mentioned in Variation 1 or Variation
2 in the preceding section.

Theorem 13.4.2 depends on two key facts. One of them is a weak form of
the congruence subgroup property that holds in great generality. Here, for any
subgroup G of Aut(T) we denote by rstG(v) the pointwise stabilizer in G of
T \ Tv.

Lemma 13.4.3 Let G be a subgroup of Aut(T) that acts transitively on each
Ω(n). If N is a subgroup of finite index in G then there exists n such that
N ≥ rstG(v)′ for every vertex v of level n.

Proof. We may assume that N C G. Then G/N contains only a finite
number, say k, of distinct subgroups. Let n be so large that |Ω(n)| > k; since
|Ω(j)| ≥ 2 |Ω(j − 1)| for each j we could take any n > log k. Then there exist
distinct vertices u,w ∈ Ω(n) such thatNrstG(u) = NrstG(w). Since rstG(u) and
rstG(w) have disjoint supports in T, they commute elementwise. Consequently

rstG(w)′ ≤ [NrstG(w), NrstG(w)] = [NrstG(u), NrstG(w)]
≤ N [rstG(u), rstG(w)] = N.

The result follows since rstG(v)′ is conjugate in G to rstG(w)′ for each v ∈ Ω(n),
because G acts transitively on Ω(n).

The second key fact is a structural property of the group Γ, expressed in the
next lemma. In order to state it, we need to define a series of groups as follows.
Consider a vertex v of level m. The tree Tv is a spherically homogeneous rooted
tree of type (ln)n≥m, and we now define Γ(Tv) ≤ Aut(Tv) in the same way that
we defined Γ ≤ Aut(T) but using αn+m and βn+m in place of αn and βn, for
each n.

Lemma 13.4.4 Let n ≥ 1. Then (i)

stΓ(n) =
∏

v∈Ω(n)

rstΓ(v),

and (ii) for each v ∈ Ω(n), the group of automorphisms of Tv induced by the
action of rstΓ(v) is precisely Γ(Tv).

Proof. Suppose we can prove this for n = 1. The argument can then be
repeated with Γ(Tv) in place of Γ and the result will follow for every n. So we
assume that n = 1.

Say Ω(1) = {v1, . . . , vl} where l = l0, and denote the restriction of rstΓ(vi)
to Tvi

by ∆i. Write Γ(i) = Γ(Tvi
).

Now Γ contains 〈ξ, η〉 =
·
T 0 which permutes Ω(1) transitively. If σ ∈ T0

sends l to i then
·
σ induces an isomorphism between the trees Tvl

and Tvi
that
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preserves the ordering of vertices, and hence sends Γ(l) to Γ(i) as well as sending
∆l to ∆i. Let us call this ‘property ∗’.

By definition, Γ(l) is generated by ξ(1) =
·
α1 and η(1) =

·
β1, rooted at vl =

u(1), together with a(1) and b(1), where a(1) and b(1) denote the restrictions
of a and of b to the tree Tvl

.
Since a and b fix all vertices of level 1 , we have

rstΓ(vl) ≤ stΓ(1) = 〈a, b〉
·
T 0 (stΓ(1) ∩

·
T 0) = 〈a, b〉

·
T 0 ,

because
·
T 0 acts faithfully on Ω(1). Now let σ ∈ T0. If σ fixes l then a

·
σ acts as

a(1) on Tvl
. If σ sends 1 to l then a

·
σ acts on Tvl

as ξ(1); in every other case a
·
σ

acts as the identity on Tvl
. Similar conclusions apply to b

·
σ, and it follows that

the group of automorphisms induced on Tvl
by stΓ(1) is precisely Γ(l). In view

of property ∗, this implies that stΓ(1) induces the group Γ(i) on Tvi
for each i,

so we have
stΓ(1) ⊆ (Γ(1), . . . ,Γ(l))1 . (13.12)

Now let σ = w(α1, β1) and τ = w′(α1, β1) be elements of T1, where w, w′

are words. Put h = w(a, b) and h′ = w′(a, b). Then

h = (
·
σ, 1, . . . , 1, ∗)1, h′ = (

·
τ , 1, . . . , 1, ∗)1

where the . . . represent identity automorphisms and the ∗s some automorphisms
of Tvl

. Since T0 is doubly transitive it contains an element ρ that fixes 1 and
moves l. Then

h
·
ρ = (

·
σ, 1, . . . , ∗, . . . , 1)1

and then

[h
·
ρ, h′] = ([

·
σ,
·
τ ], 1, . . . , 1)1,

[h
·
ρ, h′]

·
µ = (1, . . . , 1, [

·
σ,
·
τ ])1 = g, say

where µ ∈ T0 sends 1 to l. Evidently g ∈ rstΓ(vl), and this shows that [σ, τ ]· ∈
∆l. As T1 is a perfect group it follows that ∆l contains the whole of

·
T 1, in

particular both ξ(1) and η(1).
This argument also shows that Γ contains the element (

·
α1, 1, . . . , 1)1. There-

fore
((
·
α1, 1, . . . , 1)1)−1 · a = (1, . . . , 1, a(1))1 ∈ rstΓ(vl)

and so a(1) ∈ ∆l. Similarly b(1) ∈ ∆l, and it follows that ∆l ≥ Γ(l). Using
property ∗ we deduce that ∆i ≥ Γ(i) for each i. With (13.12) this gives

rstΓ(vi) ≤ stΓ(1) ⊆ (Γ(1), . . . ,Γ(l))1 ⊆ (∆1, . . . ,∆l)1 .

This implies both (i) and (ii).
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Proof of Theorem 13.4.2 We have to show that Γ ≤W and that πn(Γ) =
Wn for each n. In fact the second claim implies the first, since W is the inverse
limit of the Wn.

From the definition we see that Γ induces T0 on Ω(1). Similarly, for a vertex
v of level n− 1, the group Γ(Tv) induces Tn−1 on the set of vertices of level 1 in
the tree Tv. It follows by Lemma 13.4.4 that stΓ(n) induces Tn−1 × · · · × Tn−1

on Ω(n), acting as the base group of Wn. Supposing inductively that πn−1(Γ) =
Wn−1 we may infer that

πn(Γ) = Tn−1 oWn−1 = Wn.

We also have to establish that Γ has congruence subgroup property. Let N
be a subgroup of finite index in Γ. Since each Tj is transitive, πn(Γ) = Wn is
transitive on Ω(n) for each n. We may therefore apply Lemma 13.4.3 to deduce
that there exists n such that N ≥ rstΓ(v)′ for every v ∈ Ω(n). Now we claim
that each of the groups rstΓ(v) is perfect ; this will be proved below. Given the
claim, it follows by Lemma 13.4.4(i) that

N ≥
∏

v∈Ω(n)

rstΓ(v) = stΓ(n),

which is what we had to prove.
It remains to show that rstΓ(v) is perfect. Now Lemma 13.4.4(ii) shows that

rstΓ(v) ∼= Γ(Tv). As the latter group is defined in just the same way as Γ, it will
suffice to show that Γ itself is perfect. Recall that P = 〈x, y〉 is a perfect group

and that Γ = 〈ξ, η, a, b〉. Here 〈ξ, η〉 =
·
T 0

∼= T0 = φ0(P ), while a and b act

on each of the disjoint subtrees Tu(n,1) as
·
αn+1 and

·
βn+1 respectively, where

αn+1 = φn+1(x) and βn+1 = φn+1(y). It follows that any relation satisfied by x
and y in P is satisfied by each of the pairs αn+1, βn+1 and hence by a and b, so

x 7→ a, y 7→ b

defines an epimorphism from P onto 〈a, b〉. Thus Γ is generated by two images
of the perfect group P and hence is perfect as claimed.

This completes the proof.

Remarks (i) Similar results may be obtained under more general hypotheses.
For example, it is not necessary to asume that the permutation groups Tn are
doubly transitive: it suffices to assume that each one is transitive. Using this,
one can obtain a finitely generated group whose profinite completion is the
iterated wreath product of any sequence of non-abelian finite simple groups.
It is also not hard to show that groups like Γ are just-infinite, that is, every
non-identity normal subgroup has finite index. For all this, see [Segal 2001] (it
is assumed in that paper that the groups Tn are not only transitive but have
distinct point-stabilizers: this hypothesis can be removed with a little extra
argument).
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(ii) In particular, the proof of Theorem 5 in [Segal 2001] shows that there
is a 5-generator group Γ such that Γ̂ ∼= W = lim

←−
Wn where

Wn = Alt(n+ 5) o . . . oAlt(6) oAlt(5).

It is easy to see that the only open normal subgroups of W are the ‘level stabi-
lizers’ ker(W →Wn), and hence that for each m,

sC
m(W ) < logm.

It follows by Theorem 11.5 that W , and hence also Γ, has polynomial maximal
subgroup growth. Thus the sufficient condition for PMSG given in Theorem
3.5(i) is not necessary, either in profinite groups or in finitely generated abstract
groups.

Notes

The construction of §§13.1 and 13.2 is due to L. Pyber (personal communica-
tion); it will appear in [Pyber(b)].

Finitely generated dense subgroups in infinite products of (pairwise non-
isomorphic) alternating groups were constructed by [Neumann 1937], to give
continuously many non-isomorphic finitely generated groups. Using a variant of
Neumann’s construction, [Lubotzky, Pyber & Shalev 1996] obtained exam-
ples of finitely generated groups with the slowest then known non-polynomial
subgroup growth, of type nlogn/(log logn)2 ; an analogous construction using fi-
nite special linear groups instead of alternating groups provided examples with
growth type nlogn/ log logn. In order to obtain a continuum of distinct growth
types, Pyber had (a) to generalize Neumann’s approach by allowing each of the
alternating groups to appear several times in the product, and (b) determine the
subgroup growth of what we have called ‘standard subgroups’ of Sym(Ω); for
this he had to establish an interesting new result on finite permutation groups,
Theorem 13.1.2.

The construction of §§13.3 and 13.4 is from [Segal 2001]. Possible variations
are discussed in [Segal (a)].

Groups generated by ‘rooted’ and ‘directed’ automorphisms of rooted trees
were studied in a series of papers by R. I. Grigorchuk and others, see [Grigorchuk
2000]; it was the study of this article (in his role as an editor of the book [NH]
in which it appears) that inspired the author of [Segal 2001]; in particular
this article gives sufficient conditions for such groups to have the ‘congruence
subgroup property’.

The groups of Grigorchuk are mostly prosoluble. Iterated wreath products
of finite simple groups were studied by [Neumann 1986] and [Bhattacharjee
1994], using permutation-group methods. The simple proof of the ‘congruence
subgroup property’ given in §13.4 is taken from the former paper. In the latter,
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Bhattacharjee showed that iterated wreath products of finite simple alternating
groups are (positively) finitely generated.

The spectrum of α(G) – the ‘degree of polynomial subgroup growth’ – is
discussed in [Shalev 1999a], though he concentrates mainly on the slightly
different invariant

deg(G) = lim sup
log an(G)

log n
.

Shalev proves that deg(G) never takes values in the interval (1, 3/2), and states
that α(G) never lies in the interval (1, 2). It is unknown whether further ‘gaps’
of this kind exist.

[du Sautoy & Grunewald 2000] prove that α(G) is a rational number if
G is a finitely generated nilpotent group; see Chapter 15 below.



Chapter 14

Explicit formulas and
asymptotics

So far we have concentrated mainly on subgroup growth type, a rough-and-
ready estimate for the rate of growth of an(G). In the last three chapters of the
book, we take a closer look at the numbers an(G) themselves. Of course, the
detailed arithmetical and asymptotic properties of this sequence will depend on
the nature of the groups G under consideration, as will the methods appropriate
to studying them.

In this chapter we focus on some classes of virtually free groups and on
surface groups. Of course, (almost) all these groups have subgroup growth of
type n!, but we will look at explicit formulas for the numbers an(G), their
congruence behaviour modulo primes, and asymptotic estimates.

Already, these examples lead to a rich and interesting theory. We cannot
in this chapter go into this theory in depth: rather, we shall indicate some of
the highlights, and say a little about the kind of methods used to prove them.
The forthcoming survey article [Müller (e)] presents a comprehensive account
of current knowledge on ‘modular subgroup arithmetic’.

14.1 Free groups and the modular group

Let us begin by recalling the recursive formula for the number of subgroups of
index n in the free group Fd on d generators:

Theorem 14.1.1

an(Fd) = n · (n!)d−1 −
n−1∑
k=1

(n− k)!d−1ak(Fd).

This formula is due to Marshall Hall, whose paper [Hall 1949] can be probably
considered as the birth of the subject of subgroup growth. We deduced it in

279
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Chapter 2 from some simple combinatorial observations presented in Chapter
1, §1.1. As these will be fundamental for most of what follows we restate them
here, and take the opportunity to fix some notation.

• hn(G) = |Hom(G,Sym(n))| .

• tn(G) denotes the number of homomorphisms from G into Sym(n) having
transitive image.

• The cyclic group of order r is denoted Cr.

Proposition 14.1.2 Let G be a group. Then

an(G) =
tn(G)

(n− 1)!
(14.1)

=
hn(G)

(n− 1)!
−
n−1∑
k=1

hn−k(G)
(n− k)!

ak(G). (14.2)

IfG = G1∗G2∗. . .∗Gd is a free product, then of course hn(G) =
∏d
i=1 hn(Gi).

Theorem 14.1.1 follows on taking Gi = C∞ for each i, so hn(Gi) = n! for each
i. Another case of special interest is the modular group PSL2(Z) ∼= C2 ∗C3. The
sequences hn(C2) and hn(C3) satisfy recurrence relations, from which one can
deduce a recurrence for an(PSL2(Z)) of the following form:

Theorem 14.1.3 [Godsil, Imrich & Razen 1989] Let G = PSL2(Z). Then
a1(G) = a2(G) = 1, a3(G) = 4, a4(G) = 8, a5(G) = 5, a6(G) = 22, and for
each n ≥ 6

(n4 − 2n3 − n2 + 3n+ 1)an+1(G) =

(n3 − 6n2 + 5n+ 1)an(G) + (n3 − 3n2 + 8n− 5)an−1(G)

+ (3n4 − 8n3 + 8n− 8)an−2(G) + (2n4 − 7n3 + 10n2 − gn+ 2)an−3(G)

+ 3(n2 − 5n+ 6)an−4(G) + (n5 − 7n4 − 11n3 + 8n2 − 1gn+ 12)an−5(G).

We remark that the existence of such a recursive formula for an(G) is somewhat
surprising: note that a subgroup of index n is not contained in any subgroup of
index n− i if i < n

2 . It is probably rather a rare occurrence: for example, such
a sequence cannot have growth type strictly between polynomial and exponen-
tial. It would be interesting to determine for what other kind of groups G the
sequence (an(G)) can satisfy a recurrence relation with polynomial coefficients.

Anyway, it seems that the actual numbers an(PSL2(Z)) have attracted con-
siderable attention. Tables of values have been published by the American
National Bureau of Standards [Newman 1976a]. For example

a100(PSL2(Z)) = 159299552010504751878902805384624.
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As for free groups, most permutation representations of G = PSL2(Z) are
transitive [Newman 1976b] and hence

tn(G) ∼ hn(G),
an(G) ∼ hn(C2)hn(C3)/(n− 1)!

This may be combined with the following asymptotic estimates:

Proposition 14.1.4 [Moser & Wyman 1955] For each prime p,

hn(Cp) ∼ Kp exp
(
p− 1
p

n(lnn− 1) + n1/p

)
where

Kp =

 p−1/2 (p 6= 2)

2−1/2e−1/4 (p = 2)
.

Applying this for p = 2 and p = 3 [Newman 1976b] obtained

Proposition 14.1.5

an(PSL2(Z)) ∼
(
12πe1/2

)−1/2

exp
(
n

6
(lnn− 1) + n1/2 + n1/3 +

1
2

lnn
)
.

Of course, once again we see that the growth of all subgroups of PSL2(Z) is
much faster than that of the congruence subgroups (as described in Chapter 6).

14.2 Free products of finite groups

For a group G, let us write b0(G) = 1 and for n ≥ 1 set

bn(G) =
hn(G)
n!

.

Consider the formal power series

A(X) = AG(X) =
∞∑
n=1

an(G)Xn,

B(X) = BG(X) =
∞∑
n=0

bn(G)Xn.

Now (14.2) reads

nbn(G) =
n∑
k=1

ak(G)bn−k(G),

which is equivalent to the formal power series identity

XB′(X) = A(X)B(X).
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Thus
A(X)
X

=
B′(X)
B(X)

=
d

dX
log(B(X))

(where of course log here denotes the usual formal series inverse to exp), and
we can restate this as

Proposition 14.2.1

B(X) = exp
∫
A(X)
X

dX

This simple observation is the starting point of a deep theory, developed
by Thomas Müller, which extends the results of Section 1 to more general free
products of finite groups; all groups of that kind are virtually free.

Let’s see for a moment what Proposition 14.2.1 says for the trivial group
G = {1}. Now a1(G) = 1 and an(G) = 0 for n > 1, while hn(G) = 1 for every
n, so bn(G) = 1/n!. Thus in this case the proposition reads∑ 1

n!
Xn = exp

∫
X

X
dX = expX.

Stirling’s well-known formula asserts

n! ∼ (2π)1/2nn+1/2e−n as n→∞.

For a more interesting example, let G = Cp be a cyclic group of prime or-
der p. Then A(X) = X + Xp. Note also that in general

∫
(A(X)/X)dX =∑∞

n=1
an(G)
n Xn and so in this case B(X) = exp

(
X + 1

pX
p
)
. Now for each n,

bn(G) =
1 + τp(n)

n!

where τp(n) denotes the number of elements of order p in Sym(n), and so we
have

Proposition 14.2.2

∞∑
n=1

1 + τp(n)
n!

Xn = exp
(
X +

1
p
Xp

)
.

This lovely proposition is of independent combinatorial interest, and results of
this type have been proved by direct methods in several places (see the Notes).
Since hn(Cp) = 1 + τp(n), we can now see Proposition 14.1.4 as an analogue of
the Stirling formula.

Now let G be any group of finite order m. Putting

P (X) = PG(X) =
∑
d|m

ad(G)
d

Xd =
m∑
i=1

ciX
i
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we have

BG(X) = 1 +
∞∑
n=1

hn(G)
n!

Xn = exp(P (X)).

The coefficients of P (X) satisfy c1 6= 0 and ci = 0 for m/2 < i < m. [Müller
1997], using methods of complex analysis, developed machinery which gives a
detailed asymptotic expansion for exp(P (X)) for such polynomials P . In this
way he obtained an asymptotic expansion of hn(G) = |Hom(G,Sn)| for every
finite group G. Here is a corollary of his work:

Theorem 14.2.3 Let G be a finite group of order m. Then

hn(G) ∼ KG · n(1−1/m)n exp

−(1− 1
m

)
n+

∑
d|m
d<m

ad(G)
d

nd/m


where

KG =


m−1/2 if 2 - m

m−1/2 exp
(
− (am/2(G))2

2m

)
if 2 | m

.

Along the way Müller deduced the following curious phenomenon: if for two
finite groupsG andH we have hn(G) ∼ hn(H) as n→∞ then the two sequences
must coincide. It is not difficult to show that there exist non-isomorphic groups
for which the two sequences coincide. According to Proposition 14.1.2, it suffices
to find G and H for which ak(H) = ak(G) for every k. Examples of such
pairs can be found in [Schmidt 1994], §5.6 (these examples have isomorphic
subgroup lattices; in the case of p-groups G and H, this actually implies that
ak(H) = ak(G) for every k). Some pairs of infinite groups with this property
will appear in Section 14.4 below.

We can now move in the other direction and apply the last theorem to count-
ing subgroups in some infinite groups. Using the fact that hn is multiplicative
on free products, [Müller 1996] deduced

Theorem 14.2.4 Let G = G1 ∗ · · · ∗ Gs the free product of s finite groups of
orders m1, . . . ,ms respectively, where if s = 2 they are not both of order two.
Then

an(G) ∼ LGΦG(n) (n→∞)

where

LG = (2πm1 . . .ms)−1/2 exp

−∑
2|mi

(am/2(Gi))2

2mi


and

ΦG(n) = n−χ(G)n exp

χ(G)n+
s∑
i=1

∑
d|mi

d<mi

ad(Gi)
d

nd/mi +
1
2

lnn

 .
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Here

χ(G) =
1− (m1 − 1) · · · · · (ms − 1)

m1 · · · · ·ms

is the Euler characteristic of G.

Note that Proposition 14.1.4 is a very special case of Theorem 14.2.3 and
Proposition 14.1.5 is a special case of Theorem 14.2.4. In fact, the full results of
Müller are stronger even for the classical modular group, for which he showed:

an(PSL2(Z)) = (12πe1/2)−1/2nn/6 exp(1 +R(n) +O(n−4/3))

where R(n) is equal to

−n−1/6− 1
6
n−1/3− 13

24
n−1/2− 7

36
n−2/3+

253
240

n−5/6− 67963
51840

n−1− 2449841
362880

n−7/6.

There has also been some interest in counting special subgroups of the mod-
ular group, for example the number of free subgroups of index n (these are
precisely the torsion-free subgroups). More generally, every subgroup ∆ of fi-
nite index in Γ is of the form C2 ∗ · · · ∗ C2︸ ︷︷ ︸

s

∗C3 ∗ · · · ∗ C3︸ ︷︷ ︸
t

∗Fr where Fr is a free

group on r generators. Say that ∆ is of type (s, t, r) in this case. By comparing
the Euler characteristics of the groups one can see that the index of a subgroup
of type (s, t, r) is equal to 3s+4t+6(r−1), so for a given (s, t, r) there are only
finitely many finite index subgroups of that type. The problem of determining
the number of subgroups of a given type in PSL2(Z) is discussed in [Müller (d)],
where it is termed the Poincaré problem. More general results of this flavour
are obtained in [Müller & Puchta (a)].

14.3 Modular Subgroup Arithmetic

Hall’s recursive formula Theorem 14.1.1 easily implies by induction

Proposition 14.3.1 an(Fd) is odd for every d and every n.

M. Grady and M. Newman have looked, more generally, at Hall’s formula
when taken modulo p. In each such case it becomes a linear recurrence relation
of a fixed length with constant coefficients, and therefore defines a periodic
sequence. For example for d = 2 and p = 5, the relation is

an ≡ 4an−1 + 3an−2 + 4an−3 + an−4 (mod 5) for n ≥ 5

with initial values a1 ≡ 1, a2 ≡ 3, a3 ≡ 3 and a4 ≡ 1. The period of this
sequence modulo 5 turns out to be 62. It is not at all clear for what kind of
groups G the sequence an(G) will be periodic modulo p, for every prime p or
for some prime p. [Grady & Newman 1992] show that if G is the free product
of at least two cyclic groups then an(G) is periodic modulo p for every p; this
paper has further results of a similar flavour.
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Here is another suggestive observation. Since xr+p−1 ≡ xr (mod p) for every
x, by Fermat’s theorem, and a1(Fr) = 1 for every r, it follows from Theorem
14.1.1 that

an(Fr) ≡ an(Fr+p−1) (mod p)

for every n. As an(F1) = 1 for every n, we can deduce the following generalisa-
tion of Proposition 14.3.1:

Proposition 14.3.2 [Grady & Newman 1992] Let p be a prime and suppose
that r ≡ 1 (mod p− 1). Then

an(Fr) ≡ 1 (mod p)

for all n.

Moving beyond free groups, we have

Theorem 14.3.3 [Stothers 1977] an(PSL2(Z)) is odd if and only if n = 2k − 3
or n = 2(2k − 3) with k ≥ 2.

(This confirms a conjecture of C. R. Johnson.) Stothers’s proof uses a different
method. Put Γ = PSL2(Z) = 〈x, y〉 where x has order 2 and y has order 3. To
each subgroup H of index n in Γ one associates a directed graph whose vertices
are the left cosets of H. A directed edge, coloured red, goes from u to v if
v = x · u, and a directed edge, coloured blue, goes from u to v if v = y · u.
Elements of Γ correspond to paths along the graph starting at H, and those
which also end at H give the elements of H. The graph X so obtained has the
following properties:

(a) each vertex has a blue loop, or is a vertex of precisely one blue triangle;
(b) each vertex has a red loop, or is an end of precisely one red edge;
(c) X is connected.

X has a distinguished vertex, the coset H, which we denote by 1. Two such
directed coloured graphs satisfying (a), (b) and (c) are said to be equivalent if
there is a colour-preserving isomorphism between them sending 1 to 1. It is not
difficult to see that there is a one-to-one correspondence between the subgroups
of index n in Γ and the equivalence classes of coloured graphs satisfying (a),
(b) and (c). Thus questions about the number of subgroups are translated into
problems of counting graphs.

A similar correspondence between finite-index subgroups and coloured graphs
can in principle be established for every group with a given presentation. How-
ever, the problem of counting such graphs in general seems hopeless.

Following Stothers, other authors have studied the set

π(G) = {n ∈ N | an(G) ≡ 1 (mod 2)}.

As we have seen, π(Fd) = N. [Grady & Newman 1992] showed that the same
holds for the free product of at least four copies of any cyclic group.

[Müller (a)] studied π(Hq) for the “Hecke groups” Hq = C2 ∗ Cq. Among
other things he proved



286 CHAPTER 14. EXPLICIT FORMULAS AND ASYMPTOTICS

Theorem 14.3.4 (i) If q is even then π(Hq) = N.
(ii) If q is odd then the following are equivalent:

(a) : π(Hq) = Λq ∪ 2Λq where Λq =
{

2(q − 1)i − q

q − 2
| i ∈ N

}
(b) : q is a Fermat prime.

(iii) If q is odd and q ≥ 3 then π(Hq) is infinite.
(iv) If q1 and q2 are distinct odd integers ≥ 3 then π(Hq1) 6= π(Hq2).

Note that (ii) is a far-reaching generalisation of Theorem 14.3.3. Altogether,
the theorem gives a new characterisation of the Fermat primes!

Various other results and conjectures are given by the above mentioned au-
thors, but it is difficult at this point to see the general picture. One of the
difficulties is that (unlike most questions dealt in this book) divisibility proper-
ties of an(G) can be severely affected when G is replaced by a commensurable
group. [Müller (b)] has shown that if N is a normal subgroup of an arbitrary
group G with G/N cyclic of order 2r then

π(G) = 2rπ(N) ∪
r−1⋃
ρ=0

2ρ (π(N) ∩ (N \ 2N)) .

He has also proved a result of similar flavour about the sets

{n ∈ N | an(G) ≡ k (mod p)} ,

for arbitrary integers k and primes p, and used these to deduce congruence
properties of an(G) for certain free products G of finite groups. An analogous
programme for one-relator groups is carried out in [Müller & Puchta (b)]. At
this stage, the results, though quite deep, apply only to rather restricted classes
of groups. But it seems that this is only the tip of the iceberg of a rich theory
of “modular subgroup arithmetic”.

14.4 Surface groups

Let us begin with some general observations about subgroup counting in one-
relator groups. So let

G = 〈g1, . . . , gd ; w(g1, . . . , gd) = 1〉

be a one-relator group. The sequence (an(G)) is determined via Proposition
14.1.2 by the numbers

hn(G) = |Hom(G,Sym(n))| .

It is evident that hn(G) is equal to the number of solutions in Sym(n)(d) of the
equation

w(x1, . . . , xd) = 1.
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Now the question of the number of solutions of an equation in a finite group
has a long history: indeed it was one of the earliest applications by Frobenius
of his new invention, character theory. To see why this should be, let us write,
for a group H,

Nw(H, z) =
∣∣∣{x ∈ H(d) | w(x) = z

}∣∣∣ .
Thus

hn(G) = Nw(Sym(n), 1)

for each n.
The function Nw = Nw(H,−) is a class function, i.e. constant on conjugacy

classes. As the irreducible characters of G form a basis for the space of class
functions on G, the function Nw can in principle be expressed as a linear combi-
nation of characters (“non-commutative Fourier analysis”). An elegant account
of this procedure is given in §7.2 of the book [Serre 1992]. In general it is easier
said than done; but there are cases where it can be done quite explicitly, and
leads to sharp information about subgroup growth.

Before turning to our specific topic, we make two remarks.

(i) If two words w1 and w2 in Fd are in the same orbit of Aut(Fd) then Nw1 =
Nw2 , so some complicated words can be replaced by simpler ones.

(ii) Suppose that w = w1w2 where the supports of w1 and w2 are disjoint.
Then

Nw = Nw1 ∗Nw2

where ∗ denotes the convolution

(φ ∗ ψ)(z) =
∑
y∈H

φ(y)ψ(y−1z).

From now on we focus on two famous sequences of one-relator groups; but it
seems likely that the method should be applicable to other one-relator groups
where the relator is a relatively simple word. Let Γg (resp. Γ∗g) denote the
fundamental group of a closed orientable (resp. non-orientable) surface of genus
g (resp. 2g), where g ≥ 1. So Γg has the presentation

Γg =

〈
x1, . . . , xg, y1, . . . , yg ;

g∏
i=1

[xi, yi] = 1

〉

and Γ∗g has the presentation

Γ∗g =

〈
x1, . . . , xg, y1, . . . , yg ;

g∏
i=1

x2
i y

2
i = 1

〉
.

Several papers have been dedicated to counting the subgroups of finite index in
Γg and Γ∗g, according to various parameters. Most works have been motivated
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by topological considerations and old questions of Hurwitz and Poincaré; these
concern the number of covers of one sort or another of a closed Riemann sur-
face. For example counting inequivalent covers of degree n amounts to counting
conjugacy classes of index n subgroups, etc. For more on these questions we
refer the reader to the survey article [Kwak & Lee 2001] and its bibliography.
Here we shall concentrate on the question of counting all subgroups of index n.

Similar results, using the same methods, can be established for the funda-
mental groups of non-orientable surfaces of odd genus, too (and appear in the
cited literature). We stick to the groups Γ∗g because of a certain similarity to
Γg, which will shortly become apparent.

It was probably [Mednykh 1979] who was the first to connect this question
with the representation theory of the symmetric group Sym(n). We will follow
the more recent (and far-reaching) presentation of [Puchta (a)] and [Müller &
Puchta (a)].

For a positive integer k, we denote the set of irreducible characters of Sym(k)
by X(k). The fundamental result is

Theorem 14.4.1 Let Γ be either Γg or Γ∗g. Then

hn(Γ) = |Hom(Γ, Sn)| = (n!)2g−1
∑

χ∈X(k)

1
χ(1)2g−2

.

Here is a striking consequence:

Corollary 14.4.2 [Mednykh 1988] For every n, an(Γg) = an(Γ∗g).

This follows immediately in view of Proposition 14.1.2. Thus Γg and Γ∗g are
“isospectral”: that is, they have the same sequence (an(Γ)) and hence the same
zeta-function (see Chapter 15 below). This is quite remarkable as the groups
(and even their profinite completions) are not isomorphic. It would be of great
interest to better understand what it means for groups to be isospectral, and
very few examples of such groups with non-isomorphic profinite completions are
known.

For k ∈ N and t ∈ R put

βk(t) = (k!)t
∑

χ∈X(k)

χ(1)−t.

Note that βk(0) = p(k), the number of partitions of k, since this is the number
of conjugacy classes in Sym(k). Using this notation we can restate Theorem
14.4.1 in the concise form

hn(Γ) = n!βn(2g − 2),

and the identity (14.2) in Proposition 14.1.2 now gives

an(Γ) = nβn −
n−1∑
k=1

βn−kak(Γ)
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where βi = βi(2g − 2). Since a1(Γ) = 1 we may deduce the following “explicit
formula” by induction on n:

Corollary 14.4.3 [Mednykh 1979] Let Γ denote one of Γg or Γ∗g. Then

an(Γ) =
n∑
s=1

(−1)s+1
∑

is · βi1βi2 . . . βis

where βi = βi(2g − 2) for each i and the sum is over all ordered s-tuples
(i1, . . . , is) of positive integers such that i1 + · · ·+ is = n.

(Actually Mednykh gives a slightly different, but equivalent, formula.) Since
Γ1

∼= Z2 and an(Z2) is easily seen to be σ(n), the sum of the divisors of n, the
special case g = 1 of this result reduces to the combinatorial identity

σ(n) =
n∑
s=1

(−1)s+1
∑

is · p(i1) . . . p(is).

To obtain an asymptotic estimate for the an(Γ) we first need one for the
character-sums βn(t); this is provided by

Proposition 14.4.4 [Müller & Puchta (a)] For fixed t ≥ 1,∑
χ∈X(n)

χ(1)−t = 2 +O(n−t) (n→∞).

This means that the dominant terms of the sum come from the two one-
dimensional representations of Sym(n). It implies that as long as g ≥ 2,

βn(2g − 2) ∼ 2(n!)2g−2 (n→∞)

Now just as for the free non-abelian groups, one can show that ‘most’ homo-
morphisms from Γ to Sym(n) have transitive image, so (for g ≥ 2) we have

tn(Γ) ∼ hn(Γ) = n!βn(2g − 2).

Together with (14.1) this gives

Theorem 14.4.5 Let Γ be either Γg or Γ∗g, where g ≥ 2. Then

an(Γ) ∼ 2n(n!)2g−2.

Recalling that an(Fd) ∼ n(n!)d−1 (Theorem 2.1) we see that

an(Γ) ∼ 2an(F2g−1).

This is a suggestive result: both Γ and F2g−1 are groups presented on 2g gen-
erators with one relation, and the value of an reflects the number of ways of
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expressing the identity in Sym(n) as a value of the particular word defining that
relation. Suppose that G is a d-generator 1-relator group and that

an(G) ∼ c · an(Fd−1);

what are the possible values for the constant c?

Let us now sketch the proof of Theorem 14.4.1. For this we need first to
determine the functions N[x,y](Sym(n),−) and Nx2(Sym(n),−).

Proposition 14.4.6 (Frobenius, 1896) Let H be a finite group. Then for z ∈
H,

N[x,y](H, z) = |H|
∑ χ(z)

χ(1)
summed over all irreducible characters of H.

The proof depends on the following general fact (see [Curtis & Reiner 1981],
Prop. 9.33 or [Serre 1992], §7.2):

Lemma 14.4.7 Let H be a finite group, C1, C2 conjugacy classes of H and
z ∈ H. Then the number of solutions of the equation x · y = z with x ∈ C1 and
y ∈ C2 equals

|C1||C2|
|H|

∑ χ(C1)χ(C2)χ(z−1)
χ(1)

,

summed over all irreducible characters of H.

Now [x, y] = x−1xy so solutions of [x, y] = z correspond to solutions of the
equation x−1 ·u = z where u is a conjugate of x. Given a conjugacy class C the
number of solution of the second equation with x ∈ C and u ∈ C−1 is

|C||C−1|
|H|

∑ χ(C)χ(C−1)χ(z−1)
χ(1)

.

Given one such solution (x, u), there are |CG(x)| = |H| / |C| elements y such
that xy = u. Hence given C, the number of solutions of [x, y] = z with x ∈ C is

|C|
∑ χ(C)χ(C−1)χ(z−1)

χ(1)

and summing over all classes C we get

∑
χ

∑
g∈H

χ(g)χ(g−1)

 χ(z−1)
χ(1)

= |H|
∑ χ(z−1)

χ(1)

since
∑
g∈H χ(g)χ(g−1) = |H| (the first orthogonality relation, [Curtis & Reiner

1981], Proposition 9.21). The proposition follows since χ(z−1) is the complex
conjugate of χ(z) and the whole sum – being an integer! – is real.

The corresponding result for w = x2 is a little harder to prove, and we refer
the reader to [Isaacs 1976], Corollary 4.15:
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Proposition 14.4.8 (Frobenius and Schur, 1906) Let H be a finite group all
of whose irreducible characters can be realized over R. Then for z ∈ H,

Nx2(H, z) =
∑

χ(z)

summed over all irreducible characters of H.

Corollary 14.4.9 With H as above,

Nx2y2(H, z) = |H|
∑
χ

χ(z)
χ(1)

.

Proof. According to remark (ii) above,

Nx2y2(H, z) =
∑
t∈H

Nx2(H, t)Ny2(H, t−1z)

=
∑
t∈H

∑
χ

χ(t)
∑
χ′

χ′(t−1z)

=
∑
χ,χ′

∑
t∈H

χ(t)χ′(t−1z)

= |H|
∑
χ

χ(z)
χ(1)

by the ‘generalized orthogonality relation’ (see e.g. [Isaacs 1976], Theorem 2.13).

Since all irreducible representations of Sym(n) can be realized over Q, this
applies to H = Sym(n). Thus for each n we have

N[x,y](Sym(n), z) = Nx2y2(Sym(n), z) = n!
∑

χ∈X(N)

χ(z)
χ(1)

. (14.3)

Let us denote this expression by Fn(z). Applying (ii) again, we see that for
w =

∏g
i=1[xi, yi] or w =

∏g
i=1 x

2
i y

2
i ,

Nw(Sym(n),−) = Fn ∗ Fn ∗ . . . ∗ Fn︸ ︷︷ ︸
g

= F (∗)g

n .

This already shows that Γg and Γ∗g are isospectral, since hn(Γg) = hn(Γ∗g) =

F
(∗)g

n (1).
To complete the proof of Theorem 14.4.1, it remains to show that

F (∗)g

n (1) = n!βn(2g − 2).

In fact we shall prove by induction on g that

F (∗)g

n (z) = (n!)2g−1
∑

χ∈X(n)

χ(z)
χ(1)2g−1

;
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this gives the result on putting z = 1.

When g = 1 this is (14.3). Suppose that g > 1. Then (arguing inductively)

F (∗)g

n (z) =
∑

y∈Sym(n)

F (∗)g−1

n (y)Fn(y−1z)

=
∑

y∈Sym(n)

(n!)2g−3
∑

χ∈X(n)

χ(y)
χ(1)2g−3

· n!
∑

χ′∈X(N)

χ′(y−1z)
χ′(1)


= (n!)2g−2

∑
χ,χ′∈X(n)

1
χ(1)2g−3χ′(1)

∑
y∈Sym(n)

χ(y)χ′(y−1z)

= (n!)2g−2 · n!
∑

χ∈X(n)

χ(z)
χ(1)2g−1

;

the final equality applies the ‘generalized orthogonality relation’ as before. This
completes the proof of Theorem 14.4.1.

To apply this method in studying the subgroup growth of other one-relator
groups, one will need information about the number of solutions of other equa-
tions in Sym(n). Some results more general than the above are stated in the
Exercises in §7.2 of [Serre 1992]. Another result of this type is

Theorem 14.4.10 [Kerber & Wagner 1980] Let H be a finite group. For pre-
assigned natural numbers n1, n2, . . . , nk, the number of solutions in H of the
equation xn1

1 xn2
2 . . . xnk

k = z is given by

1
|H|

∑
χ

 k∏
j=1

Cχ,nj

 χ(z−1)
χ(1)k−1

where
Cχ,n =

∑
y∈H

χ(yn).

We mention finally the recent work [Liskovets & Mednykh 2000]. This paper
gives a formula for an(Θg,e) where Θg,e is the fundamental group of an orientable
S1-bundle with Euler class e over a compact surface of genus g. This group has
a presentation

Θg,e =

〈
a1, . . . , ag, b1, . . . , bg, h ;

g∏
i=1

[ai, bi] = he, [ai, h] = [bi, h] = 1 (all i)

〉
,

so it is a central extension of Γg. It is shown that

an(Θg,e) =
∑
m`=n

`2|n·(e,n)

am(Γg)`(2g−2)m+2

(where (e, n) is the g.c.d. of e and n). The proof is algebraic. Similar results
hold also for the other central extensions of surface groups.
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Notes

For combinatorial results related to Proposition 14.2.2, see [Chowla, Herstein
& Moore 1951], [Chowla, Herstein & Scott 1952], [Moser & Wyman
1955].

[Müller 1996] proves much more than the result we have stated as Theorem
14.2.4; on the one hand, his result allows also for infinite cyclic free factors, and
on the other he gives a very explicit error term in the asymptotic expression for
an(G).

‘Modular subgroup arithmetic’ is developed in [Grady & Newman 1992],
[Grady & Newman 1994], and the series of papers [Müller (b)], [Müller
(c)], [Müller (d)], [Müller & Puchta (b)]. The survey article [Müller (e)]
gives a full account of the present state of knowledge in this area.

The explicit formulas of §14.4 are due to [Mednykh 1979], [Mednykh
1988]. The asymptotic results are due to [Puchta (a)] and [Müller & Puchta
(a)]; their results are more precise than those given here, with very strong
bounds on the error terms.
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Chapter 15

Zeta functions I: Nilpotent
groups

In the previous chapter, the numbers an(Γ) for a finitely generated group Γ were
encoded via the generating function

AΓ(X) =
∑

an(Γ)Xn.

Another way to encode a sequence of numbers is via their associated Dirichlet
series:

ζΓ(s) =
∑

an(Γ)n−s =
∑
H≤Γ

|Γ: H|−s .

This can be considered as a formal series, but if an(Γ) = O(nc) for some c,
that is if Γ has polynomial subgroup growth, the series converges for complex
numbers s such that Re(s) is sufficiently large. More precisely, recalling that

α(Γ) = inf{α | sn(Γ) = O(nα)} = lim sup
log sn(Γ)

log n
,

we can say that ζΓ(s) converges for Re(s) > α(Γ) and defines a holomorphic
function on this half plane (while ζΓ is divergent at s = α(Γ); both claims follow
from elementary analysis). The analytic function ζΓ(s) is called the zeta function
of Γ. This definition parallels the definition of the Dedekind zeta function of a
number field, which encodes in exactly the same way the number of ideals of
index n in a ring of algebraic integers.

