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Introduction

Property (T) was introduced in a seminal paper of Kazhdan [104] in 1967. A
group G has this property if the trivial one dimensional representation of G is
”bounded away” from all the other irreducible unitary representations of G.
Kazhdan property (T) turned out to be a powerful representation theoretic
method to study discrete subgroups of Lie groups.

The current notes are about a baby version of property (T), which is called
property (τ). It asserts, for a discrete group Γ, that trivial representation
is bounded away fom the non-trivial irreducible finite representations (i.e.,
those with finite images). In many applications, it is even useful to look
at a smaller subclass of representations: Let L = {Ni}i∈I be a family of
finite index subgroups of Γ. Γ is said to have τ with respect to L (τ(L) for
short) if the non-trivial irreducible Γ subrepresentations of l2(Γ/Ni), i ∈ I,
are bounded away from the trivial representation. An important case which
will be dealt in details is when Γ is an arithmetic group and L is its family
of congruence subgroups.

It turns out that (τ) - being weaker than (T) - is sometimes even more
useful as it holds for a wider class of groups. Moreover it can be presented
in various equivalent forms (for simplicity, we assume that L is large enough
to define a topology on Γ):

(a) Representation theoretical - the original definition;

(b) Combinatorial - Γ has (τ(L)) if and only if the quotient Schreier
graphs form a family of expanding graphs (”expanders”);

(c) Measure theoretic - Γ has (τ(L)) if and only if the Haar measure is
the unique Γ-invariant finitely additive measure on Γ̂L (the profinite group
obtained from Γ by completing it with respect to the topology determined
by L).

(d) Cohomological - Γ has (τ(L)) if and only if H1(Γ, L2(Γ̂L)) = 0.

7
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If in addition Γ = π1(M) where M is a compact Riemannian manifold
and Mi is the finite sheeted covering of M corresponding to Ni, i ∈ I then
we also have

(e) Analytic - Γ has (τ(L)) if and only if there is an ε > 0 such that
λ1(Mi) > ε, for every i ∈ I, where λ1(Mi) is the smallest positive eigenvalue
of the Laplace-Beltrami operator on Mi.

(f) Geometric - Γ has (τ(L)) if and only if there is an ε > 0 such that
h(Mi) ≥ ε for every i, where h(Mi) is the Cheeger constant (the isoperimetric
constant) of the manifold Mi.

The fact that (τ) can be expressed in so many different ways opens the
door to applications in several directions. The main goal of these notes is
to describe these applications which look quite unrelated, from a unified
perspective. Some of these applications are, by now, quite well known and
some of them are more recent. There are only few new results in this book
(e.g. Sections 2.4, 5.2 and 8.2).

These applications include:

(i) The constructions of expanders. These graphs are of fundamental
importance in computer science and combinatorics;

(ii) The analysis of a popular algorithm in computational group theory
called ”the product replacement algorithm” (PRA - for short). This algo-
rithm provides pseudo random elements from a finite group given by its
generators. In practice, it turns out to have outstanding performances, but
its theoretical analysis does not, as yet, explains why. Property (τ) or more
precisely a ”non-commutative Selberg Theorem” can give the proper expla-
nation. This connection suggests some problems and conjectures regarding
(τ) for the automorphism group of the free group.

(iii) The uniqueness of the Haar measure as the only finitely additive
invariant measure of some local and adélic profinite groups.

(iv) Applications to C∗ algebras and in particular to the question when
the C∗ algebra of a discrete group Γ is seperated by its finite dimensional
representations.

The most surprising applications are for

(v) Hyperbolic manifolds. In this regard we present a proof for arithmetic
manifolds of Thurston’s conjecture on non-vanishing of the first Betti number
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of finite covers of such manifolds. Moreover the recent work of Lackenby
[113] suggests a path how the Lubotzky-Sarnak conjecture (asserting that
fundamental groups of compact hyperbolic 3-manifolds do not have (τ)) can
lead to a proof of the famous ”virtual Haken conjecture” for hyperbolic 3-
manifolds.

As said the main goal of these notes is to present these applications from
a unified point of view. Along the way we discuss the connections with
questions on automorphic forms, finite groups, discrete subgroups in Lie
groups, 3-manifolds, pro-p groups and more. A number of open problems
for further research are also presented.

In a way the current book is a sequel to [122]. Here and there, the reader
will find some overlap, but the two books can be read independently. The
book is organized as follows:

The first part deals with property (τ) for its own sake. More specifically:

In Chapter 1, we present (T) and (τ) and their basic properties. Chapter
2 deals with the various equivalent forms of (τ) (as some of the material here
overlaps with [122], we are sometimes quite brief, but we give full details for
the cohomological form which is new). In Chapter 3 we relate a ”quantitative
version of (τ)” to the existence of nontrivial first cohomology. This will come
up again in Chapter 7, where we consider the Thurston conjecture. Chapter
4 deals with the connection of (τ) to the Selberg Theorem (λ1 ≥ 3

16
) and the

Ramanujan conjecture.

In the second part of the book, we turn to the applications.

In Chapter 5, we describe the applications to finite graphs and finite
groups. These applications are mainly throught the notion of expanders
which play an important role in computer science and combinatorics. Some
of this material is covered in [122], so here we will concentrate more on its
implications to the theory of finite groups: We study the ”finitary τ”, i.e.,
considering (τ) as a property of an infinite family of finite groups rather
than as a property of one infinite group. We present some recent results on
the dependence of this property on the choice of generators. Some of this
material will be used in Chapter 8 when the measure theoretic applications
will be discussed.

Chapter 6 deals with the application to the product replacement algo-
rithm. The reader’s attention is called to some conjectures about (τ) and
”Selberg property” for Aut(Fk) (Fk being the free group on k generators)
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whose proof or disproof would imply interesting corollaries.
In Chapter 7 we describe the applications to hyperbolic manifolds, start-

ing with the Thurston conjecture. We then pass to the connections between
the Heegaard splitting, (τ) and the virtual Haken conjecture. Some group
theoretical conjectures are presented whose proof can lead to proofs of the
above mentioned conjectures on hyperbolic 3-mainfolds. We will explain why
pro-p theory in general and Golod-Shafarevitch in particular can be relevant.
The recent work of Zelmanov [196], gives some hope that this ”pro-p” ap-
proach to this 3-manifolds problem is not so absurd as may be thought at
first sight.

Chapter 8 presents the measure theoretic applications and Chapter 9 the
ones to the C∗ algebras.

These notes are partially based on talks given by the first author at Rice
University, Columbia University and École Normale Supérieure in Lyon and
the second author at Cornell University and University of Chicago. The
authors are grateful to these places and the audiences for useful discussions.

Both authors have enjoyed during the preparation of these notes the ad-
vice and help of many colleagues among which we should mention our grat-
itude to L. Bartholdi, B. Bekka, R. Brooks, P. de la Harpe, M. Lackenby, S.
Mozes, B. Samuels and Y. Shalom whose remarks found their way into these
notes.
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Chapter 1

Property (T) and property (τ)

In this chapter we introduce properties (T) and (τ), give some examples
(more to come in Chapter 4) and study some of their properties.

1.1 Fell topology

Throughout this section G is a locally compact group. Let G̃, G̃0 denote
the space of equivalence classes of all continuous unitary representations of
G and those without invariant vectors, respectively.

The Fell topology on G̃ is defined as follows. Consider a representation
(H, π) in G̃. For a compact subset K of G, ε > 0 and v ∈ H of norm one

we define the neighborhood W (K, ε, v) as those representations (H′, π′) in G̃
for which there exists v′ ∈ H′ of norm one such that for every g ∈ K

|〈v, π(g)v〉 − 〈v′, π′(g)v′〉| < ε.

If H is a closed subgroup of G then the induction of representations
is a continuous map from H̃ to G̃ with respect to this topology. We say
that a representation (π,H) ∈ G̃ is weakly contained in the representation

(π′,H′) ∈ G̃ and we write π ≺ π′ if π is contained in the closure of π′ in the
Fell topology (see for instance [56]).

If 1G denotes the trivial representation of G, then a representation (π,H)
of G weakly contains 1G, if and only if π has almost invariant vectors, i.e.
for every ε > 0 and for every compact subset K of G there exists v ∈ H of
norm 1 such that for every g ∈ K

‖π(g)v − v‖ < ε.

13
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1.2 Property (T)

In 1967 Kazhdan introduced the notion of property (T) which plays an impor-
tant role in the theory of semi simple Lie groups and their discrete subgroups.

Definition 1.1 ([104]) Let G be a locally compact group. We say that G
has property (T) or G is a Kazhdan group if the trivial representation

is isolated from G̃0 in G̃, i.e. 1G is not in the closure of G̃0.

In Section 1.2.1 one can find a description of Lie groups which have prop-
erty (T). Their lattices, i.e. discrete subgroups of Lie groups of finite covol-
ume, have property (T) as well. This enabled Kazhdan (and in fact was the
main motivation to introduce property (T)) to prove a conjecture of Siegel
stating that these lattices are finitely generated. Indeed if Γ is a discrete
group which is Kazhdan, then Γ is finitely generated (see Proposition 1.24).
For finitely generated groups one can give the following formulation of prop-
erty (T).

Proposition 1.2 Let Γ be a group generated by a finite set S. Γ has property
(T) if and only if there exists ε(S) > 0 such that for every (π,H) ∈ Γ̃0 and
every v ∈ H

max
s∈S

‖π(s)v − v‖ ≥ ε(S)‖v‖.

The constant ε(S) is called a Kazhdan constant with respect to the
set S. Property (T) is independent on the generating set but ε(S) does:
for some Kazhdan groups it is not possible to find ε > 0 which would be a
Kazhdan constant for all finite sets of generators as was shown by Gelander
and Żuk [71]. For instance if Γ = SO5(Z[1/5]) then Γ has property (T) and
in [71] it was shown that there exists a sequence of generating subsets Sn of
size 5 such that ε(Sn) tends to zero. For many applications of property (T)
it is interesting to estimate the value of Kazhdan constants (for examples of
such estimates see [182], [183], [200], [36]).

1.2.1 Examples of groups with property (T)

A fundamental remark of Kazhdan was that for lattices (i.e. discrete sub-
groups of Lie groups of finite covolume) property (T) is inherited from Lie
groups.
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Theorem 1.3 A lattice Γ in a locally compact group G has property (T) if
and only if G has property (T).

Corollary 1.4 Let Γ1 and Γ2 be lattices in a locally compact group G. Then
Γ1 has (T) if and only if Γ2 has.

By results of Kazhdan [104], Delaroche-Kirillov [49], Kostant [111], Vaser-
stein [187] and Wang [191] it is known which Lie groups are Kazhdan (see [148],
[125] and [197] for an exposition of these results). For example,

Theorem 1.5 Let F be a local field and G the group of F -points of a simple
algebraic group defined over F and of F -rank ≥ 2. Then G is a Kazhdan
group.

For F non-archemedian, rank one groups never have (T) as they act on
trees (see Chapter 2 below). Among R-rank one real simple Lie groups some
have property (T) and some do not.

Theorem 1.6 The real Lie groups Sp(n, 1) and F
(−20)
4 are Kazhdan groups

while SO(n, 1) and SU(n, 1) are not.

There are other examples of groups with property (T) ([82], [36], [159],
[198], [13]). In fact in some sense ”most” discrete groups have (T) ([200]).
But it is not clear how many of those are residually finite, so property (τ)
for them is not so significant.

1.3 Combinatorial approach to property (T)

We present a simple combinatorial condition which enables one to prove
property (T).

Let Γ be a group generated by a finite set S such that S is symmetric,
i.e. S = S−1, and the identity element e does not belong to S.

Definition 1.7 Let L(S) be a finite graph defined in the following way:

1. vertices of L(S) = {s; s ∈ S},

2. edges of L(S) = {(s, s′); s, s′, s−1s′ ∈ S}.



16 CHAPTER 1. PROPERTY (T) AND PROPERTY (τ)

Let us suppose that the graph L(S) is connected. This condition is not
restrictive, because for a finitely generated group Γ one can always find a
finite, symmetric generating set S, not containing e, such that L(S) is con-
nected (for instance S ∪ S2 \ e will do). This can be seen in the simple case
of Γ = Z; if S = {−1, 1} then the graph L(S) is not connected but if we add
to the set of generators {−2, 2} the graph becomes connected.

� �� �� �� �
� �� �� �

� �� �� �� �� �� �� �� ���� �� �� �� �
� �� �� �� �

	 	 		 	 		 	 		 	 	

 

 

 


� � �� � �� � �� � �
� �� �� �� �

-2 1 2-1

Figure 1.1: The graph L(S) for Γ = Z and S = {−2,−1, 1, 2}

For a vertex s ∈ L(S) let deg(s) denote its degree, i.e. the number of
edges adjacent to s. Let ∆ be a discrete Laplace operator acting on functions
defined on vertices of L(S), i.e. for f ∈ l2(L(S), deg)

∆f(s) = f(s)− 1

deg(s)

∑
s′∼s

f(s′),

where s′ ∼ s means that the vertex s′ is adjacent to the vertex s.
The operator ∆ is a non-negative, self-adjoint operator on l2(L(S), deg).

If L(S) is connected then the zero is a simple eigenvalue of ∆. Let λ1(L(S))
be the smallest non-zero eigenvalue of ∆ acting on l2(L(S), deg).

Theorem 1.8 (Żuk [200]) Let Γ be a group generated by a finite subset S,
such that S is symmetric and e 6∈ S. If the graph L(S) is connected and

λ1(L(S)) >
1

2
(1.1)

then Γ has Kazhdan’s property (T). Moreover

2√
3

(
2− 1

λ1(L(S))

)
is a Kazhdan constant with respect to the set S.
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Remark The condition stated in Theorem 1.8 is optimal. In order to see
this, let us consider the group Γ = Z with the set of generators S = {±1,±2}.
Then the graph L(S) consists of four vertices and three edges (see Figure 1.1).
For this graph λ1(L(S)) = 1

2
and the group Z does not have property (T).

The condition (1.1) can be easily checked. One can imagine a computer
program which for a group given by a presentation checks (1.1) and thus can
prove that this group has property (T).

The above condition applies to several groups. For instance one can give
a new proof of property (T) for some lattices. Let us see this for lattices in

SL(3, Qp). Recall that SL(3, Qp) acts on an affine building of type Ã2.

In [36], a family of groups acting co-compactly on buildings of type Ã2

was constructed. These groups are parameterized by an integer q which is a
power of a prime number. They admit a presentation such that L(S) is the
incidence graph of the projective plane P2(Fq) over the finite field Fq, i.e.

vertices of L(S) = {points p and lines l such that p, l ∈ P2(Fq)},
edges of L(S) = {(p, l); p ∈ l}.

Figure 1.2 shows the graph L(S) for q = 2.

� �� �� �� �� �� �

� � �� � �� � �� � �
� �� �� �

� �� �� �� �� �� �

� �� �� �� �� �� �
� � �� � �� � �� � �

	 		 		 		 	


 

 

 
� �� �� �

� �� �� �   

Figure 1.2: The graph L(S) for a lattice in SL(3, Q2)

In [66], Feit and Higman computed the spectrum of the Laplace operator
on graphs which are incidence graphs of finite projective planes.

Proposition 1.9 (Feit-Higman [66]) Let L be the incidence graph of P2(Fq).
Then

λ1(L) = 1−
√

q

q + 1
.
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For any q ≥ 2 we have λ1(L) = 1 −
√

q

q+1
> 1

2
and thus these groups have

property (T).

The combinatorial condition (Theorem 1.8) enables to show that in sev-
eral settings generic presentations define groups with with property (T) ([84],
[200]).

We consider the following modelM for random groups, which is related to
Gromov’s model ([82]) and was studied in [200]. Let us consider presentations
with relations of length 3. Let d (called density as before) be between 0 and
1. Let PM(m, d) be a set of presentations with m generators, relations of
length 3 and density d, i.e. the number of relations is between c−1(2m− 1)3d

and c(2m − 1)3d, where c > 1 is any fixed constant. Denote by Γ(P ) the
group given by presentation P .

Theorem 1.10 (Żuk [200]) For d > 1
3

one has

lim
m→+∞

# {P ∈ PM(m, d); Γ(P ) has property (T)}
#PM(m, d)

= 1.

For d < 1
2

most presentations in the above model define infinite hyperbolic
groups ([82], [200]).

1.4 Property (τ )

Let Γ be a finitely generated group and L = {Ni} be a family of finite index

subgroups of Γ. Let R = R(L) = {φ ∈ Γ̃; φ appears as a subrepresentation of
the action of Γ on L2(Γ/Ni) for some i}. If the Ni’s are normal, as it is in most
applications, this simply means that R(L) is the set of all representations of Γ

which factors through Γ/Ni for some Ni ∈ L. Let R0 = R0(L) = R∩ Γ̃0. The
following weaker form of (T) was introduced by Lubotzky [122] and coined
(τ):

Definition 1.11 We say that Γ has property (τ) with respect to the
family L, or for short, Γ has τ(L), if the trivial representation is isolated

from the set R0 in Γ̃. We say that Γ has property (τ) if it has this property
with respect to the family of all finite index subgroups.
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Note that property (τ) with respect to L means that there exists a finite
set S in Γ and ε > 0 such that for any representation (V, φ) ∈ R0(L) and
0 6= v ∈ V there exists s ∈ S such that

‖φ(s)v − v‖ > ε‖v‖.

Such a pair (S, ε) is called a (τ) constant of Γ with respect to L. Note that
Γ is not necessarily finitely generated (see Section 1.5.1).

For a compact space X with a finite measure µ, let l20(X) be the set of com-
plex valued functions f such that

∫
X
|f(x)|2dµ(x) < ∞ and

∫
X

f(x)dµ(x) =
0.

The following follows from the definition of τ(L).

Proposition 1.12 A group Γ has property τ(L) if and only if the represen-
tation of Γ on ⊕̂l20(Γ/Ni) does not weakly contain the trivial representation.

1.4.1 Profinite topologies

Definition 1.13 Let L = {Ni}i∈I be family of finite index subgroups. We
define a topology on Γ for which the following system of subgroups serves as
a fundamental system of neighborhoods:

Top(L) = {∩k
j=1N

gij

ij
; Nij ∈ L, gij ∈ Γ}.

Question 1.14 Assume the group Γ has property (τ) with respect to L =
{Ni}i∈I . Does it have property (τ) with respect to Top(L)?

We do not know the answer even if L = {Ni} is a family of normal
subgroups.

For L = {Ni} as before with L = Top(L), let Γ̂L = lim← Γ/Ni denote

the completion of Γ with respect to the topology Top(L). Γ̂L is a profinite

group. There is a natural homomorphism i : Γ → Γ̂L whose image is dense
in Γ̂L. It is an embedding if and only if the topology defined by Top(L) is
Hausdorff, i.e. if and only if

⋂
Ni = {id}. We denote by µ the Haar measure

on Γ̂L.

Proposition 1.15 Assume L = Top(L). The group Γ has property (τ)

with respect to L if and only if L2
0(Γ̂L, µ) does not weakly contain the trivial

representation.

Proof By the Peter-Weyl theorem this is just a reformulation of property
(τ) using one representation L2

0(Γ̂L, µ) (compare with Proposition 1.12). 2
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1.4.2 Lattices in semi-simple groups

Property (T) implies (τ) so every group with property (T) has property (τ).
Among lattices this applies to lattices in ”most” simple groups (Theorems
1.5 and 1.6).

The converse is not true. There are lattices with property (τ) and without
property (T).

Let G be a semi simple group, by which we mean G = Πr
i=1Gi(Ki) where

Ki are local fields and Gi is a simple Ki-algebraic group. By rank(G) we
mean

∑r
i=1 Ki − rank(Gi). A lattice in G has (T) if and only if G has (T)

and G has (T) if and only if each factor of G has (T). Theorems 1.5 and 1.6
give the complete picture on the simple factors Gi. A lattice in a product
of locally compact separable groups is irreducible if its projections on every
factor are dense. An irreducible lattice Γ in G may have (τ) even if G does
not have (T).

Theorem 1.16 (Lubotzky-Zimmer [140]) Let H1 and H2 be locally com-
pact separable groups. Let Γ be an irreducible lattice in a product H1 ×H2,
where both factors are not compact. If H1 has property (T) then Γ has prop-
erty (τ).

Corollary 1.17 Let G = Πr
i=1Gi(Ki) is a semi-simple group as before and

let Γ < G be an irreducible lattice. If one of the non-compact factors Gi(Ki)
has (T) then Γ has (τ). If in addition one of the factors does not have (T)
then Γ has (τ) but not (T).

Definition 1.18 A lattice Γ < G = ΠGi(Ki) is called arithmetic if there
exist a global field k with the ring of integers O, a finite subset S of V , the
set of valuations of k, containing V∞-the archemeadian valuations and G a
connected absolutely simple k group and an homomorphism

π : Πv∈SG(kv) → G

such that ker(π) and coker(π) are compact and π(G(OS)) is commensurable
to Γ, where OS = {x ∈ k; v(x) ≥ 0 for v 6∈ S}.

A remarkable theorem of Margulis [149] asserts that all irreducible lattices
in semi-simple Lie groups of rank at least 2 are arithmetic.
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Example 1.19 Let n ≥ 3 and Γ < SO(n, 2)×SO(n+1, 1) be an irreducible
lattice. Then Γ has (τ) but does not have (T). This is because rk(SO(p, q)) =
min(p, q) and follows from Theorem 1.5 and Corollary 1.17.

An example of an irreducible lattice in SO(n, 2) × SO(n + 1, 1) is as
follows. Let k = Q(

√
2), O = Z(

√
2) and let f be the quadratic form

f(x0, . . . , xn+1) = x2
0 + . . . + x2

n−1 − x2
n +

√
2x2

n+1.

Let σ be the non-trivial element of the Galois group Gal(k/Q). Then fσ is of
the form x2

0+. . .+x2
n−1−x2

n−
√

2x2
n+1. Let G be the k-group of (n+1)×(n+1)

matrices preserving the form f . Then Γ = G(Z(
√

2)) is an irreducible lattice
in G(R)×Gσ(R) ' SO(n, 2)× SO(n + 1, 1).

We will see later more examples of groups with property (τ) and not (T)
(see Chapter 4).

Unfortunately Corollary 1.4 does not hold for property (τ). We have
just seen that the group SO(n, 2) × S(n + 1, 1) has a lattice with (τ), but
it clearly has a lattice without property (τ): take a lattice ∆1 in SO(n, 2)
(which has property (T)) with a lattice ∆2 in SO(n + 1, 1) which has in
infinite abelianization (such a lattice exists - see Chapter 7 below). Then
∆1 ×∆2 is a lattice in SO(n, 2)× SO(n + 1, 1) without (τ). But we do not
know

Question 1.20 Let Γ1 and Γ2 be irreducible lattices in a semi-simple Lie
group G or lattices in a simple group G. Does Γ1 have (τ) if and only if Γ2

has?

An affirmative answer to this problem will be of great importance. For
example it will imply Conjecture 7.1 (see Chapter 7).

We should mention that we do not know any counterexample to the fol-
lowing

Question 1.21 If Γ is an irreducible lattice in H1 ×H2, where H1 and H2

are semi-simple and non-compact. Does Γ have property (τ)?

An interesting challenge to this or similar cases are products of rank
one Lie groups or the Burger-Mozes lattices [32], i.e. irreducible lattices in
Aut(Xp) × Aut(Xq) where Xp and Xq are regular trees of degree p and q
respectively. We do not know if they have (τ). They clearly do not have
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(T) as they act without fixed points on a tree. Recall that the group with
property (T) always fixes a point when it acts on a tree [4].

In Chapter 4 we will show some more examples of groups with property
(τ) (or τ(L) for some L = {Ni}). But all our non-trivial examples, here
and there, are arithmetic subgroups (or a slight modification of them, e.g.
Zn o SLn(Z) has (T) and (τ) for n ≥ 3. It is not a lattice in a semi-simple
group but in another Lie group RnoSLn(R)). It is known, due to [200] that in
some sense most groups have (T) (and so (τ)) but the probabilistic methods
of [200] do not reveal whether they have infinitely many finite quotients, to
make (τ) of some interest.

Among linear groups we do not know any finitely generated group with
(τ) which is not “of arithmetic type”.

In this context it is worth mentioning a specific candidate and an open
problem. But first a related story:

For some time, there were no known examples of linear rigid groups which
were not of arithmetic type. A rigid group is a finitely generated group
which for every n has only finitely many equivalent classes of irreducible
representations of dimension n. In fact, a well known conjecture of Platonov
asserts that every finitely generated rigid linear group is of arithmetic type.

This conjecture was disproved by Bass and Lubotzky [15]. For every

lattice Λ in G = F(−20)
4 the exceptional R-rank one simple Lie group, they

provided a subgroup Γ of L×L of infinite index there, such that the inclusion

map i from Γ to L×L induces an isomorphism î : Γ̂ → L̂× L = L̂×L̂ between
the profinite completions. They appeal then to [87] to deduce that every finite
dimensional linear representation of Γ can be extended to L × L. Now by
[48] and [86] L is superrigid in G, i.e., every finite dimensional representation
of L can be extended, up to a finite index subgroup to a representation of G.
The same holds therefore for L×L in G×G. One can now deduce that every
finite dimensional representation of Γ can be extended, up to finite index, to
G×G. So Γ is a super-rigid group in G×G, from which one can easily deduce
that Γ is a rigid group and so a counterexample to the Platonov conjecture.

It is very tempting to believe that the above Γ has property (τ) (and
maybe even (T)). Note that as Γ̂ ' L̂× L̂, Γ has exactly the same finite quo-
tients as L×L. The latter has (T) and so its finite quotients are expanders.
But, they are expanders with respect to the generators coming from L× L.
We do not know if they are expanders with respect to the generators of Γ.

This issue will come up again (see Section 5.2 and especially Theorem
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5.16 and Theorem 5.17).
Let us ask:

Question 1.22 (i) Do the Bass-Lubotzky groups have (τ)?
(ii) Is there any finitely generated linear group with (τ) (or (T)) which is

not of arithmetic type?
(iii) Let Γ be a subgroup of SL3(Z) with (τ) (or even (T)). Is Γ of finite

index in SL3(Z?

For later reference, let us recall the congruence subgroup problem. In
the notations from Definition 1.18 we say that G(OS) has the congruence

subgroup property (CSP, for short) if Ker
(
Ĝ(OS) → G(ÔS)

)
is finite.

Necessary conditions for the CSP to hold are (a) G is simply connected and
(b) (S \ V∞) ∩ T = ∅ when T = {v ∈ V ;G(kv) is compact}. If Γ is an
arithmetic lattice of G as in Definition 1.18 we may, and will, chose G and S
which satisfy conditions (a) and (b). We will say that Γ has the congruence
subgroup property (CSP) if G(OS) has CSP. (This is independent of choice
of G, k and S).

Conjecture 1.23 (Serre) Assume Γ is infinite (i.e. G is not compact, or
equivalently rank(G) ≥ 1). Then Γ has the congruence subgroup property if
and only if rank(G) ≥ 2.

The positive part of Serre’s conjecture has been proved in most (but not all!)
cases. Less is known about the negative part, i.e., the case rank(G) = 1. See
Section 4.4 and Section 7.6 below for further discussion.

1.5 Properties of groups with (τ )

Property (T) was introduced by Kazhdan in order to prove two properties of
lattices Γ in semi-simple Lie groups: finite generation and vanishing of the
first Betti numbers, i.e. finiteness of the commutator quotients.

1.5.1 Finite generation

Proposition 1.24 If Γ be a countable discrete group which is Kazhdan, then
Γ is finitely generated.
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Proof Say Γ = {g1, g2, . . .} and Hi = 〈g1, . . . , gi〉. Then the Γ representation

on
⊕̂

il
2(Γ/Hi) weakly contains the trivial representation. Hence by (T) it

contains it. This implies that one of the Hi is of finite index in Γ and hence
Γ is finitely generated. 2

The above proof does not work for property (τ). In fact we will see be-
low (see Chapter 4), that if P is an infinite set of primes not containing all
primes, then for any n ≥ 2, Γ = SLn(Z[ 1

P ]) has (τ) but it is not finitely gen-
erated (Z[ 1

P ] is the set of all rational numbers whose denominator is divisible
only by primes from P). The profinite completion of SLn(Z[ 1

P ]) is actually∏
p6∈P SLn(Ẑp) which is a quotient of SLn(Ẑ) (Ẑp be the ring on p-adic inte-

gers). The latter is a finitely generated profinite group, so is the first. Thus

Γ̂ is finitely generated. This is the general case:

Proposition 1.25 Assume that L = Top(L) and Γ has τ(L). Then Γ̂ is
finitely generated. Moreover it is generated by finitely many elements of Γ
(i.e. Γ has a finitely generated subgroup ∆ which is dense in the topology L
of Γ).

Proof Let S be the finite set in the definition of τ(L). Let ∆ = 〈S〉. Then
we can continue in a similar way as in the proof that discrete groups with
property (T) are finitely generated to deduce that the closure of ∆ is of finite

index. Hence, Γ̂ is finitely generated. 2

Corollary 1.26 If Γ has (τ) then for every n, sn(Γ) < ∞ where

sn(Γ) = #{H ≤ Γ|[Γ : H] ≤ n}.

The growth rate of sn(Γ) is called the subgroup growth rate of Γ. It
has been studied extensively for finitely generated groups (see [133]). If Γ
is a finitely generated group, then its subgroup growth rate is at most nn.
The residually finite groups of polynomial subgroup growth are all virtually
solvable. Thus if Γ is a finitely generated residually finite infinite group
with property (τ), then its subgroup growth is more than polynomial. In all
examples where we know the subgroup growth of groups with property (τ)
the growth is either nlog n/ log log n (for arithmetic groups in characteristic 0)
or nlog n (for arithmetic groups in characteristic p > 0). It will be interesting
to know if (τ) implies any nontrivial upper bound (or a better lower bound)
on the subgroup growth.

Another interesting question is:
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Question 1.27 Let Γ be a finitely generated group with property (τ). Is Γ̂ a
finitely presented profinite group?

Note that SL3(Fp[t]) is not finitely presented [18] but has (T) and ̂SL3(Fp[t])

= SL3(F̂p[t]) is finitely presented [134].
Also SL2(Fp[t]) is not finitely generated and has the Selberg property

(i.e. has (τ) with respect to the congruence subgroups - see Chapter 4 be-

low). ̂SL2(Fp[t]) is not finitely generated but ̂SL2(Fp[t])L, where L is the
congruence subgroup is finitely generated and finitely presented [134].

1.5.2 Abelian quotients

We first note that if ∆ is a finite index subgroup of Γ then Γ has (T) (re-
spectively (τ)) if and only if ∆ does. Now, it is easy to see that Z does not
have (T), neither it has (τ). Indeed the one dimensional representations ρn

of Z: ρn(k) =
(
e2πi/n

)k
, clearly converge to the trivial representation since

e2πi/n converges to 1. So a finitely generated group with property (τ), and
its finite index subgroups have finite abelianization.

Definition 1.28 Let Γ and L = {Ni}i∈I be as before. We say that Γ has
FAb(L) if for every i, |Ni/[Ni, Ni]| < ∞. If L is a family of all finite index
subgroups than we say that Γ has property FAb.

Corollary 1.29 If Γ is a finitely generated group with property (τ) then it
has property FAb.

Note however, that τ(L) does not imply FAb(L). We will see below that
the non-abelian free groups can have (τ) with respect to some L and clearly
they do not have FAb(L). What can be shown is that if L = Top(L) then

τ(L) for Γ implies that Γ̂L has FAb(L).

Let us mention in passing few facts

Proposition 1.30 A finitely generated group Γ has property FAb if and only
if for every finite representation ρ over C

H1(Γ, ρ) = 0.
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Proof This follows from Shapiro’s lemma. Namely, let H be a finite index
subgroup of Γ and let (π,H) be a unitary representation of H. The induced
representation indΓ

Hπ of Γ is

indΓ
Hπ = {f : Γ → H; f(hγ) = π(h)f(γ) for h ∈ H, γ ∈ Γ}.

The following is a particular case of Shapiro’s Lemma

H1(Γ, indΓ
H(π)) = H1(H, π).

Thus if H has an infinite abelianization, Γ has a notrivial first cohomology
group with coefficients in the induced representation from the trivial repre-
sentation on H. And if Γ has a notrivial first cohomology group in a finite
representation, then the kernel of this representation, a finite index subgroup
H, has H1(H, R) 6= 0, i.e. H has infinite abelianization. 2

Proposition 1.31 Property FAb does not imply property (τ).

To see this, let us first observe

Proposition 1.32 Let Γ be a finitely generated, residually finite group with
property (τ). Then:

1. If Γ is finitely generated and infinite then Γ has exponential growth.

2. If Γ is amenable then Γ is finite.

Proof 1 is a consequence of 2. To see 2 we consider Γ which has property
(τ) with respect to a finite subset S. If Γ is amenable let us consider a Følner
sequence An of finite subsets of Γ such that for every s ∈ S

|An 4 sAn|/|An| → 0 (1.2)

when n tends to infinity.
Let Γn be a sufficiently large quotient of Γ so that the projection of An

into Γn is injective and there exists γn ∈ Γn such that An and Bn = γnAn

are disjoint.
The function vn = χAn − χBn is in l20(Γn) and by property (1.2) we have

for the corresponding unitary representation ρn of Γ in l20(Γn) for every s ∈ S

‖ρn(s)vn − vn‖/‖vn‖ → 0
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which contradicts property (τ). 2

Proof of Proposition 1.31 The Grigorchuk group G [80] has property FAb
and does not have property (τ). The group G has property FAb because it is
a torsion group. It does not have property (τ) because it is infinite, amenable,
residually finite group (see Proposition 1.32). 2

We do not know any example of a finitely presented group with property
FAb and without property (τ).

In Section 4.6 we mention a quantitative version for FAb which is valid
for groups with property (τ) (or for the L completion G = Γ bL of Γ with τ(L)
if L = Top(L)).



28 CHAPTER 1. PROPERTY (T) AND PROPERTY (τ)



Chapter 2

Various equivalent forms of (τ )

What makes property (τ) so useful is that it can be expressed in various
equivalent forms related to different subjects. In this chapter it is shown
that property (τ) can be reformulated in various forms: combinatorially,
analytically, geometrically, cohomologically and even measure theoretically.
The following theorem summarizes some of these reformulations (for expla-
nations of notations see the various sections).