Let’s now assume in addition that the group Γ is nilpotent. Then ζΓ(s) has
an Euler product, namely

ζΓ(s) =
∏
p

ζΓ,p(s) (15.1)

where the product runs over all primes p and

ζΓ,p(s) =
∞∑
i=0

api(Γ)p−is.

295
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The functions ζΓ,p(s) are called the local zeta functions of Γ, or just local factors.
The identity (15.1) is a formal consequence of the fact that when Γ is a nilpotent
group, the arithmetical function an(Γ) is multiplicative, that is,

an(Γ) =
∏

a
p

e(j)
j

(Γ)

where n =
∏
p
e(j)
j is the factorisation of n with distinct primes pj ; this in

turn follows easily from the fact that every finite nilpotent group is the direct
product of its Sylow subgroups (see Proposition 1.4.4).

If Γ = Z then an(Γ) = 1 for every n, and ζΓ(s) =
∑
n−s is none other than

the Riemann zeta function ζ(s), so the theory of zeta functions of nilpotent
groups which we are going to discuss here may be seen as a non-commutative
extension of classical analytic number theory.

More generally, let us consider Γ = Zr, the free abelian group of rank r.
Here we have

Theorem 15.1 ζZr (s) = ζ(s) · ζ(s− 1) · . . . · ζ(s− r + 1).

We shall present five distinct proofs for this elementary, but suggestive, result
(one of them has already appeared in Chapter 11).

Things begin to get more challenging – and unpredictable – when we turn to
non-abelian groups. The smallest of these among torsion-free nilpotent groups
is the ‘discrete Heisenberg group’, that is the free class-2 nilpotent group on 2
generators

F = 〈x, y, z ; z = [x, y], [z, x] = [z, y] = 1〉

∼=


 1 a b

0 1 c
0 0 1

 | a, b, c ∈ Z

 ≤ GL3(Z).

Theorem 15.2 Let F be the discrete Heisenberg group. Then

ζF (s) =
ζ(s)ζ(s− 1)ζ(2s− 2)ζ(2s− 3)

ζ(3s− 3)
.

(Note that the right hand side is indeed a Dirichlet series since 1
ζ(s) =

∑
µ(n)n−s

where µ is the Möbius function.)
When this result was discovered by Geoff Smith in the early 1980s, it en-

couraged the hope that the zeta function of every finitely generated nilpotent
group might have such a nice expression (and hence, for example, a meromor-
phic continuation to the whole plane). This is by no means the case, however.
The picture is more complicated and more subtle: we return to this below.

Section 1 examines the nature of the local zeta functions. We begin by
showing how the local zeta function of Zr may be re-interpreted as a certain
p-adic integral. This integral is easy to evaluate explicitly, and leads to the first
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proof of Theorem 15.1. (A brief explanation of p-adic integrals is given in the
p-adic integrals and logic window.)

Now, the representation of ζΓ,p(s) as a p-adic integral is a procedure that
can be applied quite generally, whenever Γ is a torsion-free finitely generated
nilpotent group. When Γ is non-abelian the resulting integral is usually hard
to evaluate explicitly; this can still be done in some very simple cases, and
we do it for the Heisenberg group. We now come to a key observation: the
integral representing ζΓ,p(s) is in any case the integral of a definable function
over a definable domain of integration, in the sense of p-adic model theory. An
important general theorem, due to to [Denef 1984], applies to all such integrals,
yielding the following result:

Theorem 15.3 Let Γ be a finitely generated torsion-free nilpotent group and p
a prime. Then ζΓ,p(s) is a rational function over Q of p−s.

This theorem initiated the general theory of such group-theoretic zeta functions.
Its meaning in terms of subgroup growth is quite concrete: thinking of p−s = X
as a variable, we can interpret the theorem as asserting the power series identity

∞∑
i=0

api(Γ)Xi =
Φ(X)
Ψ(X)

where Φ and Ψ are polynomials over Z, of degrees ` and k, say, respectively.
Now multiplying out and equating coefficients we infer:

Corollary 15.4 There exist positive integers ` = `(Γ, p) and k = k(Γ, p) such
that the sequence

(
api(Γ)

)
i>`

satisfies a linear recurrence relation with constant
coefficients over Z of length at most k.

Both the Euler product (15.1) and Theorem 15.3 hold also for the ‘normal
zeta functions’

ζC
Γ (s), ζC

Γ,p(s)

which are defined analogously using aC
n (Γ) in place of an(Γ), with essentially

the same proofs. Theorem 15.3 has been vastly generalized by [du Sautoy 1993],
to the domain of all compact p-adic analytic groups; this is dealt with in the
following chapter. One consequence of du Sautoy’s theorem is that Theorem
15.3 applies to all finitely generated nilpotent groups, not just the torsion-free
ones.

In Section 2 we digress to give four more proofs of Theorem 15.1. Each of
these proofs generalizes in a different way, and some of them point in interesting
new directions. Among these are (1) the topic of zeta functions associated to
algebraic groups; the latter are in fact the ‘true’ generalisation of the Dedekind
zeta functions; from our point of view, they arise when we study the growth of
the number of subgroups H of Γ such that Ĥ ∼= Γ̂. (2) The ‘probabilistic zeta
functions’ introduced by Mann.
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In Section 3 we turn to the ‘global’ zeta functions themselves. A better
understanding of the analytic behaviour of ζΓ(S) depends on a more delicate
analysis of the local factors ζΓ,p(s), in particular of their variation with p. The
main results are as follows, where Γ denotes a finitely generated nilpotent group.

Theorem 15.5 α(Γ) is a rational number.

Theorem 15.6 The function ζΓ(S) has a meromorphic analytic continuation
to some open half-plane containing α(Γ).

The significance of the latter theorem is that it allows one to apply a standard
method of analytic number theory, a so-called Tauberian theorem, to deduce an
asymptotic estimate for the subgroup growth. Combining Theorem 15.6 with
[N], Corollary on p. 121, one deduces

Theorem 15.7 There exist an integer β ≥ 0 and a constant c such that

sn(Γ) ∼ cnα(lnn)β

where α = α(Γ) ∈ Q.

(Here, β + 1 is the order of the pole of ζΓ(S) at s = α(Γ)). As before, these
results all apply to the normal subgroup counting functions as well.

These deep theorems may be said to put the ‘analytic number theory of
nilpotent groups’ firmly on the map. We cannot discuss the proofs in any detail,
and confine ourselves to giving an outline of the main ideas. A more detailed
account may be found in Chapter 9 of [NH]; for complete proofs the reader is
referred to the original paper [du Sautoy and Grunewald 2000].

These proofs go deeply into algebraic geometry and algebraic number theory,
and certainly represent the high point of the arithmetical theory of subgroup
growth to date. They also shed some light, but only the first glimmerings,
on some of the most intriguing problems that remain open. To conclude this
introduction let us mention a few of these, together with what is at present
known about them.

Problem 1 ‘Uniformity ’ In most cases where we have an explicit formula for
the rational function representing ζΓ,p(S), it takes the form

P (p, p−s)
Q(p, p−s)

(15.2)

where P and Q are two-variable polynomials over Z that do not depend on p.
In this case we say that ζΓ,p is uniform in p. A glance back at Theorems 15.1
and 15.2 will show that this is the case when Γ is either Zr or the Heisenberg
group, for example. Other examples, calculated in [Grunewald, Segal & Smith
1988], have the slightly weaker property that finitely many polynomials suffice
to represent ζΓ,p(S) in this way, as p ranges over all primes, and it was suggested
in [Grunewald, Segal & Smith 1988] that this might hold for all Γ. The proof
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of Theorem 15.3 in [Grunewald, Segal & Smith 1988] actually showed that P
and Q may be taken to have bounded degrees as p ranges over all primes; this
implies in particular that the numbers `(Γ, p) and k = k(Γ, p) in Corollary 15.4
are independent of p.

In [du Sautoy 1994a] it is proved that Q itself may be taken independent of p,
indeed that it only depends on the Hirsch length of Γ. However, the suggestion
as regards P has been refuted by [du Sautoy 2001], who shows how to encode an
elliptic curve C over Q into the definition of a nilpotent group Γ in such a way
that infinitely many different polynomials P are required, reflecting the (“wild”)
variation with the prime p of the number of points on C(Fp). Specifically, to the
curve

C : Y 2 = X3 −X

he associates the class-2 nilpotent group Γ generated by x1, x2, x3, x4, x5, x6, y1, y2, y3
subject to the relations

[x1, x4] = [x3, x5] = y3

[x1, x5] = [x2, x6] = [x3, x4] = y1

[x1, x6] = [x2, x4] = y2

[xi, xj ] = 1 (all other i, j)
[xi, yj ] = [yi, yj ] = 1 (all i, j),

and shows that for almost all primes p,

ζC
Γ,p(s) = R1(p, p−s) + |C(Fp)| ·R2(p, p−s);

here R1 and R2 are (non-zero) rational functions.
It was also conjectured in [Grunewald, Segal & Smith 1988] that for a rela-

tively free nilpotent group Γ, ζΓ,p is uniform in p (with perhaps finitely many
exceptions for small primes). This was established in [Grunewald, Segal &
Smith 1988] for free-nilpotent groups of class 2, and recently for all 2-generator
free-nilpotent groups [du Sautoy & Grunewald (a)]. But the problem in general
remains open.

Problem 2 ‘Local functional equation’ In most cases that have been calcu-
lated explicitly, the numerator P in (15.2) has a curious symmetry property:
the coefficients are ‘symmetric about the middle’. In other words, there exist
integers a and b such that

P (X,Y ) = XaY bP (X−1, Y −1).

No general explanation is known for this phenomenon (but see the discussion of
the related function ζ̂G in §15.2 below).

Problem 3 Abscissa of convergence and analytic continuation. This is
really two problems.
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(a) How does α(Γ) depend on the structure of Γ? The proof of Theorem 15.5
gives in principle an explicit procedure that may be applied to any given group
Γ (f.g. nilpotent as always), but sheds little light on how the result reflects
algebraic properties of Γ. Some relatively crude upper and lower bounds are
given in [Grunewald, Segal & Smith 1988] and [Klopsch 2000].

(b) For which groups Γ does ζΓ(s) have a meromorphic continuation to the
whole complex plane? This is the case for groups like Zr and H, but there
are groups Γ such that ζΓ(s) has a natural boundary. Here we have a subtle
arithmetical property of a nilpotent group Γ: what does it mean in terms of the
structure of Γ? The paper [du Sautoy & Grunewald 1998] studies an interesting
variant of this question.

We can illustrate some of these phenomena with the following example, of
a group that is barely more complicated than the Heisenberg group: the free
class-two nilpotent group on three generators. For this group Γ, it is shown in
[Grunewald, Segal & Smith 1988] that

ζC
Γ,p(s) =

1 + p3−3s + p4−3s + p6−5s + p7−5s + p10−8s

(1− p−s)(1− p1−s)(1− p2−s)(1− p8−5s)(1− p9−6s)

for every prime p. So in this case we have (1) ‘uniformity’ and (2) a ‘local
functional equation’ (formally replacing p by p−1 has the effect of multiplying
the expression by p10−6s). But (3) the global function ζC

Γ (s) =
∏
p ζ

C
Γ,p(s)

does not have analytic continuation to C; [du Sautoy (b)] shows that the line
Re(s) = 7/5 is a natural boundary.

To conclude with a quotation: “The [Dedekind] zeta function knows ev-
erything about the number field; we just have to prevail on it to tell us”
[Swinnerton-Dyer 2001], page viii. The great edifice of algebraic number theory
exists largely for that purpose. Results like Theorem 15.7 show that the analogy
is not completely fanciful; in our non-commutative, group theoretic, context we
have some foundation-stones, but there is plenty of building still to be done.

15.1 Local zeta functions as p-adic integrals

In this section, p will denote a fixed prime. The p-adic absolute value of λ ∈ Zp
is written

|λ| = p−f

where λ = pfu and u is a p-adic unit. When talking about pro-p groups, we
shall use ‘generated’ to mean ‘topologically generated, and write G = 〈S〉 to
mean that the set S generates G topologically.

For any nilpotent group Γ and all i we have api(Γ) = api(Γ̂p), so to study
the p-local zeta function of Γ we may replace Γ by its pro-p completion.
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Let us begin with Γ = Zr, in which case Γ̂p = Zrp = G, say. Each open
subgroup H of G has a ‘triangular’ basis

h1 = (λ11 λ12 . . . . . . λ1r)
h2 = (0 λ22 λ23 . . . . . . λ2r)
...

...

hi = (0 . . . 0 λii λir)
...

...

hr = (0 . . . . . . . . . 0 λrr)

(15.3)

An r-tuple (h1, . . . , hr) of this form will be called a good basis for H.
Let ei denote the ith standard basis vector in G = Zrp, and put

Gi = 〈ei, . . . , er〉 , Hi = H ∩Gi.

Then (h1, . . . , hr) is a good basis for H precisely when

Hi = 〈hi〉+Hi+1 for i = 1, . . . , r (15.4)

For each i we have

|Gi : Hi| = |Gi : Gi+1 +Hi| · |Gi+1 : Hi+1| (15.5)

= |λii|−1 |Gi+1 : Hi+1| ,

since Gi/(Gi+1 + Hi) ∼= Zp/λiiZp = Zp/pfiZp where λii is pfi times a p-adic
unit. It follows that

|G : H| = |G1 : H1| =
r∏
i=1

|λii|−1 (15.6)

whenever (15.3) is a good basis for H.
To each open subgroup H of G we associate the following set of upper-

triangular matrices over Zp:

M(H) =


 h1

...
hr

 | (h1, . . . , hr) is a good basis for H

 .

Writing µ for the normalized Haar measure on the additive group Tr(r,Zp) ∼=
Zr(r+1)/2
p of all of upper-triangular r × r matrices, we make the following key

calculation:

Lemma 15.1.1 M(H) is an open subset of Tr(r,Zp). Its measure is given by

µ(M(H)) = (1− p−1)r
r∏
i=1

|λii|i,

where the |λii| are determined by (15.5).
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Proof. Fix a generator gi for Hi modulo Hi+1. From (15.4) we see that
(hi) is a good basis if and only if

hi ∈ giZ∗p +Hi+1

for each i, so

M(H) = (g1Z∗p +H2)× · · · × (grZ∗p +Hr+1).

This shows that M(H) is open, and that its measure is

r∏
i=1

µ
(
giZ∗p +Hi+1

)
(15.7)

(using µ to denote the normalized measure on Zjp for every j, a slight abuse of
notation).

Now write
gi = (0, . . . , 0, λii, . . . , λir) = (0, λii, λ)

say. Then as a subset of Zr−i+1
p = Zp × Zr−ip we have

giZ∗p +Hi+1 =
{
(λiiv, vλ+ h) | v ∈ Z∗p, h ∈ Hi+1

}
.

Now there exists n such that pnZr−ip ⊆ Hi+1. Partitioning Z∗p into (finitely
many) additive cosets Uj = vj + pnZp, we may write

giZ∗p +Hi+1 =
⋃
j

((λiiUj)× (vjλ+Hi+1)).

The measure of this set is equal to

∑
j

µ(λiiUj) · µ(vjλ+Hi+1) = µ

⋃
j

(λiiUj)

 · µ(Hi+1)

= µ(λiiZ∗p) · µ(Hi+1)

= (1− p−1) |λii| · |Gi+1 : Hi+1|−1

= (1− p−1) |λii| ·
r∏

j=i+1

|λjj |

= (1− p−1)
r∏
j=i

|λjj | ,

by (15.6) applied to Hi+1 ≤ Gi+1. Plugging this into (15.7) gives the result.

Since the integral of a constant function over M(H) is just µ(M(H)) times
the value of the function, we can rewrite the conclusion (introducing a formal
variable s) in the following form:
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|G : H|−s =
1

(1− p−1)r

∫
M(H)

|λ11|s−1 · . . . · |λrr|s−rdµ.

As the sets M(H) are pairwise disjoint, we may sum over the countable collec-
tion of all open subgroups H of G and obtain

Proposition 15.1.2

ζG(s) =
1

(1− p−1)r

∫
M

|λ11|s−1 · . . . · |λrr|s−r dµ

where M =
⋃
{M(H) | H ≤o G}.

To evaluate this integral, we observe that M is equal to the set all upper
triangular r×r matrices over Zp with non-zero entries along the diagonal. Those
with determinant zero form a set of measure zero and can therefore be ignored.
Thus

ζZr
p
(s) =

1
(1− p−1)r

∫
Tr(r,Zp)

|λ11|s−1 · . . . · |λrr|s−rdµ

=
1

(1− p−1)r

r∏
i=1

∫
Zp

|λii|s−idµ

=
r−1∏
i=0

(1− pi−s)−1; (15.8)

the final step uses the formula∫
Zp

|λ|sdµ =
1− p−1

1− p−s−1
,

which is derived in the p-adic integrals and logic window.
With the Euler product (15.1) this completes the first proof of Theorem

15.1.

The formalism of this proof can be carried over whenever G is the pro-p
completion of a torsion free finitely generated nilpotent group Γ. In this case,
Γ has a central series Γ = Γ1 > Γ2 > · · · > Γr > Γr+1 = 1 with each factor
Γi/Γi+1 infinite cyclic. Choosing x1, . . . , xr so that xiΓi+1 is a generator for
Γi/Γi+1, we can express each element of Γ uniquely in the form

x = xa1
1 · . . . · xar

r

with a1, . . . , ar ∈ Z. Such an r-tuple (x1, . . . , xr) is called a Mal’cev basis for
Γ. P. Hall showed that when (a1, . . . , ar) are taken as the co-ordinates of x, the
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group operations in Γ are given by polynomial functions with rational coeffi-
cients; this applies also to the power operation x 7→ xn, which is a polynomial
function of (a1, . . . , ar) and n (see e.g. [Kargapolov & Merzljakov 1979], §17.2).

These polynomial functions, being integer-valued on the integers, can all be
expressed as polynomials over Z in the binomial functions

(
X
k

)
. They can there-

fore be extended to polynomial functions on any ‘binomial ring’, in particular to
Zp. Endowing the set Zrp with operations defined by these functions, we obtain
a group

G = ΓZp ;

this is a pro-p group, having the central series G = G1 > G2 > · · · > Gr >
Gr+1 = 1 where

Gi = ΓZp

i

=
〈
x

Zp

i

〉
Gi+1.

Sending x ∈ Γ to its co-ordinate vector (a1, . . . , ar) identifies Γ with Zr ⊆ Zrp =
G, and it is not hard to verify that then G is the pro-p completion Γ̂p. For later
reference, we note the crucial facts that the group operations

(x, y) 7→ xy, x 7→ x−1 (x, y ∈ G)

and the power operation

(x, λ) 7→ xλ (x ∈ G, λ ∈ Zp)

are polynomial functions on G×G = Z2r
p , G = Zrp and G× Zp = Zr+1

p respec-
tively.

Now, simply changing additive to multiplicative notation, we define a good
basis for an open subgroup H of G by the criterion (15.4). Then (15.5), (15.6)
and Lemma 15.1.1 are still valid, with essentially the same proofs. The conclu-
sion is that

Proposition 15.1.2 holds whenever G is the pro-p completion of torsion free
finitely generated nilpotent group.

In general, it is not so easy to describe the set M for a non-abelian group
G. When this can be done, it again leads to a complete evaluation of the local
zeta function. By way of illustration, we apply it now to complete the

Proof of Theorem 15.2. The discrete Heisenberg group is

F = 〈x, y, z | [x, y] = z, [x, z] = [y, z] = 1〉.

As Mal’cev basis we take (z, y, x), giving rise to the central series

G = G1 = 〈x, y, z〉 > G2 = 〈y, z〉 > G1 = 〈z〉 > G0 = 1
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in the pro-p completion G = FZp . We have to recognize the set M of upper-
triangular matrices that represent good bases for open subgroups of G.

Now the upper-triangular matrix A = (λij) belongs to M(H) if and only if
the following three conditions are satisfied:

H =
〈
xλ11 yλ12 zλ13 , yλ22 zλ23 , zλ33

〉
(i)

H ∩G2 =
〈
yλ22 zλ23 , zλ33

〉
(ii)

H ∩G3 =
〈
zλ33

〉
. (iii)

Given the matrix A, take H to be the (closed) subgroup of G defined by (i);
this is open if and only if λ11 · λ22 · λ33 6= 0. Assuming this to be so, then (iii)
is satisfied if and only if

〈
zλ33

〉
contains the commutator

[xλ11 yλ12 zλ13 , yλ12 zλ23 ] = [xλ11 , yλ22 ] = zλ11λ22 ,

which happens if and only if λ33 divides λ11λ22 in Zp. If condition (iii) is
satisfied then one easily checks that (ii) also follows. We conclude that M is
the set of all upper-triangular matrices A as above for which all λii are non-zero
and λ33 | λ11λ22.

We can now evaluate the integral giving ζF,p(s) = ζG(s). Having already
evaluated ζZ3

p
(s), it is simpler in fact to integrate over the complement of M in

Tr(3,Zp), namely the set

C(M) ∼
⋃

a,b,c≥0

 paZ∗p Zp Zp
0 pbZ∗p Zp
0 0 pa+b+c+1Z∗p


where ∼ indicates equality apart from the set of measure zero consisting of
singular matrices. Noting that µ(pnZ∗p) = p−n(1− p−1) we find that

(1− p−1)−3

∫
C(M)

|λ11|s−1 |λ22|s−2 |λ33|s−3 dµ

=
∑
a≥0

∑
b≥0

∑
c≥0

p−asp−b(s−1)p−(a+b+c+1)(s−2)

=
p2−s

(1− p2−s)

∑
a

∑
b

p−a(2s−2)p−b(2s−3)

=
p2−s

(1− p2−s)(1− p2−2s)(1− p3−2s)

(the transition from an integral to a geometric progression made here in the
first step is illustrated in more detail in the window on p-adic integrals and
logic). To obtain ζG(s) we have to subtract this from (1 − p−1)−3 times the
corresponding integral over the whole of Tr(3,Zp), which is given in (15.8) above.
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The result is

1
(1− p−s)(1− p1−s)(1− p2−s)

− p2−s

(1− p2−s)(1− p2−2s)(1− p3−2s)

=
(1− p3−3s)

(1− p−s)(1− p1−s)(1− p2−2s)(1− p2−3s)
. (15.9)

With the Euler product formula this completes the proof.

We have given this calculation in some detail for several reasons.
Firstly, because the result is remarkable: it presents the zeta function of a

non-commutative group as a simple closed formula in terms of the very classical
Riemann zeta function – a result we had no right to expect in advance.

Secondly, to show how, in practice, one evaluates integrals of the type that
arise in this context: namely by successively summing certain geometric pro-
gressions. In fact, a little thought about the definition of these p-adic integrals
reveals that they are, in essence, a convenient formalism for handling just such
geometric progressions. This makes Denef’s rationality theorem seem less sur-
prising: indeed, the main point of Denef’s proof is to decompose the domain of
integration into pieces on each of which the integral can actually be evaluated
in this way (# p-adic integrals and logic).

Thirdly, to reveal the lucky accident that is responsible for the simple form
of (15.9): while the denominator (1 − p−s)(1 − p1−s)(1 − p2−2s)(1 − p2−3s) is
predictable once we know the general shape of the integral, the fact that the
numerator also looks like a local zeta-factor just comes from some lucky cancel-
lations. As far as we know, there is no deeper explanation for this phenomenon,
and it is not reproduced in the local zeta functions of (even slightly) more com-
plicated groups. The denominator, on the other hand, does always take the
form of a product

∏
(1− pai−bis): see [du Sautoy 1994a].

Let us return now to the general case of a torsion free finitely generated
nilpotent group Γ. Proposition 15.1.2 represents ζΓ,p(s) quite explicitly as an
integral. The only difficulty is the domain of integration M. This is the set of
all upper-triangular matrices with rows hi = (0, . . . , 0, λii, . . . , λir), i = 1, . . . , r,
which form good bases for open subgroups of G = Γ̂p, when this is identified
with Zrp as explained above.

Lemma 15.1.3 An r-tuple (h1, . . . , hr) is a good basis for some open subgroup
of G if and only if
(i)

∏
λii 6= 0 and

(ii) for each pair i ≥ j there exist βi,j+1, . . . , βi,r ∈ Zp such that

[hi, hj ] = h
βi,j+1
j+1 · . . . · hβi,r

r .

Proof. This is just the same as the argument used above for the special case
of the Heisenberg group, if we note that condition (ii) expresses the requirement
that [hi, hj ] should lie in the closed subgroup generated by hj+1, . . . , hr.
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Now comes a crucial observation: both conditions (i) and (ii) in this lemma
can be expressed in the first-order language of Zp (# p-adic integrals and
logic). This is clear for (i); for (ii) it depends on the fact both the group
operations and the operation of taking powers (with a p-adic exponent) are given
by polynomials with rational coefficients. This implies that each component of
both the left-hand side and the right-hand side of the displayed equation in (ii)
can be expressed as a polynomial in the components λkl of the vectors hi, . . . , hr.
Lemma 15.1.3 thus implies

Proposition 15.1.4 The domain of integration M in Proposition 15.1.2 is a
definable subset of Tr(r,Zp).

Everything is now ready to apply the following theorem:

Theorem 15.1.5 [Denef 1984] Let M be a definable subset of Zmp and let h, k :
Zmp → Zp be definable functions. Then∫

M

|h(x)| |k(x)|sdµ

is equal to a rational function over Q of p−s.

(A function h : Zmp → Zp is definable if its graph {(y, h(y)) | y ∈ Zmp } is a
definable subset of Zm+1

p .) For some discussion of this fundamental result, see
the p-adic integrals and logic window.

Theorem 15.3 now follows from this together with Propositions 15.1.2 and
15.1.4.

15.2 Alternative methods

We now describe some other proofs of Theorem 15.1. While most of them, in
the end, come down to the same basic calculation, each illustrates a different
approach to the problem of counting subgroups, and each can be generalized in
its own way.

We recall the

Theorem
ζZr (s) = ζ(s)ζ(s− 1) . . . ζ(s− r + 1). (15.10)

We first mention a corollary:

Corollary 15.2.1 Let σ(n) denote the sum of the divisors of n and p(n) the

number of partitions of n. Write Σ(X) =
∞∑
n=1

σ(n)Xn and P (X) = 1 +
∞∑
n=1

p(n)Xn. Then

Σ(X)
X

=
P ′(X)
P (X)
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Proof. In the notation of Chapter 14, we claim that hn(Z2) = p(n) · n!.
Indeed, Z2 is the free abelian group on say x and y. The image of x in Sym(n)
can be be any element of Sym(n). Once the image g of x is chosen, y can be
mapped to any element of the centralizer C(g) of g in Sym(n). Hence

hn(Z2) =
∑

g∈Sym(n)

|C(g)| =
∑

g∈Sym(n)

|Sym(n)|
|[g]|

= |Sym(n)|
∑
[g]

|[g]|
|[g]|

= n! p(n)

where [g] denotes the conjugacy class of g. Thus bn(Z2) = p(n) (notation of
Section 14.2). On the other hand (15.10) says that ζZ2(s) = ζ(s)ζ(s − 1) =
(
∑

1 · n−s)(
∑
n · n−s) which means that an(Z2) =

∑
d|n

1 · d = σ(n). Thus our

corollary follows now from the discussion in Section 2 of Chapter 14.

This corollary is equivalent to the following well known partition identity

p(n) =
n∑
i=1

σ(i)
n
p(m− i).

Just as happened in Chapter 14, the group theoretic approach gives a new proof
for an old combinatorial identity. It will be be an interesting development if new
identities can be found using subgroup-counting techniques.

Second proof of (15.10) [Grunewald, Segal & Smith 1988] This naive
approach simply follows the proof that soluble groups of finite rank have poly-
nomial subgroup growth; the easy structure of Zr allows us to count subgroups
exactly rather just estimate their number. Let Γ = Zr and fix Z < Γ with
Z ∼= Z and Γ/Z ∼= Zr−1. To each pair (D,P ) where D ≤f Z and Z < P ≤f Γ
we associate the set

H(D,P ) = {H ≤ Γ | H ∩ Z = D and HZ = P} .

Since P/Z is free abelian, the extension Z/D C P/D splits, and the number of
complements is equal to

|Der(P/Z,Z/D)| = |Hom(P/Z,Z/D)| = |Z/D|r−1

(see §1.3). So |H(D,P )| = |Z : D|r−1. Now every subgroup H of finite index in
Γ belongs to precisely one of the sets H(D,P ), and then

|Γ : H| = |Γ : P | |P : H| = |Γ : P | |Z : D| .
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It follows that

ζΓ(s) =
∑

P/Z≤f Γ/Z

∑
D≤fZ

∑
H∈H(D,P )

|Γ : H|−s

=
∑

P/Z≤f Γ/Z

|Γ : P |−s
∑
D≤fZ

|Z : D|−s |H(D,P )|

=
∑

P/Z≤f Γ/Z

|Γ/Z : P/Z|−s
∑
D≤fZ

|Z : D|r−1−s

= ζΓ/Z(s)ζZ(s− r + 1).

Since Γ/Z ∼= Zr−1 and Z ∼= Z our formula (15.10) now follows by induction on
r.

The above proof is very explicit in the sense that we “construct” all sub-
groups of finite index in Γ from the subgroups of Z and Γ/Z. This method can
be applied to some groups Γ that are nilpotent of class two, taking for Z the cen-
tre of Γ. However, we need to have some control over when the subgroup P/D
actually splits over Z/D. The original determination of the zeta function of the
Heisenberg group by [Smith 1983] used exactly this approach; with hindsight,
one sees that the ‘splitting conditions’ amount to the same as the conditions
that define the domain of integration in the proof given in the preceding section,
while the ‘summand’ |Z : D|−s |H(D,P )| corresponds to the integrand.

Third proof of (15.10) [Ilani 1989] This is an application of Hall’s enumer-
ation principle (# Pro-p groups). This says the following, where

[
d
t

]
denotes

the number of subspaces of codimension t in Fdp:

Proposition 15.2.2 Let G be a pro-p group, Φ = Φ(G) = [G,G]Gp its Frattini
subgroup and d = d(G). For 1 ≤ t ≤ d let{

Kt,i | i = 1, . . . ,
[
d

t

]}
be the set of all subgroups K of G with Φ ≤ K ≤ G and |G : K| = pt. Let S be
a finite collection of proper subgroups of G and denote by n(t, i) the number of
H ∈ S such that H ≤ Kt,i. Then

|S|+
d∑
t=1

(−1)tpt(t−1)/2

[dt]∑
i=1

n(t, i) = 0.

Now take G = Zrp and let S be the set of all open subgroups of index pn in
G. Since each Kt,i

∼= G in this case, we have

n(t, i) = apn−t(G)

for each t, hence the recursive formula
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Corollary 15.2.3 For n ≥ 1,

apn(Zrp) =
r∑
t=1

(−1)t+1pt(t−1)/ 2

[
r

t

]
apn−t(Zrp).

Writing cn = apn(Zrp), with cn = 0 for n < 0, and putting f(X) = 1 +∑∞
n=1 cnX

n, .we can interpret this as a power series identity

f(X)− 1 = −
r∑
t=1

(−1)tpt(t−1)/ 2

[
r

t

]
f(X)Xt.

Thus

f(X)−1 = 1 +
r∑
t=1

(−1)tpt(t−1)/ 2

[
r

t

]
Xt

= (−1)rp−r(r−1)/2
r∑
j=0

(−1)jpj(j−1)/2

[
r

j

]
(pr−1X)r−j

(putting j = r − t and noting that
[
r
t

]
=
[
r
j

]
). Now the following identity was

established in the course of proving Hall’s principle (# Pro-p groups):

r−1∏
j=0

(Y − pj) =
r∑
j=0

(−1)jpj(j−1)/2

[
r

j

]
Y r−j .

Putting Y = pr−1X we infer that

f(X)−1 = (−1)rp−r(r−1)/2
r−1∏
j=0

(pr−1X − pj)

=
r−1∏
j=0

(1− pr−j−1X).

Thus

ζZr,p(s) = ζZr
p
(s) = f(p−s) =

r−1∏
j=0

(1− pr−j−1−s)−1,

giving the Euler p-factor in (15.10).

This method of proof produces a recursive formula for apn(G). It works
equally well for all pro-p groups G with the ‘homogeneity’ property that ζK
depends only on the index of an open subgroup K in G. This is the case for
the free pro-p groups, and we used the same method for these in Chapter 3. In
fact, it is enough to assume that G has the following property: for every open
subgroup H of G, d(H) = f(|G : H|) depends only on the index of H in G.
In this case G is said to be f-indexed, and the argument leading to Corollary
15.2.3 gives the following slightly surprising result:
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Proposition 15.2.4 If the pro-p group G is f-indexed then ζG is determined
by the function f .

Proof. One shows by induction on n that apn(G) depends only on f. Indeed,
ap0(G) = 1, and if n ≥ 1 then apn(G) is determined by the numbers apn−t(K)
where t ≥ 1 and K ranges over the subgroups Kt,i. Each Kt,i is ft-indexed,
where ft(pk) = f(pt+k) for all k, so inductively we may suppose that all the
apn−t(Kt,i) are determined by ft, hence by f . Explicitly, apn(G) = apn(f) where

apn(f) =
r∑
t=1

(−1)t+1pt(t−1)/ 2

[
r

t

]
apn−t(ft).

This applies for example to any extension G of Zp by Zp, since clearly d(H) = 2
for every open subgroup H of G. The conclusion is that ζG = ζZ2

p
; thus we obtain

uncountably many pairwise non-isomorphic pro-p groups having the same zeta
function. (Of these, however, only Z2

p is nilpotent; it is not known if infinitely
many f.g. nilpotent groups can have the same zeta function, nor even if two
non-isomorphic torsion-free nilpotent pro-p groups can.)

The next proof differs from the others: instead of considering the subgroup
structure of Γ it focuses on the structure of the endomorphisms of Γ. This
approach, when generalized, leads to a rich theory that we mention below.

Fourth proof of (15.10) [Bushnell & Reiner 1980] Each finite index sub-
group H of Zr is of the form H = Zr · g where g is an integral r × r matrix of
non-zero determinant, that is

g ∈ GL+
r (Q) = Mr(Z) ∩GLr(Q).

Further Zrg1 = Zrg2 if and only if g1g−1
2 ∈ GLr(Z), and the index of Zrg

in Zr is equal to |det(g)|. Hence ζZr (s) =
∑
g
|det(g)|−s where g ranges over a

complete set of representatives of the coset space GLr(Z)8GL+
r (Q). Such a set of

coset representatives is given by the set T of integral upper-triangular matrices
(aij) such that aij = 0 if j > i, aii ≥ 1 for i = 1, . . . , r and 0 ≤ aij < ajj
for j < i. (Of course, choosing a coset representative of this shape corresponds
to choosing a good basis for the corresponding subgroup of Zr). The number
of such matrices with given diagonal (a11, . . . , arr) is equal to a22a

2
33 . . . a

r−1
rr ,

while the determinant of each such matrix is a11a22a33 . . . arr. Thus

ζZr (s) =
∑
g∈T

|det(g)|−s

=
∞∑

a11=1

. . .
∞∑

arr=1

a22 a
2
33 . . . a

r−1
rr (a11 . . . arr)−s

=
(∑

a−s11

)(∑
a1−s
22

)
. . .
(∑

ar−1−s
rr

)
= ζ(s)ζ(s− 1) . . . ζ(s− r + 1).
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If we try to generalize this proof to a wider class of groups we won’t learn
much about the corresponding zeta functions, since usually there are subgroups
of finite index in Γ that are not isomorphic to Γ (in fact if Γ is nilpotent then
it must be free abelian), and there is no such semi-group which takes the role
of GLr(Q) ∩ Mr(Z) in the above proof. However, we do obtain information
about the numbers aiso

n (Γ) of subgroups of index n that are isomorphic to Γ.
[Grunewald, Segal & Smith 1988] introduced the function

ζ iso
Γ (s) =

∑
aiso
n (Γ)n−s

and calculated it for certain nilpotent groups Γ (of course ζ iso
Γ = ζΓ when Γ is

free abelian). Just as above, ζ iso
Γ (s) can in general be expressed as a sum over

the cosets of Aut(Γ) in the semigroup End(Γ). However, this function is not
usually very nice: for example it does not have an Euler product. As explained
in the above-mentioned paper, ζ iso

Γ (s) is analogous the the zeta function of the
principal ideal class in a number field.

A much better function appears if instead of the finitely generated nilpotent
group Γ we consider its profinite completion Γ̂. Then

ζ̂Γ(s) := ζ iso
Γ̂

(s) =
∏
p

ζ iso
Γ̂p

(s)

does have an Euler product decomposition; it counts the number of subgroups
H of index n in Γ such that Ĥ ∼= Γ̂. The local factors are again rational functions
of p−s, and can be expressed as suitable p-adic integrals:

ζ iso
Γ̂p

(s) =
∑

A(Zp)8A+(Qp)

|det(g)|sp

=
∫
A+(Qp)

ν(A(Zp)g)−1 · |det(g)|spdν (15.11)

where A is a linear algebraic group such that A(Zp) ∼= Aut(Γ̂p), A+(Qp) =
Mr(Zp) ∩ A(Qp), and ν is a (multiplicative) Haar measure on Ar(Qp). The
formula (15.11) in fact associates a ‘local zeta function’ ζA,p to any linear alge-
braic group A, and such zeta functions have received a considerable amount of
attention; see [Grunewald, Segal & Smith 1988], [du Sautoy & Lubotzky 1996],
[du Sautoy (c)]. For example, when A = Rk/Q(GL1) is the multiplicative group
of a number field k then ζA,p is exactly the product of the Euler p-factors of the
Dedekind zeta function of k over primes p dividing p. Following [Igusa 1989],
[du Sautoy & Lubotzky 1996] establish both ‘uniformity’ and a ‘local functional
equation’ for the functions ζA,p, for an extensive class of algebraic groups A;
the latter is connected with certain symmetries in the associated root system.

Fifth proof of (15.10) [Mann 1996] We gave this in detail in Chapter 11,
Section 11.5. It depends on two observations: the first is that the probability
P (G, k) that a random k-tuple in a pro-p group G generates G is given by
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P (G, k) =
d−1∏
j=0

(1− pj−k)

where d = d(G). The second is that a random k-tuple generates an open sub-
group of G with probability 1 if k is big enough, provided G has polynomial
subgroup growth.

The key fact now is that every open subgroup H of Zrp = G is isomorphic to
G, hence satisfies P (H, k) = P (G, k). Since the probability that a k-tuple in G
generates H is |G : H|−k P (H, k), we may combine the above observations and
deduce

1 =
∑
H≤oG

|G : H|−k P (H, k) = ζG(k)P (G, k) (15.12)

= ζG(k)
d−1∏
j=0

(1− pj−k).

This holds for all large integers k, so using the identity theorem for power series
we may infer that

ζZr,p(s) = ζG(s) =
r−1∏
j=0

(1− pj−s)−1,

the desired Euler factor in (15.10).

An attractive feature of the method is that it seems to require hardly any
calculation, and provides a satisfying conceptual explanation of the formula∏r−1
j=0(1 − pj−s)−1. Like the third proof, above, this approach may be useful

when G is a pro-p group that is f -indexed for some function f , in which case
P (H, k) depends only on k and |G : H| when H is open in G.

Avinoam Mann had the idea of using the equation (15.12) to define a new
zeta function, for any profinite group G such that P (G, k) > 0 when k is large
(that is, any PFG group, in the language of chapter 11). He conjectures that
there should exist an analytic function ζprob

G (s), ‘naturally’ associated to G, such
that

ζprob
G (k) = P (G, k)−1 for all large k ∈ N.

The paper [Mann 1996] explains how ζprob
G is a subtle form of generating function

for the growth of subgroups that are ‘maximal intersections’, and discusses some
interesting cases. In particular, it is shown that when G is a finitely generated
prosoluble group then ζprob

G really exists, that it has an Euler product, and that
the p-local factor is rational in p−s if G is virtually pro-(p-nilpotent). Thus
for prosoluble groups G, the function ζprob

G (s) is ‘better’ than ζG(s) in two
respects: the latter does not usually have an Euler product, and it is only
defined (convergent on a non-empty half-plane) when G has finite rank. There
is a far-reaching theory here waiting to be discovered.
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15.3 The zeta function of a nilpotent group

In this section we sketch some of the ideas behind Theorems 15.5 and 15.6. We
shall be brief; a much fuller survey is given in Chapter 9 of [NH].

To find out more about the global zeta function ζΓ of a f.g. nilpotent group
Γ, one has to analyse the local factors ζΓ,p in greater detail. Recall that in order
to express ζΓ,p as an integral, we identified Γ̂p with Zrp by using a Mal’cev basis:
the domain of integration M ⊆ Tr(r,Zp) is then defined by some first-order
conditions coming from the commutator operation in Γ̂p. These conditions can
become very complicated. Now there is another way to identify Γ̂p with Zrp,
arising from Lie theory, namely via the mapping log from Γ̂p to its Lie algebra
(‘co-ordinates of the first kind’ as opposed to the ‘co-ordinates of the second
kind’ that we introduced first). It turns out that in these new co-ordinates the
definition of M is much cleaner.

Let us assume for simplicity that Γ is torsion-free. Then Γ may be identified
with a subgroup of the upper unitriangular group Tr1(m,Z) for some m, and
the mapping

g 7→ log g =
m∑
n=1

(−1)n−1

n
(g − 1)n

sends Γ into the set Tr0(m,Q) of upper-triangular matrices over Q with zero
diagonal. This is a Lie algebra, with the operation [a, b] = ab− ba. The subset
log Γ is not usually a Lie subring, or even an additive subgroup, of this Lie
algebra; but there is a subgroup Γ0 of finite index in Γ such that L = log Γ0 is
indeed a Lie ring, and L ∼= Zr where r is the Hirsch length of Γ (for all this,
see [Sg], Chapter 6). Moreover, it is shown in [Grunewald, Segal & Smith 1988]
that for almost all primes p,

apn(Γ) = apn(L) for all n,

where apn(L) is the number of Lie subrings of index pn in L. Thus for such
primes, we can determine the local zeta functions of Γ by studying instead the
local zeta functions of L.

Now fix a prime p and identify L⊗ Zp with Zrp by choosing a Z-basis for L.
The proof of Proposition 15.1.2 in Section 1, above, shows that

ζL,p(s) =
1

(1− p−1)r

∫
M

|λ11|s−1 · . . . · |λrr|s−r dµ

where M is now the subset of Tr(r,Zp) defined by a certain collection of bilinear
equations, which express the requirement that the linear span of the rows of the
matrix (λij) be closed under the Lie bracket.

The upshot is that ζL,p(s) is given by what Grunewald and du Sautoy call
a cone integral. The definition is as follows. Let D = (fi, gi | i = 1, . . . , l) be a
family of m-variable polynomials over Q, and let ψD(x) be the statement

v(fi(x)) ≤ v(gi(x)) for 1 ≤ i ≤ l,
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where for a given prime p, one interprets v as the p-adic valuation. Put

Vp(D) =
{
x ∈ Zmp | ψD(x) holds

}
.

The set D is called a set of cone integral data, and the cone integral defined by
D is then

ZD(s, p) =
∫
Vp(D)

|f0(x)|p |g0(x)|sp dµ

where as before µ is the normalized Haar measure on Zmp .
We can now state

Proposition 15.3.1 Let L ∼= Zr be a Lie ring. Then there is a set of cone
integral data D such that

ζL,p(s) = a−1
p,0ZD(s, p)

for all primes p, where each ap,0 = ZD(∞, p) is a non-zero constant.

It is important to note that the defining conditions coming from D are indepen-
dent of the prime p.

Now the main result of [du Sautoy & Grunewald 2000] is

Theorem 15.3.2 Let D be a set of cone integral data, and put

ZD(s) =
∏
p

a−1
p,0ZD(s, p),

the product over all primes p. Then
(i) ZD(s) is equal to a Dirichlet series with rational abscissa of convergence,

α;
(ii) the function ZD(s) has a meromorphic continuation to the half-plane

Re(s) > α− δ for some δ > 0.

From the above discussion we see that if Γ is any finitely generated nilpotent
group, then ζΓ(s) differs from ZD(s) in at most finitely many Euler factors. With
some more work to deal with these ‘bad’ factors, one can then deduce Theorems
15.5 and 15.6 from Theorem 15.3.2.

The proof of this theorem has three main ingredients. The following sketch
is not expected to be really comprehensible on its own; it is just meant to give
an impression of the general circle of ideas.

(1) Using Denef’s method of evaluating p-adic integrals by an explicit reso-
lution of singularities, it is shown that for almost all primes p,

ZD(s, p) = ap,0 +
∑
I∈S

cp(I)PI(p, p−s) (15.13)

where S is a certain finite collection of (Boolean combinations of) algebraic
varieties defined over Z, cp(I) denotes the number of Fp-points on the reduction
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modulo p of I, and each PI(X,Y ) is a rational function of two variables over Q, of
a simple and explicit form. This very interesting result shows that the question
of ‘uniformity’ for our local zeta functions as the prime varies is intimately
related to the corresponding question for the numbers cp(I); this links the group-
theoretic zeta function in an explicit way to the Weil zeta functions of certain
algebraic varieties.

(2) Using the Lang-Weil estimate for the numbers of points on varieties over
finite fields, together with (15.13), including the explicit form of the functions
PI(X,Y ), it is shown that a−1

p,0ZD(s, p) can be determined to a good approxi-
mation in terms of expressions like

1 + lp(U)
p−s

1− p−s
, (15.14)

where U runs over certain irreducible Q-varieties and lp(U) encodes the number
of absolutely irreducible components of the reduction modulo p of U .

(3) Now the absolutely irreducible components over Q of the varities U that
arise in (2) are all defined over some finite Galois extension field K of Q, and
the Galois group permutes these components, according to some permutation
representation ρ. To these data is associated an Artin L-function L(s, ρ,K/Q).
The final step is to show that∏

p

(
1 + lp(U) p−s

1−p−s

)
L(s, ρ,K/Q)

is finite for all s > 1− δ, for some δ > 0.
The classical work of Artin shows that L(s, ρ,K/Q) has a meromorphic con-

tinuation to the left of Re(s) = 1. The same therefore holds for Euler products
of factors like (15.14), and this when fed back into Step (2) is enough to estab-
lish (ii) in Theorem 15.3.2. The proof of (i) is a little simpler: it is possible
to determine the abscissa of convergence of

∏
p a
−1
p,0ZD(s, p) directly from the

formula (15.13), with the help of the Lang-Weil estimates.

This analysis has an interesting moral. While the local factors of our zeta
function in general vary wildly with the prime, as do the solution-numbers cp(I),
the analytic behaviour of the global zeta function mimics that of a classical Artin
L-function, whose own Euler factors vary quite uniformly with the prime - that
is, they take only finitely many distinct forms depending on the decomposition
of the prime in the number field. Thus the uniformity proposal of [Grunewald,
Segal & Smith 1988] mentioned in the introductory section, while false as stated,
is sort of true in an asymptotic sense.

Note, finally, that Proposition 15.3.1 makes no mention of nilpotency: it
applies to any Lie ring over Z, in fact to any Z-algebra structure (not necessarily
Lie or associative) on Zr; and the local version applies similarly to any Zp-
algebra structure on Zrp. It follows that the corresponding local zeta functions
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are rational in p−s. All the problems mentioned in the introduction apply equally
in this new context, and equally little is known about them. A particularly
interesting project is to investigate these rational functions for the ‘simple’ Lie
algebras such as sl(d,Z); a first step in this direction is taken in [Ilani 1999], [du
Sautoy 2000] and [du Sautoy & Taylor], where it is shown that for L = sl(2,Z),

ζL(s) = ζ(s)ζ(s− 1)ζ(2s− 1)ζ(2s− 2)
∏
p6=2

(1− p1−3s) · (1 + 3 · 21−2s − 23−3s).

Notes

Most of the sources have been mentioned in the main text; here is a résumé.
The definition of the zeta function for a torsion-free f.g. nilpotent group, the

Euler product, and the rationality of the local factors were given in [Grunewald,
Segal & Smith 1988]. This paper also considers (a) zeta functions of rings,
showing that ζG and ζL differ in at most finitely many local factors when L is
the Lie ring associated to a nilpotent group G; (b) zeta functions associated to
algebraic groups.

These latter zeta functions are studied in depth by [du Sautoy & Lubotzky
1996], who establish ‘uniformity’ and a local functional equation in many cases,
generalizing fundamental work of [Igusa 1989]. A sequel by du Sautoy is in
preparation.

Theorems 15.5, 15.6 and 15.7 are due to [du Sautoy & Grunewald 2000].
The following works determine the zeta functions for various specific classes

of groups and/or rings: [Ilani 1989], [du Sautoy 2000], [du Sautoy, Mc-
Dermott & Smith 1999], [du Sautoy & Taylor], [Klopsch (b)], [Taylor
2001]. A general approach to constructing nilpotent groups whose zeta func-
tions are related to elliptic curves is developed in the recent works [du Sautoy
(a)], [Griffin 2002] and [Voll 2002]; the latter work of Voll also establishes a
number of cases of ‘uniformity’ and of local functional equations.

More theoretical developments are to be found in a series of forthcoming
papers of du Sautoy and of du Sautoy & Grunewald. For further references see
the survey articles [du Sautoy & Segal 2000], which appears in [NH], and
[du Sautoy (d)]. The final section of the latter presents most of the local zeta
functions for which an explicit formula is known.

A different kind of generating function can be associated to the family of
finite index subgroups of a group. For a finitely generated group G, [Larsen
(2001)] defines

Z(G, s) =
∑

e(n)n−s

where e(n) is 1 if G has a subgroup of index n and 0 otherwise. Larsen shows
that the abscissa of convergence of this series is equal to 1/d where d is the
smallest possible dimension of the Zariski closure of some linear representation
of G with infinite image (if no such representation exists then the abscissa is
zero).
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Chapter 16

Zeta functions II: p-adic
analytic groups

As we saw in the last chapter, the arithmetic of subgroup growth in a finitely
generated nilpotent group Γ can be studied ‘locally’: on the one hand, the
sequence (an(Γ)) is determined in a simple way by the numbers apj (Γ) (for
all prime-powers pj); on the other hand, for each fixed prime p the sequence
(apj (Γ)) satisfies a linear recurrence relation: in other words, the local zeta
function

ζΓ,p(s) =
∞∑
j=0

apj (Γ)
ps

is a rational function in the variable p−s. The first, ‘global’, property is a special
feature of nilpotent (or more generally pronilpotent) groups. The second, ‘local’,
one, however, holds in much greater generality. In this chapter we give a brief
account of the results, some of the ideas behind them, and some remarkable
applications to the enumeration and classification of finite p-groups. For more
information, see the detailed survey article [du Sautoy & Segal 2000] and the
original papers [du Sautoy 1993], [du Sautoy 2000].

The common theme underlying all the results of this chapter is the subgroup
growth of compact p-adic analytic groups. We recall that a topological group
is compact and p-adic analytic if and only if (i) it is a profinite group of finite
rank and (ii) it is virtually a pro-p group; this holds if and only if it contains an
open subgroup that is a uniform pro-p group. For the definition and properties
of these groups, see the Pro-p groups window. The first main theorem is

Theorem 16.1 Let G be a compact p-adic analytic group. Then ζG,p(s) and
ζC
G,p(s) are rational functions over Q of p−s.

If Γ is an abstract group then the pro-p completion G = Γ̂p of Γ has finite
rank if and only if Γ has finite upper p-rank. Since apj (G) = aCC

pj (Γ), the

319
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theorem implies that ζCC
Γ,p (s) = ζG,p(s) is rational in p−s provided Γ has finite

upper p-rank. With a little more work it is also possible to deduce

Corollary 16.2 Let Γ be a group with finite upper p-rank. Then ζΓ,p(s) and
ζC
Γ,p(s) are rational functions over Q of p−s.

Of course, compact p-adic analytic groups arise in other ways; Theorem 16.1
raises the interesting challenge of determining the rational functions associated
to groups such as the congruence subgroups of SLd(Zp), which are very far from
nilpotent. Beyond the case of SL2(Zp) this project is still wide open.

In order to prove Theorem 16.1, du Sautoy established a very general ratio-
nality theorem for integrals defined over a uniform pro-p group. This is explained
in Section 1; it depends on work of Denef and van den Dries in ‘analytic’ p-adic
model theory. The deduction of Theorem 16.1 and Corollary 16.2 is given in
Section 2.

du Sautoy’s rationality theorem is so general that it can be applied not only
to the familiar subgroup-counting zeta functions, in the spirit of Chapter 15, but
also to various ‘modified’ zeta functions. For example, one can encode in such
a zeta function the number of orbits, under some acting group, of subgroups
of index pj in G that satisfy some ‘definable’ condition. This method has wide
scope, and we describe some of its applications in Sections 3 and 4.

Higman and Sims showed in the 1960s that the number of (isomorphism
types of) groups of order pn is about p(2/27)n3

, and we have seen in Chapter 3
that for a fixed d, the number of d-generator groups of order pn grows like pγn

2

(where γ depends on d). Now let

f(n, p, c, d)

denote the number of d-generator groups of order pn and nilpotency class at
most c (up to isomorphism). This number is certainly bounded above by aC

pn(F )
where F is the free nilpotent-of-class-c pro-p group on d generators, hence it is
at most polynomial in pn (because F is a pro-p group of finite rank).

Theorem 16.3 For fixed c, d and p and sufficiently large n, the function n 7→
f(n, p, c, d) satisfies a linear recurrence relation over Z.

A major inroad into the classification of finite p-groups has been the beautiful
coclass theory, developed by Leedham-Green, Newman and others. A group of
order pn has coclass r when its nilpotency class is n− r. Let

c(n, p, r)

denote the number of groups of order pn and coclass r (up to isomorphism).
This number is also polynomially bounded in terms of pn (this is not at all
obvious!), and we have the analogous
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Theorem 16.4 For fixed r and p and sufficiently large n, the function n 7→
c(n, p, r) satisfies a linear recurrence relation over Z.

These are very striking results: the class of finite p-groups has traditionally been
considered too ‘wild’ for classification, yet here we see very regular patterns,
established by model-theoretic methods applied in a subgroup-growth context.

The next result is even more striking; to explain it we need to recall the
main conclusion of coclass theory. This says that for each fixed prime p and
natural number r, almost all finite p-groups of coclass r can be arranged into
finitely many ‘families’. Each family is represented by a rooted tree that contains
exactly one infinite path (the ‘trunk’). Each vertex of the tree represents one
group, and there is an edge from G to H if and only if there is an epimorphism
from G onto H with central kernel of order p. For accounts of this theory, see
[Leedham-Green & McKay 2000] and [DDMS], Chapter 10. Now, extensive
computer calculations by Newman and O’Brien for the case p = 2 led them to
some delicate conjectures about the shape of these trees. One of these is

Conjecture P (p = 2) Each of the trees of coclass-r 2-groups is eventually
periodic, with period dividing 2r−1.

This means the following. Let T be a tree with trunk (P0, P1, . . . , Pn, . . .);
removing the edge between Pn−1 and Pn divides T into two connected compo-
nents, one finite and one infinite. The infinite one is denoted Tn. The conjecture
asserts that for all sufficiently large n, the trees Tn and Tn+2r−1 are isomorphic.

It is known that this periodicity fails for primes p 6= 2. However, there is
a modified version. For a natural number m, let T[m] denote the subtree of T
consisting of all vertices of T having distance at most m from the trunk (and
the corresponding edges); so T[m] is a ‘pruned’ version of T. It is known that
when p = 2 there exists a finite m such that T = T[m]; hence the following
theorem, valid for all primes, implies the qualitative statement of Conjecture P
(though not the actual period):

Theorem 16.5 Let T be one of the infinite rooted trees of p-groups of a fixed
coclass, and let m ∈ N. Then the tree T[m] is eventually periodic.

All of these theorems about finite p-groups are proved by establishing the
rationality of suitable ‘modified’ local zeta functions. du Sautoy has also estab-
lished some results of a ‘global’ flavour, by showing that the generating Dirichlet
series for the function f(n, p, c, d) can be represented as a cone integral, in the
sense of Chapter 15, Section 3. We shall not go into this further, but state one
of the conclusions:

Theorem 16.6 Let g(n, c, d) denote the number of isomorphism types of d-
generator nilpotent groups of class at most c and order at most n. Then for
fixed c and d,

g(n, c, d) ∼ γnα(log n)β

as n→∞, for some real γ > 0, rational α > 0 and integer β ≥ 0.
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The theory of cone integrals also sheds some light on the question of how
f(n, p, c, d) varies with the prime p, for fixed c, d and n, a problem raised by
Higman in 1960; see [du Sautoy 2000].

These results represent a new kind of application for the arithmetic theory
of subgroup growth, one that shows great promise for the future.

16.1 Integration on pro-p groups

In this section we consider a uniform pro-p group G. Writing G = G1 > Φ(G) =
G2 > G3 > . . . for the lower central p-series of G, this means that (i) G/Gp

is abelian (G/G4 is abelian if p = 2) and (ii) each of the factors Gi/Gi+1 is
elementary abelian of rank d (# Pro-p groups). For g ∈ G, define

ω(g) = n if g ∈ Gn \Gn+1

ω(1) = ∞.

The first-order language LG has two sorts of variables: those of sort x, inter-
preted as elements of G, and those of sort λ, interpreted as elements of Zp;
function symbols x−1, x · y, xλ, and φα(x) (α ∈ N), the latter to be interpreted
as certain fixed automorphisms of G; a binary relation symbol interpreted as
ω(x) ≥ ω(y); and constant symbols of the first sort, representing fixed elements
of G. A subset M of G(r) is definable if there is a formula κ(x1, . . . , xr) of LG,
containing exactly r free variables of the first sort, such that

M = {(g1, . . . , gr) | κ(g1, . . . , gr) is true} .

A function ψ : G(r) → G is definable if its graph {(g, ψ(g)) | g ∈ G(r)} is a
definable subset of G(r+1). Finally, a function f : G(r) → Z is said to be simple
if there exist definable functions ψ1, . . . , ψm : G(r) → G and integers a1, . . . , am
such that

f(g1, . . . , gr) =
m∑
i=1

aiω(ψi(g1, . . . , gr))

for all g1, . . . , gr ∈ G.
We can now state du Sautoy’s rationality theorem:

Theorem 16.1.1 Let G be a uniform pro-p group, let M be a definable subset
of G(r) and let h, k : G(r) → Z be simple functions. Then

Z(h, k,M, s) =
∫
M
p−sh(x)p−k(x)dµ(x)

is equal to a rational function over Q of p−s.

Here, µ denotes the normalized Haar measure on G(r). The theorem is proved
by introducing p-adic co-ordinates on G, translating everything into the ‘ana-
lytic’ language of Qp introduced by [Denef & van den Dries 1988], and then ap-
plying their correponding rationality theorem (# p-adic integrals and logic,
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Theorem 3). The possibility of making this translation depends on Lazard’s
theory, which implies that the group operations (including the taking of p-adic
powers) can be expressed in terms of suitable power series; see [DDMS].

16.2 Counting subgroups in a p-adic analytic group

Now let G be a compact p-adic analytic group. Then G has an open character-
istic subgroup G1 that is a uniform pro-p group, of dimension d, say (# Pro-p
groups). Write Gi for the ith term of the lower p-central series of G1. In order
to count the open subgroups of G, we want to associate to each such subgroup
a ‘good basis’, in the spirit of Chapter 15, Section 1.

Fix a subgroup K of p-power index in G with K ≥ G1, and fix a transversal
{y1 = 1, y2, . . . , yl} to the right cosets of G1 in K. Let H be an open subgroup
of G such that G1H = K, and put Hi = H ∩ Gi for each i. Since H is open,
there exists m such that Hm = Gm. We start by defining a good basis for H1:
this is a d-tuple (h1, . . . , hd) in G1 such that

ω(h1) ≤ ω(h2) ≤ . . . ≤ ω(hd),

and such that for each n ≤ m the set{
hp

n−ω(hi)

i Gn+1 | 1 ≤ i ≤ d, ω(hi) ≤ n
}

is a basis for the Fp-vector space HnGn+1/Gn+1. Now a tuple
(h1, . . . , hd, t1, . . . , tl) ∈ G(d+l)

1 is called a basis for H if

(i) (h1, . . . , hd) is a good basis for H1, and

(ii) {t1y1, t2y2, . . . , tlyl} is a transversal to the right cosets of H1 in H.

Let M(H1) denote the set of all good bases for H1, and K(H) the set of all
bases for H. Then

µ(K(H)) = |G1 : H1|−l µ(M(H1))

where µ denotes the normalized Haar measure on G1 (because each ti in (ii) can
vary over exactly one left coset of H1 in G1). The measure of M(H1) depends
on just how the index |G1 : H1| splits up into its factors |Gi : HiGi+1| ; this is
encoded by a certain partition P = PH1 of d, and the result is

µ(M(H1)) = qP · pd
2+

∑
(1−2i)ω(hi)

where qP =
∏
t∈P

∏t
j=1(1 − p−j), and (h1, . . . , hd) is any element of M(H1).

Also

|G1 : H1| =
m∏
i=1

|Gi : HiGi+1|

= pd−ω(h1)−···−ω(hd).
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Now let HK,P denote the set of all open subgroups H of G such that (a)
G1H = K and (b) the partition PH1 is equal to P . There are finitely many
possibilities for K and for P, and

ζG,p(s) =
∑
K,P

∑
H∈HK,P

|G : H|−s .

Put
KK,P =

⋃
H∈HK,P

K(H).

Then
∑
H∈HK,P

|G : H|−s is equal to |G : K|−s times

∑
|G1 : H1|−s µ(K(H))−1

∫
K(H)

dµ

=
∫
KK,P

µ(K(H))−1 · p(ω(h1)+···+ω(hd)−d)sdµ

= q−1
P

∫
KK,P

p(d−ω(h1)−···−ω(hd))lp
∑

(2i−1)ω(hi)−d2p(ω(h1)+···+ω(hd)−d)sdµ

= q−1
P pdl−d

2−ds · Z(h, k,KK,P , s)

in the notation of the previous section, where h and k are certain simple func-
tions. The essential point now is that each of the sets KK,P is definable as a
subset of G(d+l)

1 , in the language LG1 . It follows by Theorem 16.1.1 that each
Z(h, k,KK,P , s) is a rational function of p−s. Therefore so is ζG,p(s).

More generally, let X be a subset of the set of all open subgroups of p-power
index in G. We say that X is definable if each of the sets

KXK,P =
⋃

H∈HK,P∩X
K(H)

is definable; this will hold if membership of X for an open subgroup H can be
expressed as a statement in LG1 , applied to any basis for H. In this case, the
above argument yields the conclusion that

ζXG,p(s) =
∑
H∈X

|G : H|−s

is a rational function of p−s. This applies in particular when X is the family
of all open normal subgroups of p-power index in G, showing that ζC

G,p(s) is a
rational function. This concludes our sketch of the proof of Theorem 16.1.

To deduce Corollary 16.2, let Γ be a group of finite upper p-rank; assume
without loss of generality that Γ is residually finite. By the Remark in Section 5
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of Chapter 5, Γ has a normal subgroup Γ0 of finite index such that every finite
quotient of Γ0 has a normal p-complement. Now let

G = lim
←−

{Γ/N | N C Γ, N ≤ Γ0 and Γ0/N is a finite p-group} . (16.1)

Thus G is a profinite group, and it is easy to see that the closure in G of Γ0 is
the pro-p completion of Γ0. Hence G is virtually a pro-p group of finite rank,
hence a p-adic analytic group. Moreover, if H is a subgroup of p-power index in
Γ then H ∩Γ0 contains one of the normal subgroups N in (16.1), which implies
that

∣∣G : H
∣∣ = |Γ : H| where H denotes the closure of H in G. Thus H 7→ H

is an index-preserving bijection between the family of all subgroups of p-power
index in Γ and the family of all open subgroups of p-power index in G, and it
follows that

ζΓ,p(s) = ζG,p(s), ζC
Γ,p(s) = ζC

G,p(s)

(note that H C Γ if and only if H C G).

16.3 Counting orbits

We keep the notation of the last section, so G is a compact p-adic analytic
group, and let A denote some fixed group of automorphisms of G. Now let X
be a definable and A-invariant family of open subgroups of G, and let bpn(X/A)
denote the number of orbits under the action of A on

{H ∈ X | |G : H| = pn} .

The following generalizes Theorem 16.1:

Theorem 16.3.1 The function

ζX/A(s) =
∞∑
n=0

bpn(X/A)p−ns

is a rational function over Q of p−s.

For example, taking A to be the group of all inner automorphisms of G
and X to be the set of all open subgroups of G, we deduce that the number of
conjugacy classes of open subgroups of index pn in G satisfies a linear recurrence
relation, for sufficiently large n. On the other hand, taking A = Aut(G), we
shall see in the following section how this can be applied to the enumeration of
isomorphism types of finite p-groups.

The proof of Theorem 16.3.1 depends on the fact that Aut(G) is itself again
a compact p-adic analytic group ([DDMS], Chapter 5). It is easy to see that
the numbers bpn(X/A) are unchanged if we replace A ≤ Aut(G) by its closure
in Aut(G), so we may assume that A is in fact closed; then A is also a compact
p-adic analytic group. Thus A contains an open normal uniform pro-p subgroup
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A1; we may choose A1 and the characteristic open uniform subgroup G1 of G
so that

G = G1 oA1

is a uniform pro-p group. Now∑
bpn(X/A)p−ns =

∑
H∈X

|G : H|−s · |A : NA(H)|−1

=
∑
H,X

|A : X|−1 |G : H|−s

where the second sum ranges over pairs (H,X) whereH ∈ X andX = NA(H) ≤
A. The heart of the proof now consists in showing that this sum can be inter-
preted as a finite sum of integrals over subsets of G(m), where the domain of
integration is definable in the language LG and the integrand involves simple
functions in the sense of LG. The theorem is thus reduced to an application of
Theorem 16.1.1.

16.4 Counting p-groups

The link between subgroup growth and the enumeration of finite groups is pro-
vided by the following elementary fact:

Proposition 16.4.1 ([FJ], Prop. 15.31) Let C be a class of finite groups closed
under taking subgroups, quotients and direct products, and let F be a free pro-C
group. Let M, N be open normal subgroups of F . Then F/M ∼= F/N if and
only if there exists an automorphism ψ of F such that ψ(M) = N .

For our first application, take C to be the class of finite p-groups of nilpotency
class at most c, and let F be the free pro-C group on d generators. Then every
d-generator finite p-group of class at most c appears as a quotient F/N , and the
proposition shows that the number f(n, p, c, d) of isomorphism classes of such
groups of order pn is equal to the number bpn(X/A) of orbits of A = Aut(F )
acting on the set {H ∈ X | |G : H| = pn} , where now X denotes the set of all
open normal subgroups in F . Also F is a pro-p group of finite rank (# Pro-p
groups). Applying Theorem 16.3.1 we deduce that

∞∑
n=0

f(n, p, c, d)p−ns

is a rational function of p−s, and Theorem 16.3 follows.
If we want to enumerate groups of fixed coclass, we come up against the

problem that there is no corresponding relatively-free profinite group. However,
the following theorem, the main result of coclass theory, goes some way to saving
the situation:
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Proposition 16.4.2 [Leedham-Green 1994], [Shalev 1994] For each prime p
and integer r ≥ 1 there exists h = h(p, r) such that every finite p-group of coclass
r contains a normal subgroup of index at most ph that is nilpotent of class 2
(abelian if p = 2).

Suppose now that P is a finite group of coclass r and order pn. Then
|γi(P ) : γi+1(P )| ≥ p for 1 ≤ i ≤ n − r, so |γ2(P )| ≥ pn−r−1 and hence
|P : γ2(P )| ≤ pr+1. Therefore d(P ) ≤ r + 1, and so P is an image of the
free pro-p group F on r + 1 generators. Also, the proposition implies that

γ3(γh(P )P p
h

) = 1. (16.2)

Putting
U = F/γ3

(
γh(F )F p

h
)
,

we see that every finite p-group of coclass r is isomorphic to a quotient of U .
Now U is a free pro-C group where C is the class of all finite p-groups P satisfying
(16.2), and it is easy to see that U is a pro-p group of finite rank. However,
not all the finite images of U have coclass r; let X denote the set of those open
normal subgroups N of U such that the coclass of U/N is exactly r. Then just
as before we see that the number c(n, p, r) of isomorphism classes of groups of
order pn and coclass r is equal to bpn(X/A) where A = Aut(U).

Applying Theorem 16.3.1, we may deduce that the function
∞∑
n=0

c(n, p, r)p−ns

is rational in p−s, provided we can show that the family X of open normal
subgoups of U is definable. This of course requires more work; the key fact
here is that one can determine whether a group P has coclass r in a uniformly
bounded number of steps, because of the following result:

Proposition 16.4.3 [Shalev 1994] Let P be a finite p-group. Then P has
coclass r if and only if P/γf (P ) has coclass r, where f = 2pr if p is odd,
f = 2r+3 if p = 2.

This concludes our sketch of the proof of Theorem 16.4.

The proof of Theorem 16.5, regarding the shape of a tree, is naturally more
subtle. Again, this comes down to establishing the rationality of a certain
generating function, one that encodes the number of subgroups in X that belong
to a ‘twig’ of each specified shape: the twigs are the connected components that
remain when the trunk is deleted from the tree. The periodicity of the (‘pruned’)
tree is then deduced with the help of the following elementary lemma:

Lemma 16.4.4 Let (cn) be a sequence where each cn is either 0 or 1. If the
sequence satisfies a linear recurrence relation, then it is eventually periodic.

For details, see [du Sautoy & Segal 2000] and [du Sautoy 2000].
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Notes

Again, we have mentioned most of the sources in the main text.
Theorem 16.1 and the material of §§16.1, 16.2 are from [du Sautoy 1993].
The remaining main theorems, and the material of §§16.1, 16.2, are from

[du Sautoy 2000]; see also the announcement [du Sautoy 1999].
[Ilani 1999] determines zeta functions associated to the group SL2(Zp).

The zeta functions associated to various Lie rings over Zp are determined in
[Klopsch (b)] and [Taylor 2001].
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Window: Finite group
theory

In this window, all groups are assumed finite. Here we collect a number of results
that play a significant role in the book (further material of an elementary nature
that we sometimes take for granted is easily available in textbooks such as [H],
[R] and [A]).

1 Hall subgroups and Sylow bases

(See [R], Chapter 9 or [H], Chapter VI.)
A subgroup H of a group G is a Hall π-subgroup (where π is a set of primes)

if |H| is a product of primes in π and |G : H| is divisible by no prime in π. When
p is a prime, a Hall p′-subgroup is called a p-complement (where p′ denotes the
the set of all primes distinct from p).

Theorem 16.4.5 (P. Hall) The following are equivalent for a group G.
(i) G is soluble;
(ii) G has a p-complement for every prime p dividing |G| ;
(iii) G has a Hall π-subgroup for every set of primes π;
(iv) for every set of primes π, every π-subgroup of G is contained in a Hall

π-subgroup, and all Hall π-subgroups are conjugate in G.

Let pi (i = 1, . . . , k) be the prime factors of |G| and suppose that G has a
pi-complement Qi for each i. Then

Pi =
⋂
j 6=i

Qj

is a Sylow pi-subgroup of G for each i, and PiPj = PjPi for each pair (i, j). Such
a system of pairwise permutable Sylow subgroups (one for each prime factor of
|G|) is called a Sylow basis of G. The first statement of the next theorem follows
from the last theorem:

Theorem 16.4.6 Let G be a soluble group. Then G possesses a Sylow basis.
Moreover, all Sylow bases are conjugate in G.

335
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The second statement means that if (Pi) and (P ∗i ) are two Sylow bases, then
there exists g ∈ G such that P ∗i = P gi for each i (assuming of course that Pi
and P ∗i correspond to the same prime). A subgroup H of G is said to reduce
into a Sylow basis (Pi) if H ∩ Pi is a Sylow subgroup of H for each i.

Corollary 16.4.7 If G is soluble with Sylow basis (Pi) and H ≤ G then some
conjugate of H reduces into (Pi).

Proof. Let p1, . . . , pk be as above. For each i let Hi be a pi-complement of
H, and Qi ≥ Hi a pi-complement of G. Then the P ∗i =

⋂
j 6=iQj form a Sylow

basis of G and for each i it is clear that H ∩ P ∗i is a Sylow subgroup of H. If g
is such that P ∗i = P gi for each i then Hg−1

reduces into (Pi).

2 Carter subgroups

(See [R] Chapter 9 or [H] Chapter VI.)
A Carter subgroup of a groupG is a nilpotent subgroup C such that NG(C) =

C.

Theorem 16.4.8 (R. W. Carter) Let G be a soluble group. Then
(i) G possesses Carter subgroups, and they are all conjugate.
(ii) Let C be a Carter subgroup of G and let C ≤ H ≤ G. If N C H and

H/N is nilpotent then H = NC.

Corollary 16.4.9 Suppose that G has a chain of normal subgroups 1 = N0 <
N1 < . . . < Nl = G such that Ni/Ni−1 is nilpotent for each i. Then

G = C1 · C2 · . . . · Cl

where Ci is a Carter subgroup of Ni for each i.

3 The Fitting subgroup

This is the unique maximal nilpotent normal subgroup Fit(G) of a group G
(Fitting proved that a product of nilpotent normal subgroups is nilpotent, so
Fit(G) exists). A frequently used and well known fact is that in a finite soluble
group, the Fitting subgroup contains its centraliser. The following lemma is a
little sharper:

Lemma 16.4.10 Let G be a finite soluble group. Then G has a normal subgroup
N such that

[N,N ] ≤ Z(N) = CG(N).

Proof. Let A be maximal among abelian normal subgroups of G, and put
C = CG(A). If C = A take N = A. If not, then C/A is a non-trivial normal
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subgroup of G/A, hence contains a non-trivial abelian normal subgroup N/A of
G/A, and we choose a maximal such N . Then

C ≥ CG(N) ≥ Z(N) = A ≥ [N,N ],

by the maximality of A. Suppose that CG(N) 6= A. Then CG(N)/A contains a
non-trivial abelian normal subgroup D/A of G/A. Then D ∩ N ≤ Z(N) so in
fact D ∩ N = A; therefore DN/A = D/A × N/A is abelian, contradicting the
maximality of N . It follows that CG(N) = A = Z(N) and the proof is complete.

(The finiteness of G is not really necessary here: we can use Zorn’s Lemma
instead.)

Theorem 16.4.11 If G is a soluble group then

|G| ≤ |Fit(G)|4 .

Proof. Put F = Fit(G) and let Φ(F ) be the Frattini subgroup of F . Then
F/Φ(F ) ∼=

⊕
Vp where for each prime p, Vp = F/F ′F p is an Fp[G]-module via

conjugation. Let Wp denote the completely reducible Fp[G]-module obtained
by forming the direct sum of the Fp[G]-composition factors of Vp, and let Kp

be the kernel of the action of G on Wp. According to the theorem of Pálfy and
Wolf (# Permutation groups) we have

|G/Kp| ≤ |Wp|3 = |Vp|3 .

Now put K =
⋂
pKp. Then K acts nilpotently on each Vp, hence it acts nilpo-

tently on F/Φ(F ), and hence it acts nilpotently on F (an elementary property of
nilpotent groups). Therefore K/CK(F ) is nilpotent, and as CK(F ) ≤ CG(F ) ≤
F it follows that K is nilpotent. Thus K = F and so

|G| = |K| |G/K| ≤ |F | ·
∏
p

|Vp|3 = |F | |F/Φ(F )|3 ≤ |F |4 .

The Fitting length (or Fitting height) of a soluble group G is the least integer
h such that Fit(h)(G) = G, where Fit(1)(G) = Fit(G) and Fit(i+1)(G)/Fit(i)(G) =
Fit(G/Fit(i)(G)); this is clearly the minimal length of a chain of normal sub-
groups from 1 to G with nilpotent factors. Corollary 16.4.9 thus shows that G
is equal to a product of h nilpotent subgroups.

4 The generalised Fitting subgroup

(See [A], §31.)
This plays the role of the Fitting subgroup in non-soluble groups. A group S

is quasi-simple if S is perfect (i.e. S = S′) and S/Z(S) is simple. The layer of G
is the characteristic subgroup E(G) generated by all the quasi-simple subnormal
subgroups of G. The generalised Fitting subgroup of G is

F ∗(G) = E(G)Fit(G).
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Proposition 16.4.12 Let G be a finite group, E = E(G) and F ∗ = F ∗(G).
Then

CG(E/Z(E) = CG(E),
CG(F ∗) = Z(F ∗),

and if R is a soluble normal subgroup of G then

[E,R] = 1.

5 Tate’s theorem

(See [H] Chapter IV, Satz 4.7.)
A group G is p-nilpotent if G has a normal p-complement, so G is an ex-

tension of a normal p′-subgroup by a p-group. Several sufficient conditions for
p-nilpotency are provided by transfer arguments. The important one for us is
the following, due to John Tate:

Theorem 16.4.13 Let G be a group with a normal subgroup N and a Sylow
p-subgroup P . If P ∩N ≤ Φ(P ) then N is p-nilpotent.

Write P = P/(P ∩ N). Now P/Φ(P ) is a d-dimensional vector space over
Fp where d = d(P ); so if P ∩N is not contained in Φ(P ) then

d(P ) = dim(P/Φ(P )) < dim(P/Φ(P )) = d(P ).

Hence the

Corollary 16.4.14 Let G, N and P be as above. If d(PN/N) = d(P ) then N
is p-nilpotent.

This result is useful in combination with the Odd order theorem: this
says that every group of odd order is soluble, and hence implies that every
2-nilpotent group is soluble.

6 Rank and p-rank

The following was proved for soluble groups in [Kovács 1968], and for all finite
groups (using CFSG) by [Lucchini 1989] and [Guralnick 1989]:

Theorem 16.4.15 If every Sylow subgroup of G can be generated by d elements
then d(G) ≤ d+ 1.

Now recall that rk(G) = sup{d(H) | H ≤ G} and rp(G) = rk(P ) where p
is a Sylow p-subgroup of G. Applying the theorem to arbitrary subgroups of a
group G we deduce
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Corollary 16.4.16
rk(G) ≤ 1 + max

p||G|
rp(G).

A related result uses soluble subgroups instead of Sylow subgroups:

Theorem 16.4.17 [Aschbacher & Guralnick 1982] Let G be a group. Then
there exist a soluble subgroup H and an element g of G such that 〈H, Hg〉 = G.

7 Schur multiplier

(See [H] Chapter V, §§23-25 or [A], §33.)
The multiplier of a group G is M(G) = H2(G,C∗) ∼= H2(G,Z), a finite

abelian group whose exponent e satisfies e2 | |G|.
If G is perfect, that is G = G′, then G has a unique universal covering group

G̃. This is a perfect central extension of G by M(G) and every perfect central
extension of G is a quotient of G̃. In particular, if

1 → A→ Y → G→ 1

is a central extension of G with Y = Y ′ then A is an image of M(G).

If G and H are perfect groups then M(G×H) ∼= M(G)×M(H) (in general
there is an extra ‘correction term’ (G/G′)⊗ (H/H ′)).

If P is a Sylow p-subgroup of G then the p-component of M(G) is isomorphic
to a subgroup of M(P ).

The following is an application of the theory of powerful p-groups (see below):

Theorem 16.4.18 [Lubotzky & Mann 1987] Let G be a p-group of rank r.
Then

rk(M(G)) ≤ r(r − 1)/2 + r2(dlog re+ ε)

where ε = 0 if p is odd, ε = 1 if p = 2.

8 Powerful p-groups

This theory is due to [Lubotzky & Mann 1987]; for a detailed exposition see
[DDMS], Chapter 2. A p-group G is said to be powerful if G/Gp is abelian
(when p 6= 2) or G/G4 is abelian (when p = 2). Powerful groups resemble
abelian groups in several respects; for example,

Theorem 16.4.19 Let G be a powerful p-group. Then
(i) rk(G) = d(G);
(ii) if G = 〈x1, . . . , xd〉 then G = 〈x1〉 〈x2〉 . . . 〈xd〉 is a product of d cyclic

subgroups.
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Part (i) implies that if G is powerful then

dimFp
(H/Φ(H)) = d(H) ≤ d(G) = dimFp

(G/Φ(G))

for every subgroup H of G.

Corollary 16.4.20 If G is a powerful p-group of exponent ph then |G| ≤ phd(G).

Write Φ0(G) = G and for i ≥ 1 set Φi(G) = Φ(Φi−1(G)).

Theorem 16.4.21 ([DDMS] Chapter 2, Exercise 6) Let G be a p-group, put
Gi = Φi(G) and let

s = max
i≥0

d(Gi),

m = dlog se+ ε

where ε = 0 if p is odd, ε = 1 if p = 2. Then
(i) Gm is powerful;
(ii) |G : Gm| ≤ pms.

Since
s ≤ max{d(N) | N C G} ≤ rk(G)

this implies

Corollary 16.4.22 If G is a p-group of rank r then G contains a powerful
characteristic subgroup of index at most pr(1+dlog re).

Corollary 16.4.23 Let G be a p-group. If d(N) ≤ k for every normal subgroup
N of G then

rk(G) ≤ k(2 + dlog ke).

For if H ≤ G then d(H ∩Gm) ≤ d(Gm) ≤ k by Theorem 16.4.19, while for each
i ≤ m we have

d ((H ∩Gi−1)/(H ∩Gi)) ≤ d(Gi−1/Gi) ≤ k

since Gi−1/Gi is elementary abelian.
Combining Corollary 16.4.22 with Corollary 16.4.20 we deduce

Corollary 16.4.24 If G is a p-group of rank r and exponent ph then

|G| ≤ pr(1+dlog re+h).

This has an application to arbitrary finite groups:

Proposition 16.4.25 Let G be a finite group of rank r and exponent m. Then

|G| | mr(3+log r).

Indeed, if m =
∏
pe(p) and P is a Sylow p-subgroup of G then |P | = pn(p) where

n(p) ≤ r(1 + dlog re+ e(p)) ≤ e(p)r(3 + log r),

and the result follows since |G| =
∏
pn(p).

The theory of powerful p-groups has important applications to pro-p groups
(# pro-p groups).
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9 GLn and Sym(n)

If p is a prime, the p-part of n! is at most p[(n−1)/(p−1)], so this is an upper
bound for the order of any p-subgroup of Sym(n). It follows that

rp(Sym(n)) ≤ n− 1
p− 1

.

With Corollary 16.4.16 this implies that the rank of Sym(n) is at most n. How-
ever, an elementary argument due to [Jerrum 1986] yields the better bound

Theorem 16.4.26 The rank of Sym(n) is at most n− 1.

(See [Cameron 1999], § 1.14. The best bound (for n ≥ 4) is actually [n/2], due
to [Mciver & Neumann 1987].)

In the other direction it is easy to see that

rk(Alt(n)) ≥ (n− 3)/2;

indeed, Alt(n) contains a direct product of [n/4] Klein four-groups, which is
elementary abelian of rank 2 · [n/4].

If n = a1 + · · ·+ ak then by the GM-AM inequality we have∏
ai ≤ (n/k)k ≤ 2n.

It follows that the maximal order of any element in Sym(n) is at most 2n. We
can also bound the exponent exp(Sym(n)) of Sym(n). If p is a prime then the
maximal order of a p-element in Sym(n) is at most pe(p) where e(p) =

[
logp n

]
.