Theorem 2.1 Let Γ be a fundamental group of a compact Riemanniann
manifold M , with finite set of generators S. Then the following are equiva-
lent:

1. Γ has property (τ);

2. The Cayley graphs Cay(Γ/N, S) form a familly of expanders when N
runs over the finite index subgroups of Γ;

3. λ1(M
′) is bounded away from 0 when M ′ runs over the finite sheeted

covers of M ;

4. The isoperimetric (Cheeger) constants h(M ′) are bounded away from
0;

5. H1(Γ, L2(Γ̂)) = 0;

6. The Haar measure of Γ̂ is the unique finitely additive Γ-invariant mea-
sure on Γ̂.

29
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2.1 Combinatorial reformulation

2.1.1 Expanders and isoperimetric inequalities

Let X be a finite graph of degree k, i.e. for every vertex x ∈ X there are
k edges adjacent to x. For a finite subset of vertices A ⊂ X we define its
boundary ∂A as the set of edges with one extremity in A and another one in
X \ A. We define the Cheeger isoperimetric constant h(X) as

h(X) = min

{
|∂A|
|A|

; A ⊂ X and 1 ≤ |A| ≤ 1

2
|X|
}

.

Definition 2.2 A family of finite graphs {Xn} of a fixed degree is called a
family of expanders if there exists a constant c > 0 such that h(Xn) ≥ c for
every n.

Let Γ be a group generated by a finite set S, with S = S−1 and |S| = k.
Let L = {Ni} be a family of finite index subgroups. The graphs X(Γ/Ni, S)
are defined to be the k-regular graphs whose vertices are the left cosets of
Γ/Ni and for every s ∈ S and a coset aNi (a ∈ Γ) we put an edge from aNi

to saNi. These are called Schreier graphs of Γ with respect to {Ni} and S.
If Ni / Γ this is simply the Cayley graph of Γ/Ni.

We will see below that τ(L) is equivalent to X(Γ/Ni, S) being a family
of expanders.

2.1.2 The spectral gap

For a connected, regular graph X of degree k, let ∆ be the discrete Laplace
operator acting on l2(X) as follows

∆f(x) = f(x)− 1

k

∑
y∼x

f(y),

where f ∈ l2(X), x is a vertex of X and y ∼ x means that y and x are
connected by an edge. The operator ∆ is self-adjoint and non-negative. For
an infinite graph X, let λ0(X) denote the bottom of l2 spectrum of ∆ and
for a finite graph X, let λ1(X) denote the first non-zero eigenvalue of ∆.

Large λ1 translates into fast convergence of random walks. Namely, as-
sume also that X is not bipartite, for example it has at least one loop. Fix
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a vertex v ∈ X and denote by Qt
v the probability distribution of the nearest

neighbor random walk on X starting at v after t steps. Since X is connected
and non–bipartite, the random walk has a stationary distribution, which is
uniform since X is regular:

Qt
v(w) → 1

|X|
, as t →∞, for all w ∈ X.

The total variation distance is defined as

‖P −Q‖TV = max
B⊂X

|P (B)−Q(B)| =
1

2

∑
w∈X

|P (w)−Q(w)|,

where P , Q are two probability distributions on X. By U denote the uniform
distribution. Now define a mixing time mixv of the random walk as follows:

mixv = min

{
t; ‖Qt

v(w)− U‖TV <
1

e

}
A classical and easy bound on the variation distance gives:

‖Qt
v − U‖TV ≤

√
|X|
2

(1− λ1(X))t

From here we immediately have mixv < C(λ1(X)) log |X|. More precisely:

Proposition 2.3 For the total variation distance ‖Qt
v−U‖TV , v ∈ X of the

random walk on X we have:

‖Qt
v − U‖TV ≤ e−c, for t ≥ log |X|+ c

λ1(X)
.

In particular, for the mixing time mixv we have:

mixv ≤ 1

λ1

(log |X|+ 1).

2.1.3 Equivalent definitions

There is a relation between the isoperimetric constant h(X) and the eigen-
values λ0(X) and λ1(X) of ∆ acting on l2(X). The following results are
due to Dodziuk [58], Alon [1], Dodziuk-Kendal [59], Alon-Milman [3] and
Mohar [152].
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Proposition 2.4 For a finite graph X of degree k one has

h(X) ≥ 1

2
k · λ1(X)

and
h(X) ≤ k

√
λ1(2− λ1).

This leads to the following characterization of property (τ).

Proposition 2.5 Let S be a finite set of generators of the group Γ and L =
{Ni} as before. The following conditions are equivalent

1. Γ has property (τ) with respect to the family L,

2. the graphs X(Γ/Ni, S) form a family of expanders, i.e. there exists a
constant ε > 0 such that

h(X(G/Ni, S)) ≥ ε

for every Ni,

3. there exists ε′ > 0 such that

λ1(X(G/Ni, S)) ≥ ε′

for every Ni.

Just to see the connection, let us show that 1 implies 2. Let A be any subset
of Xi = X(Γ/Ni, S) of size |A| ≤ |X|

2
. Let f ∈ l2(Γ/Ni) be a function defined

by

f(x) =

{
|X| − |A| if x ∈ A
−|A| if x 6∈ A

So f ∈ l20(Γ/Ni) as
∑

x∈X f(x) = 0. Now, for any s ∈ S, by the definition of
|∂A| we have

‖f − π(s)f‖2 ≤ (|X| − |A|+ |A|)2|∂A| = |X|2|∂A|.

As Γ has property (τ) there exists ε > 0 independent of Ni such that

max
s∈S

‖f − π(s)f‖2 ≥ ε‖f‖2.
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Because ‖f‖2 ≥ |A||X|2/2 we get

|∂A| ≥ ε

2
|A|.

For a group Γ generated by a finite set S one can also define the Markov
operator M in the representation π of Γ in ⊕̂l20(Γ/Ni) as

Mf =
1

|S|
∑
s∈S

π(s)f (2.1)

for f ∈ ⊕̂l20(Γ/Ni).

Proposition 2.6 Let S be a finite set of generators of the group Γ and L =
{Ni} as before. The following conditions are equivalent

1. Γ has property (τ) with respect to the family L,

2. for the operator M defined by (2.1) we have ‖M‖ < 1.

Proof The condition 2 here is equivalent to condition 3 from Proposition 2.5.
2

2.2 Analytic and geometric reformulation

2.2.1 Isoperimetric inequalities

For a Riemannian manifold Mn of dimension n and finite volume we define
its Cheeger isoperimetric constant h(Mn) as follows

h(Mn) = inf

{
voln−1(∂A)

voln(A)
; A ⊂ Mn, 0 < voln(A) ≤ voln(Mn)

2

}
,

where voln−1(∂A) and voln(A) are the measures with respect to the Rieman-
nian metric.



34 CHAPTER 2. VARIOUS EQUIVALENT FORMS OF (τ)

2.2.2 The Laplace operator

For a connected, smooth manifold M with a Riemannian metric g let ∆ be
the Laplace-Beltrami operator associated to g, i.e.

∆ = −div(grad).

Explicitly, for R2 with the standard metric

∆ = − ∂2

∂x2
− ∂2

∂y2

and for the upper half-plane H2 = {x + iy; x, y ∈ R, y > 0} with the metric
dy2 = 1

y2 (dx2 + dy2)

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

The operator ∆ is self-adjoint and non-negative. For a manifold M of
infinite volume, let λ0(M) denote the bottom of L2 spectrum of ∆ and for a
manifold M of finite volume, let λ1(M) denote the bottom of the spectrum
of ∆ on L2(M).

2.2.3 Discretization

For a Riemannian manifold M we can consider its simplicial subdivision.
There is a relation between λ0 and λ1 for the Laplace-Beltrami operator and
for the Laplace operator associated to the simplicial division.

Let M̃ be the universal cover of M . Then Γ acts on M̃ and M = M̃/Γ.
Let F be a connected, closed fundamental domain for Γ, for instance the
Dirichlet fundamental domain, i.e.

F = {x ∈ M̃ ; dist(x0, x) ≤ dist(x0, γ(x)) for all γ ∈ Γ},

where x0 is some fixed point in M̃ . Let us suppose that F is compact
and that the Ni’s are normal in Γ. Thus F has a finite number of faces
S1, . . . , Sr. Then take si ∈ Γ such that si(F) ∩ F = Si. It is well known
that S = {s1, . . . , ss} generates Γ. Now every one of the finite sheeted

coverings Mi of M is also covered by M̃ with πi : M̃ → Mi the covering
map. Then πi(F) is a fundamental domain for the action of Γ/Ni on Mi
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Figure 2.1: A tessellation of H2

and Mi/(Γ/Ni) = M . We claim that the Cayley graph Xi = X(Γ/Ni, S)
can be ”drawn” in a natural way on Mi as follows: The Γ/Ni-translations of
πi(F) will be the vertices of the graph, and two vertices are adjacent if and
only if they have a common face. Now any subset A of the vertices of X of
size at most |X|

2
gives rise to a subset of Mi of area at most vol(Mi)/2 and

whose boundary is the union of the faces corresponding to the edges in ∂A.
Since the volume of F is fixed and the areas of faces are bounded for all i
we can conclude that a lower bound on h(Mi) gives rise to a lower bound on
h(X(Γ/Ni), S). The converse is also true [24].

Actually when the approximation becomes more and more refined, un-
der some assumption (the simplices should not be too much distorted) the
discrete Laplace operator converges to the Riemannian Laplace operator.
Instead of stating the general condition let us illustrate this on a simple ex-
ample. Let εZ2 be a square greed of size ε in R2 and let ∆ε be the associated
Laplace operator. Then for any f ∈ C2(R2)

lim
ε→0

∆εf(x, y)

ε2
= lim

ε→0

f(x, y)− f(x+ε,y)+f(x−ε,y)+f(x,y+ε)+f(x,y−ε)
4

ε2

=
1

4

(
∂2

∂x2
+

∂2

∂y2

)
f(x, y).

2.2.4 Equivalent definitions

Let M be an n dimensional compact manifold and and R(M) its Ricci cur-
vature. Theorems of Cheeger and Buser express a relation between λ1 and
the Cheeger constant h.
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Proposition 2.7 (Cheeger [40]) For any manifold M

λ1(M) ≥ h2(M)/4.

Proposition 2.8 (Buser [35]) If R(M) ≥ −(n−1)a2 for some a ≥ 0 where
n = dim M , then

λ1 ≤ 2a(n− 1)h(M) + 10h2(M).

Property (τ) can be expressed using both quantities:

Proposition 2.9 (Brooks [24]) Let Γ be the fundamental group of a com-

pact manifold M with the universal cover M̃ and let L = {Ni} be as before.
The following conditions are equivalent:

1. Γ has property (τ) with respect to the family L,

2. there exists a constant ε > 0 such that

h(M̃/Ni) ≥ ε

for every Ni,

3. there exists ε′′ > 0 such that

λ1(M̃/Ni) ≥ ε′′

for every Ni.

Proposition 2.9 can be obtained from Proposition 2.5 by the discretization
method described in Section 2.2.3.

Remark Proposition 2.9 is still true for non-compact, finite volume mani-
folds M under additional assumption. For instance it is enough to suppose
that λ1(M) > 0 [26]. This is the case for quotients of symmetric spaces and
more generally of manifolds with bounded curvature ([26]).
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2.3 Measure theoretic reformulation

2.3.1 Uniqueness of invariant measures

A representation theoretic formulation of the problem of the uniqueness of
invariant measures was discovered in [170].

Proposition 2.10 Let G be a compact group. The Haar measure is the only
finitely additive G-invariant measure on G if and only if G has a finitely
generated subgroup whose action on L2

0(G) does not weakly contain the trivial
representation.

As a consequence we obtain

Corollary 2.11 Assume L is a topology, i.e. L = Top(L). Then the group
Γ has property (τ) with respect to L = {Ni}i∈I if and only if the Haar measure
is the only finitely additive Γ invariant measure on Γ bL.
Proof This follows from Proposition 1.15 and Proposition 2.10. 2

2.4 Cohomological interpretation

There exists a cohomological characterization of property (T) (see Theo-
rem 2.12 below) in terms of the first cohomology group with coefficients in
unitary representations. In this section we present such a characterization
for property (τ). As these results are new, we will give complete proofs.

Let (π,H) be a unitary representation of Γ. Let Z1(Γ, π) be the space of
1-cocycles, i.e.

Z1(Γ, π) = {b : Γ → H; b(g1g2) = π(g1)b(g2) + b(g1)}

and let B1(Γ, π) be the space of 1-coboundaries, i.e.

B1(Γ, π) = {b : Γ → H; there exists v ∈ H, b(g) = π(g)v − v} .

Of course we have B1 ⊂ Z1. The first cohomology group H1(Γ, π) is

H1(Γ, π) =
Z1(Γ, π)

B1(Γ, π)
.
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Suppose that Γ is countable (Γ = {g1, g2, . . .}). We can endow Z1 and
thus B1 with a metric as follows:

The distance d(b1, b2) between the cocycles b1 and b2 is defined as

d(b1, b2) =
∞∑
i=1

2−i min{2, ‖b1(gi)− b2(gi)‖}.

The space Z1 is complete with respect to this distance but B1 does not
need to be a closed subspace. The space H1 endowed with the quotient
topology is Hausdorff if and only if B1 is closed. The following result is due
to Guichardet [88] and Delorme [52].

Theorem 2.12 Let Γ be a countable group. The following conditions are
equivalent:

1. Γ has property (T);

2. H1(Γ, π) is Hausdorff for every π ∈ Γ̃.

3. H1(Γ, π) = 0 for every π ∈ Γ̃.

We shall prove a similar characterization of property (τ) for a countable
group Γ.

Proposition 2.13 Let (π,H) be unitary representation of Γ without invari-
ant vectors. The following conditions are equivalent:

1. H1(Γ, π) is Hausdorff;

2. π does not have almost invariant vectors.

Proof If π does not have almost invariant vectors then for some finite set
S there exists ε > 0 such that for any v ∈ H∑

s∈S

‖π(s)v − v‖ ≥ ε‖v‖.

Because S is finite there exists ε′ > 0 such that

ε′
∑
s∈S

‖π(s)v − v‖ ≤
∞∑
i=1

2−i‖π(gi)v − v‖



2.4. COHOMOLOGICAL INTERPRETATION 39

for every v ∈ H. This implies that there exists ε′′ (depending only on S)
such that for any coboundaries b1, b2 associated to v1, v2 we have

d(b1, b2) ≥ min{ε′′, ε′
∑
s∈S

‖π(s)(v1 − v2)− (v1 − v2)‖}

≥ min{ε′′, ε′ε‖v1 − v2‖}.

This implies that B1 is closed.

Conversely let us suppose that B1 is closed. Consider the map b : H → B1

given by
b(v)(g) = π(g)v − v.

There are no invariant vectors in H, so the map b is injective. Moreover b is
continuous and linear. As H and B1 are Fréchet spaces and b is bounded,
by the closed graph theorem, the map b admits a bounded inverse b−1. This
means that there exists ε > 0 such that for any v ∈ H with ‖v‖ = 1,

ε‖v‖ ≤ d(b(v), 0). (2.2)

Choose n(ε) sufficiently large such that

∞∑
i=n(ε)

2−i+1 ≤ ε

2
.

As π is unitary, for every v ∈ H
∞∑

i=n(ε)

2−i‖π(gi)v − v‖ ≤
∞∑

i=n(ε)

2−i+1‖v‖ ≤ ε

2
‖v‖,

which together with (2.2) gives

n(ε)−1∑
i=1

‖π(gi)v − v‖ ≥ ε

2
‖v‖.

The above inequality means that for the set S = {g1, . . . , gn(ε)−1} there are
no almost invariant vectors. 2

Proposition 2.14 Let L = {Ni}i∈I be a family of finite index subgroups of
Γ. The following conditions are equivalent:
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1. the group Γ has property (τ) with respect to L = {Ni}i∈I ;

2. H1(Γ,
⊕̂

l2(Γ/Ni)) is Hausdorff.

If, in addition, L = Top(L) then also

3. H1(Γ, L2(Γ̂L)) is Hausdorff.

Proof For π =
⊕̂

l20(Γ/Ni) this follows from Proposition 2.13 and Propo-
sition 1.12 as π has no invariant vectors. If instead of l20 we consider l2 the
cohomology with coefficients in the trivial representation can appear. This
corresponds to the homomorphisms in R and in this case B1 is always closed.
Similarly with π = L2(Γ̂L). 2

Comparing with Theorem 2.12, one may tempt to believe that τ(L) is

equivalent also to the vanishing of H1(Γ,
⊕̂

l2(Γ/Ni)). This is not quite
true. We will see below that the free group Fn = {x1, . . . , xn}, n ≥ 2 has
(τ) with respect to some sequence L = {Ni} with

⋂
Ni = 1. Now clearly

H1(Fn, V ) 6= 0 for every V 6= 0 as every map φ : {x1, . . . , xn} → V can be
extended to a cocycle on V .

The vanishing of H1(Γ,
⊕̂

l2(Γ/Ni)) is somewhat stronger than τ(L). For
the statement we will need property FAb(L) (see Definition 1.28).

Proposition 2.15 Let Γ and L = {Ni}i∈I be as before. The following con-
ditions are equivalent:

1. Γ has property τ(L) and Hom(Ni, R) = 0 for every i ∈ I,

2. H1(Γ,
⊕̂

l2(Γ/Ni)) = 0.