Hence
exp(Sym(n)) =

∏
p≤n

pe(p) ≤ nπ(n) ≤ nA(n/ lnn) = eAn

where π(n) denotes the number of primes below n and A is a constant (slightly
greater than 1), by the Prime Number Theorem. [Hanson 1972] shows that
in fact 3n is an upper bound. Note that

∏
p≤n p

e(p) = eψ(n), where ψ is the
number-theoretic function defined in [HW], §22.1. It follows by [HW] Theorem
434, a version of the Prime Number Theorem, that

ln(exp(Sym(n))) ∼ n

as n→∞.

Now we consider the group G = GLn(Fq) where q = pe for a prime p. A
Sylow p-subgroup of G is the group of upper uni-triangular matrices, which has
order

qn(n−1)/2

and hence rank at most en(n − 1)/2. If l is a prime other than p and H is
a Sylow l-subgroup of G then H is monomial (see [We], Chapter 1); that is,
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H is conjugate over the algebraic closure Fp of Fq to a group of monomial
matrices. Thus there is a homomorphism θ : H → Sym(n) such that ker θ is
diagonalisable. Then ker θ is an abelian group of rank at most n (since every
finite subgroup of F∗p is cyclic), while H/ ker θ has rank at most (n− 1)/(l− 1).
Thus we have

Theorem 16.4.27 Let G = GLn(Fq) where q = pe. Then

rp(G) ≤ en(n− 1)/2,

rl(G) ≤ n+
n− 1
l − 1

≤ 2n− 1

for primes l 6= p.

With Corollary 16.4.16 this gives

Corollary 16.4.28 The rank of GLn(Fpe) is at most 1 + en(n− 1)/2 < en2/2
if n ≥ 5 or e ≥ 2, and at most 7 otherwise.

Again, this is not the best bound. (For p 6= 2 and e = 1, [Pyber 1993] gives
n2/4.)

It it easy to see that a diagonalisable subgroup of GLn(Fq) has order at most
qn − 1. Since an l-subgroup of Sym(n) has order at most l(n−1)/(l−1) ≤ 2n−1,
the above argument also gives

Proposition 16.4.29 If l is a prime and l - q then a Sylow l-subgroup of
GLn(Fq) has order less than (2q)n.

If g ∈ GLn(Fq) is unipotent then

gp
f

− 1 = (g − 1)p
f

= 0

as long as pf ≥ n. Hence the order of g is less than pn. In any case, the
eigenvalues of g lie in F∗qn , so if g is semisimple then its order divides qn − 1. It
follows that the order of any element of GLn(Fq) is bounded above by pn(qn−1).
In fact the correct bound is qn − 1 [Horoshevskii 1974].



Window: Finite simple
groups

In a statistical sense, the simple groups (by which we mean, in this window,
non-abelian finite simple groups) are quite rare: the Godfather of the subject
has likened them to fossils, occasionally found buried among the composition
factors of a general finite group [Thompson 1984]. The analogy includes the
suggestion that they are hard : excavating with primitive tools may uncover
some general features of a group, but will usually not reveal the deeper secrets
of structure hidden within the simple factors. Prosaically, what this means is
that when simple groups are present, one can only get so far with elementary
group-theoretic arguments and then one gets stuck.

A revolutionary change in the nature of group theory occurred around 1980,
after two or three decades of extraordinary work. This was the complete classi-
fication of the simple groups, which we shall refer to as CFSG. Many hitherto
intractable problems can now be solved by a more or less standard two-stage
procedure: (1) the problem is reduced to a specific question about simple groups,
and (2) one answers the question by examining the known list of simple groups.
Either stage may of course be difficult – but we are no longer stuck in quite the
same way. Some of the main results in this book, such as the PSG theorem,
testify to the remarkably wide scope of this philosophy – and show that, far from
bringing group theory to an end, CFSG may open the doors to unexpected new
vistas.

The proof of CFSG is so long (estimated at 15,000 pages) and fragmented
that some mathematicians are doubtful about accepting the result as defini-
tive. Unwilling to be ejected from the paradise created for us by Thompson,
Gorenstein, Aschbacher and their co-workers, we trust that such doubts will
eventually be laid to rest. The proof is being systematised and re-written in
a series of books by Gorenstein, Lyons and Solomon; a careful explanation of
its present status is given in the introduction to the first volume of the series
[Gorenstein, Lyons & Solomon 2000].

As an extra ‘safety net’, it should be mentioned that most results in infinite
group theory that depend on CFSG are robust to the extent that the occurrence
of just finitely many presently unknown simple groups would not invalidate their
proof.

343
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1 The list

For the statement of the classification theorem, and more or less detailed ac-
counts of the proof, see [G], [Gorenstein, Lyons & Solomon 2000], [A]. For
the construction and properties of groups of Lie type see [C], [Carter 1985],
[St]. A comprehensive (if rather indigestible) reference for properties of all the
simple groups is [GLS].

The starting point for the classification was the celebrated Odd order the-
orem:

Theorem 16.4.1 [Feit & Thompson 1963] Every group of odd order is soluble.

This is of course equivalent to the statement that every finite simple group has
even order.

The finite simple groups comprise two infinite families and 26 sporadic
groups. The infinite families are

(1) the alternating groups Alt(n) for n ≥ 5;

(2) the groups of Lie type.

The simple groups of Lie type are the adjoint Chevalley groups Xl(q) and the
twisted Chevalley groups tXl(q) Here Xl denotes one of the connected Dynkin
diagrams Al (l ≥ 1), Bl (l ≥ 2), Cl (l ≥ 3), Dl (l ≥ 4), E6, E7, E8, F4, G2;
q = pe denotes a prime-power; and t is 2 or 3. The twisted groups only exist for
certain of the diagrams and certain values of l, t and q:

2Al(q), 2Dl(q), 2E6(q),
3D4(q)
2B2(2m), 2F4(2m), 2G2(3m) (m odd).

The groups ∗Xl(q) are simple except for a few very small values of l and q; for
almost all of these the derived group is simple, and these are usually included
among the ‘simple groups of Lie type’ (∗ means 1, 2 or 3 where 1Xl(q) =
Xl(q)). However, up to isomorphism, all these ‘derived’ simple groups of Lie
type also occur as ‘adjoint groups’ ∗Xl(q), with the one exception 2F4(2)′ (the
‘Tits group’), and to simplify some statements we shall count this group as an
honorary ‘sporadic’.

In general, Xl(q) is the group of Fq-rational points of the corresponding
simple (split, adjoint) algebraic group, and tXl(q) the subgroup of fixed points
in Xl(qt) of a certain automorphism of order t. Many groups of Lie type are
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classical groups:

Al(q) = PSL(l + 1,Fq)
Bl(q) = PΩ(2l + 1,Fq)
Cl(q) = PSp(2l,Fq)
Dl(q) = PΩ+(2l,Fq)

2Al(q) = PSU(l + 1,Fq)
2Dl(q) = PΩ−(2l,Fq).

The others are called exceptional groups.
The parameter l is the Lie rank (or ‘untwisted rank’).
With 9 small exceptions, the simple groups of Lie type and the alternating

groups are all pairwise non-isomorphic, except that Bl(2n) ∼= Cl(2n) for all l
and n.

The order of tXl(q) is given by a certain polynomial in q; these are listed
in Table I of [GLS], for example. The same table also gives the orders of the
sporadic groups. This table shows that |A2(4)| = |A3(2)| and |Bl(q)| = |Cl(q)|
for all l and q. It is true (but by no means self-evident!) that these are the only
cases of non-isomorphic simple groups whose orders coincide. Thus

• For each integer n there are are most two non-isomorphic simple groups
of order n.

Moreover,

• If S and T are simple and |S|a = |T |b for integers a and b then |S| = |T | .

These and many other interesting facts about the orders of simple groups are
established in [Kimmerle, Lyons, Sandling & Teague 1990], following work
of Artin and Tits.

Theoretical formulas for the order are given in [C], [A] and [St], §§9, 11.
Writing dim(Xl) for the dimension of the simple Lie algebra of type Xl (see
table (16.1) below), we have

Proposition 16.4.2 Let G = tXl(q) be simple of Lie type and put d = dim(Xl).
Then

|G| = qd(1 + o(1))

and if G is untwisted then
|G| < qd.

(Here o(1) means a number that tends to 0 as q →∞.)

A group G is quasi-simple if G is perfect (i.e. G = [G,G]) and G/Z(G)
is simple. Each simple group G of Lie type tXl(q) has a ‘universal’ version
G̃ =t X̃l(q) such that G̃/Z(G̃) ∼= G. If G is simple then G̃ is quasi-simple.
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2 Generators

Theorem 16.4.3 [Aschbacher & Guralnick 1984] Every simple group can be
generated by 2 elements.

This was established for the groups of Lie type by [Steinberg 1962]. In fact,
‘most’ pairs of elements in a simple group S generate S, in the sense that

1− |X|
|S|2

→ 0

as |S| → ∞ where X = {(x, y) ∈ S × S | 〈x, y〉 = S}; this conjecture of Dixon
was finally proved by [Liebeck & Shalev 1995] following work of Dixon, Babai
and Kantor & Lubotzky.

3 Subgroups

Let G = ∗Xl(q) be a group of Lie type, ∆ the associated Dynkin diagram. (In
the twisted case, ∆ is a quotient graph of the diagram Xl by the appropriate
symmetry). To each subset of ∆ there corresponds a conjugacy class of parabolic
subgroups of G. In particular, suppose that ∆′ is a connected subgraph of ∆.
Then ∆′ is again a Dynkin diagram X ′, and the corresponding parabolic sub-
group contains a quasi-simple group of type X ′(q), that is, a perfect central
extension of the simple group X ′(q). Applying this to the classical groups we
deduce

Proposition 16.4.4 Let G = ∗Xl(q) be a classical group. Then G contains
a subgroup isomorphic to (P)SL(m,Fq), and hence Alt(m) is a section of G,
where m ≥ 1 + l/2.

Here by (P)SL(m,Fq) we mean a group of the form SL(m,Fq)/N where 1 ≤
N ≤ Z(SL(m,Fq)).

If q = pe it follows that G contains an elementary abelian p-subgroup of rank[
m
2

]2
e ≥ l2e/4, corresponding to the group of upper unitriangular matrices in

SL(m,Fq) having non-zero entries only in the top right-hand
[
m
2

]
×
[
m
2

]
corner.

This implies

Corollary 16.4.5 Let G = ∗Xl(pe) be a group of Lie type. Then

l2e ≤ 4rk(G) if G is of classical type
l ≤ 8 and e ≤ rk(G) if G is of exceptional type.

The second claim holds because, in any case, G contains a copy of the additive
group of Fq. (Recall that rk(G) denotes the maximum of d(H) over all subgroups
of a group G, not the Lie rank. To avoid confusion, in this window we shall
refer to rk(G) as the Prüfer rank.)
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4 Representations

Each (adjoint) Chevalley group may be constructed as a group of automorphisms
of the corresponding Lie algebra. The dimension of this Lie algebra is given in
terms of the Lie rank l by the following table (see [Jacobson 1962], Chapter IV):

Al Bl Cl Dl E6 E7 E8 F4 G2

l(l + 2) l(2l + 1) l(2l + 1) l(2l − 1) 78 133 248 52 14
(16.1)

Hence if G = Xl(q) is an untwisted simple group of Lie type then

G ≤ SLn(Fq) ≤ SLne(Fp)

where n ≤ max{2l2 + l, 248} and q = pe. If G = tXl(q) is a twisted group then
G ≤ Xl(qt), where t = 2 except for the case of 3D4. Thus we have (crudely)
part (i) of

Proposition 16.4.6 Let G = ∗Xl(q) be a simple group of Lie type, where
q = pe. Then (i)

G ≤ SLn(Fq) ≤ SLne(Fp)

where n = max{5l2, 248};
(ii) if G is a classical group then

G ≤ PSL2l+1(Fq).

Of course, (ii) follows from the table in Section 1. Since the Prüfer rank of
GLd(Fpe) is at most max{ed2/2, 7} (# Finite group theory), this implies

Proposition 16.4.7 Let G be as above. Then

rk(G) ≤ max{(2l + 1)2
e

2
, Ne}

where N = 2482/2.

Combining this with Corollary 16.4.5 we deduce

Corollary 16.4.8 There exists a function f such that

max{e, l/4} ≤ rk(∗Xl(pe)) ≤ f(l, e)

for every prime p.

Thus a collection of simple groups of Lie type has bounded Prüfer ranks if
and only if it has bounded Lie ranks and bounded field degrees.

The minimal degree of a faithful linear representation of a simple group of
Lie type is generally less than the crude bound given in Proposition 16.4.6. A
lower bound for this follows from
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Proposition 16.4.9 Let G be a classical group of Lie rank l. If G is a section
of GLn(F ) for some finite field F then

n ≥ l − 4
3

.

This follows from Proposition 16.4.4 together with

Proposition 16.4.10 ([DM], Theorem 5.7A) If Alt(k) is a section of GLn(F )
for some finite field F then

n ≥ 2k − 6
3

.

(The bound (2k − 4)/3 given in [DM] is slightly too weak.)
The minimal degree of a faithful permutation representation of a simple

group G is equal to the minimal index of a proper subgroup. In the case of a
classical group G = Xl(q) the smallest permutation representation is generally
speaking given by the natural action of the group on the points of the corre-
sponding (d− 1)-dimensional projective space, where d is l+ 1, 2l or 2l+ 1 (see
Section 1). The minimal degree is therefore

qd+1 − 1
q − 1

> ql+1.

In general we have

Proposition 16.4.11 ([Kleidman & Liebeck 1990], 5.2.2) Let G be a simple
group of Lie type of Lie rank l. Then every proper subgroup M of G satisfies

|G : M | ≥ |G|c(l)

where c(l) is a positive constant depending only on l.

5 Automorphisms

Let G = ∗Xl(pe) be a simple group of (adjoint) Lie type. Every automorphism
of G is a product (in the stated order) of an inner automorphism, a ‘diagonal
automorphism’, a ‘field automorphism’ and a ‘graph automorphism’; these are
defined in [C], [St]. See also [GLS] §2.5. It follows that Aut(G) has a chain of
normal subgroups

Inn(G) ≤ D ≤ DF ≤ Aut(G)

such that

• Inn(G) ∼= G

• D/Inn(G) is a finite group isomorphic to the centre of the universal group
∗X̃l(pe), an abelian group of rank at most 2, order dividing 3, 4 or l + 1
and exponent dividing pe ± 1
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• F is a cyclic group of order dividing e and DF/D ≤ Z(Aut(G)/D)

• Aut(G)/DF is 1, cyclic of order 2 or isomorphic to Sym(3).

Writing Out(G) = Aut(G)/Inn(G) we have

Proposition 16.4.12 Let G = ∗Xl(pe) be a simple group of Lie type. Then
Out(G) is soluble of derived length at most 3 and

|Out(G)| ≤ 6e ·max{(l + 1), 4}.

Combined with Proposition 16.4.6 this implies

Corollary 16.4.13 Let G = ∗Xl(pe) be a simple group of Lie type. Then

Aut(G) ≤ SLn(Fp)

where n = 6e2 ·max{(l + 1), 4} ·max{5l2, 248}.

Regarding the remaining simple groups, we have

Proposition 16.4.14 Let G be an alternating or sporadic simple group. Then
|Out(G)| ≤ 2 unless G = Alt(6) in which case |Out(G)| = 4.

6 Schur multipliers

The multipliers of all finite simple groups are given in [G], Table 4.1 (based
largely on work of Schur, Steinberg and Griess.) From this table one reads off
the following.

1) If G is simple then M(G) has rank at most 2.

2) If G is not of the form Al(q) or 2Al(q) then M(G) has exponent dividing
12.

3) If G = Al(q) then M(G) is cyclic of order gcd(l+ 1, q− 1) unless the pair
(l, q) is one of five small exceptions; in each of these cases M(G) has exponent
dividing 12 and order dividing 48.

4) If G = 2Al(q) then M(G) is cyclic of order gcd(l+1, q+1) unless the pair
(l, q) is one of three small exceptions; in each of these cases M(G) has exponent
dividing 12 and order dividing 36.

5) Apart from a finite number of pairs (l, q), the ‘universal’ group of Lie
type tX̃l(q) is the universal central extension of the simple group G = tXl(q);
that is, the centre of tX̃l(q) is isomorphic to M(G), which is a p′-group (see [G],
§4.15A).

It follows from (1) that H2(G,Fp) has dimension at most 2 for every prime
p (because H2(G,Fp) is the cokernel of the mapping M(G) → M(G) given by
multiplication by p).
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7 An elementary proof

We stated above that there are no more than two simple groups of any given
order. The only known proof of this fact depends on the classification, and it
may be of interest to record an elementary direct proof of the following (ridicu-
lously weak!) bound, which will suffice for some of our applications. It is due
to L. Pyber and A. Shalev (unpublished).

Proposition 16.4.15 here is an absolute constant c such that for each positive
integer n, the number of simple groups of order n is at most cn.

Proof. Fix a large integer n. Let G be a simple group of order n. We
consider two cases.

Case 1. Where G has a proper subgroup of order at least (log n)2. Then
G ≤ Sym(m) where m = [n/(log n)2]. Also G can be generated by at most log n
elements, so there are at most

(m!)logn < (nn/(logn)2)logn = 2n

possibilities for G.
Case 2. Where every proper subgroup of G has order less than (log n)2. We

claim that then n has a prime divisor p > 1
8 log n. Accepting the claim for now,

let P be a subgroup of G of order p and let M be a maximal subgroup containing
P . Put m = |M | and k = m/p. The length of any chain of subgroups refining
1 < P ≤ M < G is at most 2 + log k, so G can be generated by [2 + log k]
elements. Also G ≤ Sym(n/m), so the number of possibilities for G is at most

((n/m)!)2+log k < n(n/m)(2+log k) = 2r

where

r =
n log n · (2 + log k)

pk
≤ 16n.

It remains to establish the claim. Suppose that all prime factors of n are
bounded above by x = 1

8 log n. The number of these prime factors is then at
most

π(x) ≤ (2 + o(1))
x

log x
≤ 3

x

log x
if n is large enough, by an easy weak form of the Prime Number Theorem (#
Prime numbers). On the other hand, since each Sylow subgroup of G has
order less than (log n)2 we have

n = |G| < (log n)2π(x).

Therefore

log n < 2π(x) log log n

≤ 2 · 3 · log n
8(log log n− 3)

· log log n,

a contradiction if n is large. The claim follows, and this completes the proof.



Window: Permutation
groups

In this Window, all groups are finite unless otherwise stated.

1 Primitive groups

A permutation group acting on a set Ω is primitive if it preserves no partition
of Ω apart from the trivial ones {Ω} and {{α} | α ∈ Ω}. A subgroup G of
Sym(n) is called a proper primitive group if G is primitive and G does not
contain Alt(n). To obtain a useful classification of proper primitive groups is
a longstanding goal of permutation group theory, recently brought much closer
with the help of CFSG: see [Cameron 1981]. We shall need

Theorem 16.4.1 Let G ≤ Sym(n) be a proper primitive group. Then

|G| ≤ n!
dn/2e!

, (16.1)

|G| ≤ 3n, (16.2)

|G| ≤ nc
√
n (16.3)

where c is an absolute constant; and

|G| ≤ 2n−1 unless G is one of 24 known exceptions. (16.4)

(16.1) was proved by Bochert in 1889; see [DM], Theorem 3.3B. (16.2) and
(16.4) are due to [Maróti]; these depend on CFSG. (The slightly weaker bound
|G| ≤ 4n due to [Praeger & Saxl 1980] does not; nor does the better bound
nc
√
n logn obtained by L. Babai, see [DM] §5.3). (16.3) follows from [Cameron

1981], Theorem 6.1; this also depends on CFSG.

2 Groups with restricted sections

A section of a group G is a factor A/B where B C A ≤ G. Of course, A/B is a
composition factor of G if, in addition, A/B is simple and A is subnormal in G.
It is a chief factor if B C G and A/B is a minimal normal subgroup of G/B.

351
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We consider the following classes of groups, where k denotes a positive integer
constant.

G ∈ Ck if no section of G is isomorphic to Alt(k + 1)

G ∈ CC
k if no composition factor of G is isomorphic to Alt(n) for any n > k

G ∈ Bk if G ∈ CC
k and no composition factor of G is isomorphic to a classical

finite simple group of degree exceeding k (here by degree we mean the
degree of the natural projective representation)

G ∈ Rk if rk(M) ≤ k for every non-abelian composition factor M of G

G ∈ R′k if G ∈ Bk and for every composition factor of G which is a simple
group of Lie type Xl(Fpe), the field degree e satisfies e ≤ k.

Remarks (i) The classes Ck are closed under taking subgroups, quotients and
extensions. Conversely, any class of finite groups with this property, other than
the class of all finite groups, is necessarily contained in Ck for some k. Similarly,
each of the classes CC

k ,Bk, Rk and R′k is closed under taking normal subgroups,
quotients and extensions.

(ii) Let G be an infinite group. Then either G involves every finite group as
an upper section, or else every finite quotient of G lies in Ck for some fixed k; in
particular, if (in the latter case) G is a profinite group then G is a pro-Ck group.

(iii) Let S0 denote the set of sporadic simple groups; for β ∈ N let A(β)
denote the set of alternating groups Alt(n) with 5 ≤ n ≤ β and X (β) the set
of simple groups of Lie type Xl(pe) (untwisted or twisted) where the Lie rank l
and the field degree e are both ≤ β. Then

S0 ∪ A(β) ∪ X (β) ⊆ R′k

where k = 2β + 1. On the other hand, it follows from CFSG that every simple
group in R′k belongs to S0 ∪ A(β) ∪ X (β) where β = max{8, k}. (A classical
group of Lie rank l has degree at least l + 1 and at most 2l + 1, while a group
of exceptional Lie type has Lie rank at most 8) (# Finite simple groups).

Proposition 16.4.2 For each k there exists k′ such that

Ck ⊆ Bk′ and Bk ⊆ Ck′ (16.5)
Rk ⊆ R′k′ and R′k ⊆ Rk′ . (16.6)

Also Ck ⊆ CC
k and R′k ⊆ Bk.

Proof. The final statement is obvious.
Note that every simple section of G is a section of some composition factor of

G. Now suppose that C is classical finite simple group of degree n. If Alt(k+1)
is a section of C then n ≥ (2k−4)/3, by [DM], Theorem 5.7A (# Finite simple
groups, Prop. 10). On the other hand, C contains a copy of (P)SLm(F ) for
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some field F , where m ≥ (n+ 3)/4, hence C does have Alt(m) as a section (#
Finite simple groups). It is now easy to deduce (16.5).

To prove (16.6) it suffices, in view of CFSG, to observe (a) that (n− 3)/2 ≤
rk(Alt(n)) ≤ n − 1 (# Finite group theory), (b) that if C = Xl(Fpe) then
both l and e are bounded above in terms of rk(C), and rk(C) is bounded above
by a function of l and e (# Finite simple groups).

While the class Bk is not closed under taking subgroups, the above proposi-
tion gives

Corollary 16.4.3 For each k there exists k′′ such that if G ∈ Bk then every
section of G belongs to Bk′′ .

The class Bk was introduced in the seminal paper [Babai, Cameron & Pálfy
1982]. The main results of that paper are the next two theorems, where
f1, f2, . . . denote certain arithmetical functions. (This paper considers groups
whose composition factors are the known simple groups in Bk, and with this
proviso the proofs do not depend on CFSG; the results as stated here do rely
on CFSG.)

Theorem 16.4.4 If G is a primitive permutation group of degree n and G ∈ Bk
then

|G| ≤ nf1(k).

Theorem 16.4.5 If V is a finite vector space and G ∈ Bk is a completely
reducible subgroup of GL(V ) then

|G| ≤ |V |f2(k) .

Theorem 16.4.4 may be deduced from a more recent result of [Gluck, Seress
& Shalev 1998], which shows that if G ∈ Bk is a primitive subgroup of Sym(Ω),
then Ω contains a subset ∆ of cardinality at most Ak2 such that the pointwise
stabiliser of ∆ in G is {1} (i.e. ∆ is a base for G); here A is some absolute
constant, and it follows easily that then

|G| ≤ n|∆| ≤ nAk
2
.

(Liebeck and Shalev have since improved the former result to |∆| ≤ Ak; this
implies an earlier result of Pyber that f1 may even be taken to be a linear
function of k.)

Of course each class Bk contains the finite soluble groups. For these we can
give explicit bounds, due to Pálfy and Wolf:

Theorem 16.4.6 ( [Manz & Wolf 1993], Theorem 3.5) If V is a finite vector
space and G is a completely reducible soluble subgroup of GL(V ) then

|G| < 1
2
|V |9/4 .
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Theorem 16.4.7 ( [Manz & Wolf 1993], Corollary 3.6) If G is a primitive sol-
uble subgroup of Sym(n) then

|G| < 1
2
n13/4.

Permutation groups in the class CC
k also have bounded orders. The next

result was originally proved with a slightly weaker bound in [Babai, Cameron
& Pálfy 1982]; the present form is due to [Maróti] (and for k ≥ 9 to A. Mann,
independently):

Theorem 16.4.8 Let G ≤ Sym(n). If G ∈ CC
k , where k ≥ 4, then

|G| ≤ µn−1

where
µ = k!1/(k−1).

Proof. This is clear if n ≤ k. Suppose that n > k and argue by induction
on n. Note that µ ≥ 4!1/3 > 2.

Case 1. Suppose that G is primitive. Since k < n, the group G does not
contain Alt(n); Theorem 16.4.1 (16.4) now shows that |G| ≤ 2n−1 < µn−1 unless
G is one of the 24 known exceptions listed in [Maróti]; for these the claim can
be checked case by case.

Case 2. Suppose that G is imprimitive. Then G preserves a system of blocks
of sizes r1, . . . , rs, say, where ri < n, s < n and r1 + · · ·+ rs = n. The action of
G on the set of blocks gives a homomorphism φ : G → Sym(s) with kernel K,
say. Let Ki denote the group of permutations induced by K on the ith block.
Then Ki ≤ Sym(ri) for each i, and the inductive hypothesis gives |Ki| ≤ µri−1,
while |φ(G)| ≤ µs−1. It follows that

|G| ≤
s∏
i=1

|Ki| · |φ(G)| ≤ µ
∑

(ri−1)µ(s−1) = µn−1.

The constant µ given here is best possible, as shown by the iterated permu-
tational wreath product of kr copies of Sym(k), a permutation group of degree
n = kr+1 and order k!(n−1)/(k−1). This observation is also due to Maróti.

Taking k = 4 we deduce

Corollary 16.4.9 If G is a soluble subgroup of Sym(n) then |G| ≤ µn−1 where
µ = (24)1/3.

This was obtained earlier by Dixon (see [DM], Theorem 5.8B)

One connection with subgroup growth (by no means the only one) is mani-
fested in the following way. Let H be a subgroup of G. The normal core of H
in G is

coreG(H) =
⋂
g∈G

Hg;
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this is the biggest normal subgroup of G contained in H. Similarly, the subnor-
mal core of H is

coresnG(H) = 〈K CC G | K ≤ H〉 ;

by a classical theorem of Wielandt (see [R], 13.1.8) this is the biggest subnormal
subgroup of G contained in H. The following result is from an unpublished
manuscript of L. Pyber and A. Shalev.

Proposition 16.4.10 (L. Pyber & A. Shalev) Let X be a family of finite
groups.

(i) there exists k such that X ⊆ CC
k if and only if there exists c such that

|G : coreG(H)| ≤ c|G:H| (16.7)

for every G ∈ X and every H ≤ G (‘exponential core condition’).
(ii) there exists k such that X ⊆ Bk if and only if there exists c such that

|G : coresnG(H)| ≤ |G : H|c (16.8)

for every G ∈ X and every H ≤ G (‘polynomial subnormal core condition’).

Proof. (i) Suppose that G ∈ CC
k ; we may assume that k ≥ 6. Let H < G

with |G : H| = n. Then the action of G on the right cosets of H gives a
permutation representation G → Sym(n) with kernel coreG(H), and it follows
by Theorem 16.4.8 that

|G : coreG(H)| ≤ µn−1;

so (16.7) holds with c = k (since µ ≤ k).
Conversely, suppose that (16.7) holds, and that G has a composition factor

isomorphic to S = Alt(m), where m ≥ 7. Let N C G be maximal such that
S is a composition factor of G/N , and write G = G/N . Then G has a unique
minimal normal subgroup M = S1 × · · · × Sr where Si ∼= S for each i, and
CG(M) = 1. Let U be a subgroup of index m in S1, put L = NG(S1) and
H = NL(U). Since G permutes S1, . . . , Sr transitively,

∣∣G : L
∣∣ = r, and since

every subgroup of index m in Alt(m) is a point-stabiliser (this holds because
m ≥ 7) we have |L : H| ≤ m. Thus∣∣G : H

∣∣ ≤ mr.

On the other hand, H ∩ S1 = U < S1, so H does not contain M and it follows
that coreG(H) = 1. Of course, (16.7) still holds with G in place of G, giving(

m!
2

)r
≤
∣∣G∣∣ = ∣∣G : coreG(H)

∣∣ ≤ c|G:H| ≤ cmr.

Hence mm/2 ≤ m! ≤ 2cm and so m ≤ 2c2. It follows that G ∈ CC
k where

k = max{6,
[
2c2
]
}.
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(ii) Suppose that G ∈ Bk, and let H < G with |G : H| = n. We claim that
(16.8) holds with c = f1(k). Replacing G by G/coreG(H), we may assume that
G is a subgroup of Sym(n) and that H is the stabiliser of 1, say.

Case 1. Suppose that G is primitive. Then |G| ≤ nc by Theorem 16.4.4,
and the result is immediate.

Case 2. Suppose that G is not primitive. The action of G on a minimal
system of imprimitivity gives a homomorphism θ : G → Sym(r), where 1 <
r < n and θ(G) is a primitive subgroup of Sym(r). As above, |θ(G)| ≤ rc. Put
K = ker θ. Then H ∩K is the stabiliser of 1 in K, so |K : H ∩K| is the length
of the K-orbit of 1, which is at most the size of a block, namely n/r. Making the
natural inductive hypothesis, we may suppose that H ∩K contains a subnormal
subgroup L of K with |K : L| ≤ (n/r)c. But then L is subnormal in G so

|G : coresnG(H)| ≤ |G : L| = |G : K| |K : L|
≤ rc(n/r)c = nc.

The proof of the converse is similar in spirit to the corresponding part of (i),
but more complicated, and we omit the details. (The result in this direction
will not be needed in this book).

Corollary 16.4.11 Let G be a transitive subgroup of Sym(n). If G ∈ Bk then
the exponent of G is at most nc, where c = f1(k).

Proof. Let H be a point stabiliser in G. By (ii), H contains a subnormal
subgroup U of G with nc ≥ |G : U | = t, say. Then Gt ≤ U , so Gt ≤ coreG(H) =
1. (The proof of (ii) gives c = f1(k).)

Let cf(G) denote the product of the orders of all the composition factors of
G (each isomorphism type being counted once). The following result, due to L.
Pyber, is a slight variation of one in [Segal 1996b]:

Proposition 16.4.12 Let G be a transitive subgroup of Sym(n). If G ∈ Bk then
cf(G) is at most nc, where c = f1(k).

Proof. If G is primitive this is clear from Theorem 16.4.4. Otherwise, G
permutes transitively a set of r blocks, each of size b, where r < n, b < n and
br = n. Let N be the kernel of this action. Provided the blocks are chosen
as small as possible, N induces equivalent transitive permutation groups on
the blocks. So N is a subdirect product of copies of some transitive subgroup
T ≤ Sym(b), and T ∈ Bk. Inductively, we may suppose that cf(G/N) ≤ rc and
cf(T ) ≤ bc. The result follows since cf(N) = cf(T ), cf(G) ≤ cf(N) · cf(G/N)
and br = n.

The next result gives an upper bound for the size of primitive groups un-
der weaker hypotheses than that of Theorem 16.4.4. It may be deduced from
[Cameron 1981], Theorem 6.1.
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Theorem 16.4.13 Let H be a primitive subgroup of Sym(n). If H ∈ CC
k then

|H| ≤ nc logn where c is a constant depending on k.

Corollary 16.4.14 Let G be a transitive subgroup of Sym(n). If G ∈ CC
k then

the exponent of G is at most nc logn.

Proof. If G is primitive this follows from the theorem. If not, then G
permutes transitively a set of k blocks, each of size n/k, where 1 < k < n.
Let N be the kernel of this action. Provided the blocks are chosen as small
as possible, N induces equivalent transitive permutation groups on the blocks.
Inductively we may suppose that these permutation groups have (the same)
exponent at most (n/k)c log(n/k), and that G/N has exponent at most kc log k.
The result follows since

kc log k · (n/k)c log(n/k) ≤ nc logn.

The next result applies to classes such as Ck:

Theorem 16.4.15 ([Borovik, Pyber & Shalev 1996], Thm 1.2) Let C be a
class of finite groups that is closed under taking subgroups, quotients and exten-
sions, contains all finite soluble groups but does not contain all finite groups.
Then there is a constant c (depending on C) such that for every n, the maximal
transitive C-subgroups of Sym(n) lie in at most nc conjugacy classes in Sym(n).

Finally we have the following bound for the number of conjugacy classes of
primitive groups:

Theorem 16.4.16 ([Pyber & Shalev 1996], Thm 1.) There is an absolute
constant c such that, for each n, the group Sym(n) has at most nc logn conjugacy
classes of primitive subgroups.

The last four theorems all depend on CFSG. The proofs involve detailed
information on the subgroup structure of finite simple groups and powerful
techniques of permutation group theory; we cannot go into them here.

3 Subgroups of alternating groups

For sets ∆ ⊆ Ω we make the convention that Alt(∆) is identified with the
pointwise stabiliser in Alt(Ω) of Ω \∆.

Definition Let Ω be a finite set. A standard subgroup of Sym(Ω) is a subgroup
of the form

Alt(Ω1)× · · · ×Alt(Ωr)

where Ω1, . . . ,Ωr are disjoint subsets of Ω of cardinality at least 5. We allow
r = 0, corresponding to the identity subgroup.

The following theorem is the key to counting subgroups in products of finite
alternating groups.
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Theorem 16.4.17 [Pyber (b)] Let Ω be a finite set and S a standard subgroup
of Sym(Ω). Then each subgroup H of S contains a standard subgroup H∗ of
Sym(Ω) such that

|S : H∗| ≤ |S : H|5 . (16.9)

Note that (16.9) is equivalent to

|H : H∗| ≤ |S : H|4 . (16.10)

We sketch the proof, which is basically a dévissage to Bochert’s theorem.
The first reduction is to

Proposition 16.4.18 Let H < Sym(n) where n ≥ 5. Then H contains a stan-
dard subgroup H∗ of Sym(n) such that

|H : H∗| ≤ |Sym(n) : H|3 . (16.11)

Let us assume this for now and deduce Theorem 16.4.17. So let

H < S = Alt(Ω1)× · · · ×Alt(Ωr)

where |Ωi| ≥ 5 for each i. Put A = Alt(Ω1) and B = Alt(Ω2)× · · · ×Alt(Ωr).
Suppose first that r = 1, so S = Alt(n), n ≥ 5. The proposition gives a

standard subgroup H∗ of H such that |H : H∗| ≤ (2 |S : H|)3 = 8 |S : H|3 ; this
implies (16.10) unless n < 8. If 5 ≤ n ≤ 7 then

|H| ≤ 1
2
(n− 1)! < n4 ≤ |S : H|4 ,

and we take H∗ = 1.
Now suppose that r > 1. Then S = A×B. Let X, Y denote the projections

of H into A and B and put DA = H ∩ A, DB = H ∩ B. Note that DA C
X, DB C Y and

|X| |DB | = |H| = |Y | |DA| .
Inductively we may suppose that there exist standard groups X∗ ≤ X and
Y∗ ≤ Y such that |X : X∗| ≤ |A : X|4 and |Y : Y∗| ≤ |B : Y |4. Put

H∗ = (H ∩X∗)(H ∩ Y∗) = (DA ∩X∗)× (DB ∩ Y∗).

Since any normal subgroup of a standard group is standard (because Alt(k)
is simple for k ≥ 5), we see that H∗ is a standard group. Moreover, since
H ≤ X × Y ,

|H : H∗| ≤ |X : X∗| |X∗ : DA ∩X∗| · |Y : Y∗| |Y∗ : DB ∩ Y∗|

≤ |A|4

|X|4
· |X|
|DA|

· |B|
4

|Y |4
· |Y |
|DB |

(16.12)

=
|S|4

|XY |3 |H|
≤ |S : H|4 .
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This completes the reduction, and it remains to prove Proposition 16.4.18.
Write S = Sym(Ω) and put n = |Ω| . Note that (16.11) is equivalent to

|H|4 ≤ (n!)3 |H∗| . (16.13)

Case 1. Where H < S is primitive. This is the heart of the proof. If
H = Alt(n) we take H∗ = H. Otherwise, H is a proper primitive group, and
Bochert’s result Theorem 16.4.1(1) shows that |S : H| ≥ dn/2e!. It is easy to
see that then

|S : H|4 ≥ n! = |S| ,

so we may take H∗ = 1.

Case 2. WhereH is transitive but imprimitive. ThenH preserves a partition
of Ω into blocks Ω1, . . . ,Ωs each of size r, say, where rs = n and 1 < r < n. Let

K = ker(H → Sym(s))

be the kernel of the permutation action of H on the set {Ω1, . . . ,Ωs} and let
Pi ≤ Sym(Ωi) be the group induced by K on Ωi. Then the Pi are conjugate
under H and H is contained in the permutational wreath product P o Sym(s)
where P = P1; so

|H| ≤ |P s| s! ≤ (r!)ss!.

Choosing r as small as possible we ensure that P is a primitive subgroup of
Sym(Ω1) = Sym(r). We will repeatedly use the elementary estimate

(r!)s(s!)r ≤ n!.

Subcase 2.1 : where 2 ≤ r ≤ 4. In this case we have

|H|4 ≤ (r!)4s(s!)4 ≤ (n!)3

(an easy estimate if s ≥ 3, a direct calculation when s = 2). So H∗ = 1 will do.

Assume henceforth that r ≥ 5, and put

Q = Alt(Ω1)× · · · ×Alt(Ωs).

Subcase 2.2 : where P is a proper primitive subgroup of Sym(Ω1). Applying
Bochert’s theorem to P we find that |H|4 ≤ (n!)3 by a calculation similar to
the preceding subcase. Take H∗ = 1 in this case.

Subcase 2.3 : where K ≥ Q. Put H∗ = Q. A simple calculation shows that
(16.13) holds in this case.

Subcase 2.4 : where K does not contain Q but Pi ≥ Alt(Ωi) for each i. Then
K ∩ Pi = 1 for each i. The following is a nice exercise:
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Lemma 16.4.19 Let N ≤ Q = A1×· · ·×As where the Ai are isomorphic finite
simple groups. Suppose that N projects onto each direct factor Ai but N � Ai

for each i. Then |N | ≤ |Q|1/2.

(cf. [Cameron 1999], Exercise 4.3). Applying this to K ∩ Q we infer that
|K ∩Q| ≤ |Q|1/2 and hence that

|K| ≤ 2s |K ∩Q| ≤ 2s(r!/2)s/2.

A short calculation using |H| ≤ s! |K| now yields |H|4 ≤ (n!)3, and we take
H∗ = 1 in this case.

Case 3 : where H is intransitive. Then H ≤ A×B where A = Sym(Ω1), B =
Sym(Ω2) and Ω = Ω1 ∪ Ω2 is a non-trivial partition of Ω. Put r = |Ω1| and
s = |Ω2| = n − r, and suppose that r ≤ s. As above, let X, Y denote the
projections of H into A and B and put DA = H ∩ A, DB = H ∩B. Note that
|S : H| ≥ |S : AB| =

(
n
r

)
.

Subcase 3.1 : where s ≤ 4. One verifies directly that
(
n
r

)4
> n!, whence

|H| ≤ r!s! <
(
n

r

)3

≤ |S : H|3 .

Take H∗ = 1.

Subcase 3.2 : where r ≤ 4 < s. Suppose that DB < B. Inductively we
may suppose that DB contains a standard subgroup T such that |DB : T | ≤
|B : DB |3 . In this case we put H∗ = T. Then

|H : H∗| ≤ |H : DB | |B : DB |3

≤ |A| · |AB : H|3

≤ r!
(
n

r

)−3

|S : H|3 ≤ 24
125

|S : H|3 .

If DB = B we take H∗ = Alt(Ω1) and get |H : H∗| ≤ 48 < |S : H|.
Subcase 3.3 : where s ≥ r ≥ 5. Suppose that X < A and Y < B. Inductively

we find standard subgroups X∗ ≤ X and Y∗ ≤ Y such that |X : X∗| ≤ |A : X|3

and |Y : Y∗| ≤ |B : Y |3. Put

H∗ = (H ∩X∗)(H ∩ Y∗) = (DA ∩X∗)× (DB ∩ Y∗).

As in (16.12), above, we then have

|H : H∗| ≤ |AB : H|3 ≤
(
n

r

)−3

|S : H|3 .

If X = A or Y = B, replace H by the inverse image in H of Alt(Ω1) ×
Alt(Ω2). This introduces a factor of at most 44 in the last equation. In any
case, |H : H∗| ≤ |S : H|3.

This completes the proof.



Window: Profinite groups

For background on profinite groups we recommend Wilson’s book [Wi] and the
book of Ribes and Zalesskii [RZ], where detailed proofs and generalisations can
be found for the results stated below. For pro-p groups a convenient source is
the book of Dixon, du Sautoy, Mann and Segal [DDMS].