If in addition L = Top(L) then also

3. H1(Γ, L2(Γ̂L)) = 0.

Before proving Proposition 2.15, note that in general property τ(L) does
not imply FAb(L), but if Γ is a finitely generated and has property (τ) (with
respect to all finite index subgroups) then Γ has FAb. Thus we have

Theorem 2.16 Let Γ be a finitely generated group. The following conditions
are equivalent:

1. Γ has (τ);
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2. H1(Γ,
⊕̂

l2(Γ/Ni)) is Hausdorff for the family {Ni} of all finite index
subgroups of Γ;

3. H1(Γ,
⊕̂

l2(Γ/Ni)) = 0 for the family {Ni} of all finite index subgroups
of Γ;

4. H1(Γ, L2(Γ̂)) is Hausdorff;

5. H1(Γ, L2(Γ̂)) = 0.

Let us recall that a cocycle b ∈ Z1(Γ, (ρ,H)) vanishes in H1(Γ, (ρ,H)) if
and only if it is bounded. Indeed, b is a cocycle if and only if

α = ρ + b

is an affine action on H. Now as ρ is an isometry, b is bounded if and only
if α has a bounded orbit. The latter is equivalent to the fact that α has a
fixed point, which means that b is a coboundary.

Proof of Proposition 2.15 The equivalence of (2) and (3) in case L =
Top(L) is clear. So we need to prove only the equivalence of (1) and (2).
We start with the following lemma, which just a special case of the Shapiro
Lemma. We bring the proof to exhibit the role played by Hom(N, R).

Lemma 2.17 Let N be a normal subgroup of Γ of finite index. Then

H1(Γ, l2(Γ/N)) = 0

if and only if Hom(N, R) = 0.

Proof Suppose that Hom(N, R) = 0. Let b be a cocycle, b : Γ → l2(Γ/N).
For any γ1, γ2 ∈ N we have

b(γ1γ2) = b(γ1) + b(γ2).

As N has no non-trivial homomorphism into R, b is trivial on N . Because N
is of finite index in Γ this implies that b is bounded and thus H1 vanishes.

Now suppose that Hom(N, R) 6= 0, i.e. there exists a non-trivial homo-
morphism b : N → R. This can be extended to a cocycle on Γ (by induced
representation) which has to be nontrivial because it is unbounded. This
finishes the proof of Lemma 2.17. 2
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Let us now return to the proof of Proposition 2.15. First we show that
1 implies 2. Consider a cocycle b : Γ → ⊕̂l2(Γ/Ni) and let bi denote its
restriction to l2(Γ/Ni), i.e. b = (b1, b2, . . .). By Lemma 2.17 for every i there
exists vi ∈ l2(Γ/Ni) (in fact we can suppose that vi ∈ l20(Γ/Ni)) such that

bi(g) = π(g)vi − vi.

So b is ”locally” a coboundary and we should show that it is also a coubound-
ary ”globally”. As Γ has property (τ), there exists a finite subset S of Γ such
that for every i,

max
s∈S

‖bi(s)‖ ≥ ε‖vi‖

for some ε > 0 independent of i. Thus for some ε′ > 0,

∑
s∈S

‖b(s)‖2 ≥ ε′
∞∑
i=1

‖vi‖2,

which means that v = (v1, . . .) ∈
⊕̂

l2(Γ/Ni) and b = π(g)v−v is a cobound-
ary.

Now let us show that 2 implies 1. By Lemma 2.17, 2 implies that
Hom(N, R) = 0 for every i ∈ I. Suppose that Γ does not have property (τ)

with respect to the family L. Then by Proposition 2.14, H1(Γ,
⊕̂

l2(Γ/Ni))
is not Hausdorff and in particular is not zero.

If the group Γ is generated by a finite set S we can even explicitly build
a cocycle which is not a coboundary. Namely if Γ does not have (τ), then
for some infinite subsequence {ij}∞j=1, there exists a sequence of vectors vij ∈
l20(Γ/Nij ) of norm 1 such that

∞∑
j=1

∑
s∈S

‖π(s)vij − vij‖2 < ∞. (2.3)

Let b be a cocycle, b : Γ → ⊕̂l2(Γ/Ni) and as before b = (b1, b2, . . .) where

bij (g) = π(g)vij − vij ,

bi(g) = 0 for other indices i.

By (2.3) b is indeed a cocycle in ⊕̂l2(Γ/Ni). But it is not a coboundary
because if there is v′ = (v′1, v

′
2, . . .) such that b(g) = π(g)v′−v′, then π(g)(v−
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v′) − (v − v′) = 0. This means that for every i ∈ I we have v′ = v + cosnt,
where const is a constant function in l2(Γ/Ni). In particular for indexes ij,
‖v′ij‖

2 = const2 + ‖vij‖2 ≥ ‖vij‖2 as vij ∈ l20(Γ/Ni). Thus
∑∞

j=1 ‖v′ij‖
2 ≥∑∞

j=1 ‖vij‖2 = ∞. 2

As a consequence we obtain the following reformulation of the cohomo-
logical characterizations of property (τ).

Proposition 2.18 The group Γ has property (τ) with respect to L = {Ni}i∈I

if and only if⋂
i

ker

(
H1(Γ,

⊕̂
l2(Γ/Ni)) → H1(Γ, l20(Γ/Ni))

)
= 0.

Proposition 2.19 If L = Top(L), the group Γ has property (τ) with respect
to L = {Ni}i∈I if and only if⋂

i

ker
(
H1(Γ, L2(Γ bL)) → H1(Γ, l20(Γ/Ni))

)
= 0.

2.5 Fixed point property

There is a very nice characterization of property (T) in terms of a fixed point
property. Namely

Theorem 2.20 A group Γ has property (T) if and only if every affine action
by isometries of G on a Hilbert space has a global fixed point.

Proof An affine action on a Hilbert space H gives a cocyle (and vice versa).
A cocycle b ∈ Z1(Γ, (ρ,H)) which vanishes in H1(Γ, (ρ,H)) if and only if it
is bounded, Now, b is bounded if and only if the action has a global fixed
point. Thus Theorem 2.20 follows from Theorem 2.12. 2

To every tree one can associate a Hilbert space so that to any action
without a fixed point on a tree corresponds an action without a fixed point
on this Hilbert space. Thus from the above one can deduce

Theorem 2.21 (Alperin [4]) If a group Γ with property (T) acts on a tree,
it has a fixed point.
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A similar characterization as Theorem 2.20 holds also for property (τ).

Proposition 2.22 The group Γ has property (τ) if and only if for every
affine action α of Γ on a Hilbert space H such that H = ⊕̂Hi, where Hi is
finite dimensional and Γ invariant with a finite Γ-action, α has a global fixed
point.

Proof This follows from the cohomological characterization of property (τ)
and from the fact that H1(Γ, (π,H)) = 0 if and only if every affine action on
a Hilbert space H with the linear part π has a fixed point. 2

However Theorem 2.21 does not hold for property (τ). We will see below,
that SL2(Z[1

p
]) has property (τ) but it acts without a fixed point on the

Bruhat-Tits tree of SL2(Qp).
Note that for general L, H1 may not vanish if Γ does not have the property

that Hom(N, R) = 0 for every N ∈ L. So there might be an affine action of
Γ without fixed points, even if Γ has τ(L).



Chapter 3

Quantitative (τ) and abelian
quotients

In Chapter 2, we saw various different ways to characterize property (τ) for
a group Γ with respect to a family L = {Ni} of finite index subgroups. We
have used the invariants λ1(Γ/Ni), h(Γ/Ni), λ1(Mi) and h(Mi) when M is
a compact Riemannian manifold with π1(M) = Γ and Mi is the covering of
M corresponding to Ni. The failure of (τ) asserts that λ1(Γ/Ni), h(Γ/Ni),
λ1(Mi) and h(Mi) all have subsequences that tend to zero. In this chapter
we show that if this convergence is fast enough, the positive virtual β1 can be
deduced, i.e., one of the Ni’s has an infinite abelianization. This issue of the
positive virtual β1 is of fundamental importance in geometry - see Chapter 7
below.

We will also see in this chapter that property (τ) for Γ implies a quanti-
tative bound on the size of abelian quotients of the index n subgroups of Γ
and on the number of finite n-dimensional representations of Γ.

3.1 Quantitative (τ )

The following theorem is a quantitative version of Theorem 2.1.

Theorem 3.1 (Lackenby [113]) Let Γ be a finitely presented group,
and let S be a finite set of generators. Let {Ni} be its finite index sub-
groups. Let Xi be the Schreier coset graph of Γ/Ni induced by S. Then the
following are equivalent and independent of the choice of S:

45
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1. Some Ni has an infinite abelianization;

2. There is a subsequence with bounded abnormility and bounded λ1(Xi)|Xi|2;

3. There is a subsequence with bounded abnormility, and with λ1(Xi)|Xi|
having zero infimum;

4. There is a subsequence with bounded abnormility and bounded h(Xi)|Xi|;

5. There is a subsequence with bounded abnormility, and with h(Xi)
√
|Xi|

having zero infimum.

Furthermore, if Γ is the fundamental group of some closed orientable
Riemannian manifold M , and Mi is the cover of M corresponding to
Ni, then the above are also equivalent to each of the following:

6. There is a subsequence with bounded abnormility and bounded λ1(Mi)vol(Mi)
2;

7. There is a subsequence with bounded abnormility, and with λ1(Mi)vol(Mi)
having zero infimum;

8. There is a subsequence with bounded abnormility and bounded h(Mi)vol(Mi);

9. There is a subsequence with bounded abnormility, and with h(Mi)
√

vol(Mi)
having zero infimum.

Proof First of all we only need to consider conditions 1-5 as conditions 6-9
are equivalent to their discrete analogues. The implications 1 ⇒ 2 and 1 ⇒ 4
follow from following

Lemma 3.2 Consider the family of Cayley graphs of Z/nZ with respect to
fixed generators of Z. The isoperimetric constant h in this case behaves like
const

n
and λ1 behaves like const

n2 .

Proof Consider the standard generators {±1}. By taking A = {1, . . . , n/2}
we can see that h ≤ n

2
and of course every subset of size at most n

2
has at

least two edges in the boundary. This shows the first assertion.
By the second statement in Proposition 2.7. λ1 ≥ const · h2 ≥ const′

n2 . To

see the upper bound consider the function f(k) = e
2πik

n for k ∈ Z/nZ. Then
f ∈ l20(Z/nZ). We get

∆f(k) = f(k)−

(
e

2πi
n + e

−2πi
n

2

)
f(k) =

(
1− cos

2π

n

)
f(k)
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and 1− cos 2π
n
≤ const

n2 . This shows that λ1 ≤ const
n2 . 2

The implications 2 ⇒ 3 and 4 ⇒ 5 are clear. The implications 2 ⇒ 4
and 3 ⇒ 5 follow from the second statement in Proposition 2.7. The link
between the statements for graphs and manifolds is explained in Sections 2.1
and 2.2. What remains to show is 5 ⇒ 1. This is done in Section 3.2. 2

3.2 Small isoperimetric constant implies pos-

itive β1

The main new idea in the proof of 5 ⇒ 1 of Theorem 3.1 is the assertion
that if the 1-skeleton of a triangulation of a 2-complex K whose 1-skeleton is
a Cayley graph, has small isoperimetric Cheeger constant then H1(K) 6= 0.
The following proposition is implicit in [113].

Proposition 3.3 Let K be a triangulated 2-complex and let X be its 1-
skeleton. Assume X has two subsets A1 and A2 such that

1. A1 ∩ A2 6= ∅ and A1 ∪ A2 6= X;

2. ∂A1 ∩ ∂A2 = ∅;

3. A1, A2, Ac
1 and Ac

2 are connected;

4. A1 \ A2 6= ∅ and A2 \ A1 6= ∅.
Then H1(K) 6= 0.

Proof Let χA be the characteristic function of A and C+ = dχA1 , i.e.,
C+ is a function on the edges of X, such that if e = (x, y) then C+(e) =
χA1(x) − χA1(y). So, C+(e) is non-zero if and only if one end of e is in A1

and the other is not.
Let C be the function of the edges of X, which agrees with C+ on edges

whose both end points are in A2 and is zero otherwise. So C(x, y) 6= 0 if and
only if both x and y are in A2 and exactly one of them is in A1.

We claim

1. C is a 1 cocycle;

2. C is not a coboundary.
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e

e

1

2

X

AA 21

Figure 3.1: Construction of the loop

So 1 and 2 will finish the proof of the proposition.

To prove 1 we need to show that for every triangle (x, y, z) the sum of
C along the edges is zero. We need only to consider the situation when C
is not zero on some of the edges of the triangle (x, y, z), i.e. either exactly
one vertex is in A1 or exactly one vertex is in Ac

1. By symmetry (note that
all conditions of Proposition 3.3 are preserved if we replace A1 by Ac

1 and
A2 by Ac

2) it is enough to consider only the first case, so assume x ∈ A1 and
y, z 6∈ A1. Thus (x, y), (x, z) ∈ ∂A1. The condition ∂A1 ∩ ∂A2 = ∅ implies
that if x ∈ A2 then y, z ∈ A2 and if x 6∈ A2 then y, z 6∈ A2. Thus either
x, y, z ∈ A2 or x, y, z 6∈ A2. In the first case C coincides with C+ on the
edges of the triangle and in the second case it is zero. In both cases the sum
of C along the edges of the triangle (x, y, z) is zero.

To prove 2 we construct a loop in X along which the sum of C is not
zero. Let e1 and e2 be the edges in ∂A1 such that e1 ∈ A2 and e2 ∈ Ac

2,
existence of which follows from the assumptions of the proposition. Because
A1 and Ac

1 are connected we can connect the endpoints of e1 and e2 which
are in A1 by a path inside A1, and the endpoints of e1 and e2 which are in
Ac

1 by a path inside Ac
1 as in Figure 3.1. On this loop, C is not zero only on

the edge e1. In particular it does not sum to zero along this loop. 2

In order to prove Theorem 3.1 we will also need the following lemma which
describes properties of the subsets realizing the isoperimetric constant.
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Lemma 3.4 If A is a subset of a Cayley graph X such that |A| ≤ |X|
2

and
|∂A|
|A| = h(X) then |A| > 1

4
|X|, and the subgraphs induced on A and Ac are

connected.

Proof Let A be the smallest subset realizing the isoperimetric constant and
suppose |A| ≤ 1

4
|X|. Consider a translation B of A by any element of the

group. Then

|∂A|+ |∂B| − |∂(A ∩B)| = |∂(A ∪B)|+ 2e(A \B, B \ A),

where e denotes the number of edges connecting two subsets.
By the minimality of A,

|∂(A ∩B)| ≥ h(X)|A ∩B|, (3.1)

and the equality holds if and only if A ∩B = ∅ or A = B. Therefore

|∂(A ∪B)| = |∂A|+ |∂B| − |∂(A ∩B)| − 2e(A \B, B \ A)

≤ h(X)(|A|+ |B| − |A ∩B|) = h(X)|A ∪B|.

This must be an equality since A ∪ B has size at most |X|/2. This implies
equality in (3.1), and hence A and B concide or are disjoint and thus there
are no edges between A and B. Since this applies to every translate of A, the
connectivity of the graph X is contradicted. This shows that |A| > 1

4
|X|.

Now suppose that A is not connected. Each of its connected components
also realizes the isoperimetric constant but some of its components has size
at most |X|/4 which gives a desired contradiction.

If Ac were not connected, consider its non empty components B1 and B2.
Their sizes must be at most |X|/2 as otherwise we might add the smaller set
to A and obtain a bigger subset than (but still of size at most |X|/2) with a
smaller boundary, contradicting the choice of A. For one of the components
Bi we have

|∂Bi|
|Bi|

≤ |∂(B1 ∪B2)|
|B1 ∪B2)|

Now |∂(B1 ∪B2)| = |∂A|, thus if |A| < |B1 ∪B2| the above inequality would
contradict the definition of the isoperimetric constant. Thus |B1 ∪ B2| ≤
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|A| ≤ |X|/2 and one of the components, say B1, has size at most |X|/4.
Then |∂B1| > h(X)|B1| and thus

|A| = |∂A|/h(X) = (|∂B1|+ |∂B2|)/h(X) > |B1|+ |B2| = |X| − |A|,

which implies |A| > |X|/2 and provides a desired contradiction. 2

Using the above lemma one shows that if the isoperimetric constant h(X)
of a Cayley graph is small enough, a set realizing the h(X) and a translation
of it provide the sets A1 and A2 for Proposition 3.3. Indeed

Lemma 3.5 Let X be a Cayley graph of a finite group G arising from a
finite presentation of G with all relators of length 3. Suppose that h(X) <√

2
3
|X|. Then there exist the subsets A1 and A2 of X with properties 1-4 as

in Proposition 3.3.

Proof Fix a subset A with |∂A|
|A| = h(X) and |A| ≤ |X|

2
. Hence by Lemma 3.4

|A| > |X|/4. Then a counting argument shows that among 4-tuples of the
elements (g1, . . . , g4) ∈ G4 there is a quadruple with gi(∂A)∩ gj(∂A) = ∅ for
every i 6= j.

Indeed, pick an orientation on the edges of X that is preserved by the
action of G. Let C denote initial vertices of ∂A. For 1 ≤ i < j ≤ 4 define

pij : G4 → G

(g1, . . . , g4) → g−1
j gi.

If there is no quadruple with the desired property then the sets p−1
ij (CC−1)

cover G4. Each set has size |G|3|CC−1| and so

|G|4 ≤
(

4
2

)
|G|3|C|,

which implies that

|G| ≤ 6|C|2 ≤ 6|∂A|2 = 6(h(X)|A|)2 < 6

(√
2

3|X|
|X|
2

)2

= |G|.

This is a contradiction which shows the existance of the desired quadruple
(g1, . . . , g4).
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As |A| > 1
4
|X|, in the quadruple (g1, . . . , g4) there exist i and j such that

gi(A) ∩ gj(A) 6= ∅. One takes A1 = gi(A) and A2 = gj(A) and checks that
indeed they satisfy the assumptions of Proposition 3.3. 2

Now, we can prove the implication 5 ⇒ 1 of Theorem 3.1. Suppose that
condition 5 holds. It still holds if we change the generators. So we can assume
we are given a presentation with all relators of length three. Now consider

Xi such that h(Xi) <
√

2
3
|Xi|. By Lemma 3.5 there exist the subsets A1 and

A2 of Xi with properties 1-4 as in Proposition 3.3. By Proposition 3.3 this
implies that Ni = π1(Xi) has infinite abelianization.

3.3 Quantitative bounds on abelian quotients

We saw in Corollary 1.29 that (τ) imples FAb. In fact we have a quantitive
bound:

Theorem 3.6 (Lubotzky-Weiss [139]) If the group Γ has property (τ)
then there exists a constant c such that for every subgroup H of Γ of index n

|H/H ′| < cn.

Proof of Theorem 3.6 We start with

Proposition 3.7 Let Γ be a group generated by S = {x1, . . . , xd}. Assume
Γ has (τ) with (S, ε) as (τ)-constant. Let H be a subgroup of Γ of index n.
Then H has a subset of generators S ′ with |S ′| ≤ nd such that (S ′, ε) is a
(τ) constant for H.

Proof Let γ1, . . . , γn be a set of representatives for the right H cosets in Γ.
For i ∈ {1, . . . , d} and j ∈ {1, . . . , n} let γr(i,j) be the representative of the
coset γjxi and let hij = γjxiγ

−1
r(i,j). Clearly hij ∈ H and it is not difficult to

see that they generate H. We claim that (S ′ = {hij}, ε) is a (τ) constant for
H.

Let (ρ, V ) be a finite unitary representation of H which does not contain

the trivial representation. Let (ρ̃, Ṽ ) be the induced representation from H

to Γ. So Ṽ is the space of all functions f : Γ → V , such that

(1) f(hγ) = ρ(h)f(γ) for all h ∈ H, γ ∈ Γ.
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Every such f is completely determined by its values on γ1, . . . , γn and
‖f‖2eV =

∑n
i=1 ‖f(γi)‖2

V and Γ acts by: ρ̃(γ)f(γ′) = f(γ′γ).
Assume there exists v0 ∈ V of norm 1 such that ‖ρ(hij)v0 − v0‖ < ε for

every hij ∈ S ′. Look at f0 ∈ Ṽ defined by f0(γj) = v0√
n
, j = 1, . . . , n. Then

‖f0‖2 = 1 and for every i = 1, . . . , d

‖ρ(xi)f0 − f0‖2 =
n∑

j=1

‖f0(γjxi)− f0(γj)‖2

=
n∑

j=1

‖ρ(hij)f0(γr(i,j))− f0(γj)‖2

=
1

n

n∑
j=1

‖ρ(hij)v0 − v0‖2 ≤ ε2.

Thus (ρ̃, Ṽ ) should contain the trivial representation. But this is impossible
by the Frobenius reciprocity or by checking directly that for every fixed vector
w0 ∈ V the constant function f(γ) = w0 is not in Ṽ . 2

Proposition 3.8 Let A be an abelian group generated by a set S of size k.
If (S, ε) is a Kazhdan constant for A, then

|A| ≤ 2(2/ε2 + 1)k.

We will give two proofs.

Proof A Let s1, . . . , sk be the elements of S and let B = {si1
1 · . . . · s

ik
k ; 1 ≤

ij ≤ n} where n is the largest possible so that |B| ≤ |A|
2

. Let C = A \ B be
the complement of B in A so that |C| ≥ |B|. We set v = 1√

|B|
χB − 1√

|C|
χC .

Then ‖v‖ = 1 and v ∈ l20(A). For any s ∈ S

‖χB − sχB‖ ≤
|B|
n

.

Indeed, for a given st ∈ S we define by induction the sets Bt
1, . . . , B

t
n as

follows

Bt
1 = {si1

1 · . . . · s
ij
j · . . . · s

ik
k ; 1 ≤ ij ≤ n for j 6= t, it = 1}



3.3. QUANTITATIVE BOUNDS ON ABELIAN QUOTIENTS 53

and
Bt

i = stB
t
i−1 \ (Bt

0 ∪ . . . ∪Bt
i−1)

for i = 1, . . . , n.
Then B = Bt

1

.
∪ . . .

.
∪ Bt

n. By definition |Bt
n| ≤ . . . ≤ |Bt

i | ≤ . . . ≤ |Bt
1|.

Thus |Bt
n| ≤

|B|
n

.
Now

|B \ stB| ≤ |Bt
n| ≤

|B|
n

as desired.

Therefore we have for the representation ρ of A in l20(A)

‖v − ρ(s)v‖ ≤
√

2

n
+

2

n
=

2√
n

.

By definition of (S, ε) this implies

2√
n

> ε

and by definition of n we get |A| ≤ 2(n + 1)k, which shows the desired
inequality. 2

Proof B Say |A| = n. Then by Pontryagin duality A has n different irre-
ducible one dimensional representations ρi : A → SU1(C) ' S1, i = 1, . . . , n.

Let r =
[

2
ε2

]
+ 1 and divide S1 into r segments between η · ξj to η · ξj+1

where η = eπi/r, ξ = e2πi/r and j = 0, . . . , r − 1. This induces a division of
(S1)k to rk boxes. Now, for every representation ρi of A, (ρi(s1), . . . , ρi(sk))
is in one of the boxes when S = {s1, . . . , sk} is the set of generators of S. If
two representation ρi and ρi′ are in the same box then for every l = 1, . . . , k
ρi(sl)

−1ρi′(sl) is in the segment (η−1, η) around 1. This means that the
representation ρ−1

i ⊗ρi′ is close to the identity within |η−1|2 = 2−2 cos π
r

<
2
r

< ε2. This is a contradiction so every two representations should be in

different boxes. The pigeon hole principle implies that n ≤
([

2
ε2

]
+ 1
)k

. 2

Now the Lubotzky-Weiss theorem follows from Proposition 3.7 and Propo-
sition 3.8 2

Remark We will see some examples in Theorem 5.10 (as well as in the proof
of Theorem 5.13) which show that the exponential bound in Theorem 3.6 is
the best possible.
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For groups which are finitely presented, Lackenby shows that it possible
to obtain the conclusion of Theorem 3.6 assuming only property FAb.

Theorem 3.9 (Lackenby [113]) If a finitely presented group Γ has prop-
erty FAb then there exists a constant c such that for every subgroup H of Γ
of index n

|H/H ′| < cn.

Proof The crucial argument is the following proposition which may be of
independent interest.

Proposition 3.10 Let Γ = 〈X; R〉 be a group with a finite presentation
with |X| generators and |R| relators. Denote by m the maximal length of
relators in R. Let H be a subgroup of Γ of index n. Then H admits a finite
presentation 〈X ′; R′〉 with |X ′| ≤ n|X| generators and |R′| ≤ n|R| relators
whose length (in the generators from X ′) is at most m.

We will prove the proposition in two different ways, or more precisely in two
languages as the proofs are really equivalent.

Topological proof Let K be the 2-complex associated to the presentation
〈X; R〉, obtained as follows: K has one vertex. Put an oriented edge for
every generator. Then for every relator of length r in R we glue an r-gon to
the r edges correspong to the sequence of generators in this relator according
to the orientation. For a finite index subgroup H of Γ, let K ′ be a cover of K
such that π1(K

′) = H. Collapse a maximal tree in K ′ to get a complex with
just one vertex, which gives a presentation H = 〈X ′; R′〉, where X ′ is the set
of generators and R′ the set of relators satisfying the properties stated in the
proposition. 2

Algebraic proof Recall the Reidemeister-Schreier method for writing a pre-
sentation for H from a presentation for Γ ([142] page 103): Let T be a
Schreier transversal for H in Γ, i.e. T is a set of words in X which give
coset representatives for H in Γ and such that a subsegment of an element
in T is also in T (such a Schreier transversal always exists, since every graph
has a spanning tree). Denote γ(t, x) = tx(tx)−1 for t ∈ T and x ∈ X
where y is the unique representative of y in T and for w = y1 . . . yk, where
yi ∈ X ∪X−1 let τ(w) = γ(1, y1) . . . γ(y1 . . . yi−1, yi) . . . γ(y1 . . . yk−1, yk). The
well-known Reidemeister-Schreier algorithm asserts that H admits a presen-
tation 〈X ′; R′〉 where the generators X ′ are γ(t, x) for t ∈ T , x ∈ X and the
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relators R′ are τ(twt−1), for t ∈ T and w ∈ R. As T is a Schreier transversal
one can check that the length of τ(twt−1) with respect to X ′ is at most the
length of w with respect to X. 2

To prove Theorem 3.9 we consider the abelianization of H which is a
quotient of Z|X′|. As it is finite, the number of relators |R′| is at least the
number of generators |X ′|. Take R′′ ⊂ R′ with |R′′| = |X ′| so that 〈X ′; R′′〉
has finite abelianization. The order of the later is at least the order of the
abelianization of H and can be estimated as follows. It is equal to the
determinant of the square |X ′| × |R′′| matrix M whose i-th row vi is the
image in Z|X′| of the i-th element of R′′. By Proposition 3.10 the the length
of the longest relator in R′′ can be bounded by m, which implies that the `1

and thus `2 norm of every vi can be bounded by m. Hence det(M) ≤ m|X
′|.

As |X ′| can be bounded by n|X|, this gives a desired bound mn|X|. 2

3.4 Bounds on the number of representations

Property (τ) gives some information on the growth of the number of irre-
ducible finite dimensional representations.

Theorem 3.11 (de la Harpe, Robertson, Valette [92]) If the group Γ
has property (τ) then there exists c such that the number of finite represen-
tations of Γ of dimension n is bounded by cn2

.

The proof of Theorem 3.11 goes as follows. Let H = Cn be a fixed finite
dimensional Hilbert space. Denote by ‖x‖2 = (tr(x∗x))

1
2 the Hilbert-Schmidt

norm of an operator x on H.
Fixing a set of generators s1, . . . , sk for Γ, we can identify a representation

ρ : Γ → Un(C) with the k unitary matrices (ρ(s1), . . . , ρ(sk)) ∈ Un(C)k. Now
a matrix in Un(C) has n columns, each in the sphere of radius one in Cn, so
a unitary matrix can be considered as an element of the sphere of radius

√
n

in Cn2
. Finally the

√
n sphere in Cn2

is inside the
√

n sphere of R2n2
. So all

together, Un(C) with its Hilbert-Schmidt norm can be thought as sitting in
the

√
n sphere of R2n2

with its usual l2 norm.
Now if ρ, σ are n dimensional irreducible unitary representations of Γ and

‖ρ(si) − σ(si)‖SUn(C) ≤ ε
√

n for every i, then a simple computation shows
that ρ∗ ⊗ σ is ε-closed to the identity and hence contains the identity. But
ρ∗ ⊗ σ ' Hom(ρ, σ) which implies, therefore, that ρ and σ are isomorphic.

To summerize:
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Lemma 3.12 ([193]) Let Γ be a discrete group with property (τ) generated
by a finite set S. There exists ε > 0 such that if π1, π2 are finite irreducible
representations of Γ on H = Cn such that ‖π1(s) − π2(s)‖2 ≤ ε

√
n for all

s ∈ S then π1 is equivalent to π2.

The estimate on the number of representations in Theorem 3.11 follows
from an estimate on the number of balls of the Hilbert-Schmidt radius ε

√
n/2

needed to cover the unitary group Un(C).

Lemma 3.13 ([195]) There is a positive constant α such that for every n,
eαn2

balls of radius ε/2 can cover the unit sphere in R2n2
.

Thus, eαn2
balls of radius ε

√
n

2
can cover the

√
n sphere of R2n2

. Applying

it now for R2n2
contaning Un(C), we deduce:

Proposition 3.14 For every ε > 0, there exists a constant α > 0 depending
only on ε, such that if Γ is generated by a set S of size k and (S, ε) is a (τ)
constant for Γ, then the number of n dimensional representations of Γ is at
most eαkn2

.

Indeed if Γ has more than eαkn2
non-equivalent unitary representations of

dimension n, then at least two of them ρ and σ satisfy ‖ρ(si) − σ(si)‖ <
ε
√

n for every i = 1, . . . , k. But this implies by Lemma 3.12 that they are
equivalent which gives a desired contradiction. This proves Proposition 3.14
and hence Theorem 3.11.

In some cases one can improve the above bounds.

Theorem 3.15 (Meshulam-Widgerson [150]) If the group Γ has prop-
erty (τ) and any complex irreducible representation of Γ is induced from a
representation of a uniformly bounded dimension m of some subgroup H < Γ
then there exists c such that the number of finite representations of Γ of di-
mension n is bounded by sn(Γ) · cn where sn(Γ) is the number of subgroups
of index at most n in Γ.

Proof Every irreducible n-dimensional representation of Γ is induced from
some irreducible representation σ of degree m′ ≤ m of some subgroup H.
Now n = m′[Γ : H] so [Γ : H] = n

m′ ≤ n
m
≤ n and thus the number

of possibilities for H is bounded by sn(Γ). Given such an H, it has by
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Proposition 3.7, a generating set SH of size at most n · k so that (SH , ε)
is a (τ)-constant for Γ. Now apply Proposition 3.14 to H, which has kn
generators and (SH , ε) as (τ) constant to deduce that the number of m′-

dimensional representations of H is at most eαknm′2
. As m′ < m is constant

and k is a constant, the theorem is proved. 2

Remark It is known - see Section 1.5.1 above and [133] that for finitely gen-
erated group the subgroup growth sn(Γ) grows at most as ecn log n for every n,
so in any event Theorem 3.15 gives the bound ecn log n but under the strong
assumption that every representation is induced from a low dimensional rep-
resentation. This holds for a virtually pro-solvable group, such as SLd(Zp)
or SLd(Fp[[x]]). But in the latter examples much better bounds hold (in fact
the number of n dimensional representations is polynomialy bounded [127]).
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Chapter 4

The Selberg property

In this chapter we present the main examples of groups which have property
(τ) with respect to some subclass L of finite index subgroups. These are the
arithmetic groups and L is the family of congruence subgroups (see Section
1.4.2). All started with the Selberg theorem on congruence subgroups of
SL2(Z) so we call it the Selberg property. We will also show how this property
is related to the Ramanujan conjecture and its various generalizations.

4.1 Selberg’s theorem

A seminal result of Selberg asserts:

Theorem 4.1 (Selberg [176]) Let Γ = SL2(Z) and Γ(m) = Ker(SL2(Z) →
SL2(Z/mZ)). Then

λ1(Γ(m) \H2) ≥ 3

16

where H2 = SL2(R)/SO(2) is the upper half plane on which G = SL2(R)
acts.

By Proposition 2.9 Selberg’s theorem indeed implies that SL2(Z) has (τ)
with respect to the congruence subgroups L = {Γ(m)}m∈N.

The constant 3
16

has been improved in [141] to 21
100

and recently in [109]
to 66

289
∼ 0.22837. An important conjecture says that the right bound is

1
4

= λ0(H2). This is called Selberg’s conjecture.

The behaviour of λ1 for infinite families of surfaces is very much related
to the behaviour of their isoperimetric constants h (see Section 2.2). Let

59
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us mention in passing that the analogue of the Selberg conjecture for the
Cheeger constant would be that h(Γ(m) \H2) ≥ 1

2
h(H2) = 1

2
. However

Theorem 4.2 (Brooks-Żuk [27]) There exists a constant c < 1
2

such that
for m sufficiently large

h(Γ(m) \H2) < c.

There are other examples for which Selberg’s theorem holds (with differ-
ent lower bounds) . Let k be a number field with r1 real embeddings and r2

complex (non-real) embeddings and O its ring of integers. Let Γ = SL2(O).
Then Γ is a lattice in G = SL2(R)r1 × SL2(C)r2 . By [73] and [171], Γ has
property (τ) with respect to congruence subgroups. If r1 + r2 ≥ 2 then Γ has
the congruence subgroup property ([177]) and hence Γ also has property (τ)
([177]). On the other hand, if r1 + r2 = 1, i.e., Γ = SL2(Z[

√
−d]) for some

d ≥ 0, then Γ has a finite index subgroup which is mapped onto Z. Hence Γ
does not have property (τ) if r1 + r2 = 1. More generally, if S is a finite set
of valuations of O including all the archemedian ones V∞, then Γ = SL2(OS)
is a lattice in G = SL2(R)r1 × SL2(C)r2 ×

∏
p∈S\V∞ SL2(Qp). Recall that

rank(G) = r1 + r2 + |S \ V∞|. Then Γ has property (τ) with respect to the
congruence subgroups in all cases and has the congruence subgroup property
(CSP) if and only if rank(G) > 1. None of these groups has (T). So those
with rank(G) > 1 provide many examples of groups with (τ) and without
(T). These include SL2(Z[1

p
]) and SL2(Z[

√
p]) for any prime p.