Let us recall some definitions and elementary properties.
Let C be a class of finite groups. We assume throughout that C is closed

under taking normal subgroups, quotient groups and finite subdirect products,
and that C contains a non-trivial group. A pro-C group is the inverse limit of an
inverse system of epimorphisms of groups in C. When C is the class of all finite
groups a pro-C group is called a profinite group. This is a compact Hausdorff
topological group whose open subgroups form a base for the neighbourhoods
of 1 (and a subgroup is open if and only if it is closed and of finite index).
In general, a profinite group G is a pro-C group if and only if G/N ∈ C for
every open normal subgroup N of G. When C is the class of all finite p-groups
for a fixed prime p (respectively, all finite nilpotent groups, or all finite soluble
groups), a pro-C group is called a pro-p group (resp. a pronilpotent group, a
prosoluble group).

In the context of profinite groups, one commonly uses ‘subgroup’ to mean
‘closed subgroup’, and ‘generating set’ to mean ‘topological generating set’; in
particular, a profinite group is said to be finitely generated if it is topologically
generated by a finite subset (note that an infinite profinite group can never be
finitely generated as an ‘abstract’ group, since it is necessarily uncountable).
Also ‘homomorphism’ normally means ‘continuous homomorphism’. The profi-
nite group G can be generated by d elements if and only if G is the inverse limit
of finite d-generator groups, and this holds if and only if G/N is a d-generator
group for every open normal subgroup N of G.

1 Completions

Let Γ be a finitely generated group. The pro-C topology on Γ is defined by taking
as a fundamental system of neighborhoods of the identity the collection of all
normal subgroups N of Γ such that Γ/N ∈ C. A subgroup H is then open in
Γ if and only if H contains a normal subgroup N of Γ such that Γ/N ∈ C (this
implies that H has finite index in Γ). We can complete Γ with respect to this

361
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topology to get

Γ̂C = lim
←−

{Γ/N | N C Γ and Γ/N ∈ C} ;

this is the pro-C completion of Γ (it is denoted ΓĈ in [RZ]). It has a natural
topology, making it into a pro-C group, inherited from the product topology on∏

{Γ/N | N C Γ and Γ/N ∈ C}

where each of the finite groups Γ/N is given the discrete topology. There is a
natural homomorphism (continuous w.r.t. the pro-C topology)

i : Γ → Γ̂C

given by i(γ) = lim(γN). The kernel of i is the C-residual of Γ, that is the
intersection of all N C Γ such that Γ/N ∈ C. In particular, i is injective if and
only if Γ is residually-C, that is, if the C-residual of Γ is equal to 1.

If C = {all finite groups} we write Γ̂C = Γ̂: this is the profinite completion
of Γ; if C = {all finite p-groups} we write Γ̂C = Γ̂p: this is the pro-p completion
of Γ (also sometimes denoted Γp̂; the authors disagree as to which notation is
preferable).

Proposition 16.4.1 The universal property: the pair (Γ̂C , i) is characterized
by the following: i(Γ) is a dense subgroup of Γ̂C , and for every pro-C group P
and every continuous (relative to the pro-C topology) homomorphism ϕ : Γ → P

there exists a (necessarily unique) continuous homomorphism ϕ∗ : Γ̂C → P
such that ϕ∗ ◦ i = ϕ. Moreover, this holds if it holds for every continuous
homomorphism ϕ from Γ to a (finite) group P ∈ C.

If C1 ⊆ C2 then Γ̂C1 is the maximal pro-C1 quotient of Γ̂C2 .

Note that if C is closed under taking subgroups, then every homomorphism
Γ → P is continuous.

When the group Γ is residually-C, we normally identify Γ with its image
under i in Γ̂C .

Corollary 16.4.2 Let N C Γ. Then the quotient mapping Γ → Γ/N induces
an isomorphism

Γ̂C/N
'→ (̂Γ/N)C

where N denotes the closure of i(N) in Γ̂C.

Proof. N is contained in the kernel of the composed homomorphism Γ →
Γ̂C → Γ̂C/N so we have an induced homomorphism Γ/N → Γ̂C/N. This in
turn induces a homomorphism α : (̂Γ/N)C → Γ̂C/N . On the other hand,
Γ → Γ/N induces a homomorphism Γ̂C → (̂Γ/N)C whose kernel contains N,
giving β : Γ̂C/N

'→ (̂Γ/N)C . It is easy to see that α and β are mutual inverses.
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Proposition 16.4.3 Suppose that Γ is residually-C. Then there is a one-to-
one correspondence between the set X of all subgroups of Γ that are open in the
pro-C topology of Γ and the set Y of all open subgroups of Γ̂C, given by

X 7→ X (H ∈ X )
Y 7→ Y ∩ Γ (Y ∈ Y)

where X denotes the closure of X in Γ̂C. Moreover,

|Γ : X| =
∣∣∣Γ̂C : X

∣∣∣ .
This shows that the number

an(Γ̂C)

of open subgroups of index n in Γ̂C is equal to the number of subgroups of index n
in Γ that are open in the pro-C topology. For example, we have an(Γ̂) = an(Γ)
for each n, while an(Γ̂p) is equal to the number of subnormal subgroups of
index n in Γ when n is a power of the prime p. Though quite elementary this
observation is fundamental for this book, and we sketch the proof.

Write G = Γ̂C , and let N be a normal subgroup of Γ such that Γ/N ∈ C.
Then Γ/N is a pro-C group so the residue-class mapping ϕ : Γ → Γ/N induces
a homomorphism ϕ∗ : G→ Γ/N such that ϕ∗|Γ = ϕ. Thus writing Ñ = kerϕ∗
we have Ñ ∩ Γ = N ; also Ñ is open in G (being a closed subgroup of finite
index), and as Γ is dense in G it follows that Ñ is exactly the closure N of N
in G and that NΓ = G. Thus Γ/N is naturally isomorphic to G/N, and the
assignment X 7→ XN is an index-preserving bijection from the set of subgroups
X of Γ with N ≤ X to the set of all subgroups Y of G with Y ≥ N . It is clear
that if Y = XN then Y ∩ Γ = X and that Y is the closure of X in G. All the
claims of the proposition follow easily from this.

We emphasise that subgroup growth questions about profinite groups always
refer to the number of open subgroups of a given index; it is not known whether
a finitely generated profinite group can have subgroups of finite index that are
not open. (This cannot happen in pro-p groups – see [DDMS], Chapter 1 – nor
more generally in prosoluble groups [Segal 2000]).

Proposition 16.4.4 Assume (additionally) that the class C is closed under tak-
ing subgroups and extensions. Suppose that Γ is residually-C and that X ≤ Γ is
open in the pro-C topology. Then the closure of X in Γ̂C is isomorphic to X̂C.

Proof. Suppose M C X is such that M/X ∈ C. Let M0 be the Γ-core of
M (the intersection of all Γ-conjugates of M); then X/M0 ∈ C, being a finite
subdirect product of copies of X/M . Also there exists N C Γ with N ≤ X
such that Γ/N ∈ C. Now put D = M0 ∩ N . The hypotheses on C imply that
Γ/D ∈ C. From the proof of Proposition 16.4.3 we have

X = XD, X ∩ Γ = X and X ∩D = Γ ∩D = D.
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Thus the quotient map X → X/D lifts to the quotient map X → X/D, and
it follows that the quotient map X → X/M lifts to a homomorphism from X
onto X/MD ∼= X/M .

This shows that the inclusion mapping X → X has the universal property
with respect to continuous homomorphisms fromX into C-groups, and the result
follows from Proposition 16.4.1.

2 Free profinite groups

Let r be a positive integer and let F = Fr be the free group on the set
X = {x1, . . . , xr}. The pro-C completion F̂C of F is the free pro-C group on
r generators. That is, the mapping

j = i|X : X → F̂C

has the universal property: for every pro-C group G and every map ϕ from the
set X to G there is a unique continuous homomorphism ϕ̃ : F̂C → G such that
ϕ̃ ◦ j = ϕ.

Proposition 16.4.5 Assume (additionally) that the class C is closed under tak-
ing subgroups and extensions. Let F = Fr.

(i) Let T be a subgroup of F that is open in the pro-C topology, with |F : T | =
l. Then the closure T of T in F̂C is a free pro-C group on 1+ l(r−1) generators.

(ii) Let Y be an open subgroup of index l in F̂C . Then Y is a free pro-C group
on 1 + l(r − 1) generators.

It is known (see for example [RZ], Proposition 3.3.15) that F is residually-C.
The proposition then follows from Propositions 16.4.1 and 16.4.4, in view of the
Nielsen-Schreier Theorem (see [R], Theorem 6.1.1) which shows that X is a free
group on 1 + l(r − 1) generators. But a warning is needed here: the proof of
Proposition 16.4.4 used crucially the fact that C is closed under extensions. (In
fact we gave the proof to stress this point!) If C is the class of nilpotent groups,
for example, which is not extension closed, then Proposition 16.4.5 fails to hold.
Indeed, F̂C is then the Cartesian product of its Sylow pro-p subgroups F̂p, over
all primes p; so F̂C has an open subgroup of prime index q which takes the form∏

p6=q

F̂p × F̂ ∗q

where F ∗ is free on 1+q(r−1) generators; this group is neither free pro-nilpotent
on r generators nor on 1 + q(r − 1) generators.

For most purposes, it is safe to assume that we are dealing with a class C
that has all the desirable closure properties mentioned above; however, we will
also be interested in group classes defined by restrictions on composition factors:
such classes are not in general closed under taking subgroups, so a little care is
sometimes necessary.
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Warning The definition of a free pro-C group on an infinite set of generators
has to be slightly modified: see [Wi] §5.1 or [RZ] §3.3. We shall not be needing
this.

3 Profinite presentations

We assume throughout this section that the class C is closed under subgroups,
quotients and extensions. Let F = F̂C be the free pro-C group on the finite set
X = {x1, . . . , xd}, and let K be a closed normal subgroup of F . Suppose that
K is generated as a closed normal subgroup of F by a subset Y (that is, K is
generated topologically by the conjugates of all elements of Y ). We write

F/K = 〈X; Y 〉 .

It is natural to interpret this as the pro-C group generated by X subject to
the ‘relations’ Y, but we have to extend the language of ‘group words’ in the
following way. If w ∈ F and H is a pro-C group containing elements h1, . . . , hd,
the expression

w(h1, . . . , hd)

denotes the element ϕ(w) ∈ H where ϕ : F → H is the unique homomorphism
F → H sending xi to hi for i = 1, . . . , d. It is now clear that 〈X; Y 〉 has
the usual universal property: if G is any pro-C group generated by d elements
g1, . . . , gd such that

w(g1, . . . , gd) = 1 for all w ∈ Y,

then there exists a unique epimorphism π : 〈X; Y 〉 → G with π(xiK) = gi for
i = 1, . . . , d.

In particular, if this π is an isomorphism we say that G is generated by
{g1, . . . , gd} subject to the relations {w(g1, . . . , gd) | w ∈ Y }, and write

G = 〈g1, . . . , gd; Y 〉 .

This is called a pro-C presentation of G (it is usual also to say that G has a
pro-C presentation 〈X; Y 〉 if X is a set bijective with {g1, . . . , gd}).

Proposition 16.4.6 Suppose that G = Γ̂C where Γ is a finitely generated (ab-
stract) group. If

Γ = 〈X; Y 〉

is a presentation for Γ (in the usual sense), where X is finite, then

G = 〈X; Y 〉

is a pro-C presentation for G.
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Proof. Let Φ be the free (abstract) group on X and N the normal closure
of Y in Φ. By Corollary 16.4.2 we have

Φ̂C/N ∼= (̂Φ/N)C ∼= Γ̂C = G.

The result follows since Φ̂C is the free pro-C group on X and N is the closed
normal subgroup generated by (the image of) Y .

It follows that if a finite group Γ ∈ C has a presentation with d generators
and r relations, then it has such a pro-C presentation. Whether the converse is
true, however, is a long-standing open problem, both for C the class of all finite
groups and for C the class of finite p-groups (the problem is whether a set of
r ‘infinite’ relations, i.e. profinite ones, can be replaced by a set of r ordinary
finite relations).

For the remainder of this section, we take C to be the class of all finite
groups, and consider profinite presentations of a finite group G. Let F be the
free profinite group on a set X of d generators and suppose that

G = F/N = 〈X; R〉

where now N is an open normal subgroup of F, generated as a normal subgroup
by the set R. Write N ′ = [N,N ] for the closure of the derived group of N. Then
G acts by conjugation on the abelian group N/N ′, and the resulting G-module
is called the relation module of the associated presentation. For each prime p,
we put N(p) = N ′Np, and call N/N(p) the mod p relation module.

For any G-module M let dG(M) denote the minimal number of module
generators required by M . It is obvious that

dG(N/N(p)) ≤ dG(N/N ′) ≤ |R|

for each prime p. In Chapter 2, §2.3 we show that in fact there exists a set of
relations R with

|R| = max
p

dG(N/N(p))

(this is essentially Proposition 2.8 of [Gruenberg 1976]). Thus to determine
the minimal number of (profinite!) relations needed to define G, it suffices to
find the numbers dG(N/N(p)). Remarkably, this information is contained in the
represenation theory of G. The following result is due to [Gruenberg 1976]; see
also [Lubotzky 2001] for the case where G is profinite (not necessarily finite).

Let S denote the set of all simple Fp[G]-modules, and for M ∈ S put

ξM = 0 if M ∼= Fp
ξM = 1 if M � Fp.

Then Gruenberg’s formula is as follows:

Proposition 16.4.7

dG(N/N(p)) = max
M∈S

{⌈
dimH2(G,M)− dimH1(G,M)

dimM

⌉
− ξM

}
+ d. (16.1)
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(If p - |G|, this formula reduces to dG(N/N(p)) = d, a result obtained earlier by
Gaschütz.)

Now fix M ∈ S. Then E = HomG(M,M) is a finite field extension of Fp,
and both H1(G,M) and H2(G,M) have a natural structure as E-modules. Put

eM = (E : Fp)
rM = dimE(M)

sM = dimE H
1(G,M)

tM = dimE H
2(G,M).

Let `(M) be the maximal integer such that M `(M) is a quotient module of
N/N(p); then

HomG(N,M) = HomG(N/N(p),M) ∼= E`(M).

Now the key step is

Lemma 16.4.8 For each M ∈ S,

`(M) = rM (d− ξM )− sM + tM .

Proof. Considering M as an F -module, we have the 5-term exact sequence
corresponding to the extension 1 → N → F → G→ 1:

0 → H1(G,MN ) → H1(F,M) → H1(N,M)G → H2(G,MN ) → H2(F,M)
(∗)

(see [RZ] Corollary 7.2.5).
Now as M is trivial as an N -module,

H1(N,M)G = HomG(N,M) ∼= E`(M).

Also

dimFp H
1(F,M) =

{
d · dimFp

M if M is the trivial G-module
(d− 1) dimFp M if M is non-trivial

= (d− ξM )eMrM ;

while since MN = M we have

dimFp
H1(G,MN ) = eMsM ,

dimFp
H2(G,MN ) = eM tM .

Note finally that H2(F,M) = 0 because F is free. Putting this information into
(∗) gives

eMsM − (d− ξM )eMrM + eM `(M)− eM tM = 0.

The lemma follows.

Note now that
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(i) MrM is the maximal direct power of M which appears as a quotient of
Fp[G]. Indeed, if M occurs r′ times then

M ∼= HomFp[G](Fp[G],M) ∼= HomFp[G](M,M)r
′
= Er

′
;

(ii) dG(M `(M)) is equal to the smallest integer k such that M `(M) appears as
quotient of Fp[G]k.

Together these imply that

dG(M `(M)) =
⌈
`(M)
rM

⌉
.

An elementary argument shows that

dG(N/N(p)) = max
M∈S

dG(M `(M)).

Using the formula for `(M) given in the lemma we deduce finally that

dG(N/N(p)) = max
M∈S

⌈
`(M)
rM

⌉
= max
M∈S

(⌈
tM − sM
rM

⌉
− ξM + d

)
.

This completes the proof of Proposition 16.4.7.



Window: Pro-p groups

A pro-p group is an inverse limit of finite p-groups, or equivalently it is a profinite
group (# Profinite groups) in which every open subgroup has index a power
of p ; here p denotes a prime, kept fixed throughout. It is important to note
that a non-trivial profinite group can be a pro-p group for at most one prime p
(otherwise the only open subgroup is the whole group).

We consider only closed subgroups and continuous homomorphisms; so 〈X〉
denotes the closed subgroup generated by a subset X in a pro-p group G,
G′ = [G,G] the closure of the derived group, and Gp

n

the closed subgroup
generated by all xp

n

, x ∈ G. As usual, d(G) denotes the minimal cardinality of
a (topological) generating set for G.

The lower central p-series of a pro-p group G is defined by

P1(G) = G

Pn(G) = [Pn−1(G), Pn−1(G)]Pn−1(G)p (n > 1).

The modular dimension series or Jennings-Zassenhaus series is defined by

D1(G) = G

Dn(G) =
∏

i+j=n

[Di(G), Dj(G)] ·Ddn/pe(G)p (n > 1).

The material of the first two sections can all be found in [DDMS] and/or in
[Wi].

1 Generators and relations

Let G be a pro-p group. The Frattini subgroup Φ(G) of G is the intersection of
all maximal (open) subgroups of G. Every maximal subgroup of G is normal
and of index p, (because the same is true for finite p-groups), and so contains
G′Gp. Therefore Φ(G) ≥ G′Gp. On the other hand, G′Gp is an intersection
of open normal subgroups N of G; for each such N the group G/N is a finite
elementary abelian p-group and satisfies Φ(G/N) = 1. Therefore Φ(G) ≤

⋂
N,

and we have

Proposition 16.4.1 If G is a pro-p group then Φ(G) = G′Gp.

369
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It follows that if θ : G→ H is an epimorphism of pro-p groups then

θ(Φ(G)) = Φ(H). (16.1)

A subset X of G generates G if and only if X * M for every maximal
subgroup M ; this holds for X if and only if it holds for Φ(G)∪X. Consequently
G = 〈X〉 if and only if G = 〈X〉Φ(G). Considering G/Φ(G) as a vector space
over Fp, we deduce that G is finitely generated if and only if G/Φ(G) is finite-
dimensional, in which case

d(G) = dimFp
(G/Φ(G)).

This fact makes pro-p groups much easier to manage than profinite groups
in general. Here is one application (for generalities on profinite presentations
see the Profinite groups window).

Proposition 16.4.2 Suppose that the pro-p group G has a finite pro-p presen-
tation G = 〈X;R〉. Then G has a pro-p presentation 〈Y ;S〉 such that

|Y | = d(G), |S| = |R| − (|X| − d(G)).

Proof. Let F be the free pro-p group on the set X. We are given an
epimorphism θ : F → G with kernel

〈
RF
〉
. This induces an epimorphism

φ : F/Φ(F ) → G/Φ(G), and it follows from (16.1) that kerφ =
〈
RF
〉
Φ(F ) =

〈R〉Φ(F ). Let r1, . . . , rk ∈ R be such that {r1Φ(F ), . . . , rkΦ(F )} is a basis for
〈R〉Φ(F )/Φ(F ), and extend this to a basis {r1Φ(F ), . . . , rkΦ(F ), s1Φ(F ), . . . , snΦ(F )}
of F/Φ(F ). Then

n = dimFp
(G/Φ(G)) = d(G),

k = d(F )− n = |X| − d(G).

Now put R0 = {r1, . . . , rk} and let N be the normal closure of R0 in F . It is
easy to see from the universal property that F/N = F̃ is the free pro-p group
on the set Y = {s1N, . . . , snN}, and θ induces an epimorphism θ∗ : F̃ → G.
Moreover,

ker θ∗ =
〈
RF
〉
N/N =

〈
SF̃
〉

where S is the image of R \ R0 in F̃ . The result follows since |S| ≤ |R| − k (if
this inequality is strict we may just repeat some relators).

It is plausible to suppose that a pro-p group G = 〈X;R〉 must be large if |R|
is small compared with |X| . The celebrated theorem of Golod and Shafarevich
asserts that if |X| = d(G) and |R| < |X|2 /4 then G must be infinite; recently,
[Zelmanov 2000] has proved that under these conditions, G must in fact contain
a non-abelian free pro-p subgroup. Here we prove the very easy

Lemma 16.4.3 Suppose that the pro-p group G has a finite pro-p presentation
G = 〈X;R〉 . If |R| < |X| then G has an infinite abelian quotient.
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Proof. We have G ∼= F/N where F is the free pro-p group on d generators
andN is generated by the conjugates of x1, . . . , xr, say, where r = |R| < |X| = d.
Then G/G′ ∼= F/NF ′. Now F/F ′ ∼= Zdp and NF ′/F ′ is generated by the r < d

elements xiF ′. Since every Zp-submodule of finite index in Zdp is isomorphic to
Zdp it follows that NF ′ has infinite index in F .

The same argument applied to the abstract free group on d generators gives

Lemma 16.4.4 Every finite presentation of a finite group needs at least as
many relators as generators.

2 Pro-p groups of finite rank

The rank of a profinite group G is

rk(G) = sup {d(H) | H ≤o G}
= sup {d(H) | H is a closed subgroup of G} .

The following portmanteau theorem summarises much of the book [DDMS];
for detailed references see [DDMS], Interlude A. The results are due mainly to
[Lazard 1965] and [Lubotzky & Mann 1987].

Theorem 16.4.5 For a pro-p group G the following are equivalent:

a G has finite rank;

b G has the structure of a p-adic analytic group;

c G is isomorphic to a closed subgroup of GLd(Zp) for some d;

d G is finitely generated and virtually powerful;

e G is virtually uniform;

f G is finitely generated and for some n, or for infinitely many n, Dn(G) =
Dn+1(G);

g G has PSG, or PIG, or is boundedly generated.

Of these, (b) is mentioned mainly for interest, and will only be used in
Chapter 16. PSG means ‘polynomial subgroup growth’: that this is equivalent
to finite rank for pro-p groups is proved in Chapter 4 of this book. The conditions
PIG (‘polynomial index growth’) and ‘bounded generation’ are discussed in
Chapter 12.

To say that G is powerful means that G/Gp is abelian (if p is odd), that
G/G4 is abelian (if p = 2); this is equivalent to saying that G is the inverse
limit of a system of powerful finite p-groups with all maps surjective (# Finite
group theory). G is uniform if G is powerful and

d(G) = dimFp
(Pn(G)/Pn+1(G)) <∞ for all n ≥ 1.
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This holds if and only if G is f.g., powerful and torsion-free ([DDMS], Chapter
4).

If G is f.g. and powerful then for each n > 1,

Pn(G) = Gp
n−1

=
{
gp

n−1
| g ∈ G

}
= Φ(Pn−1(G)).

If G is a pro-p group of finite rank then there exists d such that d(H) = d for
every open uniform subgroup H of G. This number d is called the dimension
of G and is denoted dim(G). This is equal to the dimension of G as a p-adic
analytic group. Evidently

dim(G) ≤ rk(G).

If G is powerful then we also have

rk(G) = d(G).

In particular, if G is uniform then rk(G) = dim(G), so every subgroup of G can
be generated by dim(G) elements. As one would expect, dimension is additive
on extensions:

Proposition 16.4.6 ([DDMS], Theorem 4.8) Let G be a pro-p group of finite
rank and N a closed normal subgroup of G. Then

dim(G) = dim(N) + dim(G/N).

The next result in the case of finite p-groups is discussed in the window on
Finite group theory. For the proof see [DDMS], Corollary 3.14:

Proposition 16.4.7 Let G be a pro-p group and r a positive integer. If every
open subgroup of G contains an open normal subgroup N of G with d(N) ≤ r
then G has finite rank.

Now let us examine the implication (c) =⇒ (a) in Theorem 5 more closely.
Fix a positive integer d and for i ≥ 1 let

Γ(i) = GLid(Zp) =
{
g ∈ GLd(Zp) | g ≡ 1d (mod pi)

}
∆(i) = SLid(Zp) =

{
g ∈ SLd(Zp) | g ≡ 1d (mod pi)

}
.

Thus Γ(i) is the kernel of the residue map GLd(Zp) → GLd(Zp/piZp), and
similarly for ∆(i) (these are ‘principal congruence subgroups modulo pi’). The
following is proved in [DDMS], Chapter 5:

Proposition 16.4.8 Let i ≥ 1 if p is odd, i ≥ 2 if p = 2. Then Γ(i) is a
uniform pro-p group of dimension d2.

We now deduce
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Corollary 16.4.9 (i) Suppose that p 6= 2. Then rk(∆(1)) = d2 − 1.
(ii) Suppose that p = 2. Then rk(Γ(1)) ≤ 2d2 and rk(∆(1)) ≤ 2d2 − 1.

Proof. (i) The mapping g 7→ det g is a homomorphism from Γ(1) into
the multiplicative group U = 1 + pZp ⊆ Z∗p, with kernel ∆(1) and nontrivial
image. Now U ∼= Zp (by the logarithm map, or apply the proposition with
d = 1). Therefore Γ(1)/∆(1) ∼= Zp. The claim follows because dim is additive
on extensions ([DDMS] Theorem 4.8).

(ii) Write V = Z(d)
2 . Then Γ(1)/Γ(2) acts faithfully on V/4V and trivially on

both V/2V and 2V/4V . The mapping g 7→ g − 1 therefore induces an injective
homorphism from Γ(1)/Γ(2) into Hom(V/2V, 2V/4V ) ∼= F(d2)

2 . Since rank is
(obviously) sub-additive on extensions it follows that rk(Γ(1)) ≤ rk(Γ(2))+d2 =
2d2.

The argument of (i) shows similarly that rk(∆(2)) = d2 − 1. As ∆(1)/∆(2)
is isomorphic to a subgroup of Γ(1)/Γ(2) it follows as before that rk(∆(1)) ≤
rk(∆(2)) + d2 = 2d2 − 1.

For a more direct argument, see the proof of [Wi], Lemma 8.3.3.

3 Linear pro-p groups over local fields

In this section, K will denote a local field of positive characteristic `. The ring
of integers of K is denoted OK .

Proposition 16.4.10 Suppose that G ≤ GLm(K) is a pro-p group where p 6= `.
Then G is finite.

Proof. Since G is compact, it can be conjugated into GLm(OK). Since this
is virtually a pro-` group, it follows that G has a subgroup H of finite index
that is both a pro-p group and a pro-` group. Since p 6= ` this forces H = 1.

The following major theorem describes the structure of compact subgroups
in general:

Theorem 16.4.11 ([Pink 1998], Corollary 0.5) Let G be a compact subgroup
of GLm(K). Then there exist closed normal subgroups L3 ≤ L2 ≤ L1 of G such
that:
(1) G/L1 is finite;
(2) L1/L2 is abelian of finite exponent;
(3) if L2/L3 is infinite, there exist a local field E of characteristic `, a connected
adjoint semi-simple algebraic group H over E with universal covering π : H̃ →
H, and an open compact subgroup ∆ ⊆ H̃(E), such that L2/L3 is isomorphic
as topological group to π(∆);
(4) L3 is a soluble group of derived length at most m.

Corollary 16.4.12 Suppose that G ≤ GLm(K) is a pro-p group of finite rank.
Then G is virtually abelian.
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Proof. By Proposition 16.4.10 we may assume that p = `. It is easy to see
that now G/L2 is finite. We claim that L2/L3 is also finite. Suppose not. Then
L2/L3 is a pro-p group of finite rank which is isomorphic to an open compact
subgroup ∆ of a semi-simple group H over a characteristic-p local field E. But
this is impossible. Indeed, E is isomorphic to Fq((t)) for some q = pk, and ∆ is
commensurable to H(Fq[[t]]) = P , say. The congruence subgroups

Pn = ker(H(Fq[[t]]) → H(Fq[[t]]/(tn)))

satisfy [Pn, Pn]P pn ≤ P2n and |Pn : P2n| ≥ pn for all n. Thus Pn/P2n is an
elementary abelian p-group of rank at least n. It follows that P , and therefore
also ∆, has infinite rank as a pro-p group, and so cannot be isomorphic to
L2/L3. (One could also deduce the same conclusion from [Pink 1998], Corollary
0.3, which shows that if two open compact subgroups of simple algebraic groups
over local fields are isomorphic, then the fields are the same, and the algebraic
groups are isomorphic.)

We conclude that L3 is of finite index in G, so G is virtually soluble. By the
Lie-Kolchin-Mal’cev theorem (# Linear groups), G has a unipotent normal
subgroup U such that G/U is virtually abelian, and we may take U to be closed
in G. Then U is a pro-p group of finite rank and has exponent dividing pm,
so U is finite. As G is residually finite it follows that G is virtually abelian as
claimed.

Remark The ranks of torsion-free abelian subgroups pro-p subgroups of
GLm(K) are not bounded. Even GL1(Fp[[t]]) contains free abelian pro-p sub-
groups of arbitrarily large rank: for example, for every set of primes {q1, . . . , ql},
the elements {1 + tqi | i = 1, . . . , l} generate a free abelian pro-p group of rank
l.

A more elaborate application of Pink’s theorem leads to

Theorem 16.4.13 [Barnea & Larsen 1999] The group GLm(K) contains no
free non-abelian pro-p subgroup.

4 Automorphisms of finite p-groups

Proposition 16.4.14 Let A be a finite abelian p-group of rank r. Then the
p-rank of Aut(A) is at most 1

2 (3r2 − r) if p is odd, 1
2 (5r2 − r) if p = 2.

Proof. Let V = Z(r)
p and identify A with a quotient Zp-module V/K of V .

Let Γ be the stabiliser of K in AutZp
(V ). Since V is a free Zp-module every

automorphism α of A lifts to a Zp-endomorphism α∗ of V ; each such α∗ is
surjective since V = K+V α∗ and K ≤ V p, hence α∗ is also injective, so in fact
α∗ ∈ Γ. It follows that the natural mapping from Γ to Aut(A) is surjective, and
hence that

rp(Aut(A)) ≤ urp(Γ) ≤ urp(AutZp
(V )).
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Now AutZp(V ) = GLr(Zp). Using Proposition 7 or Corollary 16.4.9 we have

urp(GLr(Zp)) ≤ rk(GL1
r(Zp)) + rp(GLr(Fp))

≤ εr2 + r(r − 1)/2,

where GL1
r(Zp) is the first congruence subgroup in GLr(Zp) and ε = 1 if p is

odd, ε = 2 if p = 2 (for the p-rank of GLr(Fp) see the window on Finite group
theory). The result follows.

For a direct proof, see [Wi], Lemma 8.3.3.

Lemma 16.4.15 Let G be a finite p-group and P C G. Let A be maximal
among the normal abelian subgroups of G contained in P . Then CP (A) = A.

Proof. Suppose CP (A) > A. Then CP (A) contains an element z /∈ A such
that zA is in the centre of G/A. But then A 〈z〉 is abelian and normal in G,
contradicting the maximality of A.

Proposition 16.4.16 Let P be a finite p-group of rank r and Q a p-subgroup of
Aut(P ). Then the rank of Q is at most 1

2 (5r2−r) if p is odd, at most 1
2 (7r2−r)

if p = 2.

Proof. Put G = PoQ. Let A C G be as in the lemma, and put C = CG(A).
Then [P,C] ≤ C ∩ P = A, so C/CC(P ) embeds into Der(P/A,A) via

c 7→ (h 7→ [h, c]) .

Since Q ∩ CC(P ) = 1 it follows that

Q ∩ C ↪→ Der(P/A,A) ↪→ A(r).

Thus rk(Q ∩ C) ≤ r2.
Proposition 16.4.14 shows that the rank of any p-subgroup of Aut(A) is at

most
3r2 − r

2
(p 6= 2),

5r2 − r

2
(p = 2).

Since Q/(Q∩C) acts faithfully on A this is an upper bound for rk(Q/(Q∩C)),
and the result follows since

rk(Q) ≤ rk(Q ∩ C) + rk(Q/(Q ∩ C)).

(A weaker bound is given in [Segal & Shalev 1997], Lemma 2.1.)

5 Hall’s enumeration principle

This is a form of the inclusion-exclusion argument in combinatorics particularly
adapted to counting sets of subgroups in p-groups.
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For integers r ≥ t ≥ 0 we write[
r

t

]
=

(pr − 1)(pr−1 − 1) . . . (pr−t+1 − 1)
(pt − 1)(pt−1 − 1) . . . (p− 1)

=
[

r

r − t

]
;

this is the number of subspaces of dimension (or codimension) t in the vector
space Frp.

We begin with two lemmas.

Lemma 16.4.17 [
r + 1
t

]
=
[
r

t

]
+ pr−t+1

[
r

t− 1

]
.

This is immediate from the defining formula; we prefer to see it as an exercise
in counting subspaces. Let V = Fr+1

p > U ∼= Fp. For each subspace W/U of
codimension t − 1 in V/U there are precisely pr−t+1 complements to U in W ,
giving altogether pr−t+1

[
r
t−1

]
subspaces of codimension t in V ; the remaining

subspaces of this codimension in V all contain U, and there are
[
r
t

]
of them.

Lemma 16.4.18 The following identity holds:

r−1∏
t=0

(X − pt) =
r∑
t=0

(−1)tpt(t−1)/2

[
r

t

]
Xr−t (16.2)

Proof. Let F (r,X) denote the polynomial on the right-hand side of this
identity. It is easy to see that F (1, X) = X−1. Now let r ≥ 1 and suppose that
F (r,X) =

∏r−1
t=0 (X − pt).

Now consider the coefficient of Xr+1−t in F (r,X)(X − pr). For t ≥ 1 this is
equal to

(−1)tpt(t−1)/2

[
r

t

]
− pr · (−1)t−1p(t−1)(t−2)/2

[
r

t− 1

]
= (−1)tpt(t−1)/2

[
r + 1
t

]
by Lemma 16.4.17; for t = 0 it is equal to 1. In either case this is the coefficient
of Xr+1−t in F (r + 1, X), so we have F (r,X)(X − pr) = F (r + 1, X) and the
lemma follows by induction.

We can now state the main result, due to [Hall 1934]; he considered finite
p-groups but the proof is the same:

Proposition 16.4.19 Let G be a pro-p group, Φ = Φ(G) = [G,G]Gp its Frat-
tini subgroup and d = d(G). For 1 ≤ t ≤ r let{

Kt,i | i = 1, . . . ,
[
d

t

]}
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be the set of all subgroups K of G with Φ ≤ K ≤ G and |G : K| = pt. Let S be
a finite collection of proper subgroups of G and denote by n(t, i) the number of
H ∈ S such that H ≤ Kt,i. Then

|S|+
d∑
t=1

(−1)tpt(t−1)/2

[dt]∑
i=1

n(t, i) = 0. (16.3)

Proof. For H ∈ S, put δH(t, i) = 1 if H ≤ Kt,i, δH(t, i) = 0 otherwise. The
left-hand side of (16.3) is then equal to to sum over all H ∈ S of the expressions

1 +
d∑
t=1

(−1)tpt(t−1)/2

[dt]∑
i=1

δH(t, i). (16.4)

Fix such an H and let L be the intersection of all the Kt,i that contain H.
Then L ≥ Φ and |G : L| = pr for some r ≥ 1. Now δH(t, i) = 1 just when
Kt,i ≥ L, and for each t with 1 ≤ t ≤ r there are precisely

[
r
t

]
such Kt,i;

consequently (16.4) is equal to

1 +
r∑
t=1

(−1)tpt(t−1)/2

[
r

t

]
=
r−1∏
t=0

(1− pt) = 0,

as we see on substituting X = 1 in Lemma 16.4.18.
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Window: Soluble groups

1 Nilpotent groups

Most of the following is quite elementary and can be found in [Sg], Chapter 1
or [R], Chapter 5.

Proposition 16.4.1 Let G be a group and Gi = γi(G) for each i. Then for
each i > 1 the commutator induces an epimorphism of abelian groups

Gi−1/Gi ⊗Z G/G
′ → Gi/Gi+1.

Consequently,
(i) if Gk/Gk+1 is π-torsion for some set of primes π, or has exponent dividing
m, then Gi/Gi+1 has the same property for each i ≥ k;
(ii) if rk(G/G′) = r then rk(G/Gk+1) ≤ r+r2+· · ·+rk. Hence if G is nilpotent
and G/G′ has finite rank then G has finite rank;
(iii) if a group Γ acts on G and

[G,Γ, . . . ,Γ︸ ︷︷ ︸
n

] ≤ G2

then for each i ≥ 1
[Gi,Γ, . . . ,Γ︸ ︷︷ ︸

in

] ≤ Gi+1.

Proposition 16.4.2 Let G be a finitely generated nilpotent group.
(i) G is residually finite.
(ii) The elements of finite order in G form a finite subgroup τ(G) and G/τ(G)
is torsion free.
(iii) If G is torsion-free then G is residually a finite p-group for every prime
p. If G is not torsion-free then G is residually a finite nilpotent π-group where
π = π(G) is the finite set of primes p such that G contains an element of order
p.
(iv) G/τ(G) has a central series of finite length h with infinite cyclic factors.
Here h = h(G) is an invariant of G, the Hirsch length.
(v) For each prime p, the pro-p completion Ĝp has finite rank. If p /∈ π(G) then

379



380 SOLUBLE GROUPS

Ĝp is a torsion-free pro-p group and

rk(Ĝp) = dim(Ĝp) = h(G).

(vi) For every prime p,
rk(Ĝp) = urp(G).

Part (vi) holds because if G is any finite quotient of G then each Sylow
subgroup of G is a direct factor. Evidently urp(G) ≤ rp(τ(G)) + h(G), which is
finite.

Suppose that G is torsion-free. Then G has a central subgroup Z ∼= Z such
that G/Z is torsion-free with Hirsch length h− 1. By (ii) applied to the group
G/Zp

n

we see that Zp
n

is closed in the pro-p topology of G, for each n, from
which it follows easily that the sequence

1 → Ẑp → Ĝp → (̂G/Z)p → 1

is exact. It follows that Ĝp is a torsion-free pro-p group of dimension

h = h(G) ≥ urp(G) = rk(Ĝp).

This is then an equality since rk(P ) ≥ dim(P ) for any pro-p group P of finite
rank (# pro-p groups). Part (v) now follows since Ĝp = ̂(G/τ(G))p whenever
p /∈ π(G)

Proposition 16.4.3 ‘Stability groups’ Let G be a group and Γ a subgroup of
Aut(G). Suppose that

1 = G0 ≤ G1 ≤ . . . ≤ Gk = G

is a chain of normal subgroups of G such that [Gi,Γ] ≤ Gi−1 for 1 ≤ i ≤ k.
Then
(i) γk(Γ) = 1;
(ii) if k = 2 then Γ embeds in Der(G/G1,Z(G1)) via

γ 7→ (gG1 7→ [g, γ]) .

2 Soluble groups of finite rank

These were studied by A. I. Mal’cev around 1950 and then by D. J. S. Robinson
and Wehrfritz around 1970. Many of the assertions below are proved in [R2],
sections 9.3 and 10.3.

Following [We], we denote by
St

the class of soluble groups of finite rank that are virtually torsion-free.
The following is proved in [We], pages 25-26:
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Proposition 16.4.4 Let G be an St group. Then G is isomorphic to a subgroup
of GLn(Q) for some n.

With the Lie-Kolchin-Mal’cev theorem (# Linear groups) this implies that
every St group is virtually nilpotent-by-abelian; in fact, since a diagonalisable
linear group over (a finite extension of) Q has finite rank if and only if it is
finitely generated, we can deduce (cf. [R2], Theorem 10.33)

Proposition 16.4.5 If G is an St group then G has a nilpotent normal sub-
group N such that G/N is virtually free abelian of finite rank.

A soluble group G is minimax if there is a finite chain

1 = G0 ≤ G1 ≤ . . . ≤ Gk = G (16.1)

of normal subgroups of G such that each factor Gi/Gi−1 is an abelian minimax
group; an abelian group A is minimax if A contains a subgroup B such that

(i) B is finitely generated

(ii) A/B is the direct product finitely many groups of type Cp∞ (for various
primes p). The set of primes p that occur is called spec(A).

For any set of primes π write

Qπ = Z[
1
p
| p ∈ π].

A torsion-free abelian group A is minimax if and only if A is isomorphic to a
subgroup of Q(r)

π for some finite r and some finite set of primes π; the smallest
such set is then spec(A). If G is as above, one defines

spec(G) =
k⋃
i=1

spec(Gi/Gi−1).

This is a finite set of primes.
More generally, if G is virtually an St group then there is a set π of primes

and a chain (16.1) of normal subgroups of G such that Gi/Gi−1 ↪→ Q(ri)
π for

i = 1, . . . , k − 1 and G/Gk−1 is finite. The smallest such set π (which may be
infinite in general) is called spec(G), and G is virtually minimax if and only if
π is finite. The proof of Proposition 16.4.4 shows that G is a linear group over
the ring Qπ. Conversely, it follows from the Lie-Kolchin-Mal’cev theorem that
if π is finite then every soluble linear group over Qπ belongs to St, and is a
minimax group (this depends also on the S-units theorem of Dirichlet).

Proposition 16.4.6 A soluble minimax group G is residually finite if and only
if it is virtually torsion-free.
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In one direction this follows from the preceding remark, since if π is a finite
set of primes then the group GLn(Qπ) is residually finite, because the finitely
generated ring Qπ is residually finite. In the other direction, it follows from
[R2], Theorem 10.33 which shows that a residually finite soluble minimax group
is virtually nilpotent-by-(free abelian of finite rank); while if N is a nilpotent
minimax group with torsion subgroup T then T is finite if it is residually finite
(cf. [R2], Theorem 10.23).

Both the classes of soluble minimax groups and of St groups are closed under
taking extensions. The first is obvious from the definition; the second follows
from

Lemma 16.4.7 Let G be a soluble group of finite rank. Then G ∈ St if and
only if G has no infinite periodic normal subgroup.