Let Γ be a lattice in SL2(R). Γ is either virtually free or virtually a
surface group. In either case it has a finite index subgroup mapped onto Z
and so does not have property (τ). If Γ is arithmetic then Γ is commensurable
with the group of units of an order in a quaternion algebra D defined over
a totally real field K (such that D splits over R for one embedding of K
into R and ramifies for all others). The Jacquet-Langlands correspondence
([96], see also [125]) implies that Γ has the property (τ) with respect to the
congruence subgroups (see also [173] for an elementary proof).

Let Γ is an arithmetic lattice in SL2(C). If Γ is non-uniform then it is
commensurable to one of the Bianchi groups SL2(Od), where Od is the ring
of integers in Q[

√
−d]). These have the Selberg property as explained earlier.

If Γ is cocompact in SL2(C) it is commensurable with the units of an
order of a quaternion algebra D defined over a number field L with a unique
complex embedding and such that D ramifies for all real embeddings of L.
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Again, the Jacquet-Langlands correspondence enables one to deduce that Γ
has the Selberg property.

Let us look at the general case. We use the notation as in Definition 1.18
and fix an embedding G → GLm. Denote

Γ = G(OS) := G ∩GLm(OS).

We assume that Γ is infinite (equivalently
∏

v∈S G(kv) is non-compact). For
every ideal I /OS denote:

Γ(I) = Ker(G(OS) → GLm(OS/I)).

Γ(I) is a principal congruence subgroup of the (S-)arithmetic group Γ.
This is a finite index subgroup as [OS : I] < ∞.

Definition 4.3 Γ has the Selberg property if Γ has (τ) with respect to
the congruence subgroup, i.e. with respect to

L = {Γ(I); 0 6= I /OS}.

If Γ is an arithmetic lattice in a semi-simple group (see Section 1.2.1) we
still say that Γ has the Selberg property if G(OS) (see Definition 1.18) has
the Selberg property. One can show that this is independent of G,O and S.

4.2 S-arithmetic groups

Selberg’s theorem has been extended to many arithmetic groups (see [125] as
a reference for these results and much more). Moreover it has been proven
([44]) for all arithmetic groups Γ = G(OS) as above, when char(k) = 0
(confirming a conjecture posed in [140] and [139]).

Before elaborating on how this was done, let us show how to prove a
somewhat weaker result by some easier methods.

If there exists v ∈ S such that G(kv) is non-compact and has (T), then
Γ = G(OS) being an irreducible lattice in H = Πv∈SG(kv) has (τ) by Theo-
rem 1.16 and in particular it has the Selberg property.

Theorem 4.4 Let k and G be as before. Then there exists v ∈ Vk such that
if v ∈ S, then Γ = G(OS) has the Selberg property.
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Proof Given G and k, then if for some v0 ∈ Vk, G(kv0) is a non-compact
factor and has (T) then by a remark preceding the theorem we can take
v = v0 and the theorem is proved. Assume therefore that for every v ∈ Vk

either G(kv) is compact or does not have (T). We claim that this implies that
G is a form SL2. If k is the separable closure of k, we claim that rkk(G) = 1,
otherwise, there are infinitely many valuations v ∈ Vk for which rkk(G) ≥ 2.
For any of these valuations G(kv) is not compact and has (T) by Theorem 1.5,
thus contradicting our assumption.

So rkk(G) = 1. This implies that G is a form of SL2. Now the forms of
SL2 are SL(1, D) when D is a quaternion algebra over k (see [180]). For these
the Selberg property is known: by Selberg’s theorem for SL2(Z), by Gelbart-
Jacquet [73] for the general SL2 in characteristic 0 and by Drinfeld theorem
in characteristic p [60]. For non-split quaternion algebras it follows from the
result for SL2 using the Jacquet-Langlands correspondence (see [125]). 2

Note that the proof of Theorem 4.4 shows more: it shows that if G is not a
form of SL2, then there exists v ∈ Vk such that if v ∈ S, then Γ = G(OS) has
property (τ). It also shows that v can be chosen in Theorem 4.4 in infinitely
many ways.

The above theorem is in any characteristic. Of course, one believes that
that this holds unconditionally for every S. As said before this was indeed
proved for many cases, and Clozel confirmed if for all cases in characteristic
0.

A mile stone in the proof was the following result of Burger and Sar-
nak [33] .

Proposition 4.5 ([33],[125]) Let H ≤ G be two non-compact semi-simple
groups. Assume Γ is an irreducible arithmetic lattice of G and assume ∆ :=
H ∩ Γ is an arithmetic lattice of H. Then

(i) If ∆ has the Selberg property then so does Γ;
(ii) If ∆ has (τ) then Γ has (τ).

Proof In order to prove Proposition 4.5, first we prove the following general
representation theoretical result whose proof we omit and refer the reader to
[33].

Proposition 4.6 ([33]) Let G be a locally compact group, Γ a lattice in G
and C = Comm(Γ) the commensurability group of Γ in G (i.e, the set of
g ∈ G such that g−1Γg ∩ Γ is of finite index in Γ). Assume C is dense in G.
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Let H be a closed subgroup of G and assume ∆ = H ∩ Γ is a lattice in H.
For x ∈ C denote ∆x = ∆ ∩ x−1Γx, so ∆x is of finite index in ∆. Then

ResHρ
Γ\G

∈
⋃
x∈C

ρ
∆x\H

where ρ
Γ\G

and ρ
∆x\H

denote the regular representations on L2(Γ \ G) and

L2(∆x \ H) respectively, and ResHρ
Γ\G

is the representation ρ
Γ\G

restricted
to H.

Now in order to prove (i) of Proposition 4.5 we should show that the
trivial representation of G is not weakly contained in ⊕Γ′L

2
0(Γ
′ \ G) where

Γ′ runs over all the congruence subgroups of Γ. Assume the contrary. Then
by restricting to H by Proposition 4.6 we get that the trivial representation
of H is weakly contained in ⊕Γ′ ⊕x L2

0(∆
′
x \H) where ∆′x = x−1Γ′x ∩∆ for

x ∈ Comm(Γ). (Note that a non-trivial representation of G restricted to H
does not strongly contain the trivial representation, by our assumptions and
the Howe-Moore Theorem).

Now, if Γ′ is a congruence subgroup of Γ, then for x ∈ Comm(Γ), x−1Γ′x∩
Γ is also a congruence subgroup of Γ and thus ∆′x is a congruence subgroup of
∆. As ∆ has the Selberg property, the H-representations in ⊕Γ′⊕xL2

0(∆
′
x\H)

are bounded away from the trivial representation. Thus the same applies for
the G-representations in ⊕Γ′L

2
0(Γ
′ \G).

The proof of (ii) is exactly the same: This time Γ′ is an arbitrary finite
index subgroup of Γ and so is ∆′x in ∆. 2

The above result shows that it suffices to prove the Selberg property
for ”minimal” semi-simple groups. Moreover, if such a minimal semi-simple
group is of rank at least 2, it has (T) and so (τ) for Γ follows immediately.
One thus has to consider only rank one minimal groups. These are SL(2),
SL(1, D) where D is a quaternion algebra or SU(D, ∗) when D is a division
algebra of prime degree over a quadratic extension E of a finite extension K
of k and ∗ is an E/K involution of the second type.

The case of SL(2) is covered by Selberg’s theorem for k∞ = R and
by Gelbart-Jacquet [73] for all other completions. SL(1, D) follows from
SL(2) using the Jacquet-Langlands correspondence (see Rogawski’s appendix
in [122]). The case of SU(D, ∗) is treated by Clozel in [44]. Thus the Selberg
property holds for all arithmetic groups in characteristic 0.
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4.3 An equivalent formulation

Let us mention an equivalent formulation for the Selberg property. Let A =
Π∗vkv be the ring of adèles of k, so G(k) is a lattice in G(A).

Proposition 4.7 Let Γ = G(OS) as before and H = Πv∈SG(kv). The fol-
lowing conditions are equivalent:

1. Γ has the Selberg property;

2. The action of H on L2(G(k)\G(A)) does not weakly contain the trivial
representation;

3. There exists v ∈ S such that G(kv) is not compact and the G(kv) action
on L2(G(k) \ G(A)) does not weakly contain the trivial representation.

Proof Let v ∈ S be such that G(kv) is not compact. By the Strong Ap-
proximation Theorem (see [125])

G(A) = G(k)G(kv)G(I, Ô)

where G(I, Ô) = Ker(G(Ô) → G(Ô/IÔ)) and I is any non-zero ideal in O.
So

G(A) = G(k)HG(I, Ô)

and
Γ(I) \H = G(k) \ G(A)/G(I, Ô).

Hence

lim
←

Γ(I) \H = lim
←
G(k) \ G(A)/G(I, Ô) = G(k) \ G(A).

Thus the closure in the Fell topology of the representations of H on L2(Γ(I)\
H) is the same as the closure of the representation of H on L2(G(k) \ G(A)).
This shows that 1 and 2 are equivalent. The equivalence of 2 and 3 is easy.
2

As a consequence we obtain

Corollary 4.8 If S1 ⊂ S2 and G(OS1) is infinite and has the Selberg property
then G(OS2) has the Selberg property.

This can be also deduced directly from Proposition 4.5.
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4.4 Property (τ ) and the congruence subgroup

property

We have seen that every arithmetic lattice Γ in a semisimple group G (at
least over fields of characteristic 0 and conjecturally always) has the Selberg
property. If in addition Γ has the congruence subgroup property, then Γ has
also (τ). (A remark is in order here: Formally speaking CSP does not say
that every finite index subgroup is a congruence subgroup, as the congruence
kernel can be finite non-trivial. Still one can easily see that CSP plus the
Selberg property imply (τ). In most cases for which the CSP has been proven
to fail, it was also proved that Γ does not have FAb, and so Γ does not have
(τ). This leads to the following conjecture:

Conjecture 4.9 Let Γ be a lattice in a semisimple group. Then Γ has CSP
if and only if Γ has (τ).

We should say right away that this conjecture is not compatible with Serre’s
conjecture. They are compatible in most cases but differ in their predic-
tion for the CSP for lattices in the R-rank one groups G = Sp(n, 1) and

G = F(−20)
4 . According to Serre’s conjecture lattices in these groups are not

supposed to have the CSP as G is of rank one. On the other hand Conjec-
ture 4.9 predicts that such Γ’s do have the CSP as G and Γ has (T) (see
Theorem 1.5) and hence Γ has (τ).

One can give good arguments in both directions: On one hand lattices Γ
in Sp(n, 1) and F(−20)

4 behave in many ways as rank one lattices. For example,
if Γ is cocompact, it is a hyperbolic group and has therefore plenty of infinite
normal subgroups of infinite index. Recall, that in all cases where CSP has
been proved, it was also shown that every normal subgroup is of finite index.
So this may be an indication in favor of Serre’s conjecture.

On the other hand, lattices Γ in Sp(n, 1) and F(−20)
4 have a lot in com-

mon with higher rank lattices. For example property (T) and (τ). More
important, they have super-rigidity. Now, super-rigidity is a corollary of the
congruence subgroup property (see [16] and [161]). Moreover, every lattice

in Sp(n, 1) and F(−20)
4 is arithmetic. In vague terms it means that the only

flexibility the geometry of Sp(n, 1) and F(−20)
4 allows is the one enforced by

the number theory. The congruence subgroup problem is also a kind of an
arithmeticity question; it asks, whether, within one given arithmetic lattice,
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the sub-lattices (i.e., the subgroups of finite index) are all coming from num-
ber theoretical considerations, i.e. are all congruence subgroups. So, the fact
that all lattices are arithmetic gives also some ”moral” support to believe in
the CSP for the arithmetic lattices.

If we would be enforced to bet, we would incline to go for Conjecture 4.9.
In 1970, when Serre made his conjecture [177], none of the above information

on these lattices in Sp(n, 1) and F(−20)
4 was available. Anyway lattices behave

like lattices of ”rank 11
2
”, half the way between rank one and higher rank. It

will be extremely interesting to answer CSP even for one of these lattices -
see Chapter 7 for more discussion and potential applications.

4.5 The Ramanujan conjecture

The classical Ramanujan conjecture asserts that the Ramanujan tau function
τ(n) defined by

q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

satisfies
τ(p) ≤ 2p

11
2

for every prime p.
This innocent looking conjecture of combinatorial nature, led to far reach-

ing extensions which are usually expressed in representation theoretic terms
and are relevant to our topic. Let us explain briefly why. For a more detailed
treatment see Rogawski’s appendix of [122].

The point is that if we substitute q = e2πiz we can think of f =
∑

τ(n)qn

as a function on H2 = {z = x + iy|y > 0} the upper half plane. It turns
out that ∆(z) =

∑
n≥1 τ(n)e2πiz is a ”cusp form of weight 12 for the group

SL2(Z)”, in fact, it is even an ”Hecke eigenform”, i.e., it is a common eigen-
function for the Hecke operator Tp acting on S12(SL2(Z)) - the space of cusp
forms of weight 12 over SL2(Z). Well, for this case, dim(S12(SL2(Z))) = 1,
so this is not surprising.

Let us explain briefly and vaguely what the above words mean - referring
the reader again to [169] for an excellent (fairly short) treatment.

Let us recall the definition of automorphic and cusp forms. First, for

g =

(
a b
c d

)
∈ SL2(R)
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and z = x + iy ∈ H2 denote

j(g, z) = cz + d.

One can check directly the cocycle condition:

j(hg, z) = j(h, gz)j(g, z) for g, h ∈ G, z ∈ H2 (4.1)

and
j(gr(θ), i) = eiθj(g, i) (4.2)

where

r(θ) =

(
cos θ − sin θ
sin θ cos θ

)
∈ K = SO(2), θ ∈ [0, 2π].

Now an holomorphic automorphic form of weight k with respect to Γ =
SL2(Z) is a holomorphic function satisfying two conditions:

(a) f(γ(z)) = j(γ, z)kf(z)

for γ ∈ Γ and z ∈ H2. This implies that

f(z + 1) = f

((
1 1
0 1

)
z

)
= f(z)

and hence f can be viewed as a function in the variable q = e2πiz and has
the Fourier expansion as

f(q) =
∑
n∈Z

anq
n.

The second condition is

(b) an = 0 for n < 0

and if in addition it satisfies

(c) a0 = 0

then f is a cusp form.
We say that f is a Hecke eigenform if

(d) Tpf = λpf
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for every prime p, where Tp is the Hecke operator acting on the space of cusp
forms of weight k by

Tp(f) = pk−1f(pz) + p−1

p−1∑
j=0

f

(
z + j

p

)
.

A computation shows that if f is normalized so that a1 = 1, then λp = ap.
These definitions can be extended to the case when Γ is any congruence

subgroup. The regularity conditions ((b) and (c)) should be adapted with
respect to every cusp and condition (d) with respect to almost all primes
(the exceptional set depends on the congruence subgroups).

The Peterson-Ramanujan conjecture generalizes the original Ramanujan
conjecture about (τ) and asserts that λp = ap ≤ 2pk−1.

A seminal paper of Satake [174] showed that this conjecture has a rep-
resentation theoretic formulation. It basically goes like that: Given such a
Hecke eigenform f (satisfying all conditions (a)-(d)), one can think of it as a
function on G(R = SL2(R) and ”normalize” it by taking

f̃(g) = f(g(i))j(g, i)−k.

The cocycle condition (4.1) implies that f̃ is Γ = G(Z)-invariant (G(Z) =
SL2(Z)) and (4.2) implies that

f̃(gr(θ)) = f̃(g)e−ikθ.

Recall now that by the Strong Approximation Theorem (see [160], [122],
[133])

G(Q) \G(A)/G(Ẑ) ' G(Z) \G(R).

So we can consider f̃ as a function on L2(G(Q)\G(A) which is G(Ẑ)-invariant.

(If f̃ comes from a cusp form with respect to a proper congruence subgroup
of G(Z) then G(Ẑ) will be replaced by its appropriate congruence subgroup.)

Now if (ρ, V ) is the minimal G(A) submodule containing f̃ , then it is
irreducible and V = ⊗p≤∞Vp, ρ = ⊗p≤∞ρp and by construction, every (ρp, Vp)
has Kp = SL2(Zp) fixed point and K∞ = SO(2) acts by the character
χk(r(θ)) = eikθ.

The representations of G(Qp) with Kp-fixed points are of two kinds: the
principal series and the complementary series.
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Then comes the miracle - by a small computation: the Peterson-Ramanujan
conjecture holds for ap if and only if ρp is in the principal series. This miracle
comes from the fact that the Kp-fixed vectors is an eigenvector for the Hecke
algebra of Gp with respect to Kp, and the eigenvector is related directly to
λp (see [169]).

All this long process is reversible, i.e., if v is a G(Ẑ) fixed vector in
L2(G(Q) \G(A)) upon which K∞ acts via χk, then this defines a function in
L2(Γ \G(R)) which can be ”renormalized” to give a Hecke eigenform on Γ.

Thus the Peterson-Ramanujan conjecture has now a purely group the-
oretical equivalent form: if (ρ, V ) = (⊗pρp,⊗pVp) is infinite dimensional
irreducible subrepresentation of L2(G(Q) \G(A)) such that ρ∞ is in the dis-
crete series (this amounts to be equivalent to the fact that SO(2) acts by
the character χk). Then for every finite p, either ρp has no Kp-fixed point
(in which case it is in the discrete series and it does not matter for us), or
if it has a K-fixed point, then it is in the principal series and not in the
complementary series. So to put all this together: The Peterson-Ramanujan
conjecture holds (for every congruence subgroup Γ) if and only if for every
(ρ, V ) = (⊗pρp,⊗pVp) in L2(G(Q\G(A)), with ρ∞ in the discrete series, ρp is
not in the complementary series. This conjecture was proved by Deligne [50].

What all this has to do with our (τ)? Well, the point is that the only

way to converge to the trivial representation in G̃(Qp) - the unitary dual of
G(Qp) is via the complementary series. So, to say that some representations
are not in the complementary series, says in particular that they are bounded
away from the trivial representation (and even with an explicit bound), i.e. a
form of relative property (T) or (τ). Moreover, as we saw above, the Selberg
property is also a statement about the subrepresentations of L2(G(Q)\G(A)).
(In fact, the Selberg conjecture λ1 ≥ 1

4
would follow if the Deligne theorem

would be proved without the assumption that ρ∞ is in the discrete series).
The Peterson-Ramanujan conjecture was generalized in various direc-

tions. One of them is a Drinfeld theorem that asserts that if (ρ, V ) is an
irreducible infinite dimensional subrepresentation of L2(SL2(k) \ SL2(A))
when k is a global field of char > 0, then all the local components are not in
the complementary series. This implies

Corollary 4.10 The group SL2(Fq[x]) has the Selberg property, i.e., prop-
erty (τ) with respect to the congruence subgroups.

Note that this group is not finitely generated.
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Anyway, the various generalizations of the Ramanujan conjecture from
GL2 to general groups implies some strong form of the Selberg property.
The reader should be aware that some of the naive generalizations are not
correct (see [94] and [30]) but results in this direction can in principle be
interpreted as the Selberg property with an explicit constant.

A conjecture for general semi-simple groups is given by Arthur [6]. This
is by far stronger than what we call the Selberg property.

4.6 The spectrum: from the infinite to the

finite

The Ramanujan conjecture in its various representation theoretical general-
izations provide some non-trivial bound on the eigenvalues of the adjacency
operators of some finite k-regular graphs (see Chapter 5 and [122], [154]).
The next result shows a limitation to such bounds.

Theorem 4.11 (Alon-Boppana [1]) Let Xn be a sequence of finite graphs
of degree k such that |Xn| →n→∞ ∞. Then

lim sup
n→∞

λ1(Xn) ≤ 1− 2
√

k − 1

k
.

A stronger form of Alon-Boppana was proved by Greenberg [79] (we will
not quote it here as Theorem 4.14 below is even stronger).

before continuing, let us mention two seemingly unrelated results. We
then show how all of them can be seen as special cases of one theorem of
Grigorchuk and Żuk.

Theorem 4.12 (Lubotzky-Weiss [139]) If Γ is an amenable group then
there is no infinite family L of finite index subgroups such that Γ has τ(L).

Note that this is a strong form of Proposition 1.32 above.

Theorem 4.13 (Shalom [181]) Let H ≤ Γ and suppose that there are in-
finitely many finite index subgroups Ni of Γ such that H ≤ Ni and ∩Ni = H.
Then

l2(Γ/H) ≺ ⊕̂l20(Γ/Ni).
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Before we continue, we observe that Shalom’s result implies both Lubotzky-
Weiss and Alon-Boppana theorems. Indeed to see the first: If Γ is amenable,
and L = {Ni}, let H = ∩Ni. Then the spectral radius of the Markov op-
erator on Γ/H, ρ(Γ/H) is at least as large as ρ(Γ) and ρ(Γ) = 1 as Γ is
amenable. So ρ(Γ/H) = 1 which means that l2(Γ/H) weakly contains the
trivial representation. By Theorem 4.13 it implies that ⊕̂l20(Γ/Ni) weakly
contains the trivial representation and so Γ does not have (τ) with respect
to L.

Similarly from Theorem 4.13 we obtain Theorem 4.11: The k-regular tree
is the Cayley graph of a suitable group Γ (e.g., Γ is the free product of k
cyclic groups of order 2, or if k is even, Γ is the free group on k

2
elements).

Every k-regular graph Xi gives rise to a finite index subgroup Ni of Γ. Let
H = ∩Ni. Then again ρ(Γ/H) ≥ ρ(Γ). The by the well known result of

Kesten ρ(Γ) = 2
√

k−1
k

. Thus the same holds for the liminf of λ1(Xi = Γ/Ni).
Theorem 4.13 is also what stands behind the method of Burger, Li and

Sarnak [30] when they define ”subgroup spectrum” and show that ”Ramanu-
jan spectrum” must include it. We will not elaborate on these aspects but
refer the reader to their paper as a beautiful example how quite elemen-
tary considerations from representation theory (or combinatorics) can lead
to existence results for automorphic forms.

A general form of the above three results is given in [81]. Grigorchuk and
Żuk consider the space of ”marked graphs” of uniformly bounded degree.
They showed that the space is compact and

Theorem 4.14 (Grigorchuk-Żuk [81]) The spectral measure is a contin-
uous (measure valued) function on the space of marked graphs.

Proof Let us consider a family {(Xn, vn)} of marked graphs, i.e. graphs
with chosen vertices vn ∈ Xn.

On the space of marked graphs there is a metric Dist defined as follows

Dist((X1, v1), (X2, v2)) = inf

{
1

n + 1
; BX1(v1, n) is isometric to BX2(v2, n)

}
where BX(v, n) is the ball of radius n in X centered on v.

For a sequence of marked graphs (Xn, vn) we say that (X, v) is the limit
graph if

lim
n→∞

Dist((X, v), (Xn, vn)) = 0.
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The limit graph is unique up to the isometry.
We will consider locally finite graphs, i.e. the degree deg(v) of each vertex

v is finite and we will always assume that the graphs are connected. Now we
prove:

Lemma 4.15 Let {(Xn, vn)}∞n=1 be a sequence of marked graphs whose de-
grees are uniformly bounded, i.e. there exists k > 0, such that deg(Xn) ≤ k
for all n ∈ N. Then there exists a subsequence {(Xni

, vni
)}∞i=1 which converges

to some marked graph (X, v).

Proof Because the degrees of the graphs are uniformly bounded, we can
use the diagonal argument. 2

Lemma 4.15 has as a corollary the following:

Proposition 4.16 The space of marked graphs of uniformly bounded degree
is compact.

Proposition 4.17 For any regular marked graph (X, v) there exists a se-
quence of finite marked regular graphs (Xn, vn) converging to (X, v).

Proof First of all let us suppose that the degree of X is even and equal
to 2n. Then X can be represented as the Schreier graph of Fn/H where Fn

is a free group on n generators, H some subgroup of Fn and as generators
for Fn/H we take the images of standard generators of Fn. We can suppose
that the vertex v in X is the image of the identity element e in Fn. Now
H =

⋃∞
i=1 Hi, where Hi is a sequence of subgroups of Fn such that for every i

we have Hi ⊂ Hi+1 and Hi is finitely generated. By a theorem of M. Hall [90]
every finitely generated subgroup of Hi can be represented as the intersection⋂∞

j=1 Hij where Hij are subgroups of Fn of finite index. By a diagonal process
we can choose a sequence {Hikjk

}∞k=1 such that the finite marked Schreier’s
graphs {Fn/Hikjk

, e}∞k=1 converge to (X, v).
In the case when the degree of X is odd, the proof is similar but we have

to use the version of Hall’s theorem for Z2 ∗ . . . ∗ Z2. 2

On the locally finite, connected graph X = (VX , EX) we can consider a
random walk operator M acting on functions f ∈ l2(X, deg) as follows:

Mf(v) =
1

deg(v)

∑
w∼v

f(w),
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where w ∼ v means that w is a neighbor of v.
Let ρ(M) be the spectral radius of M , i.e.

ρ(M) = ‖M‖ = lim
n→∞

n
√
‖Mn‖ = lim

n→∞
2n
√

p2n(x, x)

for any x ∈ X where pn(x, x) is the number of closed loops of length n which
start at x, divided by the number of all loops which start at x. In other
words, pn(x, x) is the probability that if we start a simple random walk on
X at x, after n steps we return to x.

Lemma 4.18 Let f : X1 → X2 be a covering between two graphs X1 and
X2. Then

ρ(X2) ≥ ρ(X1).

Proof By definition of the cover, different loops in X1 are projected onto
different loops in X2. The loops in X1 which start and finish in v are projected
onto loops in X2 which start and finish in f(v). Thus

pn(v, v) ≤ pn(f(v), f(v)),

which implies that ρ(X1) ≤ ρ(X2). 2

Since M is a bounded (||M || ≤ 1) and self-adjoint operator, it has the
spectral decomposition

M =

∫ 1

−1

λE(λ),

where E is the spectral measure. This spectral measure is defined on Borel
subsets of the interval [−1, 1] and takes the values in projections on the
Hilbert space l2(X, deg). The matrix µX of measures µX

xy for vertices x, y ∈ X
can be associated with E as follows:

µX
xy(B) = 〈E(B)δx, δy〉,

where B is a Borel subset of [−1, 1] and δx is the function which equals 1 at
x and 0 elsewhere.

Now, in general, λ ∈ Sp(M) if and only if for every ε > 0 there exists
µX

xy such that |µX
xy((λ− ε, λ + ε))| > 0. But we also have the following result

(see [106]):
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Lemma 4.19 λ ∈ Sp(M) if and only if for every ε > 0 there exists x ∈ X
such that µX

xx((λ− ε, λ + ε)) > 0.

Proof We need only show that if, for B = (λ−ε, λ+ε), we have |µX
xy(B)| > 0

then µX
xx(B) > 0. As E(B) is a projection, one has

0 < (µX
xy(B))2 = 〈E(B)δx, δy〉2 ≤ 〈E(B)δx, E(B)δx〉〈δy, δy〉

= 〈E(B)δx, δx〉deg(y) = µX
xx(B)deg(y),

which ends the proof. 2

Our main tool will be the weak convergence of the measures µXn
vnvn

to the
measure µX

vv (provided that the sequence of marked graphs (Xn, vn) converges
to the marked graph (X, v)), i.e.

lim
n→∞

∫ 1

−1

fµXn
vnvn

=

∫ 1

−1

fµX
vv

for any f ∈ C[−1, 1]. The weak convergence implies (see for instance [67])
that for any open interval B ⊂ [−1, 1]:

lim inf
n→∞

µXn
vnvn

(B) ≥ µX
vv(B).

Lemma 4.20 Let us suppose that the sequence of marked graphs (Xn, vn)
converges to the marked graph (X, v). Then the measures µXn

vnvn
converge

weakly to the measure µX
vv.

Proof We are going to prove that the moments of the measures µXn
vnvn

converge to the moments of the measure µX
vv. As it is easy to see, in our

situation this implies weak convergence of corresponding measures (see for
example [67]). The l-th moment of the measure µY

yy for a graph Y and y ∈ Y
is given by

(µY
yy)(l) =

∫ 1

−1

λlµY
yy(λ) =

∫ 1

−1

λl〈E(λ)δy, δy〉 = 〈M lδy, δy〉.

Thus the l-th moment of the measure µY
yy is equal to the probability of going

from y to y in l steps. But for n sufficiently large, the balls BXn(vn, l) and
BX(v, l) are isometric and the l-th moment of the measure µXn

vnvn
is the same

as the l-th moment of the measure µX
vv. 2
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Now Theorem 4.14 is a consequence of Lemma 4.20 and the fact that the
space of graphs that we are considering is a metric space. 2

This theorem implies Theorem 4.13 and thus Theorem 4.12 and Theo-
rem 4.11. Indeed, if Γ, H and {Ni} are as in Theorem 4.13, then for any
fixed set of generators S, the graphs {Cay(Γ/Ni, S)} have a convergent sub-
sequence by the compactness of the space of marked graphs. So without loss
of generality we can suppose that the sequence Cay(Γ/Ni, S) converges. It
clearly converges to Cay(Γ/L, S) where L is a subgroup containing H. Thus
we obtain the inequality between the norms of the corresponding Markov
operators. As the set S was chosen arbitrary, by a result of Eymard [65], it
implies the weak containment of the representations.

Corollary 4.21 Let Ni be an infinite family of finite index subgroups of Γ.
Then

λ0(Γ) ≥ lim sup
n→∞

λ1(Γ/Ni).

Let us recall

Theorem 4.22 Let N be a subgroup of a finitely generated group Γ.
(a) Then

λ0(Γ) ≥ λ0(Γ/N).

(b) If N is normal then

λ0(Γ) = λ0(Γ/N)

if and only if N is amenable.
(c) If Γ is finite and N is normal then

λ1(Γ) ≤ λ1(Γ/N).

The proof of (a) follows for instance from the following characterization of
λ0: this is infimum of the spectrum of the Laplace operator ∆ on the positive
functions. As a positive eigenfunction of ∆ on Γ/N gives rise to a positive
eigenfunction of ∆ on Γ (with the same eigenvalue) we get λ0(Γ) ≥ λ0(Γ/N).

Part (b) is due to Kesten [106] and the assumption that N is normal is
necessary.

As far as (c) is concerned this follows from the fact the the eigenfunctions
in l20(Γ/N) give rise to the functions in l20(Γ).
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Part II

Applications of (τ )

77





Chapter 5

Expanders

The first and the main application of property (τ) has been the explicit
construction of expanders initiated by Margulis [145]. Expanders play an
important role in computer science and combinatorics.

This led to vast amount of work, some of this is described in [122] and
we will not repeat it here. In this chapter we concentrate on the question to
what extent the expansion properties of a Cayley graph of a group depend
on the group structure or on the choice of generators. Similar question are
of interest also concerning the diameters and other combinatorial invariants
of the Cayley graphs.

5.1 Expanders and Ramanujan graphs

As shown in Section 2.1, property (T) and (τ) give explicit constructions of
expanders. Such graphs are very much needed in graph theory and computer
science for theoretical and applied applications. As this topic has been ex-
tensively covered in the literature we will not repeat the vast applications
here, we rather refer reader to [108], [68] and [125].

Till recently, the only known constructions of expanders were through
property (τ). Recently Reingold, Vadhan and Widgerson [166] found a direct
combinatorial method (”Zig-Zag”) to construct expanders, which does not
require the mathematical machinery needed to prove (τ). Still the expanders
coming from (τ) are Cayley graphs and hence enjoy additional symmetric
properties which are not achieved by the methods of [166]. An interesting
challenge is to construct Cayley graphs which are expanders by the Zig-Zag

79
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methods. First steps in this direction are taken in [150].
As explained in Section 4.5, the Ramanujan conjecture is an explicit

strong form of (τ) with respect to congruence subgroups and so it can be
used to give expanders with an explicit estimate on the expansion constant
and the eigenvalues.

Definition 5.1 A finite k-regular graph X is called Ramanujan if

λ1(X) ≥ 1− 2
√

k − 1

k
.

By a theorem of Alon-Boppana (Theorem 4.11) the bound on Ramanujan
graphs is asymptotically the best possible.

Theorem 5.2 (Lubotzky-Phillips-Sarnak [130], Margulis [148]) Let Γ
be a congruence subgroup of an arithmetic lattice in PGL2(Qp). Then the
graph

X = Γ \ PGL2(Qp)/PGL2(Zp)

is a finite p + 1 regular Ramanujan graph.

Some of these graphs can be explicitly constructed as follows. Let p, q
be two different primes which are congruent to 1 modulo 4 and and assume(

p
q

)
= −1. Let i be an integer satisfying i2 = −1 (mod q). By a theorem

of Jacobi there are 8(p+1) quadruples (a0, a1, a2, a3) ∈ Z4 which are solutions
to

a2
0 + a2

1 + a2
2 + a2

3 = p.

Among these solutions there are p + 1 with a0 > 0 and odd and a1, a2, a3

even. Let us associate to them the following matrices in PGL2(Z/qZ):(
a0 + ia0 a2 + ia3

−a2 + ia3 a0 − ia1

)
.

The Cayley graphs of PGL2(Z/qZ) with respect to the above generators are
p + 1-regular Ramanujan graphs.

For more Ramnaujan graphs see [154], for higher dimensional analogues
see [37], [116], [135], [136].
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5.2 Dependence on generators

Let Γ be an infinite group with two finite systems of generators S and
S ′. Let L = {Ni}i∈I be a family of finite index normal subgroups of Γ.
Then the family {Cay(Γ(Ni, S)}i∈I is a family of expanders if and only if
{Cay(Γ(Ni, S

′)}i∈I is. On the other hand if {Gi}i∈I is a family of finite
groups and two systems of generators Si and S ′i of Gi are chosen indepen-
dently for every i, it is not clear whether being a family of expanders for the
first implies the same for the second.

Let us make the following definitions:

Definition 5.3 Let G = {Gi}i∈I be a family of finite groups. We say that G
is:

1. An expanding family (or a family of expanders) if there exist ε > 0,
k ∈ N and generating subsets Si ⊂ Gi of size at most k such that

h(Cay(Gi, Si)) ≥ ε

for every i, i.e. Gi are expanders with respect to some uniformly
bounded number of generators;

2. A family of uniformly expanding groups (or a uniform family) if there
exist ε > 0 and k ∈ N such that for every i and every generating subset
Si ⊂ Gi of size at most k

h(Cay(Gi, Si)) ≥ ε,

i.e. Gi are expanders with respect to any choice of k generators;

3. Non-expanding if G is not a family of expanders.

The most obvious example of an expanding family is when Γ has (τ) with
respect to a family of normal subgroups L = {Ni}, Gi = Γ/Ni and one can
take Si to be the projection of S to Gi, where S is a finite set of generators
of G.