This follows from [R2], Theorem 9.39.3 and Lemma 9.34. Together with the
preceding proposition it easily implies

Proposition 16.4.8 The class of residually finite virtually soluble groups of
finite rank is extension-closed.

Finally, the important result of Robinson:

Theorem 16.4.9 ([R2], Theorem 10.38) Every finitely generated soluble group
of finite rank is a minimax group.

In [Robinson 1975] this is generalised, to show that every finitely generated
soluble group having finite sectional p-rank for each prime p is a minimax group.

To summarise some of the main conclusions:

Theorem 16.4.10 Let X denote the class of finitely generated residually finite
virtually soluble groups of finite rank.

(1) A finitely generated group G belongs to X if and only if G is virtually
soluble and linear over Qπ for some finite set of primes π.

(2) A finitely generated group G belongs to X if and only if G is virtually a
torsion-free soluble minimax group.

(3) The class X is extension-closed.

Now let G ∈ St. The sum of the torsion-free ranks of the abelian factors
Gi/Gi−1 in a series like (16.1) is an invariant h(G) called the Hirsch length of
G. This can be detected in suitable pro-p completions:

Proposition 16.4.11 Let G ∈ St be residually finite, and let p be a prime.
Then Ĝp is a pro-p group of finite rank and dimension at most h(G). If p /∈
spec(G) then G has a normal subgroup H of finite index such that dim(Ĥp) =
h(G).
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Proof. G has an abelian normal subgroup A such that G/A is again a
residually finite St group and A is isomorphic to a subgroup of Q(r)

π , where
π ⊆ spec(G), r = rk(A) > 0 and h(G) = r + h(G/A). We have an exact
sequence

1 → A→ Ĝp → (̂G/A)p → 1 (16.2)

where A denotes the closure of A in Ĝp. Now A is an image of Âp and Âp ∼= Z(s)
p

for some s ≤ r; moreover s = r if p /∈ π. Since the rank is subadditive and the
dimension is additive on extensions of pro-p groups, and dim(Zp) = 1, (# Pro-p
groups), the first claim of the proposition follows by induction on h(G).

For the second claim, let H =
⋂

CG(M) where M ranges over all the normal
sections of G that are elementary abelian p-groups; since G has finite rank m,
say, we have G/CG(M) ↪→ GLm(Fp) for each such M , and as G is soluble of
finite rank it follows that G/H is finite. We claim that dim(Ĥp) = h(G).

Replacing G by H in (16.2) and arguing by induction, it suffices now to show
that if A is the closure of A in Ĥp then A ∼= Âp. This holds provided the pro-p
topology on H induces that on A. A base for the neighbourhoods of 1 in the
latter topology is the family of subgroups Ap

n

, n ∈ N, so it remains to show
that for each n there exists a normal subgroup Kn of finite p-power index in H
such that Ap

n

= A ∩Kn.
By Proposition 16.4.8 the quotient G/Ap

n

is residually finite, so there exists
a normal subgroup N of finite index in G with A∩N = Ap

n

. Now put K/(N ∩
H) = Op′(H/(N ∩H)). Evidently K ∩ A = Ap

n

. We claim that H/K is a p-
group. To see this, put P/K = Op(H/K). If P < H then there exists a normal
subgroup Q/P of H/P with Q ≤ H and 1 6= Q/P an abelian q-group for some
prime q 6= p. The definition of H ensures that H acts nilpotently on P/K, so
Q/K is a nilpotent group, hence has a unique Sylow q-subgroup Q0/K. But
Q0/(N ∩H) is a normal p′-subgroup of H/(N ∩H) and Q0 > K, contradicting
the definition of K. It follows that H/K = P/K is a p-group, as claimed. This
completes the proof.

Remark. It is not hard to see that the converse of the final statement is also
true, in the sense that if p ∈ spec(G) then dim(Ĥp) < h(G) for every subgroup
H of finite index in G.

3 Finitely generated metabelian groups

In the 1950s Philip Hall obtained some deep results about the structure of
finitely generated soluble groups by generalising facts from commutative alge-
bra to the case of certain non-commutative group rings. When dealing with
metabelian groups, it is enough to apply Hall’s methodology and the original
commutative algebra. (For Hall’s results, which include everything we need, see
[R], Sections 15.3-15.5.)

Throughout this section, G denotes a finitely generated metabelian group.
Thus G has an abelian normal subgroup A such that G/A is also abelian. The
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conjugation action of G on A induces an action of G/A on A, whereby A may
be considered a module for the group ring Z(G/A) = R. Thus R is a finitely
generated commutative ring.

Lemma 16.4.12 A is finitely generated as an R-module.

Proof. Let θ : F → G be a presentation of G where F is a finitely generated
free group, and put N = θ−1(A). Then F/N is abelian, hence finitely presented,
and it follows that N is generated as a normal subgroup of F by finitely many
elements x1, . . . , xm. Their images θ(x1), . . . , θ(xm) then generate A as a normal
subgoup of G, hence as an R-module.

As R is a Noetherian ring by Hilbert’s basis theorem, we deduce

Proposition 16.4.13 A is a Noetherian R-module.

Next, we need

Lemma 16.4.14 A is residually finite as an R-module.

Proof. Let 0 6= a ∈ A and let N be a submodule of A maximal subject to
a /∈ N ; it will suffice to show that A/N is finite. So replacing A by A/N, we
reduce to the case where every non-zero submodule of A contains a. Let I be a
maximal ideal of R containing the annihilator of a, and write

AI∞ =
∞⋂
n=1

AIn.

According to Krull’s intersection theorem ([AM], Theorem 10.17) there exists
r ∈ I such that AI∞(1− r) = 0.

Suppose that AIn 6= 0 for each n. Then a ∈ AI∞, so 1− r ∈ annR(a) ⊆ I,
which is impossible since r ∈ I. Therefore AIn = 0 for some n. Now R/I is
a finite field (see below) and each factor Ij/Ij+1 is a finitely generated R/I-
module, so the ring R/In is finite. Therefore so is the finitely generated R/In-
module A.

Remark We quoted the fact that R/I is a finite if I is a maximal ideal of R.
This follows from a form of Hilbert’s Nullstellensatz: if k is a field, E is a
finitely generated k-algebra, and E is a field then E is a finite extension of k
(see [AM], Cor. 5.24). To conclude that R/I = E is finite, we also need to know
that the prime field k of R/I is finite; this may be deduced from the ‘generic
freeness lemma’, [E], Theorem 4.14.

We can now deduce

Proposition 16.4.15 The group G is residually finite.
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Proof. Suppose first that A is finite, and put K = CG(A). Then [K,K] ≤
K ∩A ≤ Z(K) so K is nilpotent. Also K has finite index in G, so K is finitely
generated. Therefore K is residually finite (see Section 1 above), and hence so
is G.

The general case follows from the preceding lemma, which shows that the
normal subgroups N of G with N ≤ A and N/A finite intersect in 1.

A similar argument gives

Proposition 16.4.16 (B. Wehrfritz; see also [Segal 1974]) G has a normal
subgroup G0 of finite index such that G0 is residually nilpotent.

Proof. It suffices to show that AI∞ = 0 for some ideal I of finite index in
R; indeed, the inverse image G0 in G of (G/A) ∩ (1 + I) satisfies

γn+1(G0) ≤ AIn

for each n, so G0 is residually nilpotent if AI∞ = 0, and G/G0 is isomorphic to
a subgroup of the unit group in the finite ring R/I.

Let us call A ‘good’ if such an ideal exists. Suppose now that A is not
good. Then A has a submodule D maximal with the property that A/D is
not good, and in order to arrive at a contradiction we may factor out D and
suppose that every proper quotient module of A is good. Let I be a maximal
ideal of R containing the annihilator of A. As before we find r ∈ I such that
AI∞(1− r) = 0. By the Artin-Rees Lemma ([AM], Chapter 10) there exists m
such that

A(1− r)m ∩AI∞ ⊆ AI∞(1− r) = 0.

Since r ∈ I we cannot have (1 − r)m ∈ I, so 0 6= A(1 − r)m = B, say. Then
A/B is good, so there exists an ideal J of finite index in R with AJ∞ ⊆ B. But
then K = J ∩ I has finite index in R and AK∞ ⊆ B ∩AI∞ = 0, so A is good,
a contradiction.

The next result is a special case of Grothendieck’s ‘generic freeness lemma’,
see [E], Theorem 4.14. Actually, Hall’s non-commutative “generalisation” prob-
ably came first; his proof is given in [R], 15.4.3.

Proposition 16.4.17 The group A contains a free abelian subgroup F such
that A/F is a π-group for some finite set of primes π.

Hall proved this as a step towards his proof of residual finiteness. For our
purposes, its importance lies in the following consequence:

Corollary 16.4.18 For almost all primes p,

rk(F ) ≤ urp(G) ≤ rk(F ) + rk(G/A).

This follows because if p /∈ π then

A/Ap ∼= F/F p,

and rk(A/Ap) ≤ urp(G) since G/Ap is residually finite, while rk(F/F p) = rk(F ).
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Window: Linear groups

Here we collect mostly standard material about group-theoretic properties of
linear groups, most of which appear in Wehrfritz’s book [We]. Some deeper
results relating to strong approximation are discussed in the window of that
name.

Throughout, F denotes a field with algebraic closure F , and n is a posi-
tive integer. The subgroup of upper-triangular matrices in GLn(F ) is denoted
Tr(n, F ) and the subgroup of upper uni-triangular matrices is denoted Tr1(n, F ).

G denotes a subgroup of GLn(F ).

1 Soluble groups

The basic result is

Theorem 16.4.1 (Lie, Kolchin) If G is soluble and connected in the Zariski
topology then G is triangularizable, that is, there exists x ∈ GLn(F ) such that
x−1Gx ≤ Tr(n, F ).

See [We], Chapter 5. This implies that any soluble G has a normal subgroup of
finite index that is triangularizable; this index can be effectively bounded:

Theorem 16.4.2 (Mal’cev) There is a function f such that every soluble sub-
group of GLn(F ) has a triangularizable normal subgroup of index at most f(n).

See [We], Chapter 5. It is important to note that f(n) depends only on n and
not on the field F .

Since Tr1(n, F ) is nilpotent of class n− 1 and Tr(n, F )/Tr1(n, F ) is abelian,
this implies

Theorem 16.4.3 (Zassenhaus) There is a function g such that every soluble
subgroup of GLn(F ) has derived length at most g(n).

2 Jordan’s theorem

Theorem 16.4.4 (C. Jordan, 1878) If char(F ) = 0 and G is finite then G has
an abelian normal subgroup of index at most j(n), where j(n) depends only on
n.

387
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See [Curtis & Reiner 1981] (or [Ra], Theorem 8.29 for a more general result).
This has an important extension:

Theorem 16.4.5 (Platonov) If char(F ) = 0 and G is virtually soluble then G
has a soluble normal subgroup of index at most j(n).

See [We], Corollary 10.11.

3 Monomial groups

A matrix in GLn(F ) is monomial if it has exactly one non-zero entry in each row
and each column. These form a subgroup Mon(n, F ), which is the semi-direct
product of the diagonal group by the group of permutation matrices; thus

Mon(n, F ) ∼= (F ∗)n o Sym(n).

Proposition 16.4.6 If G is completely reducible and nilpotent then there exists
x ∈ GLn(F ) such that x−1Gx ≤ Mon(n, F ).

This follows from [We], Theorem 1.14. It applies in particular when G is a finite
nilpotent group and char(F ) - |G|, by Maschke’s theorem. Since every finite
subgroup of F

∗
is cyclic, we deduce

Corollary 16.4.7 If G is finite and nilpotent and char(F ) - |G| then G is an
extension of an abelian group of rank at most n by some subgroup of Sym(n).

4 Finitely generated groups

If G is finitely generated then G ≤ GLn(R) where R is some finitely generated
subring of F . For each (proper) ideal I of R, let

G(I) = G ∩ (1n +Mn(I))

denote the kernel of the natural projection GLn(R) → GLn(R/I). Thus if I has
finite index in R then G(I) is a normal subgroup of finite index in G. We now
quote some facts from commutative algebra:

(i) Every maximal ideal of R has finite index (# Soluble groups, §3, Re-
mark).

(ii) Jac(R) =
⋂
{M |M is a maximal ideal of R} = 0 ([AM], Chap. 5, Exercise

24).

(iii) For each proper ideal I of R,
⋂∞
j=1 I

j = 0 ([AM], Corollary 10.18).

From (ii) it follows that the subgroups G(M) as M ranges over maximal
ideals intersect in 1, and with (i) this gives
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Proposition 16.4.8 (Mal’cev) If G is finitely generated then G is residually
finite, indeed residually (linear of degree n over finite fields).

This result has a sort of converse: see the Linearity conditions window.
Now fix one maximal ideal M. Then R/M is a finite field, of characteristic

p say, and it is easy to see that for each i, M i/M i+1 is a finite (additive) group
of exponent p. If i ≥ 1 and x ∈ G(M i) then (x− 1)p and p(x− 1) are both ≡ 0
modulo M i+1, and it follows that xp ∈ G(M i+1). Thus G(M i)/G(M i+1) has
exponent (dividing) p, and so G(M)/G(M j) is a finite p-group for each j ≥ 1.
With (iii) this gives the first claim in

Proposition 16.4.9 If G is finitely generated then G has a normal subgroup
of finite index which is residually a finite p-group, for some prime p, where
p = char(F ) if char(F ) 6= 0.

If char(F ) = 0, this holds for all but finitely many primes p.

The final claim follows from the fact that pR = R for only finitely many primes
p, by ‘generic freeness’ ([E] Theorem 14.4). One half of the ‘Lubotzky linearity
criterion’ asserts (in the characteristic zero case) that, for almost all primes p,
G is virtually residually a finite p-group of bounded rank ; this is discussed in
the Linearity conditions window.

Since any element of finite order in a group that is residually a p-group must
have p-power order, we see that G(M1)∩G(M2) is torsion free if char(R/M1) 6=
char(R/M2). Hence

Corollary 16.4.10 If G is finitely generated and char(F ) = 0 then G is virtu-
ally torsion-free.

5 Lang’s theorem

A subgroup G of GLn(F ) that is closed in the Zariski topology is called a linear
algebraic group. If the ideal of polynomials inX11, . . . , Xnn that vanish on G can
be generated by polynomials with coefficients in F then G is said to be defined
over F, or an F -group. When F is perfect (for example, finite), a necessary and
sufficient condition for G to be defined over F is the ‘Galois criterion’:

x ∈ G ⇐⇒ xσ ∈ G for every σ ∈ Gal(F/F )

([B] AG Theorem 14.4).
For any subring R of F one writes

G(R) = G ∩GLn(R).

In particular G(F ) is the group of F -rational points of G. One says that G is
connected if it is connected in the Zariski topology. For further definitions and
more details, see for example the books of Borel [B] or Humphreys [Hm].
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In this section we asume that F is a finite field of size q. Let φ be the
automorphism of F given by φ(x) = xq (x ∈ F ), so F is the fixed-point set of
φ. We assume that G is an F -group, and extend the map φ to G by applying
it to each matrix entry. Then G(F ) is exactly the fixed-point set of φ in G.

Theorem 16.4.11 (Lang) If G is connected then the mapping

σ : G → G; x 7→ φ(x) · x−1

is surjective.

For the proof, see [B] §16.
A Borel subgroup of G is a maximal closed connected soluble subgroup of

G. A fundamental property of Borel subgroups is that they are all conjugate in
G ([B] §11.1). If G has a Borel subgroup that is defined over F then G is said
to be quasi-split.

Corollary 16.4.12 If G is connected then G is quasi-split.

Proof. Let B be a Borel subgroup of G. Then φ(B) is another one so
there exists x ∈ G such that x−1Bx = φ(B). By Lang’s theorem we have
x−1 = φ(y) · y−1 for some y ∈ G. Put C = y−1By. Then

φ(C) = φ(y)−1φ(B)φ(y)

= φ(y)−1 · x−1Bx · φ(y)

= y−1By = C.

Now each element c of C has entries in some finite Galois extension of F, so
if σ ∈ Gal(F/F ) then cσ = φt(c) for some t, hence cσ ∈ C. It follows by the
‘Galois criterion’ that C is defined over F .

Any closed subgroup of G that contains a Borel subgroup is called parabolic
([B] §11). The combinatorics of parabolic subgroups hold the key to the struc-
ture of a semisimple group; however the result we need here is the following, a
special case of [B] Theorem 20.6:

Proposition 16.4.13 Suppose that G is semisimple and connected. If G has
a proper parabolic subgroup defined over F then G contains a non-trivial F -split
torus.

An F -split torus is a closed subgroup T that is isomorphic over F (as an
algebraic group) to a product of copies of the multiplicative group F

∗
. In

particular, the group of F -rational points T (F ) is isomorphic to (F ∗)(m) for
some m. Combining the last two result we deduce:

Proposition 16.4.14 If G is semisimple and connected then G(F ) contains a
copy of the group F ∗.



Window: Linearity
conditions for infinite
groups

1 Variations on Mal’cev’s local theorem

It was a fundamental discovery of Mal’cev that for groups, the property of being
linear of (fixed) degree n is of ‘finite character’. From the metamathematical
point of view, his observation was that this property can be expressed in a
suitable first-order language; algebraically, what it means is that a group G is
linear of degree n if and only if for every finite subset S ofG there exists a degree-
n linear representation ρ of 〈S〉 which separates S, i.e. such that |ρ(S)| = |S|.
This sounds rather like saying that G is locally residually (linear of degree n),
but is in fact stronger: a direct product of infinitely many elementary abelian
groups of distinct prime exponents and unbounded ranks is residually linear of
degree 1 but has no faithful linear representation over any field. If we make
the additional assumption that G is finitely generated, however, then results
like Mal’cev’s obtain under the weaker hypothesis; this observation is due to
[Wilson 1991b]. The following proof is based on an idea that we learned from J.
D. Dixon.

Notation
L(n,R)

denotes the class of all linear groups of degree n over the ring R; for p a prime
or 0,

L(n, p) =
⋃
{L(n, F ) | F a field of characteristic p}

L(n) =
⋃
{L(n, F ) | F a field} .

Let n ∈ N , fixed throughout the following discussion, and let G be a group.
Let S denote one of the rings

Z, Fp or Q;
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by an S-field we mean a field that is an S-algebra, in other words any field if
S = Z, a field of characteristic p if S = Fp, a field of characteristic zero if S = Q.

Consider the polynomial ring

A = A(G) = S[Xij(g) | i, j = 1, . . . , n; g ∈ G]

where the Xij(g) are independent indeterminates. Let I be the ideal of A
generated by the elements

Eij = Xij(1)− δij (all i, j)

Pij(g, h) = Xij(gh)−
n∑
k=1

Xik(g)Xkj(h) (all i, j, all g, h ∈ G),

and write A = A/I. Then for each S-field F we have a 1− 1 correspondence

Hom(G,GLn(F )) → HomS-alg(A,F ), (16.1)

such that θ : G → GLn(F ) corresponds to θ· : A → F where Xij(g)θ· = (gθ)ij
for all i, j and g (so A is the co-ordinate ring of the ‘variety of n-dimensional
representations’ of G).

Now let {Yij(g) | i, j = 1, . . . , n; g ∈ G \ {1}} be a new set of indeterminates
and put

B = B(G) = A[Yij(g) | i, j = 1, . . . , n; g ∈ G \ {1}],

B = B(G) = B/IB.

For 1 6= g ∈ G put

N(g) = 1−
n∑

k,l=1

(Xkl(g)− δkl)Ykl(g) ∈ B.

Suppose that θ : G→ GLn(F ) corresponds to θ· : A→ F . Then for 1 6= g ∈ G
we have gθ 6= 1 if and only if Xij(g)θ· 6= δij for some pair (i, j). In this case,
we can extend θ· to a homomorphism θ∗ : B → F such that N(g)θ∗ = 0 by
mapping

Ykl(g) 7→

 (Xij(g)θ· − δij)−1 for (k, l) = (i, j)

0 for (k, l) 6= (i, j)

and for h 6= g mapping each Ykl(h) to an arbitrary element of F . Conversely,
if θ∗ : B → F is any homomorphism that extends θ· and satisfies N(g)θ∗ = 0,
then Xkl(g)θ· = Xkl(g)θ∗ 6= δkl for some pair (k, l), and so gθ 6= 1.

It follows that for any given subset T of G \ {1}, the existence of a represen-
tation θ : G → GLn(F ) with T ∩ ker θ = ∅ is equivalent to the existence of an
algebra homomorphism θ∗ : B → F with N(g) ∈ ker θ∗ for all g ∈ T .
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Putting

L =

 L(n) if S = Z
L(n, p) if S = Fp
L(n, 0) if S = Q

,

we can state

Theorem 16.4.1 (Mal’cev) Let G be a group. Then G ∈ L if and only if for
every finite subset T of G there exists a linear representation θ : 〈T 〉 → GLn(F ),
where F is an S-field, such that tθ 6= 1 for all t ∈ T \ {1}.

Proof. We only have to prove the ‘if’ statement. Let J be the ideal of B
generated by the set {N(g) | 1 6= g ∈ G}. If J 6= B then J is contained in a
maximal ideal M of B, and the residue mapping θ∗ : B → B/M = F satisfies
N(g) ∈ ker θ∗ for all g ∈ G \ {1}. It follows by the above discussion (taking
T = G \ {1}) that the corresponding representation θ : G→ GLn(F ) is faithful,
so in this case G ∈ L.

Suppose that J = B. Then 1 ∈ IB + J and we can write

1 =
∑

UijEij +
∑
g,h∈T

Vij(g, h)Pij(g, h) +
∑

t∈T\{1}

W (t)N(t) (16.2)

for some finite subset T of G and suitable elements Uij , Vij(g, h),W (g) ∈ B.
There is a finite subset T ′ ⊇ T of G such that each of these elements lies in the
subring B(H) of B whereH = 〈T ′〉. By hypothesis, there exists a representation
θ : H → GLn(F ), for some S-field F , such that tθ 6= 1 for all t ∈ T ′ \ {1}. The
corresponding homomorphism θ∗ : B(H) → F then satisfies N(t)θ∗ = 0 for each
t ∈ T ′ \ {1}; applying θ∗ to the image of equation (16.2) in B(H) now yields
the contradiction 1 = 1θ∗ = 0.

This completes the proof.

Assume next that G = 〈g1, . . . , gd〉 is finitely generated. Then so is the
S-algebra

A = A/I,

namely by the elements Xij(gk), Xij(g−1
k ) for i, j = 1, . . . , n and k = 1, . . . , d.

It follows that A has only finitely many minimal prime ideals, P1, . . . , Pm say.
Denote by Ek the field of fractions of the integral domain A/Pk. If θ : G →
GLn(F ) is a representation of G in an S-field F then θ· : A→ F factors through
A/Pk for some k; it follows that θ factors through

πk : G→ GLn(A/Pk) ≤ GLn(Ek)

g 7→ (Xij(g) + Pk).

Hence if g ∈ G and gθ 6= 1 then gπk 6= 1 for some k, and so gπ 6= 1 where

π = (π1, . . . , πm) : G→ GLn(E1)× · · · ×GLn(Em).
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Suppose now that G is residually in L. Then for each element g 6= 1 in G
there exists a representation θ as above with gθ 6= 1, and then gπ 6= 1. Thus
kerπ = 1 and so π embeds G into GLn(E1)× · · · ×GLn(Em).

If S = Fp or S = Q then each Ek is an extension field of S; in this case there
exists an extension field E of S that contains E1, . . . , Em, and GLn(E1)× · · · ×
GLn(Em) ≤ GLmn(E). Thus we have established the first two parts of

Theorem 16.4.2 Let G be a finitely generated group.
(i) If G is residually in L(n) then G is a subdirect product of finitely many linear
groups of degree n.
(ii) Let p be a prime or zero. If G is residually in L(n, p) then G is in L(mn, p)
for some m.
(iii) Let (Fα) be a family of fields such that for each prime p only finitely many
of the Fα have characteristic p, and these are all finite. Suppose that G admits
representations θα : G→ GLn(Fα) such that

⋂
α ker θα = 1. Then G ∈ L(n′, 0)

for some n′.

To prove (iii), we take S = Z, and suppose that E1, . . . , Er have characteris-
tic 0 while the rest have positive characteristic. We embed the Ek for 1 ≤ k ≤ r
in a common field E of characteristic zero, and write

π0 = (π1, . . . , πr) : G→ GLn(E1)× · · · ×GLn(Em) ≤ GLrn(E).

Let X = {α | charFα 6= 0}, and put

K =
⋂
α∈X

ker θα

(if X is empty, K = G). Suppose 1 6= g ∈ K. Then gθα 6= 1 for some α /∈ X .
Now θ·α : A→ Fα factors through A/Pk for some k, and then

charEk = charFα = 0,

so k ≤ r. Since θ factors through πk it follows that gπ0 6= 1. Thus

K ∩ kerπ0 = 1,

and G embeds in G/K ×Gπ0.
Now the hypotheses imply that G/K is finite, of order f say. Then G/K

embeds in GLf (E) and G embeds in GLf (E) × GLrn(E) ≤ GLn′(E) where
n′ = f + rn. This completes the proof.

(A quicker way to prove (i) and (ii) is to observe that G maps injectively
into GLn(R) where R is a finitely generated subring of a Cartesian product of
S-fields; see [Wilson 1991b], [Lubotzky, Mann and Segal 1993]. We have chosen
the present approach via representation rings to emphasize the relationship with
Mal’cev’s local theorem.)

We shall apply this result to groups satisfying the following condition:
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Definition A group G has restricted upper chief factors if there is a finite
upper bound to rk(M) as M ranges over all the non-abelian upper chief factors
of G.

Corollary 16.4.3 Let G be a finitely generated group with restricted upper chief
factors. Then there is an exact sequence

1 → D → G→ GLn(F )

where F is a field of characteristic zero and the closure of D in Ĝ is prosoluble.

The stated property of D amounts to saying that D/(N ∩D) is soluble for every
normal subgroup N of finite index in G.

Proof. Let M be the set of (G-isomorphism types of) non-abelian upper
chief factors of G, and put

D =
⋂

M∈M
CG(M).

If N Cf G then by considering a chief series of G/N through DN/N we see at
once that D/(N ∩D) ∼= DN/N is soluble; so D has the stated property.

Let M0 denote the subset of M consisting of groups that are products
of sporadic or alternating groups, and for each prime p let Mp denote the
set of those members of M that are products of simple groups of Lie type in
characteristic p. Since by hypothesis M consists of groups of bounded rank,
we see that for each p, prime or zero, the set Mp contains only finitely many
non-isomorphic groups; as G is finitely generated there is only a finite number
of possible G-actions on each of these groups, and it follows that each of the
sets Mp is finite.

Now according to Corollaries 13 and 8 in the Finite simple groups window,
there exists f , independent of p, such that Aut(M) ≤ GLf (Fp) for every M ∈
Mp if p is a prime; and this holds also for p = 0 if we write F0 = Q and take
f ≥ max{|Aut(M)| |M ∈M0}.

Since CG(M) is the kernel of the natural map G → Aut(M), part (iii) of
Theorem 16.4.2 now applies to show that G/D is a linear group in characteristic
zero.

2 Groups that are residually of bounded rank

The following useful analogue to Theorem 16.4.2 has a slightly different hypoth-
esis and a slightly weaker conclusion.

Theorem 16.4.4 [Segal 1996a] Let G be a finitely generated group. Suppose
that G is residually (finite soluble of rank ≤ r), where r is finite. Then G has
a nilpotent normal subgroup D such that G/D is a subdirect product of finitely
many linear groups over fields.



396 LINEARITY CONDITIONS

Proof Let G/K be a finite soluble quotient of G. Then G/K has a normal
subgroup N/K which is nilpotent of class at most 2 and satisfies CG(N/K) ≤ N
(# Finite group theory). Put EK = N/N ′K

Claim: If H C G and [EK ,kH] = 1 then γ6kH ≤ K.

To see this, write N = N/K and observe that

[N,kH] ≤ N
′
=⇒ [N

′
,2kH] ≤ γ3N = 1

=⇒ [N,3kH] = 1

=⇒ γ3kH ≤ CG(N) ≤ N

=⇒ γ6kH ≤ [N,3kH] ≤ K

(# Soluble groups).
Now for some finite r, G has a family S of normal subgroups, intersecting

in the identity, such that G/K is finite and soluble of rank at most r for each
K ∈ S. For K ∈ S let EK be the section of G/K indicated above, and write Z
for the Cartesian product of all the abelian groups EK . Then Z is an r-generator
module for the ring R = ZS , on which G acts by R-module automorphisms.
Since G is finitely generated, there exist a finitely generated subring S of R and
an r-generator S-submodule M of Z such that MG = M and MR = Z.

Since S is a commutative Noetherian ring, M contains a finite chain of fully
invariant S-submodules

0 = M0 < M1 < . . . < Mk = M

such that, for each j, Mj/Mj−1 is a finitely generated torsion-free S/Pj-module,
where Pj = annS(Mj/Mj−1) is a prime ideal of S (see e.g. [We], Lemma 13.2).
Put Qj = CG(Mj/Mj−1), and suppose that Mj/Mj−1 can be generated by rj
elements as an S/Pj-module. Then the action of G embeds G/Qj in

AutS/Pj
(Mj/Mj−1) ≤ GLrj (Fj)

where Fj is the field of fractions of S/Pj .
Put D = Q1 ∩ . . . ∩Qk. Then

Z(D − 1)k = M(D − 1)kR = 0.

It follows that [EK ,kD] = 1 for every K ∈ S. By the initial Claim, this implies
that

γ6kD ≤
⋂
S = 1.

The theorem follows since

G/D ↪→ G/Q1 × · · · ×G/Qk ↪→
k∏
j=1

GLrj
(Fj).

Corollary 16.4.5 (of the proof) Let G be as in Theorem 16.4.4. If every finite
quotient of G is soluble, then G is virtually nilpotent-by-abelian.
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Proof Suppose now that every finite quotient of G is soluble. Let 1 ≤ j ≤ k,
put Sj = S/Pj and Vj = Mj/Mj−1. If L is a maximal ideal of Sj then G induces
on Vj/VjL a finite linear group of degree at most rj . It follows by Mal’cev’s
theorem (# Linear groups) that G has a normal subgroup H, of finite index
bounded by a function of rj , such that H ′ acts unipotently on Vj/VjL. Since G
is finitely generated, we can choose H = Hj , say, independently of L, and then
have

Vj(H ′j − 1)rj ⊆
⋂
L

VjL = 0

(the final equality follows easily from the facts that Vj is torsion-free and finitely
generated and the Jacobson radical of Sj is zero).

Now let T =
⋂k
j=1Hj and put s = r1 + · · ·+ rk. Then M(T ′ − 1)s = 0. As

above, this implies that γ6s(T ′) = 1, and the result follows since G/T is finite.

3 Applications of Ado’s theorem

Ado’s theorem asserts that every finite-dimensional Lie algebra over a field of
characteristic zero has a faithful linear representation. If the Lie algebra is
associated to an analytic group, this gives rise to a linear representation of
the group, which may not be faithful in general; however, for a compact p-
adic analytic group we do indeed obtain a faithful representation for some open
subgroup, which can be induced up to a faithful representation of the whole
group. Since these groups include the pro-p groups of finite rank, we have

Theorem 16.4.6 Let G be a pro-p group of finite rank. Then G is isomorphic
to a closed subgroup of GLn(Zp) for some n.

For details of the proof, see [DDMS], Section 7.3. An important consequence
is

Theorem 16.4.7 ‘Lubotzky linearity criterion’ [Lubotzky 1988] Let Γ be a
finitely generated group. Then Γ ∈ L(n, 0) for some n if and only if there exist
a prime p and an integer r such that Γ has a filtration by normal subgroups (Γi)
such that Γ/Γ1 is finite, Γ1/Γi is a finite p-group of rank ≤ r for each i ≥ 1,
and

⋂∞
i=1 Γi = 1.

To prove the ‘if’ statement, observe that Γ1 embeds in

G = lim
←−

Γ1/Γi.

Now G is a pro-p group of rank at most r, hence linear over Qp by Theorem
16.4.6. Therefore so is Γ1, and the induced representation of Γ is a faithful linear
representation over Qp. For the converse, see [Lubotzky 1988] or [DDMS],
Interlude B (in fact the converse holds in a stronger form: if Γ is linear in
characteristic zero then a filtration of the stated kind exists for almost all primes
p).

All this applies to groups that are virtually residually p-groups. In some
circumstances this can be generalised.
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Theorem 16.4.8 Let Γ be a finitely generated residually nilpotent group. If the
pro-p completion Γ̂p has finite rank for every prime p then Γ ∈ L(n, 0) for some
n.

This will follow from Theorem 16.4.6 once we have established the following
lemma:

Lemma 16.4.9 Let Γ be a finitely generated residually nilpotent group. Suppose
that, for some prime p, the pro-p completion Γ̂p has finite rank. Then there
exists a finite set π of primes such that the natural map

Γ →
∏
`∈π

Γ̂`

is injective.

Indeed, the hypotheses of Theorem 16.4.8 then imply that Γ̂` ↪→ GLn(`)((Z`)
for each ` ∈ π, so Γ embeds into∏

`∈π

GLn(`)((Z`) ≤ GLn(C)

where n =
∑
`∈π n(`).

Proof of Lemma 16.4.9 Suppose that Λ is a torsion-free nilpotent quotient
of Γ. Then Λ̂p is an image of Γ̂p, so dim(Λ̂p) ≤ dim(Γ̂p). Now dim(Λ̂p) is equal
to the Hirsch length h(Λ) of Λ, so we have

h(Λ) ≤ dim(Γ̂p).

We may therefore choose a normal subgroup T of Γ such that Γ/T is torsion-
free and nilpotent of maximal possible Hirsch length. Then γn(Γ) ≤ T and
T/γn(Γ) is finite, for every n exceeding the nilpotency class of Γ/T (# Soluble
groups). It follows that T/[T,Γ] is finite, of order m, say.

Let q - m be a prime, and suppose that Q C Γ has finite index a power
of q. Then T = (T ∩ Q)[T,Γ], and as Γ/(T ∩ Q) is nilpotent it follows that
T = (T ∩Q) ≤ Q. Hence T is contained in the kernel Γ(q), say, of the natural
homomorphism Γ → Γ̂q. On the other hand, T ≥ Γ(q) because Γ/T is residually
a finite q-group (Gruenberg’s theorem, # Soluble groups).

Thus Γ(q) = T for every prime q - m. Choose one such prime q and let π be
the set of prime divisors of m together with q. The kernel of the natural map
Γ →

∏
`∈π Γ̂` is then⋂

`∈π

Γ(`) = T ∩
⋂
`|m

Γ(`) =
⋂

all primes `

Γ(`) = 1,

since Γ is residually nilpotent. The result follows.



Window: Strong
approximation for linear
groups

The original Strong Approximation Theorem, commonly attributed to the an-
cient Chinese, says that Z is dense in the profinite group

∏
p Zp. An analogous

formulation is valid for the additive group of an algebraic number field. Such a
group may be viewed as the Q-rational points of a linear algebraic group over Q,
and one is led to consider the question of strong approximation in linear groups.

In group-theoretic terms, the question is this: given a subgroup Λ of GLn(Z),
what is the image πm(Λ) of Λ in GLn(Z/mZ), for arbitrary values of m? Ob-
viously, if Λ is contained in a proper algebraic subgroup G of GLn then πm(Λ)
must be contained in the corresponding subgroup G(Z/mZ). One says that
Λ has the strong approximation property if this is the only obstacle to solving
congruences in Λ; more precisely (and slightly more generally), let us make the
following definition, where for a set of primes S we put

ZS = Z[p−1 | p ∈ S].

Definition Let S be a finite set of primes, Λ a subgroup of GLn(ZS) and G
the Zariski-closure of Λ in GLn. Then Λ has strong approximation w.r.t. S if Λ
is dense in the profinite group

G(ẐS) =
∏
p/∈S

G(Zp).

In other words, the closure of Λ in the Zariski topology on G(ẐS) is the
same as its closure in the congruence topology. On the face of it this may seem
a rather technical matter; but the consequences are far-reaching. Indeed, when
Λ has strong approximation we see that πm(Λ) = G(Z/mZ) whenever m is
divisible by no prime in S. A lot is known about the finite groups G(Z/mZ)
when G is an algebraic group, and we may infer that Λ has this large collection
of well-understood finite images, a matter of special interest to us in the context
of this book.

399
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The ‘classical’ Strong Approximation Theorem for algebraic groups gives
sufficient (and necessary) conditions under which an S-arithmetic group G(ZS)
in an algebraic group G has strong approximation in the above sense. Although
deep and fundamental, this result is not entirely unexpected, because it applies
essentially to algebraic groups that are in a sense generated by copies of the
additive group. It was a remarkable discovery of Nori, Weisfeiler and others in
the 1980s that similar results can be obtained for quite general linear groups.
We shall state a particular case of their results in Section 1, and show there how
it can be reduced to a certain theorem about finite linear groups. In Section
2 we outline three different approaches to the proof of this theorem (but stop
well short of proving it in full). In the final section we briefly discuss a recent
generalisation due to Pink, applicable to fields of arbitrary characteristic.

Our main application is presented in Section 3. Sometimes referred to as
‘Lubotzky’s alternative’, this is the following theorem: for a finitely generated
linear group Γ over a field of characteristic zero, one of the following holds:

(a) Γ is virtually soluble, or
(b) there exist a simply-connected simple algebraic group G over Q, a finite

set of primes S such that G(ZS) is infinite, and a representation ρ : Γ0 →
G(ZS), where Γ0 is a normal subgroup of finite index in Γ, such that ρ(Γ0) is
dense in G(ẐS).

In particular, in case (b) it follows that Γ0 maps onto G(Fp) for almost all
primes p.

A few other applications are discussed along the way.

1 A variant of the Strong Approximation Theo-
rem

For definitions and background on algebraic groups, the reader is referred to [B]
and [PR]. By a linear algebraic group over Q we mean a Zariski-closed subgroup
G of GLn = GLn(C) defined by some finite set of polynomial equations over
Q. Taking these equations to have Z-coefficients, we may interpret them in any
ring R, and then G(R) denotes the solution-set of these equations in GLn(R).
This is ‘usually’ a group, equal to the R-rational points of the group scheme G.
We shall leave aside such delicate foundational questions; when R is a domain
of characteristic zero it may be embedded in C, and then G(R) = G∩GLn(R);
for the case R = Fp see the remarks following Corollary 3 below.

Let G be a connected, simply connected Q-simple linear algebraic group
defined over Q, with a given embedding in GLn. Let S be a finite set of primes.
The S-arithmetic subgroup G(ZS) of G is infinite if and only if at least one
of the groups G(Qp) for p ∈ S ∪ {∞} is non-compact (here Q∞ = R); in
one direction this is easy to see, because G(ZS) sits ‘diagonally’ as a discrete
subgroup in

∏
p∈S∪{∞}G(Qp). Under these conditions we have
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Theorem 16.4.1 ([PR] Theorem 7.12) Strong Approximation Theorem

for S-arithmetic groups: Provided G(ZS) is infinite, it is dense in G(ẐS).

This is equivalent to the statement

G(Q) is dense in G(AS),

where AS denotes the ring of S-adeles; see [PR], §7.1. The same holds, with
appropriate definitions, if Q is replaced by any algebraic number field.

We remark that some, but not all, of the hypotheses are necessary here: the
conclusion holds if G is either semi-simple or unipotent, but not in general if
G is an algebraic torus. But it is necessary that G(Qp) be non-compact for at
least one p ∈ S ∪ {∞}, and that G be simply connected; a brief explanation of
the latter requirement is given in §4.

The main result we are going to discuss is

Theorem 16.4.2 Strong Approximation Theorem for linear groups:
Let Λ be a Zariski-dense subgroup of G with Λ ≤ G(ZS). Then the closure
of Λ in G(ẐS) is open (hence of finite index) in G(ẐS).

Several remarks are in order. First of all, since Λ is Zariski-dense in G
it is certainly infinite, so the non-compactness condition mentioned above is
automatically satisfied. Secondly, the conclusion is equivalent to the statement
that the closure of Λ in the S-arithmetic group G(ZS) with respect to the
congruence topology is of finite index in G(ZS); this is the topology induced
on G(ZS) as a subspace of G(ẐS), and has a base for the neighbourhoods of 1
consisting of the S-congruence subgroups ker(G(ZS) → GLn(Z/mZ)), where m
ranges over integers not divisible by any prime in S. This follows from Theorem
1. Finally, to say that the closure Λ of Λ is open in G(ẐS) implies in particular
that Λ contains

G(ẐS1) =
∏
p/∈S1

G(Zp)

for some finite set of primes S1 containing S, hence that Λ actually has the
strong approximation property w.r.t. S1. Now if Λ is merely assumed to be a
finitely generated subgroup of G(Q) then there exists a finite set S such that
Λ ≤ G(ZS), and enlarging S to S1 as above we infer

Corollary 16.4.3 Let Λ be a finitely generated Zariski-dense subgroup of G(Q).
Then there exists a finite set of primes S such that Λ is dense in G(ẐS). In
particular, for almost all primes p we have

πp(Λ) = G(Fp).

The final statement needs a word of explanation. For almost all primes p,
the equations defining the algebraic group G can be reduced modulo p to give
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a connected, semisimple algebraic subgroup of GLn defined over Fp, that we
still denote by G, and (for almost all p) one has πp(G(Zp)) = G(Fp); see
[PR], Proposition 3.20. Our claim therefore follows from the fact that πp(Λ) =
πp(G(Zp)) for almost all p.

This corollary, which suffices for some (though not all) applications, is a little
easier to derive than the full strength of Theorem 16.4.2; it does not depend on
Lemmas 16.4.4 and 16.4.5 below (they have other uses, however, and Corollary
16.4.6 is important in its own right).

We now outline the proof of Theorem 2. We explain the reduction to Propo-
sition 16.4.7, below, in some detail, as it is not easily accessible in the literature;
our approach is based on the unpublished manuscript [Nori (a)], where a con-
siderably more general theorem is established. A complete published proof is
available in [Weisfeiler 1984]; Weisfeiler’s result is also much more general as
he works over an arbitrary field (the somewhat easier theorem of [Mathews,
Vaserstein & Weisfeiler 1984] does not quite cover our case as it deals with an
absolutely simple Q-group). A still more general theorem is proved by [Pink
2000] (see §4 below).

The Q-simple group G may be identified with the restriction of scalars

Rk/QH

of some absolutely simple k-group H, where k is a finite Galois extension of Q.
Then

G(Q) = H(k)

and for each prime p we have

G(Qp) =
f∏
i=1

H(kp(i))

where k ⊗ Qp =
∏f
i=1 kp(i) (and f = f(p) depends on p). We denote the Lie

algebra of G by L; then L(Q) is a simple module for G(Q) under the adjoint
representation. In general, L(Qp) is not simple for G(Qp), but it is semisimple
and may be identified with

f⊕
i=1

LH(kp(i))

where LH is the Lie algebra of H; each summand LH(kp(i)) is a minimal ideal
and a minimal G(Qp)-invariant subspace. For almost all p, the analogous de-
composition is valid ‘modulo p’: that is,

G(Fp) =
f∏
i=1

H(O/p(i)), (16.1)

L(Fp) =
f⊕
i=1

LH(O/p(i)) (16.2)
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(O being the ring of integers of k). As H is an absolutely simple group, LH(k)
is absolutely irreducible as a k[H(k)]-module, so AdH(k) spans Endk(LH(k));
it follows that AdH(O/p) spans EndO/p(LH(O/p)) for almost all primes p of O,
in which case LH(O/p) is irreducible for H(O/p). This implies that, for almost
all primes p, (16.2) is a decomposition of L(Fp) into minimal ideals.

Lemma 16.4.4 For every prime p /∈ S the closure of Λ in G(Zp) is open.

Proof. (Sketch) Write P for the closure of Λ in G(Zp). Then P is a closed
subgroup of the p-adic analytic group G(Zp), and the Lie algebra L(P ) of P is
a subalgebra of the Lie algebra of G(Zp), which is L(Qp) (see [DDMS], Chapter
9). Since Λ is Zariski-dense in G(Qp), the subalgebra L(P ) is invariant under
the adjoint action of G(Qp), hence is an ideal in L(Qp). Therefore L(P ) is equal
to the sum of some of the LH(kp(i)). Now since Λ ≤ G(Q) it follows that the
projections of Λ into each of the H(kp(i)) are isomorphic, and this implies that
the projections of L(P ) into each of the summands LH(kp(i)) are isomorphic.
It follows that if L(P ) 6= 0 then L(P ) is the sum of all the LH(kp(i)), that is,
L(P ) = L(Qp).

If L(P ) = 0 then P is finite, which is clearly not the case. Therefore L(P ) =
L(Qp), which implies that P is open in G(Zp) as claimed.

Lemma 16.4.5 For almost all primes p, the Frattini subgroup of G(Zp) is

Np = ker(πp : G(Zp) → G(Fp)).

Proof. (sketch) For large enough primes p, the residue map πp maps G(Zp)
onto G(Fp). Let Gi denote the kernel of the map G(Zp) → G(Zp/piZp), so
Np = G1. When m ≥ 1, the mapping

1 + pmx 7→ x(mod p)

induces an injective group homomorphism θm : Gm/Gm+1 → Mn(Fp); and the
mapping

g 7→ gp

induces a homomorphism Pm : Gm/Gm+1 → Gm+1/Gm+2. It is easy to verify
that the triangle

Gm/Gm+1
Pm−→ Gm+1/Gm+2

↘
θm

↙
θm+1

Mn(Fp)

commutes. Now G is defined as an algebraic subgroup of GLn by polynomial
equations in the matrix entries, and the Lie algebra L of G is defined as a
subspace of Mn by the linear parts of these equations (taking the identity matrix
as origin of co-ordinates). When p is large, we may reduce these equations
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modulo p, and find that L(Fp) is exactly the image of θm; this holds for each
m ≥ 1. It follows in particular that θm and θm+1 have the same image, and
hence that Pm is an isomorphism.

This implies that Gm+1 = GpmGm+2 for each m ≥ 1, and hence that for any
k we have

G2 = Gp1Gk.

Since the Gk form a base for the neighbourhoods of 1 in the pro-p group G1,
and G1/G2 is abelian, this shows that G2 is the closure of Gp1[G1, G1] in G1,
which is exactly the Frattini subgroup of G1.

The lemma will follow, therefore, once we show that G1/G2 is the Frattini
subgroup of G0/G2 where G0 = G(Zp). Now if p is large enough, it follows
from the structure theory that L(Fp) is spanned by elements of the form log x
where x is an element of order p in G(Fp) (see [Nori 1987]; here, log is defined
by the formula (16.3) in the following section). Using the identity

p−1

(
p

j

)
≡ (−1)j−1

j
(mod p) (1 ≤ j ≤ p− 1),

we can see that if x ∈ G0 satisfies xp ∈ G1, then

θ1(xpG2) = log x

where x = πp(x) ∈ G(Fp). It follows from the preceding paragraph that G1/G2

is generated by elements of the form xpG2 with x ∈ G0. If M/G2 is a maximal
subgroup of G0/G2 and M does not contain G1, then G1M = G0; but if x ∈ G0

satisfies xp ∈ G1 and x ≡ y (modG1) with y ∈ M, then xp ≡ yp (modG2)
lies in M, and so G1 is contained in M, a contradiction. Thus every maximal
subgroup of G0/G2 contains G1/G2, and the lemma follows.

Along the way we have shown that for each m ≥ 1, the closure of Gpm in
the p-adic topology (which is the same as the pro-p topology of G1) is equal to
Gm+1; as Gm/Gm+1 is an elementary abelian p-group of rank dim(G), we have

Corollary 16.4.6 For almost all p, the group Np is a uniform pro-p group of
dimension equal to dim(G), and the lower central p-series of Np is given by

Pi(Np) = ker
(
G(Zp) → G(Zp/piZp)

)
.

(# Pro-p groups. Recall that in a uniform pro-p group N of dimension d,
Pi+1(N) is equal to the Frattini subgroup of Pi(N) and |Pi+1(N) : Pi(N)| = pd

for each i ≥ 1.)

The main step in the proof is the following proposition; here we write

σi : G(Fp) → H(O/p(i)) and
σi : L(Fp) → LH(O/p(i))

for the projection maps in (16.1) and (16.2).
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Proposition 16.4.7 For all sufficiently large primes p the following holds. If
X is a subgroup of G(Fp) such that
(a) for i = 1, . . . , f(p) the order of σi(X) is divisible by p, and
(b) every X-invariant Lie subalgebra of L(Fp) is an ideal,
then X = G(Fp).

We discuss the proof of Proposition 16.4.7 in the following section. Assuming
this result for now, we may deduce

Lemma 16.4.8 For almost all primes p, Λ is dense in G(Zp).

Proof. We claim that for almost all primes p, the group X = πp(Λ) satisfies
the hypotheses of Proposition 16.4.7. Suppose that hypothesis (a) is false for
infinitely many primes. Then there is an infinite set Q of primes of O such that
for each p ∈ Q,

πp(Λ) = σiπp(Λ) ≤ GLn(Fp)

is a group of order coprime to p (where p is the ith prime divisor of the rational
prime p). By Jordan’s theorem (# Linear groups) there exists m, depending
only on n, such that each such πp(Λ) has an abelian normal subgroup of index
dividing m. It follows that

[Λm,Λm] ⊆
⋂

p∈Q
kerπp

= 1

since Q is infinite (here we are identifying G(ZS) with H(OS̃) where S̃ denotes
the set of prime divisors in O of primes in S). Since Λ is Zariski-dense in G
this implies that [Gm,Gm] = 1, which is false since G is a Q-simple algebraic
group. This contradiction shows that condition (a) in Proposition 16.4.7 must
hold for almost all primes.

Since LH(k) is absolutely irreducible for H(k) and Λ is Zariski-dense in H(k),
it is also absolutely irreducible for Λ. Therefore Ad(Λ) spans Endk(LH(k)); it
follows that for almost all primes p of O, Adπp(Λ) spans EndO/p(LH(O/p)) and
hence that the O/p-module LH(O/p) is irreducible for πp(Λ). Thus for almost
all primes p, the decomposition (16.2) expresses L(Fp) as a direct sum of simple
πp(Λ)-modules. As each summand is an ideal of L(Fp) this shows that (b) holds
for each such p.

To complete the proof of the lemma, let Λ denote the closure of Λ in G(Zp).
Proposition 16.4.7 shows that

πp(Λ) = πp(Λ) = G(Fp) = πpG(Zp)

for almost all primes p. For each such p we then have

G(Zp) = NpΛ,

and it follows by Lemma 16.4.5 that Λ = G(Zp).
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It is now easy to complete the

Proof of Theorem 2 Let Y be the closure of Λ in G(ẐS) =
∏
p/∈S G(Zp), and

let Yp denote the closure of Λ in G(Zp). Thus Yp is the projection of Y into
G(Zp). Lemmas 16.4.8 and 16.4.4 imply that

∏
p/∈S Yp is open in G(ẐS), so it

suffices to show that Y is open in the product
∏
p/∈S Yp. Now if P is a product

of pro-p groups for distinct primes p, then a closed subgroup of P that projects
onto each factor must be the whole of P (because the same is true for products
of finite p-groups). It follows that Y certainly contains the product∏

p/∈S

(Yp ∩Np) =
∏
p/∈T

Np ×
∏

p∈T\S

(Yp ∩Np)

for some finite set of primes T ⊇ S, and we may choose T so that for each p /∈ T,
(i) Yp = G(Zp) and (ii) Yp/Np ∼= G(Fp) is a finite semisimple group. Then∏
p/∈T Yp/Np is a product of pairwise non-isomorphic finite semisimple groups;

as Y projects onto each factor in this product it follows that Y projects onto∏
p/∈T Yp. On the other hand,

∏
p∈T\S(Yp ∩Np) has finite index in

∏
p∈T\S Yp.

Together these imply that Y is open in
∏
p/∈S Yp as required.

We conclude this section with the following somewhat surprising application
of the preceding arguments:

Theorem 16.4.9 Let G be a connected, simply-connected simple algebraic group
defined over Q. Then there exists a finite set of primes S with the following prop-
erty: if A is a subset of G(ZS) such that for one prime p not in S the image
of A in G(Fp) generates G(Fp), then the image of A in G(Fq) generates G(Fq)
for almost all primes q.

Proof. Let S be the set of ‘bad’ primes for Lemma 16.4.5, let Λ be the
subgroup generated by A ⊆ G(ZS), and suppose that πp(Λ) = G(Fp) for some
p /∈ S. Since kerπp is the Frattini subgroup of G(Zp) it follows that Λ is dense
in G(Zp), in the congruence (p-adic) topology. As the congruence topology is
finer than the Zariski topology this implies that Λ is Zariski-dense in G(Zp),
and hence also in G. Lemma 16.4.8 now shows that Λ is (q-adically) dense in
G(Zq) for almost all primes q. For each such q we then have πq(Λ) = πqG(Zq),
and the result follows since πqG(Zq) = G(Fq) for almost all q.

2 Subgroups of SLn(Fp).
All the main results depend on Proposition 16.4.7, stated in the preceding sec-
tion. We shall not attempt to prove this in full; unfortunately, moreover, it does
not appear explicitly in the literature, but only in the unpublished manuscript
[Nori (a)]. However, different versions of this important result have been proved
in [Nori 1987], [Mathews, Vaserstein & Weisfeiler 1984], [Weisfeiler 1984] and
[Hrushovskii & Pillay 1995], and we would like to illustrate three quite different
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ways of approaching the proof. To this end, we shall concentrate on the special
case where G is the algebraic group SLn; all the key ideas appear already in
this case.

Since SLn is absolutely simple, the statement reduces to

Theorem 16.4.10 Fix n ≥ 2. For all sufficiently large primes p the following
holds. If X is a subgroup of SLn(Fp) such that
(a) the order of X is divisible by p, and
(b) sln(Fp) is irreducible as an X-module under conjugation in the matrix ring,
then X = SLn(Fp).

First proof (in the spirit of) [Matthews, Vaserstein & Weisfeiler 1984], [Weis-
feiler 1984]: using the classification of finite simple groups.

If X < SLn(Fp) = SL(V ), then X is contained in some maximal subgroup
L of SL(V ). The maximal subgroups of (most) finite simple groups have been
classified (and CFSG is needed, even when one comes to classify the maximal
subgroups of a known family of groups such as SLn(Fp)). According to a fun-
damental result of [Aschbacher 1984], every such maximal subgroup L is one of
the following nine cases:

C1: The stabilizer of a subspace of V , or of a pair of subspaces V1, V2 such that
dimV1 + dimV2 = n and either V1 ⊆ V2 or V = V1 ⊕ V2.

C2: The stabilizer of a direct sum decomposition V = ⊕Vi for Vi of the same
dimension.

C3: The stabilizer of a field extension of Fp whose degree is a prime dividing n.

C4: The stabilizer of a tensor product decomposition V = V1 ⊗ V2.

C5: The centralizer of a field automorphism.

C6: The normalizer of a symplectic-type r-group for a prime r 6= p (in an
irreducible representation).

C7: The stabilizer of a tensor product decomposition V =
⊗
Vi for Vi of the

same dimension.

C8: A classical subgroup embedded as usual.

C9: L = NG(S), where S is a nonabelian simple subgroup of PSL(V ) such that
S ≤ L ≤ Aut(S), and the universal cover S̃ of S acts absolutely irreducibly
on V . (Here S̃ is the largest perfect group which, modulo its center, is
isomorphic to S.)
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Now, one can see that in the first eight cases, the maximal subgroup L
is inside a proper connected algebraic subgroup of SLn and therefore has an
invariant subspace in the Lie algebra sln of SLn, thus its action on sln is not
irreducible and so L cannot contain X. The more difficult case to handle is
(as usual) C9. In this case L is the normalizer of a finite simple group S.
If S is an alternating group then the order of S is bounded by some number
depending only on n, because Alt(k) is not a section of SLn(F ) for any field F
if k > (3n + 6)/2 (# Finite simple groups). Since X ≤ L ≤ Aut(S), the
order of X is bounded if S is an alternating or sporadic group, and hence that
p - |X| provided p is large enough.

We may therefore suppose that S is of Lie type, say S = Y (Fre) where r is
a prime. Suppose first that r 6= p. Both e and the Lie rank of Y are bounded
in terms of n (# Finite simple groups). Now S contains a non-trivial split
torus T (Lang’s theorem, # Linear groups), and T normalises a non-trivial
unipotent r-subgroup R. If r is large (relative to the Lie rank of Y ) then
R is elementary abelian, and

∣∣NSLn(Fp)(R) : R
∣∣ ≤ n! (exercise!); consequently

|T | ≤ n!. Since |T | ≥ r − 1 it follows that r is bounded in terms of n. We
conclude that |S| = |Y (Fre)| is bounded by a number depending only on n, and
as above we deduce that p - |X| if p is large.

In the remaining case, S = Y (Fpe) is a simple group of the “right” charac-
teristic. By Steinberg’s theory (see [St]), the representation of S in SL(V ) is a
tensor product of representations obtained by applying the Frobenius automor-
phism of Fpe (maybe several times) and then an algebraic representation of Y .
It follows that S is contained in a proper connected algebraic subgroup of SL;
therefore so is its normalizer and hence X cannot act irreducibly on sln(Fp).
This completes the proof (the original proofs given by Weisfeiler, Matthews et
al., predating Aschbacher’s theorem, used some more direct consequences of
CFSG).

Second proof [Nori 1987]: using algebraic geometry over finite fields

For a subgroup X of SLn(Fp) we denote by X+ the subgroup of X generated
by the elements of order p. Note that if p > n, then every element of p-power
order in SLn(Fp) actually has order p, so in this case X+ = Op

′
(X) contains

the Sylow p-subgroups of X.
For each element x in X of order p, let

Ux = {exp(t log x) | t ∈ F̃p} ≤ SLn(F̃p),

where F̃p is the algebraic closure of Fp; here

log x = −
p−1∑
i=1

(1− x)i

i
, (16.3)

exp z =
p−1∑
i=0

zi

i!
(16.4)
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for matrices x and z in Mn(F̃p) satisfying xp = 1, zp = 0, and Ux is an algebraic
(one-parameter) subgroup of SLn.

Let X̃ be the (connected) algebraic subgroup of SLn generated by {Ux | x ∈
X, xp = 1}. Nori’s key result states that if p is large enough with respect to
n, then X+ = X̃(Fp)+. Now, it follows from the structure theory that (if p is
large enough then) X̃(Fp) = X̃(Fp)+; thus in fact X+ = X̃(Fp). In other words,
X+ can be realized as the group of Fp-rational points of the connected algebraic
group X̃. This result now implies Theorem 16.4.10. Indeed, since X normalises
X̃ it preserves the Lie algebra LX̃ of X̃; it follows that LX̃(Fp) = sln(Fp) and
hence that X̃ = SLn. Thus X ≥ X+ = SLn(Fp)

Nori’s proof rests on a detailed analysis of the relation between groups and
their Lie algebras in the characteristic p case. He establishes a one to one
correspondence between nilpotently-generated Lie subalgebras of Mn(Fp) and
unipotently-generated subgroups of SLn(Fp), provided p >> n.

Third proof [Hrushovskii & Pillay 1995]: using model theory.

A field F is said to be pseudo algebraically closed (PAC, for short) if every
irreducible variety defined over F contains an F -rational point. By Hilbert’s
Nullstellensatz, algebraically closed fields are PAC, but there are many others
(see [FJ]). Important examples of PAC fields are the pseudo-finite fields. These
are the fields E whose elementary theory is equal to the theory of almost all
finite fields: this means that a first-order sentence is true in E if and only if it
is true in almost every finite field. If one takes an infinite set of primes {pi}i∈I
then a non-principal ultraproduct of {Fpi

}i∈I provides an example of such a
field. Such an E is indeed PAC: If V is an irreducible variety defined over E,
then it gives rise to such varieties VF over almost every finite field F . It follows
from the Lang-Weil estimates on the number of points in varieties over finite
fields that VF (F ) 6= ∅ for sufficiently large F , and by elementary equivalence we
see that V (E) 6= ∅.

Hrushowski and Pillay studied “definable” subgroups and subsets of GLn(F ),
i.e. subsets which can be defined by first-order statements. They have developed
a theory of such subsets which parallels the theory of Zariski-closed subsets. One
of their fundamental results is as follows [Hrushovskii & Pillay 1994], Prop. 2.1:
let X be the subgroup of GLn(F ) generated by a family of Zariski-irreducible
definable subsets. Then (i) H is definable and (ii) H has finite index in its
Zariski closure in GLn(F ). Let us see now how this may be applied to the proof
of Theorem 16.4.10. Suppose that the Theorem does not hold. Then there is an
infinite sequence of primes {pi}i∈I and proper subgroups Hi ≤ SLn(Fpi

) such
that each Hi acts irreducibly on sln(Fpi) and has order divisible by pi. Let’s
take a (nonprincipal) ultraproduct of these structures. Then F , the ultraproduct
of the Fpi

, is a pseudo-finite field, and the corresponding ultraproduct of the
{Hi}i∈I is a subgroup H of SLn(F ). We first show that H is Zariski-dense in
SLn(F ). Otherwise, its Zariski closure H, an algebraic group over F , would have
an invariant proper Lie subalgebra in sln(F ). By the elementary equivalence,
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this would imply that Hi has an invariant proper Lie subalgebra in sln(Fpi) for
almost all i ∈ I, contrary to hypothesis. A similar argument implies that H
contains a unipotent element: if not, then Hi has order coprime to pi for almost
all i ∈ I, again contradicting the hypothesis.

Suppose y is a unipotent element of H. Then the set Uy = {exp(t log y) |
t ∈ F} is a subgroup of H. Indeed, for any pi > n, any unipotent element x of
GLn(Fpi) has order pi, and

{exp(t log x) | t ∈ Fpi} =
{
xj | 0 ≤ j ≤ p− 1

}
is exactly the subgroup generated by x inside Hi. If y is the image of (xi) in
the ultraproduct H it follows that Uy is a subgroup of H (here, log and exp are
defined componentwise, by the formulae (16.3) and (16.4) above).

Now for each unipotent element y ∈ H, Uy is a definable Zariski-irreducible
subgroup of SLn(F ). Let H0 be the subgroup of H generated by all such Uy.
The theorem stated above shows that H0 has finite index in its Zariski closure
H0. As H0 is normalized by H which is Zariski-dense in SLn(F ), it follows that
H0 is normal in SLn(F ). Therefore H0, and its finite-index subgroup H0, are
both equal to SLn(F ). This now implies that Hi = SLn(Fpi

) for almost all i,
the final contradiction that completes the proof.

We end this section by mentioning that in recent years, various strong results
on subgroups of GLn(Fp) have been obtained. Most notable is the work of
Larsen and Pink who established the following general structure theorem, which
can be used as an ‘elementary’ alternative to CFSG in certain arguments:

Theorem 16.4.11 [Larsen & Pink] Let H be a finite subgroup of GLn(F ),
where F is a field of characteristic p > 0. Then G has normal subgroups G3 <
G2 < G1 such that
1) |G/G1| is bounded as a function of n;
2) G1/G2 is a direct product of at most n

2 simple groups of Lie type defined over
fields of characteristic p;
3) G2/G3 is abelian of order prime to p, and
4) G3 is a finite p-group.

3 The ‘Lubotzky alternative’

On the face of it, the strong approximation theorem is only about subgroups of
S-arithmetic groups, but in fact it has profound applications to finitely gener-
ated linear groups. Most of these are derived via the following theorem, which
Mann has kindly dubbed “Lubotzky’s Alternative”, in analogy with the well-
known “Tits Alternative”.

The Tits alternative asserts that a finitely generated linear group Γ either is
virtually solvable or else contains a non-abelian free group. It means that either
Γ is small (“virtually solvable”) or else Γ contains a large (“free”) subgroup. One
of its main applications is the dichotomy: linear groups are either of polynomial



STRONG APPROXIMATION 411

word growth or of exponential word growth. The Lubotzky alternative asserts
that either Γ is small (virtually solvable) or else Γ has large finite quotients
(“G(Fp) for almost all primes p”). Its main application is the dichotomy: linear
groups of polynomial subgroup growth are virtually soluble, and if the subgroup
growth is not polynomial then it grows at least as fast as nlogn (see Chapters 5
and 8). It appeared in this role in [Lubotzky and Mann 1991].

Theorem 16.4.12 Let G be a finitely generated linear group over a field of
characteristic zero. Then one of the following holds:
(a) G is virtually soluble,
(b) there exist a connected, simply connected simple algebraic group S over Q,
a finite set of primes S such that S(ZS) is infinite, and a subgroup G1 of finite
index in G such that the profinite group S(ẐS) is an image of Ĝ1.

In finitary terms, the meaning of (b) is that every congruence quotient of S(ZS)
appears as a quotient of G1 (this is equivalent to (b) by the Strong Approx-
imation Theorem). It may also be important to know something more about
the simple algebraic group S (for example, in Chapter 8 when we try to count
normal subgroups of finite index in a linear group). We return to this question
below, after discussing the proof of Theorem 16.4.12.

The theorem is proved in a sequence of reductions. For the first, we recall
that a specialisation of a group G ≤ GLn(F ) into GLn(k), where k is a field,
means the homomorphism φ∗ : G → GLn(k) induced by some ring homomor-
phism φ from R into k where R is a subring of F that contains the entries of
all matrices in G.

Proposition 16.4.13 Let G be finitely generated subgroup of GLn(F ), where
F is a field of characteristic zero. If G is not virtually soluble then there exist
an algebraic number field k and a specialisation φ∗ of G into GLn(k) such that
φ∗(G) is not virtually soluble.

Proof. Let f andm be positive integers, provided by the Platonov-Zassenhaus
theorem, such that every virtually soluble linear group of degree n over a field
of characteristic zero is (soluble of derived length ≤ f) by (finite of order ≤ m)
(# Linear groups). Since G is finitely generated, its subgroups of index at
most m intersect in a normal subgroup G1 of finite index in G. Let K be the
fth term of the derived series of G1; since G is not virtually soluble we know
that K 6= 1. Choose an element g 6= 1 of K, an entry gij 6= δij of the matrix g,
and put z = gij − δij .

Now let R be a finitely generated Q-subalgebra of F such that G ≤ GLn(R).
Since the maximal ideals of R intersect in 0 ([E], Theorem 4.19), there exist a
field k and a Q-algebra epimorphism φ : R→ k such that φ(z) 6= 0. The group
homomorphism φ∗ : G → GLn(k) induced by φ then satisfies φ∗(z) 6= 1, so we
have φ∗(K) 6= 1. From the definition of K it now follows that φ∗(G) is not
virtually soluble.

Since the field k is finitely generated as a Q-algebra, the ‘Weak Nullstellen-
satz’ ([E], Theorem 4.19 or [AM], Prop. 7.9) shows that is a finite extension of
Q, that is, an algebraic number field.
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Thus to prove Theorem 16.4.12, we may replace the original group G by its
image under a suitable specialisation, and so assume that G ≤ GLn(k) where
(k : Q) = d is finite. Since GLn(k) ≤ GLdn(Q), we may further replace n by dn
and F by Q.

Changing notation, we henceforth assume that G ≤ GLn(Q).

Second reduction Let G0 be the connected component of 1 in the Zariski
topology of G (induced from the Zariski topology on GLn(Q)). Then G0 Cf G,
so replacing G by G0 we may assume that in fact G is Zariski-connected. Now let
G be the Zariski-closure of G in GLn(C). Thus G is a connected linear algebraic
group defined over Q. Also G is not soluble; hence there exist a connected Q-
simple algebraic group S defined over Q and a Q-rational epimorphism ρ : G →
S. Since G is Zariski-dense in G it follows that ρ(G) is Zariski-dense in S; and
we have ρ(G) ≤ S(Q).

Replacing G by its image ρ(G), we may therefore assume that G is Zariski-
dense in the connected Q-simple algebraic group S.

Third reduction Let π : S̃ → S be the universal cover of S. Thus S̃ is a
simple simply connected algebraic group over Q and π is a Q-rational morphism.
Moreover, kerπ is finite and

S(Q)/π(S̃(Q)) = E, say

is an abelian group of finite exponent. Indeed, kerπ is the (finite) centre Z of S̃
and E embeds into H1(Q,Z) by the exact sequence of Galois cohomology (see
[PR], §2.2); we recall the simple proof in Lemma 16.4.14 below. Let us continue
now with our reduction, and put

H = S̃(Q) ∩ π−1(G).

Then
G/π(H) = G/(G ∩ π(S̃(Q)) ↪→ E,

so G/π(H) is finite because G is finitely generated. Hence π(H) is finitely
generated also, and as kerπ is finite it follows that H is finitely generated.
Therefore H ≤ S̃(ZS) for some finite set of primes S. Since S̃(ZS) ≤ GLm(ZS)
for some m this implies in particular that H is residually finite; hence there
exists H1 Cf H with H1 ∩ kerπ = 1. We now have

H1
∼= π(H1) ≤f G.

We claim that H1 is Zariski dense in S̃. Indeed, writing H for the Zariski-
closure of H1 in S̃, we have π(H1) ≤ π(H) ≤ S; but π(H) is Zariski-closed in
S, while the Zariski-closure of π(H1) has finite index in the Zariski-closure of G
which is S. As S is connected it follows that π(H) = S. Therefore S̃ = H·kerπ.
Since kerπ is finite and S̃ is connected this implies that S̃ = H as claimed.



STRONG APPROXIMATION 413

Replacing G by H1, we may now therefore assume that the simple algebraic
group S is simply connected, and that G ≤ S(ZS) for some finite set of primes
S.

Conclusion Now Theorem 16.4.2 shows that the closure G of G in the profi-
nite group

S(ẐS) =
∏
p/∈S

S(Zp)

is an open subgroup of S(ẐS). This implies that G contains a subgroup of the
form ∏

p/∈S1

S(Zp)×
∏

p∈S1\S

{1}

where S1 ⊇ S is still some finite set of primes, and hence that G is in fact dense
in S(ẐS1) =

∏
p/∈S1

S(Zp). Replacing S by S1 we may as well suppose that G

is dense in S(ẐS).
In that case, S(ẐS) is the completion of G relative to the congruence topol-

ogy, which is coarser than the profinite topology; so S(ẐS) is a homomorphic
image of Ĝ and the proof is complete.

It remains to prove

Lemma 16.4.14 Let S be a semisimple algebraic group defined over Q, and
π : S̃ → S its universal covering. Then

S(Q)

π(S̃(Q))

is an abelian group with finite exponent dividing the order of the center of S̃.

Example. A typical example is S = PGL2, S̃ = SL2 and

S(Q)

π(S̃(Q))
∼=

Q∗

(Q∗)2
∼=
∞⊕
i=1

Z
2Z
.

Proof. The map π : S̃ → S is surjective with a finite central kernel Z
of order m, say. Let L = π−1(S(Q)) and M = S̃(Q). The Galois group
G = Gal(Q̃/Q) acts on L andM is precisely the set of fixed points. Moreover, for
every x ∈ L and σ ∈ G we have x−1σ(x) ∈ Z. This implies that σ[x, y] = [x, y]
for every σ ∈ G and x, y ∈ L. It follows that [x, y] ∈M for all x, y ∈ L. Now let
x ∈ L. Then σ(x) = xz for some z = z(σ, x) in Z, and then σ(xm) = xmzm =
xm. This shows that xm is in M . Thus

M ≥ [L,L]Lm

and the lemma follows since S(Q)/π(S̃(Q)) is a quotient of L/M.
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We promised to say more about the simple group S. Looking back at the
above proof of Theorem 16.4.12, we see that S appears as (a covering group of)
one of the simple components of G0 where G is the Zariski closure of φ∗(G);
and we are free to choose any one of these simple components. Is there any way
to keep some control over the group G?

Proposition 16.4.15 Let G be finitely generated subgroup of GLn(F ), where
F is a field of characteristic zero. Let G be the Zariski closure of G in GLn(C).
Then there exist an algebraic number field k, a normal subgroup G1 of finite
index in G, and a specialisation φ∗ of G1 into GLn(k) such that the Zariski
closure of φ∗(G1) is isomorphic to G0.

Here G0 denotes the identity component of G.
Using this, it is possible to strengthen the statement of Theorem 16.4.12:

under the hypotheses of that theorem, suppose that the Zariski closure of G
has a simple composition factor T. Then T is a product of absolutely simple
groups, each isomorphic over C to a simple algebraic group S; and the simple
group S in the conclusion of the theorem may be taken to be C-isomorphic to a
product of copies of S.

We omit the details of the proof, which needs some care over fields of def-
inition, but sketch now the proof of Proposition 16.4.15. A slightly different
formulation, valid in all characteristics, is proved in [Larsen & Lubotzky] and
stated in the following section.

There is a finitely generated subring A of F such that (i) G ≤ GLn(A) and
(ii) the algebraic group G is defined by equations with coefficients in A. There
exists a prime p (in fact infinitely many) such that A can be embedded in Zp
([Cassels 1986], Chapter 5); and Zp may be embedded in C. We may then
suppose that

G ≤ GLn(A) ≤ GLn(Zp) ≤ GLn(C),

and the Zariski closure of G in GLn(C) is still G. Replacing G by a suitable
subgroup of finite index, we may suppose that (i) G ≤ GL1

n(Zp), the principal
congruence subgroup modulo p, and (ii) the algebraic group G is connected.

The idea now is to think of a specialisation of G1 as a deformation of the
given representation G1 → GL1

n(Zp). Say G = 〈g1, . . . , gd〉 , and let M be the
closure of G in the pro-p group GL1

n(Zp). Then M is a finitely generated pro-p
group, so its Frattini subgroup Φ(M) is open (# Pro-p groups). Since the
algebraic numbers in Zp are dense in Zp, there exist homomorphisms φ : A→ Zp
arbitrarily close to the inclusion A ↪→ Zp such that φ(A) is contained in the
algebraic closure of Q in Zp (this is not obvious: it depends on the fact that if
an equation f(X) = 0 over Zp has a solution ξ ∈ Zp, then for every polynomial
f1 sufficiently close to f, the equation f1(X) = 0 also has a solution in Zp,
moreover one that is close to ξ). We may therefore find such a homomorphism
φ for which φ∗(gi) ≡ gi (modΦ(M)) for i = 1, . . . , d. Since g1, . . . , gd generate
M topologically, so do φ∗(g1), . . . , φ∗(gd). Thus φ∗(G) is (topologically) dense
in M. Now if H is any dense subgroup of M and H is the Zariski closure of H
then H(Zp) is a closed subgroup of GLn(Zp) containing H, so H(Zp) ≥M ≥ H



STRONG APPROXIMATION 415

and so H is the Zariski closure of M . Applying this to H = G and to H = φ∗(G)
we deduce that φ∗(G) has the same Zariski closure as G. This completes the
proof; for k we take the finite extension field of Q generated by the finitely
generated ring φ(A).

We conclude this section with a few applications.

Theorem 16.4.16 Let Γ be a finitely generated linear group over a field of
characteristic zero. If Γ is not virtually soluble then, for every prime p, the Sylow
pro-p subgroups of the profinite completion Γ̂ of Γ are not finitely generated.

Before proving this we deduce a couple of corollaries.

Corollary 16.4.17 Let Γ be a finitely generated linear group over a field of
characteristic zero. If Γ is infinite then Γ has a subgroup of index divisible by d
for every integer d 6= 0.

Proof. It is easy to see that the conclusion equivalent to the assertion that
for every prime p, the Sylow pro-p subgroups of Γ̂ are infinite. This follows from
the Theorem if Γ is not virtually solvable, while if Γ is virtually solvable then Γ
has a finite-index subgroup which maps onto Z.

Corollary 16.4.18 Let Γ be a finitely generated linear group over a field of
characteristic zero. If Γ has finite upper p-rank for at least one prime p then Γ
is virtually soluble.

Indeed this is a formal consequence of the theorem since the upper p-rank of
Γ is by definition the rank of a Sylow pro-p subgroup P of Γ̂, hence an upper
bound for the number of generators required by P .

Remark If p = 2, this can be proved by a quite different route, namely using
Theorem 4 of chapter 5. It is interesting to compare it with Theorem 2 of
Chapter 5, which asserts that a finitely generated residually finite group of
finite upper rank is virtually soluble: finite upper rank implies a (uniform)
finite bound for the upper p-ranks for all primes p, and this much stronger
hypothesis is necessary if we don’t assume linearity (for examples see Chapter
13, Section 4).

Proof of Theorem 16.4.16. Replacing Γ by a suitable subgroup of finite in-
dex, we may suppose by the Lubotzky alternative that Γ̂ maps onto

∏
q/∈S S(Fq)

where S and S are as in Theorem 16.4.12. It suffices therefore to prove that
the Sylow pro-p subgroups of this product are not finitely generated.

Fixing the prime p, it will suffice to show that there are infinitely many
primes q for which p | |S(Fq)|. Now, by Lang’s Theorem (# Linear groups)
the group S is quasi-split over Fq and therefore contains a one-dimensional split
torus; so S(Fq) contains a subgroup isomorphic to F∗q which is of order q − 1.
By Dirichlet’s Theorem (# Primes) there are infinitely many primes q with
q ≡ 1(mod p). The theorem follows as then p | |S(Fq)| for each such q.
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Remark. While the Lubotzky alternative has to be formulated slightly differ-
ently in positive characteristic, all the applications in this section hold also in
that case. See §4 below.

4 Strong approximation in positive characteristic

“Morally” the Strong Approximation Theorem holds also for linear groups over
fields of positive characteristic; but it needs to be properly formulated, and this
is not quite a straightforward matter.

Recall that in the ‘classical’ (characteristic zero) situation, one hypothesis
of the Strong Approximation Theorem is that the algebraic group G be simply
connected . If G is not simply connected, there is a proper isogeny ϕ : G̃ → G.
Then Γ = G(ZS) = ϕ(G̃(ZS)) for some finite set of primes S, and the closure
of Γ in G(ẐS) is contained in ϕ(G̃(ẐS)) which has infinite index in G(ẐS) (see
[PR] §7.4 for details). When the characteristic p is positive, a similar obstacle
arises even if the group is simply connected. Consider for example the group
Γ1 = SLd(Fp[tp]), a subgroup of the arithmetic group Γ0 = SLd(Fp[t]). Like the
latter, Γ1 is Zariski dense in SLd; but its (congruence) closure in the congruence
completion SLd(F̂p[t]) is far from open. To see this, note that a single local
factor of SLd(F̂p[t]) looks like SLd(Fq[[x]]) where q is a power of p and x is a
uniformising parameter, while the closure Γ1of Γ1 in such a factor consists of
matrices all of whose entries are pth powers; so Γ1 ≤ SLd(Fq[[xp]]), a subgroup
of infinite index in SLd(Fq[[x]]).

This is just a ‘formal’ counterexample, in that Γ1 is isomorphic to Γ0, which
does have the strong approximation property. However, a more delicate problem
can occur when p is 2 or 3 and G is a simple algebraic group possessing roots
of two distinct lengths whose ratio is

√
p (this happens for p = 2 and G of type

Bn, Cn or F4 and for p = 3 and G of type G2). In such cases, there is a so-
called ‘non-standard isogeny’ ϕ : G → G] where G] is another simple algebraic
group, and we can play a game similar to the above taking for Γ1 the image
under ϕ of an arithmetic group in G; in this case Γ1 need not be isomorphic to
any arithmetic group in G]. (These isogenies are responsible for the ‘twisted
groups’ of Suzuki and Ree.)

Thus if strong approximation is to hold at all, it must be formulated rather
carefully. A suitable formulation was found by Pink, and we present here a slight
variation of this. Let G be a connected simple adjoint algebraic group defined
over a global field k, and let Γ be a finitely generated Zariski-dense subgroup
of G(k). The triple (k,G,Γ) is said to be minimal if whenever (k′,G′,Γ′) is
another such triple with k′ a global subfield of k, and ϕ : G′ → G is an isogeny
with ϕ(Γ′) = Γ, then k′ = k and ϕ is an isomorphism. Pink proves that for
any such triple (k,G,Γ) there exists a minimal one (k′,G′,Γ′) such that G′ is
isogenous to G and Γ′ is commensurable to Γ.

Now let (k,G,Γ) be a minimal triple and let π : G̃ → G denote the universal
cover of G, so G̃ is simply-connected. Put Γ∗ = G̃(k) ∩ π−1(π(Γ)).
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Theorem 16.4.19 [Pink 2000] Let (k,G,Γ) be a minimal triple, and let S be
a finite set of primes of O = Ok such that Γ∗ ≤ G̃(OS). Then the closure of Γ∗

in G̃(ÔS) is open.

If we start with an arbitrary triple (k0,G0,Γ0), then replace it with a min-
imal one (k,G,Γ) as above, then the resulting Γ∗ will be commensurable with
the original group Γ0; hence the group-theoretic applications discussed in the
preceding sections remain valid, with suitable adjustments, also in characteristic
p. However we need also the following analogue of Proposition 16.4.15, which
is of some independent interest:

Theorem 16.4.20 [Larsen & Lubotzky] Let F be an arbitrary field and let Γ
be a finitely generated subgroup of GLn(F ). Suppose that the Zariski closure G
of Γ is a connected absolutely simple algebraic group. Then there exist a global
field k and a specialisation ψ : Γ → GLn(k) such that the Zariski closure of
ψ(Γ) in GLn is isomorphic to G.

Using this and Pink’s theorem, one can deduce a version of Lubotzky’s al-
ternative valid in all characteristics (here k denotes the separable closure of
k):

Theorem 16.4.21 Let G be a finitely generated linear group over a field of
characteristic p. Then one of the following holds:
(a) G is virtually soluble,
(b) there exist a global field k of characteristic p, a connected, simply connected
simple algebraic group S over k, a finite set of primes S of the ring of integers
O of k such that S(OS) is infinite, and a subgroup G1 of finite index in G such
that the profinite group S(ÔS) is an image of Ĝ1. Moreover, S may be chosen
to be k-isomorphic to T(l) for some l, where T is any of the simple components
of the Zariski closure of G.
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Window: Primes

The problems discussed in this book bring us quite often to counting congruence
subgroups in an arithmetic group Γ = G(Z) and that leads to counting primes.
One may note that if G is the one-dimensional unipotent algebraic group Ga,
then G(Z) = Z and counting primes is actually counting maximal subgroups
in this G(Z). So the whole content of this book can be considered as a gen-
eralization of the counting problems studied in analytic number theory. From
this point of view, one may see our subject of subgroup growth as a chapter of
“non-commutative analytic number theory”.

1 The Prime Number Theorem

For a real number x > 1, let π(x) denote the number of primes not exceeding
x and ϑ(x) =

∑
p≤x ln p. (Throughout, the variable p is supposed to range over

primes.) The main result of classical analytic number theory is

Theorem 16.4.1 PNT (Hadamard, de la Vallée Poussin)

π(x) ∼ x

lnx
.

That is, π(x)/(x/ lnx) tends to 1 as x → ∞. This is proved in [HW], Chapter
XXII. It is a relatively elementary fact ([HW] Theorem 420) that

ϑ(x) ∼ π(x) lnx,

so an equivalent formulation of PNT is

ϑ(x) ∼ x. (16.1)

Another equivalent form ([HW], Theorem 9) is

pn ∼ n lnn (16.2)

where pn denotes the nth prime.

419
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Much effort has been devoted to estimating the error term E(x) = ϑ(x)− x
in the PNT. It is known that the Riemann Hypotheses (RH) is equivalent (!) to
the assertion: E(x) = Oε(x

1
2+ε) for every ε > 0. Moreover if one assumes RH,

then actually E(x) = O
(
x1/2(lnx)2

)
.

Estimation of π(x) is crucially needed in the proof of the PSG Theorem (see
Chapter 5); actually for this theorem the following weaker estimate suffices:

Proposition 16.4.2 (Chebyshef, 1852)

π(x) � x

lnx
as x→∞.

The proof goes essentially as follows: Assume x is an integer. It is easy to see
that the highest power of a prime p which divides x! is

[
x
p

]
+
[
x
p2

]
+
[
x
p3

]
+ · · ·

where [t] denotes the greatest integer less than or equal to t. It immediately
follows that x! =

∏
p≤x p

[x/p]+[x/p2]+··· and so

ln(x!) =
∑
p≤x

([
x

p

]
+
[
x

p2

]
+
[
x

p3

]
+ · · ·

)
ln(p).

Now ln(x!) is asymptotic to x ln(x) by Stirling’s formula, and, since squares,
cubes, · · · of primes are comparatively rare, and

[
x
p

]
is almost the same as x

p ,
one can infer that

x
∑
p≤x

ln(p)
p

= x ln(x) +O(x);

from this one can deduce that π(x) is of order x
ln x . For details, see [HW], ch.

XXII. An explicit easy upper bound, obtained by combining Theorems 415 and
420 of [HW], is

π(x) ≤ (2 + o(1))
x

log x
(recall that log x denotes the logarithm to base 2).

The following useful estimates are easily derived from (16.2):

Corollary 16.4.3 If n is divisible by exactly m distinct primes then

m = O

(
lnn

ln lnn

)
.

Corollary 16.4.4 If n is the product of the first m primes then

lnn = O(m lnm).

For certain purposes we shall also need a much more elementary result,
known as ‘Bertrand’s postulate’. For the proof see [HW], Theorem 418 or [PB],
Chapter 1:

Theorem 16.4.5 For each positive integer n there exists a prime p with n <
p ≤ 2n.
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2 Arithmetic progressions and the Bombieri-Vinogradov
theorem

For the more precise counting of congruence subgroups in arithmetic groups
presented in Chapter 6, we need to count primes in arithmetic progressions,
together with good estimates for the error term.

To this end, let a and q be relatively prime integers with q > 0. Let

P(x; q, a) = {p ≤ x | p ≡ a (mod q)} ,
π(x; q, a) = |P(x; q, a)| ,

ϑ(x; q, a) =
∑

p∈P(x;q,a)

ln p.

The classic theorem of Dirichlet, proved in 1837, asserts that if gcd(q, a) = 1 then
there are infinitely many primes congruent to a (mod q), that is, π(x; q, a) →∞
as x→∞. In fact, these primes are ‘equally distributed’ in the following sense:

Theorem 16.4.6 Assume that gcd(q, a) = 1. Then

π(x; q, a) ∼ 1
φ(q)

· x

lnx
,

ϑ(x; q, a) ∼ ϑ(x)
φ(q)

∼ x

φ(q)
.

Here φ denotes the Euler function. For the proof, see for example [N], Theorem
3.11. Below we shall see how it may be deduced from a more general result,
Chebotarev’s theorem.

However, we also need an estimate for the error term

E(x; q, a) = ϑ(x; q, a)− x

φ(q)
.

Assuming the generalized Riemann Hypothesis, one can prove that if q ≤ x then

max
(a,q)=1

E(x; q, a) ≤ Cx1/2(lnx)2

for some absolute constant C.
[Bombieri 1965] proved unconditionally that this holds “on the average” (a

slightly weaker version was proved independently by Vinogradov). See also
[Davenport 2000]. Precisely, we have

Theorem 16.4.7 (Bombieri’s Theorem) Let A > 0 be fixed. Then there exists
a constant c(A) > 0 such that∑

q≤
√

x

(ln x)A

max
y≤x

max
(a,q)=1

|E(y; q, a)| ≤ c(A)
x

(lnx)A−5
.
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Thus the “average error” is O(x
1
2 (lnx)5), which as remarked above does imply

RH “in the average”. We will need to use it in the following way.

Definition. Let x be a large positive real number. A Bombieri prime, w.r.t. x,
is a prime q for which max

y≤x
|E(y; q, 1)| ≤ x

φ(q) ln x . If q is a Bombieri prime, w.r.t.

x, we call the set P(x; q, 1) a Bombieri set w.r.t. x and denote it for short by
P(x; q).

Lemma 16.4.8 Fix 0 < ρ < 1
2 . Then for x sufficiently large, there exists at

least one Bombieri prime q lying in the interval
[
xρ

ln x , x
ρ
]
.

Proof. Assume not, then for all primes q in the interval xρ

ln x ≤ q ≤ xρ,
max
y≤x

|E(y; q, 1)| > x
φ(q) ln x . In view of the trivial inequality φ(q) = q − 1 < q, it

immediately follows that∑
xρ

ln x≤q≤xρ

max
y≤x

|E(y; q, 1)| > x

lnx

∑
xρ

ln x<q<x
ρ

1
q

>
x

2ρ
ln lnx
(lnx)2

provided x is sufficiently large (the sums ranging over primes q); the last in-
equality follows from the well known asymptotic formula for the partial sum of
the reciprocals of the primes∑

q≤y

1
q

= ln ln y + b+O

(
1

ln y

)
when b is an absolute constant.

This contradicts Bombieri’s Theorem with A ≥ 7, provided x is sufficiently
large.

Corollary 16.4.9 Let q be a Bombieri prime with respect to x. Then for x
sufficiently large, ∣∣∣∣π(x; q, 1)− x

φ(q) lnx

∣∣∣∣ ≤ 3
(

x

φ(q)(lnx)2

)
.

Proof. We have∑
p∈P(x,q)

1 =
x∑
n=2

ϑ(n; q, 1)− ϑ(n− 1; q, 1)
lnn

=

=
x∑
n=2

ϑ(n; q, 1)
(

1
ln(n)

− 1
ln(n+ 1)

)
+
ϑ(x; q, 1)
ln(x+ 1)

=
x∑
n=2

ϑ(n; q, 1)
ln(1 + 1

n )
lnn ln(n+ 1)

+
ϑ(x; q, 1)

lnx
− ϑ(x; q, 1)

(
1

lnx
− 1

ln(x+ 1)

)
.
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By the defining property of a Bombieri set, we have the estimate |ϑ(n; q, 1) −
n
φ(q) | ≤

x
φ(q) ln x , for n ≤ x. It follows easily that∣∣∣∣∣∣

∑
p∈P(x,q)

1− ϑ(x; q, 1)
lnx

∣∣∣∣∣∣ ≤
x∑
n=2

ϑ(n; q, 1)
1

n · (lnn)2
+ ϑ(x; q, 1)

(
1

lnx
− 1

ln(x+ 1)

)

≤ 3
(

x

φ(q)(lnx)2

)
.

3 Global fields and Chebotarev’s theorem

By a ‘gobal field’ one understands either an algebraic number field (finite ex-
tension of Q) or a finite extension of the rational function field Fp(t) for some
prime p (a function field). The ring of integers Ok of a global field k is the
integral closure of Z (in the first case) or of Fp[t] (in the second case). There are
several equivalent concepts of ‘prime of k’. The ‘infinite primes’ are equivalence
classes of archimedean valuations of k; the ‘finite primes’ are equivalence classes
of non-archimedean valuations of k, or the non-zero prime ideals of Ok. We
stick with the latter interpretation; the norm of a prime p is

Np = |Ok/p| .

The Prime Ideal Theorem for global fields is

Theorem 16.4.10 Let π(x) denote the number of prime ideals p of Ok with
Np ≤ x. Then

π(x) ∼ x

lnx
.

The proof for algebraic number fields may be found in [Cassels & Fröhlich
1968], Chapter VIII §2, or [Lang 1970], Chapter 15, §5. For the function field
case see [Reichardt 1936].

There is also a far-reaching generalisation of Dirichlet’s theorem. Let L be
a finite Galois extension of the global field k, with Galois group G. Let P be a
prime ideal of OL and p = P ∩ Ok. Provided p is unramified (which holds for
almost all primes), there is a unique element

σ =
[
L/k

P

]
∈ G

such that xσ ≡ xNp (modP) for every x ∈ OL. This is called the Frobenius
symbol. The primes P such that P ∩ Ok = p for a given p form a single orbit
under G, and their Frobenius symbols form a single conjugacy class in G; this
is denoted

(
L/k

p

)
and is called the Artin symbol. The important theorem of

Chebotarev asserts that the primes of k are equally distributed according to
their Artin symbol; that is,
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Theorem 16.4.11 (Chebotarev) Let C be a conjugacy class in G, and denote
by πC(x) the number of prime ideals p of Ok such that Np ≤ x and

(
L/k

p

)
= C.

Then

πC(x) ∼
|C|
|G|

· x

lnx
.

A special case most often used in applications is when C = {1}: the primes p

such that
(
L/k

p

)
= {1} are precisely those that split completely in L, and the

theorem asserts that these have density 1/ |G| = 1/(L : k).
The theorem was originally proved (like Dirichlet’s theorem on arithmetic

progressions) in a weaker form, namely as a statement about the Dirichlet den-
sity of the set of primes in question. A set of primes S has Dirichlet density δ
if ∑

p∈S(Np)−s∑
all p(Np)−s

tends to the limit δ as s→ 1+. It is easy to see that if δ > 0 then S is infinite.
However, what one really wants to know is the ‘natural density’ of S, namely
the limit as x→∞ (if it exists) of

|{p ∈ S : Np ≤ x}|
|{p prime : Np ≤ x}|

.

It turns out that if either density exists then so does the other, and they are
equal; this is an application of the Tauberian theorem of Ikehara and Delange
(cf. [Koch 1997], Theorem 1.113, [Lang 1970], Chapter 15). Bearing this in
mind, the proof of Chebotarev’s theorem may be found in [FJ], Chapter 5.

Let us show how Dirichlet’s theorem appears as a special case (cf. [FJ],
Chapter 5). Let q, a be integers without common factor. Let ζ be a primitive
qth root of unity, k = Q and L = Q(ζ). For each integer b coprime to q there
exists γ(b) ∈ Gal(L/k) such that ζγ(b) = ζb. If p - q is a prime then γ(p) is
the Frobenius automorphism corresponding to (any prime of L lying over) p.
Clearly p ≡ a (mod q) if and only if γ(p) = γ(a); thus the density of the set
of all such primes p is equal to 1/ |Gal(L/k)| = 1/φ(q), as required (note that
Gal(L/k) ∼= Z/qZ is abelian in this case, so the conjugacy class of γ(a) has just
one element).



Window: Probability

We require very little in the way of probability theory, but the probabilistic
terminology is suggestive; in particular it makes sense of what would other-
wise seem a purely technical piece of measure-theoretic manipulation. For an
accessible and rigorous introduction to the theory, see for example [Renyi 1970].

Let P be a set with a positive, countably-additive measure µ such that
µ(P ) = 1 (a ‘probability space’). The measurable subsets of P are called events,
and the probability of an event X is µ(X). Two events X and Y are independent
if

µ(X ∩ Y ) = µ(X)µ(Y ).

We prove two results, which go together by the name of the Borel-Cantelli
Lemma. A slightly stronger form is proved in [Renyi 1970], Chapter VII §5.
Both concern a sequence (Xn)n∈N of events, and the associated event

X∞ =
⋂
n∈N

( ∞⋃
k=n

Xk

)
.

An element x lies in X∞ if and only if x belongs to infinitely many of the Xn,
so X∞ is interpreted as the event “infinitely many of the events Xn happen”.
The Borel-Cantelli Lemma (under some conditions) determines the probability
of X∞, once the probabilities of the individual events Xn are given.

Fix the notation

pn = µ(Xn)
p∞ = µ(X∞),

and for X ⊆ P write X = P \X.

Proposition 16.4.1 If the series
∑∞
n=1 pn is convergent then p∞ = 0.

Proof. Let ε > 0. Then there exists n such that
∑∞
k=n pk < ε. Since

X∞ ⊆
⋃∞
k=nXk we have

0 ≤ p∞ = µ(X∞) ≤ µ

( ∞⋃
k=n

Xk

)

≤
∞∑
k=n

µ(Xk) =
∞∑
k=n

pk < ε.
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The result follows.

Proposition 16.4.2 Assume that the events Xn are pairwise independent. If
the series

∑∞
n=1 pn is divergent then p∞ = 1.

The proof of this direction needs a little more preparation. For any measur-
able function f on P, define

E(f) =
∫
P

f,

D2(f) =
∫
P

(f(x)− E(f))2dx;

E(f) is the expectation of f and D2(f) is the variance of f . Now for each
n let αn : P → {0, 1} be the characteristic function of Xn, so αn(x) = 1 for
x ∈ Xn, αn(x) = 0 for x ∈ Xn. Note that

pn = µ(Xn) =
∫
P

αn.

Define

Fn(x) =
n∑
k=1

(αk(x)− pk),

and note that
E(Fn) = 0.

We assume henceforth that the events Xn are pairwise independent.

Lemma 16.4.3 For each n we have

D2(Fn) =
n∑
k=1

pk(1− pk).

Proof. Since E(Fn) = 0 we have

D2(Fn) =
∫
P

(
n∑
k=1

(αk(x)− pk)

)2

dx

=
n∑
k=1

∫
P

(αk(x)− pk)2dx+
∑
l 6=k

∫
P

(αk(x)− pk)(αl(x)− pl)dx.

Now αk(x)− pk takes the value 1− pk on Xk and the value −pk on Xk. So∫
P

(αk(x)− pk)2dx = pk(1− pk)2 + (1− pk)p2
k = pk(1− pk).
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Similarly, for k 6= l the function (αk(x)− pk)(αl(x)− pl) takes the values

−(1− pk)pl on Xk \Xl

−pk(1− pl) on Xl \Xk

(1− pk)(1− pl) on Xk ∩Xl

pkpl on Xk ∪Xl

.

Since µ(Xk∩Xl) = pkpl, these four sets have measure pk(1−pl), pl(1−pk), pkpl
and 1 − pk − pl + pkpl = (1 − pk)(1 − pl) respectively. Putting these together
we find that ∫

P

(αk(x)− pk)(αl(x)− pl)dx = 0.

The lemma follows.
The next lemma is known as Chebyshef’s inequality :

Lemma 16.4.4 Let f be a measurable function on P . For λ > 1 put

Bλ =
{
x ∈ P | (f(x)− E(f))2 > λD2(f)

}
.

Then
µ(Bλ) ≤ λ−1.

Proof. If D2(f) = 0 then f(x) = E(f) identically and µ(Bλ) = 0. Suppose
that D2(f) 6= 0. Then

D2(f) =
∫
P

(f(x)− E(f))2dx

≥
∫
Bλ

(f(x)− E(f))2dx

≥ µ(Bλ) · λD2(f),

and the result follows.

Proof of Proposition 16.4.2. For each n let

Yn =

{
x ∈ P | Fn(x) < −1

2

n∑
k=1

pk

}
.

Then each x ∈ Yn satisfies

(Fn(x)− E(Fn))2 >
1
4

(
n∑
k=1

pk

)2

= λD2(Fn)

where

λ =
(
∑n
k=1 pk)

2

4D2(Fn)
=

(
∑n
k=1 pk)

2

4
∑n
k=1 pk(1− pk)

≥
∑n
k=1 pk
4
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since pk(1− pk) ≤ pk for each k.
It follows by Lemma 16.4.4 that

µ(Yn) < 4

(
n∑
k=1

pk

)−1

.

As the series
∑∞
k=1 pk is divergent, there exists an increasing sequence (n(j))j∈N

such that
µ(Yn(j)) ≤ 2−j

for each j. Putting Zj = Yn(j) we may now apply Proposition 16.4.1 to deduce
that µ(Z∞) = 0.

To conclude the proof, it will therefore suffice now to verify that X∞ ⊆ Z∞.
Suppose then that x ∈ X∞. Then for some n we have x /∈

⋃∞
k=nXk, whence

αk(x) = 0 for all k ≥ n. For each m ≥ n we then have

Fm(x) +
m∑
k=1

pk =
m∑
k=1

αk(x) =
n∑
k=1

αk(x) ≤ n.

Since this is less than 1
2

∑m
k=1 pk if m is large enough, we see that x ∈ Ym for

all sufficiently large m, and so x ∈ Z∞. The proposition follows.



Window: p-adic integrals
and logic

1 Results

We consider integrals of R≥0-valued functions over subsets of Qm
p , with respect

to the Haar measure µ (always normalised so that µ(Zmp ) = 1). The functions
and subsets considered will always be easily seen to be measurable, which means
that the integral is well defined, as a non-negative real number or ∞ (see for
example [Royden 1964], Chapter 11).

In practice, we evaluate integrals by interpreting them as series. Thus if
φ : V → R>0 takes only countably many values cn we have∫

V

φdµ =
∑
n

cn · µ(φ−1(cn)) ∈ R ∪ {∞}

The fibres φ−1(cn) will usually be the intersection of a closed set with an open
set, hence measurable. The series either diverges to +∞ or else converges ab-
solutely, so the order of summation is immaterial.

The p-adic absolute value of λ ∈ Qp is written

|λ| = p−v(λ)

where v(λ) is the exact power of p that divides λ (i.e. p−v(λ) · λ ∈ Z∗p if λ 6= 0;
one puts v(0) = ∞ and |0| = 0).

In general, s will denote a real variable, assumed when convenient to be large
and positive.

The following is in a sense the typical example:

Lemma 16.4.1 ∫
Zp

|x|s dµ =
1− p−1

1− p−1−s .

Proof. Let Un = pnZp \ pn+1Zp. This consists of p − 1 cosets of pn+1Zp
(out of a possible total of pn+1), so µ(Un) = (p− 1)p−(n+1). Since the measure
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of {0} is zero we have∫
Zp

|x|s dµ =
∞∑
n=0

∫
Un

|x|s dµ =
∞∑
n=0

p−nsµ(Un) = p−1(p− 1)
∞∑
n=0

p−n(s+1),

a geometric progression with the stated sum.

The first order language L of Qp consists of the usual logical symbols (in-
cluding the quantifiers ∀, ∃), symbols for variables, a constant symbol for each
element of Qp, binary operation symbols +, ·, and relation symbols =, | (where
x | y is interpreted as v(x) ≤ v(y)). By a formula of L we mean a ‘meaningful’
expression constructed using only these symbols. A subset V of Qm

p is definable
if there is a formula ϕ(x1, . . . , xm) of L, containing exactly m free variables xi,
such that

V =
{
x ∈ Qm

p | ϕ(x) is true
}
.

Theorem 16.4.2 [Denef 1984] Let V ⊆ Zmp be a definable subset of Qm
p and

let h, k be polynomials in m variables over Zp. Then there exist polynomials P
and Q over Q such that ∫

V

|h(x)| |k(x)|s dµ =
P (p−s)
Q(p−s)

for all large positive s ∈ R.

Denef’s statement has only |k(x)|s in the integrand, but his proof works as
well with the extra factor |h(x)| . On the other hand, he also proves a more
general form of the theorem, in which k is allowed to be any definable function,
that is one whose graph is a definable subset of Qm

p × Qp = Qm+1
p . The proof

shows that the polynomial Q can always be taken to be of the form

Q(T ) =
∏

(1− pαiT βi) (16.1)

where αi and βi are non-negative integers. An outline of this proof is given in
the following section.

The integral on the left can be written as a sum

∞∑
n=0

anp
−ns = S(p−s),

say, where S is a power series. It follows from the theorem that Q(T )S(T ) =
P (T ) holds for all T in some interval [0, ε] where ε > 0. This implies that
Q(T )S(T ) = P (T ) is an identity of formal power series; that is, we may consider
s as a dummy and determine the coefficients an recursively from this identity.

A further refinement of Denef’s theorem was obtained by [Macintyre 1990].
He shows that if h and k are defined independently of the prime p (for example,
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if they are polynomials over Z), and the domain V is also defined independently
of p, then the degrees of P and Q are bounded independently of p. More explicit
information about the variation of P and Q with p has been obtained in certain
cases by [du Sautoy & Grunewald 2000] (see also our Chapter 15, Section 3).

A powerful generalisation of Denef’s theorem was obtained by Denef and
van den Dries:

Theorem 16.4.3 [Denef & van den Dries 1988] Let V ⊆ Zmp be a subanalytic
set and let h, k : Zmp → Zp be analytic functions. Then there exist polynomials
P and Q over Q such that∫

V

|h(x)| |k(x)|s dµ =
P (p−s)
Q(p−s)

for all large positive s ∈ R.

A function on Zmp is called analytic if locally it can be defined by convergent
power series. We won’t define ‘subanalytic set’, but note that these include
the sets definable in a certain first-order language for Qp that includes function
symbols for functions defined by power series. This is just what is needed for
the applications to p-adic analytic groups discussed in Chapter 16.

As above, the polynomial Q may be taken of the form (16.1). The formal
structure of the proof is similar to that of Denef’s theorem; the hard work goes
into setting up the ‘analytic’ theory which makes the argument possible, and
we shall say no more about this.

2 A peek inside the black box

The key to Denef’s theorem is the fact that the logic of Qp admits quantifier
elimination, in a suitable sense. This means that any formula can be replaced
by a formula without quantifiers, and hence that any definable set can be built
out of sets that have a particularly simple form. The precise result is as follows:

Theorem 16.4.4 [Macintyre 1976] A subset of Qm
p is definable if and only if

it is a Boolean combination of sets of the following types:{
x ∈ Qm

p | f(x) = 0
}

(I){
x ∈ Qm

p | g(x) | f(x)
}

(II){
x ∈ Qm

p | (∃y ∈ Qp) . f(x) = yn
}

(III)

where f, g are nonzero polynomials in m variables over Zp and n ≥ 2 is a
natural number.

A Boolean combination means a set obtained by forming (finitely many) unions,
complements and intersections.
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A simple lemma in [Denef 1984] shows that any set of type (I) or (II) is also
of type (III) (exercise for the reader!). Now if V is a Boolean combination of
sets Vi then an integral over V is a finite linear combination, with coefficients
±1, of integrals over sets of the form Vi1 ∩ . . . ∩ Vik . So it suffices in Denef’s
theorem to consider the case where V is defined by finitely many conditions of
the form

P (gj(x);nj) : gj(x) is an njth power

where gj ∈ Zp[T ] and 2 ≤ nj ∈ N.
The next, and hardest, step is to show that V can be further decomposed

into finitely many compact, open pieces on each of which all the polynomials gj
and the functions h, k appearing in the integrand can be replaced by monomials.
We shall come back to this below, but first let us see how it is used.

Suppose, then, that V is the set of all x ∈ a + peZmp such that P (gj(x);nj)
holds (j = 1, . . . , q), where each gj(x) is a monomial. Let n be a common
multiple of n1, . . . , nq. If each xi is replaced by zni xi with zi ∈ Q∗p then the
validity of P (gj(x);nj) is unaffected. Since (Q∗p)n ∩Z∗p has finite index in Z∗p, it
follows that V is partitioned into finitely many subsets of the form{

x ∈ a + peZmp | P (λ−1
i xi;n) for i = 1, . . . ,m

}
.

We may therefore suppose that V is just this set. If h and k are also monomials
then

|h(x)| |k(x)|s = pe0
m∏
i=1

|xi|cis+bi

where ci and bi are non-negative integers, and∫
V

|h(x)| |k(x)|s dµ = pe0
m∏
i=1

(∫
Vi

|xi|cis+bi dµ(xi)
)

where
Vi =

{
y ∈ ai + peZp | P (λ−1

i y;n)
}
.

Let us fix i and evaluate the corresponding integral. Putting U(k) =(
pkZp \ pk+1Zp

)
∩ Vi, we have

J(i) =
∫
Vi

|xi|cis+bi dµ(xi) =
∞∑
k=0

∫
U(k)

|y|cis+bi dµ

=
∞∑
k=0

p−k(cis+bi)µ(U(k)).

Suppose first that ai /∈ peZp. Then |y| = |ai| = p−f , say, for every y ∈ Vi. In
this case U(k) is empty for k 6= f, so

J(i) = Ap−f(cis+bi)
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where A = µ(Vi).
Suppose next that ai ∈ peZp. Then we may as well take ai = 0. Say λi = pgu

where u ∈ Z∗p. Then y ∈ U(k) if and only if (i) k ≥ e and (ii) y = pkv where
v ∈ Z∗p and

pkv = pgu · pnlwn

for some integer l and some w ∈ Z∗p. Hence U(k) = ∅ unless k ≥ e and
k ≡ g (modn), in which case U(k) = pku ·

(
Z∗p
)n. So putting B = µ(u ·

(
Z∗p
)n)

we have µ(U(k)) = p−kB, and

J(i) =
∑
k∈K

p−k(cis+bi+1)B

= B
p−e

′(cis+bi+1)

1− p−n(cis+bi+1)
,

where K is the set of k ≥ e with k ≡ g (modn) and e′ is the smallest number
in K.

Thus ∫
V

|h(x)| |k(x)|s dµ = pe0
m∏
i=1

J(i) =
P (p−s)
Q(p−s)

where P is a polynomial and Q(T ) is a product of factors of the type (1− pcT ).
This is precisely the claim of Denef’s theorem, and it makes clear why the result
takes the form that it does.

The heart of the proof lies in the reduction to this special case (where every-
thing is a monomial). Denef gives two different ways of achieving this reduction.
The first appeals to Hironaka’s theorem on the resolution of singularities. Ap-
plied to the hypersurface defined by the polynomial h · k ·

∏
gj , this shows that

locally, co-ordinates can be found in terms of which each of the individual poly-
nomials in question can be expressed as a monomial. The use of this ‘black box’
has the advantage of giving a relatively quick and easy proof of the general ex-
istence theorem. The disadvantage is that it relies on deep and massive work in
algebraic geometry. However, in specific cases it can be carried out effectively,
giving an explicit rational function as the value of the integral. This was used
to good effect by du [Sautoy & Grunewald 2000], as reported in Chapter 15.

Denef’s alternative proof is more complicated, but more elementary, and
avoids resolution of singularities. Instead, it takes advantage of the ‘grainy’
structure of Zp as expressed in the so-called cell decomposition theorem. This
approach, which makes essential use of the quantifier elimination theorem, has
the advantage that it can be applied to any definable functions, not just poly-
nomials: the idea is to show that if f is definable then Zmp can be decomposed
into ‘cells’ on which |f | is the same as |r|1/e for some rational function r and
some e ∈ N; a cell is something like a rectangle. This approach is developed fur-
ther in [Macintyre 1990], whose ‘uniform cell decomposition’ is the basis for his
proof that the numerator and denominator in Denef’s theorem have bounded
degrees, independently of the prime. It is worth consulting the introduction to
Macintyre’s paper for a clear and detailed review of Denef’s argument.
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Open problems

Most of the following problems have been mentioned, explicitly or implicitly,
earlier. Problems that seem to us of particular interest are marked ∗.

1 ‘Growth spectrum’

The broad question of what subgroup growth types occur is answered in Chapter
13, but as soon as we begin to restrict either the class of groups or the kind of
subgroups the problem is very much open. Here is a brief summary of what is
known, together with some indications of what remains to be discovered.

Note that the definition of ‘growth type’ allows one group to have growth
type f for many distinct functions f . When referring to the ‘spectrum of growth
types’, what we mean really is the set of equivalence classes of growth types,
where f is equivalent to g when log f � log g. All groups are assumed to be
finitely generated (abstract or profinite).

1.1 Subgroup growth types

All groups: full spectrum from n to nn, except possibly between n(log logn)k

(k ∈ N) and nlogn (see chapter 13).

Problems: (a) Fill this gap;

(b) What about strict growth types? (the construction of Chapter 13 already
gives all strict types between nlogn and nn).

Residually nilpotent groups: there is a gap between n and nlogn/ log logn

(see Chapter 8). The only types known to occur apart from n and nn are

nlogn/ log logn, nlogn (16.1)

2n
γ

(γ = 1/d or 1− 1/d with d ∈ N). (16.2)

(See Chapters 6 and 9.)

Problems: (a) What other types occur?

(b) Are there further gaps?
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(c) Is the spectrum uncountable?

(d) Does type 2n
γ

occur for every rational γ ∈ (0, 1)? (See §9.3.)

Linear groups and soluble residually nilpotent groups. Here the gaps
are wider, from n to nlogn for linear groups in positive characteristic,
from n to 2n

γ

(γ > 0 arbitrarily small) for soluble res. nilpotent groups
(see Chapters 8 and 9).

Problems: (a) and (b) as above. (c) for soluble res. nilpotent groups. (d) for
metabelian groups.

Soluble groups: The maximal growth type is 2n (see Chapter 3); the only
known ones beyond PSG are those in (16.2).

Problems: (a∗) Is there a gap above PSG?

(b∗) Is the spectrum uncountable?

Countable classes: there are only countably many f.g. linear groups, f.g.
metabelian groups, finitely presented groups.

Problem: in each case, the spectrum is countable – describe it!

Pro-p groups: The maximal growth type is 2n; there is a gap from n to nlogn.
The known growth types are n, nlogn and types as in (16.2) (see Chapter
4 and §9.3).

Problems: (a∗) Are there other gaps?

(b∗) What other growth types occur?

(c∗) Is the spectrum uncountable?

1.2. Finer growth invariants

PSG groups: there are two invariants, α(G) = lim sup log sn(G)
logn and deg(G) =

lim sup log an(G)
logn . It is known that deg(G) cannot lie in (1, 3/2) and that

α(G) cannot lie in (1, 2) ([Shalev 1997b], [Shalev 1999a]).

Problems: (a∗) Are there further gaps in the spectrum of α or deg ?

(b∗) Is α(G) ∈ Q for every f.g. PSG group? Describe the spectrum of possible
values (it is a countable set!)

(c) Find the supremum of the numbers ξ such that α(G) ≥ (ξ + o(1)) · h(G)
for all f.g. PSG groups. (It is known that 3− 2

√
2 ≤ ξ ≤ 1: see §5.6.)

See also problem (a) in §3 below.
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Nilpotent groups: It is known that α(G) ∈ Q (see Chapter 15).

Problem∗: What is the spectrum of α(G) for f.g. nilpotent groups G? (The
only known values are in N ∪ {5/2, 7/2}).

Pro-p groups: If sn(G) ≤ nc logp n for all n where c < 1/8 then G has PSG
(see Chapter 4).

Problems:

(a) What is the best bound for c? (it is known to lie between 1/8 and 1/2).

(b) If G does not have PSG, does G have strict growth type at least f, for
some function f that is faster than polynomial (and independent of G)?

(c) Determine α(G) for G = SL1
d(Zp) (see also ‘local zeta functions below).

(d) Find the supremum of the numbers ξ such that α(G) ≥ (ξ + o(1)) · dimG
for all pro-p groups G of finite rank. (It is known that 3 − 2

√
2 ≤ ξ ≤ 1:

see §4.1.)

1.3. Subnormal subgroup growth types

Finitely generated abstract groups: The fastest subnormal growth type
is 2n (see Chaper 2). The only known types faster than polynomial are
those in (16.2), achieved by metabelian groups (see Chapter 9), nlogn

(arithmetic groups in positive characteristic) and nlogn/(log logn)2 (some
arithmetic groups in characteristic zero) (see Chapter 6: for arithmetic
groups with the CSP, the subnormal growth can be estimated in a similar
way to the normal subgroup growth).

Problems: (a∗) is the spectrum uncountable?

(b∗) Are there gaps?

F.g. profinite groups: All the subgroup growth types achieved by pro-p
groups (listed above) are in fact subnormal subgroup growth types.

Problem: Are there any other subnormal growth types in profinite groups,
beyond these and the ones listed just above?

1.4. Normal subgroup growth types

The fastest normal growth type is nlogn (Chapter 2). The only known types
faster than polynomial are nlogn and nlogn/(log logn)2 (certain arithmetic
groups) and a countable infinite sequence of types n(logn)ε

with 1/3 ≤ ε <
1 (metabelian groups) (see Chapters 6 and 9).
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Problems: (a∗) is the spectrum uncountable?

(b∗) Are there gaps?

(c∗), (d∗): The same questions for f.g. pro-p groups.

Problem: Investigate the possible normal and subnormal growth rates where
these are very slow (less than linear); the examples of Chapter 13 have
this property.

1.5. Maximal subgroup growth types of finitely generated groups

The examples of §13.2 exhibit the full spectrum of maximal subgroup growth
types between nlogn and nn. Pyber can extend this down to nlogn/ log logn.

Problem∗: Is there a gap between n and this latter type (or some smaller gap)?

2 Normal subgroup growth in pro-p groups and
metabelian groups

Problems:

(a∗) Characterise the f.g. pro-p groups with polynomial normal subgroup
growth. (The metabelian ones are characterised in §9.4.)

(b) Let F be the free pro-p group on d ≥ 2 generators. Then logp a
C
pk(F ) lies

between (c1 − ε)k2 and (c2 + ε)k2 for large k, where c1 = (d− 1)2/4d and
c2 = (d − 1)/2 (see Chapter 3). Does k−2 logp a

C
pk(F ) tend to a limit as

k →∞? If so, what is it?

(c) Let G be a f.g. metabelian group or metabelian pro-p group. Then

2− 2/k + o(n) ≤ log log sC
n (G)

log log n
≤ 2− 1/k + o(n)

where k = κ(G) (see Chapter 9). Does the middle expression tend to a
limit as n→∞? If so, what is it?

3 The degree of f.g. nilpotent groups

Problems: (a∗) Determine α(G) in terms of structural invariants of the f.g.
nilpotent group G.

(b) It is known that

h(G) ≥ α(G) ≥ (3− 2
√

2)h(G)

(this is slightly stronger than Proposition 5.6.6 which applies to all f.g. PSG
groups). Is the constant on the right best possible?
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4 Finite extensions

Let H be a normal subgroup of finite index in a group G.

Problems: (a∗) If G has polynomial normal subgroup growth, does H also?
(cf. §1.11.)

(b∗) Same for polynomial maximal subgroup growth (cf. Chapter 11).

5 Soluble groups

All the results giving lower bounds for the subgroup growth of f.g. soluble
groups or prosoluble groups are obtained by counting subnormal subgroups.

Questions: Let G be such a group. (a∗) Is the subnormal subgroup growth
type of G the same as the subgroup growth type?

(b∗) If G has PSG, is αCC(G) = α(G) ?

6 Isospectral groups

Groups G and H are said to be isospectral if an(G) = an(H) for every n. This
is equivalent to saying that they have identical zeta functions (see Chapter 15).
Evidently this holds if Ĝ ∼= Ĥ, but this sufficient condition is not necessary: it
is shown in Chapter 14 that for each g, the orientable surface group of genus g
and the unorientable surface group of genus 2g are isospectral.

In general, nothing seems to be known about the structural implications of
this relation. To determine what it means for two groups to be isospectral is
one of the fundamental problems in the theory of subgroup growth. Here are
some specific questions:

(a) IfG andH are isospectral groups, do they have the same normal, subnormal
or maximal subgroup growth types?

(b) If G and H are isospectral torsion-free finitely generated nilpotent groups,
must they have isomorphic profinite completions?

(c) Can there be infinitely many non-isomorphic isospectral torsion-free finitely
generated nilpotent groups? (A fundamental theorem of Pickel shows that
there are only finitely many such groups with a given profinite completion
– see [Sg], Chapter 10).

7 Congruence subgroups, lattices in Lie groups

Question*: Let Γ be a finitely generated just-infinite linear group over a field
of characteristic zero, with subgroup growth of type nlogn/ log logn. Does
it follow that Γ is isomorphic to an S-arithmetic group? (cf. problem 8(d)
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below. See [Lubotzky & Venkataramana] for another algebraic character-
ization of arithmetic groups, and [Bass & Lubotzky 2000] for a counterex-
ample to Platonov’s conjectural characterization.)

Problem∗: Determine the congruence subgroup growth type of arithmetic
groups in simple algebraic groups of type A1 and Cl over global fields
of characteristic 2. (See Chapter 6.)

Problems∗: Prove the ‘generalised congruence subgroup conjecture’ for an irre-
ducible lattice Γ in a characteristic-zero semisimple group H (see Chapter
7). It is of particular interest to establish

(a) If Γ is non-arithmetic then Γ has subgroup growth of type at least nlogn.

(b) if ∆ is another irreducible lattice inH then ∆ and Γ have the same subgroup
growth type. Same problem in positive characteristic, assuming Γ and ∆
are finitely generated (see Chapter 7.)

Problems: (a∗) If Γ is an arithmetic group (in a simple algebraic group) in
characteristic zero then

log cn(Γ)
(log n/ log log n)2

(16.3)

is bounded above and below by positive constants (Chapter 6). Does this
ratio tend to a limit as n → ∞? If so, what is it? The answer is known
only for Γ = SL2(O); for this and a precise conjecture in the general case,
see §6.1 and [Goldfeld, Lubotzky & Pyber].

(b∗) Similar questions in characteristic p 6= 0, for the ratio

log cn(Γ)
(log n)2

.

(c∗) Is there an absolute upper bound, independent of the simple algebraic
group G, for this ratio, when Γ = G(Ok), k is a global field of character-
istic p 6= 0? (See [Abért, Nikolov & Szegedy] for a step in this direction).

8 Other growth conditions

PIG means ‘polynomial index growth’ (see Chapter 12). BG means ‘boundedly
generated’: G is BG if G is equal to the product of finitely many cyclic or
procyclic subgroups.

Problems:

(a) Are there uncountably many residually finite boundedly generated groups?

(b) If G is a f.g. residually finite group, does Ĝ BG imply that G is BG?
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(c∗) Is every residually finite BG group G linear? Is G linear if we assume
additionally that every subgroup of finite index has finite abelianisation?
(H. Bass; see [Abért, Lubotzky & Pyber] for more on this question.)

(d∗) Is every just-infinite BG linear group isomorphic to an S-arithmetic group?

(e) Does every soluble f.g. residually finite group with PIG have finite rank?
(Yes if it is also residually nilpotent: see Chapter 12.)

(f) Does every f.g. group with PIG have subgroup growth type at most nlogn,
or polynomial maximal subgroup growth? (Theorem 12.4 gives the weaker
upper bounds n(logn)2 , nlogn respectively.)

(g∗) Let G be a f.g. group with urp(G) finite for every prime p. Must G have
finite rank? (If this holds for soluble groups G it implies a gap in the
subgroup growth spectrum for these groups; see Chapter 9, Notes.)

9 Zeta functions

This area is largely uncharted territory, waiting to be explored in many di-
rections. For some promising beginnings, see the papers by du Sautoy in the
bibliography, as well as Chapter 15. Here we mention a small sample of prob-
lems. Several specific conjectures are stated in the comprehensive survey article
[du Sautoy (d)].

Problems:

(a∗) “Uniformity”. Let G be a f.g. free group in the variety of nilpotent groups
of a given class. Prove that

ζG,p(s) = R(p, p−s) (16.4)

for almost all primes p, where R is a rational function in two variables
over Q. Same for ζC

G,p(s).

(b∗) For which f.g. nilpotent groupsG is it the case that the local zeta functions
ζG,p(s) (or ζC

G,p(s)) satisfy a ‘local functional equation’

R(X−1, Y −1) = XaY bR(X,Y ),

where R is given by (16.4)? Find an explanation for this phenomenon
where it is known to occur. (For many examples, see [du Sautoy (d)], §5.)

(c*) Determine ζG,p for G = SL1
d(Zp), or ζL for the associated Lie algebra

L = sld(Zp), where d > 2 (for d = 2, see [du Sautoy 2000], [du Sautoy &
Taylor]).

(d∗) Find a definition for Mann’s ‘probabilistic zeta function’, and study its
properties (see §15.2, and [Mann 1996] for more details).
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L. G. Kovács, On finite soluble groups, Math. Zeit. 103 (1968), 37-39.

J. H. Kwak & J. Lee, Enumeration of graph coverings, surface branched cov-
erings and related group theory, Combinatorial & Computational Mathematics;
Present and Future, eds. S. Hong, J. H. Kwak, K. H. Kim & F. W. Roush, pp.
97–161, World-Scientific, Singapore 2001.

S. Lang, Algebraic number theory, Addison-Wesley, Reading, Mass., 1970.

M. Larsen, How often is 84(g − 1) achieved? Israel J. Math. 126 (2001), 1–16.

M. Larsen & A.Lubotzky, Normal subgroup growth of linear groups: the (G2, F4, E8)
theorem, preprint.

M. Larsen & R. Pink, Finite subgroups of algebraic groups, preprint

M. Lazard, Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965), 389-
603.

C. R. Leedham-Green, The structure of finite p-groups, J. London Math. Soc.
50 (1994), 49-67.

C. R. Leedham-Green & S. McKay, On the classification of p-groups and pro-
p groups, New Horizons in pro-p groups, pp. 55-74, Progress in Math. 184,
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K. Wohlfahrt, Über einen Satz von Dey und die Modulgruppe, Archiv der Math.
29 (1977), 455-457.



Bibliography 465

E. I. Zelmanov, On the restricted Burnside problem, Proc. Internl. Congress
Math. Kyoto, 1990, Math. Soc. Japan, Tokyo, 1991, pp. 395–402.

E. I. Zelmanov, On groups satisfying the Golod-Shafarevich condition, in New
Horizons in pro-p Groups, eds. du Sautoy, Segal and Shalev, Progress in Math.
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