Definition 5.4 We say that the group Γ has uniform property (τ) with re-
spect to a family of normal subgroups L = {Ni} if there exist ε > 0 and k ∈ N
such that for every i and every generating subset S ⊂ Γ of size at most k

h(Cay(Γ/Ni, S)) ≥ ε.
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At this point we do not know any example of group with property (τ)
whith or without uniform property (τ) with respect to an infinite family of
normal finite index subgroups.

Analogous question concerning uniform Kazhdan constants was raised in
[122]. We say that a group Γ has uniform property (T) if Kazhdan con-
stants with respect to all finite sets of generators have uniform positive lower
bounded.

Theorem 5.5 (Gelander-Żuk [71]) Let Γ be a Kazhdan group densely em-
bedded (or more generally, which has a dense homomorphic image) in a con-
nected topological group G. Assume that there exists a continuous unitary
representation (πG,H) of G without invariant vectors. Then Γ does not have
uniform property (T).

If moreover G is a connected Lie group, then Γ does not have uniform
property (T) even with respect to generating sets of bounded size.

The assumption on the existence of a continuous unitary representation
without invariant vectors is automatically satisfied if G is locally compact.
One can take the action by left multiplication on L2(G), if G is not compact,
and on L2

0(G) (the orthogonal complement to the constant functions) if G is
compact.

There are two main families of examples of Kazhdan groups densely em-
bedded in connected simple Lie groups:

1. Any uniform arithmetic lattice Γ in a Kazhdan semi-simple Lie group
is densely embedded in a compact simple Lie group. For this compact
group we can take any factor of K where Γ is (commensurable to) the
group of integral points HZ where H = G×K.

2. Any S-arithmetic lattice in a product of two or more Kazhdan simple
groups for which at least one of the places is archimedean, non-compact,
is densely embedded in a connected Lie group (e.g. each of those that
lie in the archimedean places). In some examples this connected group
cannot be compact: e.g. SL3(Z[1

p
]) is naturally densely embedded in

SL3(R), but every homorphism of SL3(Z[1
p
]) into a compact connected

group has finite image.

The methods of [71] however do not extend to property (τ).
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If the family Gi = Γ/Ni is also a uniform family of expanders, then one
can deduce that Γ is of uniform exponential growth, at least with respect
to generating sets of size at most k, for some k. In fact, if S is a set of
generators for Γ such that h(Cay(Gi, S)) > ε for every i, then the word
growth of Γ with respect to S is of exponential base at least 1 + ε (i.e. there
are at least (1+ε)l elements in Γ of length at most l). We mention in passing
that recently Eskin, Mozes and Oh [64] showed that every linear group in
characteristic 0 of exponential growth is of uniform exponential growth. This
gives some support to an affirmative answer to Problem 5.21 below. At this
point anyway, we do not know any family of uniformly expanding groups.

Here are some examples of groups which are never expanders:

Example 5.6 Let G = {Gi}i∈I be a family of d generated solvable groups
of derived length at most l. Then G is a non expanding family. Indeed,
assume X(Gi, Si) is a family of expanders and |Si| = k for every i ∈ I.
Let Γ be the free solvable group on k generators {x1, . . . , xk} and derived
length l. Then for every i ∈ I there exists an epimorphism φi : Γ → Gi

with φi({x1, . . . , xk}) = Si. It follows that Γ has τ(L) with respect to L =
{Kerφi}i∈I which is a contradiction with Theorem 4.12.

It is certainly possible for a family of solvable groups to be expanders if
the derived length is unbounded. Here is an example: Fix 2 ≤ d ∈ N and
p prime. Let Γd(pn) = Ker(SLd(Z) → SLd(Z/pn)). Then Γd(p) has the
Selberg property with respect to L = {Γd(pn); n ∈ N}. In fact for d ≥ 3 it
even has (T). At the same time Γd(p)/Γd(pn) is a finite p group of order
p(n−1)(d2−1), hence nilpotent and thus solvable.

Example 5.7 Let Hi be any family of finite groups and pi be primes with
pi → ∞ as i → ∞. Let Gi = Fpi

[Hi] o Hi. Then Gi are never expanders.

Indeed, Fpi
[Hi] is an abelian subgroup of Gi of index |Hi| and of order p

|Hi|
i

which is greater than c|Hi| for any constant c, when pi → ∞. Hence by
Proposition 3.6 they cannot be expanders.

For some time it was not known if there is a family of groups Gi with two
bounded systems of generators Si and S ′i such that Cay(Gi, Si) are expanders
while Cay(Gi, S

′
i) are not. This can happen:

Theorem 5.8 (Alon-Lubotzky-Widgerson [2]) There exists an infinite
family of finite groups Gi which are expanders with one choice of generators
(of constant size) and are not with another such choice.
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The proof in [2] was based on the Zig-Zag product of graphs. This product
allows the construction of large expanding graphs from smaller ones (without
enlarging the degree). It can be applied for semi-direct product of groups.
But for groups one can give also a direct proof. Let us, therefore, present the
main core of the proof in the language of groups and representation theory.

Proposition 5.9 Let {Hi}i∈I and {Ai}i∈I be two families of finite groups
such that for every i ∈ I, Hi acts on Ai and let Gi = Ai o Hi. Let Si ⊂ Hi

and Bi ⊂ Ai be subsets such that:

1. There exist t, k ∈ N such that for every i ∈ I, |Si| ≤ k and |Bi| ≤ t;

2. For every i ∈ I, Si generates Hi and Cay(Hi, Si) are expanders with
some ε > 0 (independent of i);

3. For every i ∈ I, let B̃i be the multiset which is the union of the orbits
{bh; b ∈ Bi, h ∈ Hi} so |B̃i| = |Bi||Hi| . Then B̃i generates Ai and

λ1(Cay(Ai, B̃i)) > ε′ for some ε′ > 0 (independent of i).

Then the Cayley graphs Cay(Gi; {Si ∪Bi}) form a family of expanders.

Remark Note that Cay(Ai, B̃i) are expanders with respect to an unbounded
number of generators, but Gi are with respect to a bounded number. This
is essentially what the semi-direct (or the Zig-Zag product) does for us.

Proof What we need to prove is that there exists δ > 0 such that if (ρ, V )
is a non-trivial irreducible unitary representation of Gi, then for every v ∈ V
with ‖v‖ = 1, for some y ∈ Si ∪Bi,

‖ρ(y)v − v‖2 > δ.

Let W0 = {w ∈ V ; ρ(a)w = w, a ∈ Ai}. As Ai / Gi, W0 is Gi invariant. Thus
either W0 = V or W0 = {0}. If W0 = V , then the representation ρ factors
through Hi and the claim follows from assumption 2.

Assume therefore that W0 = {0}. Let V0 be the subspace of V of the Hi

fixed points, i.e. V0 = {w ∈ V ; ρ(h)w = w, h ∈ Hi}. Let V1 = V ⊥0 be the
orthogonal complement of V0.

Now, given v ∈ V write it as v = v0 + v1 with vi ∈ Vi. The representation
of Hi on V1 does not have any Hi fixed vector. Thus, by assumption 2, there
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exists s ∈ Si such that ‖ρ(s)v1 − v1‖2 > δ′‖v1‖2, for some δ′ (independent of
i). Now

‖ρ(s)v − v‖2 = ‖ρ(s)v0 − v0‖2 + ‖ρ(s)v1 − v1‖2 ≥ δ′‖v1‖2.

Thus if ‖v1‖2 ≥ 1
2
‖v‖2, we are done with δ = 1

2
δ′.

Assume therefore ‖v0‖2 > 1
2
‖v‖2. Now, by assumption 3 and since W0 =

{0} we know that ∥∥∥∥∥∥ 1

|B̃i|

∑
y∈ eBi

ρ(y)v0 − v0

∥∥∥∥∥∥
2

≥ δ′′‖v0‖2

for some δ′′ independent of i.
Now as ρ(h)v0 = v0 we can deduce

max
b∈Bi

‖ρ(b)v0 − v0‖2 ≥

∥∥∥∥∥ 1

|Bi|
∑
b∈Bi

ρ(b)v0 − v0

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

|Bi|
1

|Hi|
∑
h∈Hi

∑
b∈Bi

ρ(bh)v0 − ρ(h)v0

∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

|B̃i|
(
∑
y∈ eBi

ρ(y)v0 − v0)

∥∥∥∥∥∥
2

≥ δ′′‖v0‖2 ≥ δ′′

2
‖v‖2

and the proposition is now proved. 2

So to prove now Theorem 5.8, one takes for example Hp = SL2(p), p
prime, acting on Ap = Fp+1

q = {f : P1(Fp) → Fq}, for a fixed prime q.
Now, a counting argument [2] shows that for t sufficiently large (but

fixed in terms of q) almost all the t-tuple of elements of Fp+1
q satisfy the

assumption 3 of Proposition 5.9. As SL2(p) are expanders (with respect to

s1 =

(
1 1
0 1

)
, s2 =

(
1 1
1 0

)
for example) the groups Gp = Fp+1

q o SL2(p)

can be made into a family of expanders. At the same time Gp are not
expanders with respect to {t1, s1, s2} if t1 : P1(Fp) → Fq given by

t1(i) =

{
1 i = ∞
0 i 6= ∞
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for i ∈ P1(Fp).

The last assertion can be easily seen by looking at the subset of Gp,
{(f, h); f ∈ Ap, h ∈ Hp with f(h(∞)) = 0}. This set is invariant under
multiplication by Hp from the left and ”almost invariant” under t1, which
gives Theorem 5.8.

Remark Another way to see that {t1, s1, s2} do not give expanders is by
proving that in Proposition 5.9 the condition 2 and 3 are equivalent to Gi

being expanders with respect to Si ∪ Bi. Clearly Cay(Ap, Hp · t1) are not
expanders as this is exactly the (p + 1) dimensional cube over Fq.

A more general scheme was develloped by Meshulam and Wigderson [150]
which gives many more examples of families of groups which are expanders
with respect to one choice of generators and not with respect to the another
such choice. They concentrated (in response to a question asked in [139])
on families Gi of the form Gi = Fp[Hi] o Hi, when Hi is a finite group, p a
fixed prime and Fp[Hi] the group algebra of Hi over Fp and Gi is the natural
semi-direct product.

In Example 5.7 above we saw that if p is changed with i and goes to
infinity then the groups Gi are not expanders with respect to any choice of
(a uniformly bounded number of) generators. So the real question is for a
fixed p.

Rather than repeating here the method of [150], we will twist their method
to get a more general statement.

The starting point is [2] which in order to prove Theorem 5.8 above ac-
tually proves the following:

Assume that G = A o H where A is a finite dimensional Fp vector
space and H a finite group. We say that an element α ∈ A is of rank r if
dim(Span{Hα}) = r. Let ρ(r) denote the number of elements or rank ≤ r
in A.

Proposition 5.10 ([2]) Assume S1 ⊂ H is a set of generators such that
h(Cay(H, S1)) ≥ ε and assume that there exists a constant c such that ρ(r) ≤
cr. Then G has a subset S of size s = f(|S1|, c, p) generating G such that
h(Cay(G, S)) ≥ δ = δ(|S1|, c, ε, p) > 0.

Remark In fact the proof in [2] implies that there exists t = f(|S1|, c, p)
such that a random choice of a subset T of t elements from A, will satisfy
h(Cay(G, T ∪ S1)) > δ with probability at least q = q(p, c) > 0.
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The proposition implies that for a fixed prime p and Hi a family of ex-
panders the groups Gi = Ai o Hi can be made into expanders if we have an
exponential bound on the number of elements of rank r in Ai.

Fix i, take H = Hi, look at the case A = Fp[H] and assume p 6 | |H|.
In this case the group algebra is semi-simple and by Wedderburn theorem
Fp[H] = ⊕t

j=1Mdj
(Fpej ) such that |H| =

∑t
j=1 ejd

2
j .

The Galois group Γ = Gal(Fp/Fp) acts naturally on the set Irr(H; Fp)
of equivalent classes of irreducible representations of H over Fp, where Fp is
the algebraic closure of Fp. Let F1, . . . ,Ft denote the orbits of Irr(H; Fp)
under Γ and for each 1 ≤ i ≤ t choose a representative ηi ∈ Fi of dimension
di. Let Γi < Γ denote the stabilizer of ηi and let σ denote the Frobenius
automorphism σ(x) = xp. For ei = [Γ : Γi] the direct sum ⊕ei−1

j=1 ησj

i is
a diei dimensional irreducible Fp representation ρi of H. All irreducible
representations of H arise this way.

Now, α ∈ A = Fp[H] has rank r if and only if the left ideal generated by
α is of dimension r. Write α = (A1, . . . , At) where Aj is a dj×dj matrix over
Fpej . Then

dim(Fp[H]α) =
t∑

j=1

ejdjrankF
p
ej

(Aj)

where this time rankF
p
ej

(Aj) is the rank of the matrix in the usual sense.

Proposition 5.11 If F is a finite field of order q, then the number of ma-
trices of rank r in Md(F) is bounded by q2dr.

Proof See [150]. 2

Denote

K =

{
(r1, . . . , rt) ∈ Nt; 0 ≤ rj ≤ dj,

t∑
j=1

rjdjej = r

}
.

Then the number of elements of degree r in Fp[H] is bounded by

∑
(r1,...,rt)∈K

t∏
j=1

p2rjdjej = |K|p2r.

We need therefore to bound |K|. The following lemma follows from elemen-
tary considerations.
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Lemma 5.12 Let πd(H) be the number of inequivalent irreducible represen-
tations of H of dimension d over Fp. If πd(H) is exponentially bounded as a
function of d, so is |K| as a function of r.

We can now prove the following theorem, which also implies Theorem
5.10 above as promised. Also part 1 of it gives a strong contrast to Example
5.7 above.

Theorem 5.13 Let {Hi}i∈I be an expanding family of groups and p a prime
such that for every i ∈ I, p 6 | |Hi|. Then

1. The groups Fp[Hi] o Hi also form a family of expanders;

2. The groups Fp[Hi] o Hi are not uniformly expanding.

Proof By the above, to prove 1 we only need to show that the number
of irreducible Fp representations of the Hi’s of dimension d is exponentially
bounded as a function of d. This is indeed the case. To see this let Gk be the
class of all finite groups not involving the alternating group Altk as a section.
Thus Gk satisfies the well known Babai-Camerson-Palfy restriction and by [8]
and [23] we have: there exists a constant c = c(k) such that GLd(p) has at
most pcd conjugacy classes of maximal irreducible Gk subgroups, and each
one is of order at most pcd.

Now all the Hi are generated by, say l, generators. So given a maximal
irreducible Gk subgroup M of GLd(p), there are at most pcdl possible homo-
morphisms from Hi to M and there are therefore at most pcdpcdl = pc(l+1)d

irreducible representations of Hi into GLd(p).
Altogether this shows that the groups Fp[Hi] o Hi can be made a family

of expanders with respect to a bounded number of generators.
On the other hand, to prove 2, look at the following set of generators for

Gi = Fp[Hi] o Hi: 1 · e as an element of Fp[Hi] and Si a set of l generators
for Hi. Together this gives l + 1 generators for Gi, but h(Gi) tends to zero
as i tends to infinity. Indeed, one can check that the following sets Ai ⊂ Gi

are almost invariant

Ai =

{(∑
h∈Hi

ahh, h′

)
∈ Gi; ah′ = 0

}
.

This set is of size 1
p
|Gi|, it is invariant under multiplication from the left by

Si and almost invariant under multiplication by 1 · e. 2
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Here are some concrete examples (to be used later in Chapter 8) to illus-
trate Theorem 5.13.

Example 5.14 Fix a prime p ≥ 5 and {Hq} to be the family

{Hq} = {SL2(Fq)|q ≡
p + 1

2
(mod p)}.

Since |SL2(q)| = (q + 1)q(q− 1), we have that (|Hq|, p) = 1. Then {Fp[Hq] o
Hq} is a family of expanders by Theorem 5.13 and the Selberg property for
SL2(Z).

Example 5.15 Let p and q be fixed different primes and r a fixed integer
≥ 2. For i ≥ 1, denote

Γ(qi) = Ker(SLr(Z) → SLr(Z/qiZ)).

Then:

(i) Γ(q) has (τ) with respect to L = {Γ(qi)|i ∈ N}. Indeed, if d ≥ 3, Γ(q)
has (T) and if d = 2, it follows from the Selberg Theorem

and

(ii) Γ(q)/Γ(qi) is a q-group of order q(i−1)(r2−1), as can be seen by a direct
computation.

Thus the family Hi = Γ(q)/Γ(qi) satisfies the assumptions of Theorem
5.13.

Incidently, proving Theorem 5.13 for a family like in Example 5.15 is
especially easy: If all the Hi are q groups (and q 6= p) then a maximal q-
group of GLd(p) is simply a q-Sylow. So there is just one conjugacy class.
Elementary arguments show that the order of the q-Sylow subgroup of GLd(p)
is bounded by pcd for some constant c. Thus to prove Theorem 5.13 (and
hence also Theorem 5.10) for such a family, one does not need to appeal to
[8] and [23] which are based on the classification of the finite simple groups.

5.3 Finite simple groups as expanders

At this stage of knowledge we do not know any infinite family of uniform
expanders. The most likely candidate is the family G = {SL2(p)} where p is



90 CHAPTER 5. EXPANDERS

prime. It can be made a family of expanders in various different ways. The
following results suggest that at least with respect to generators which are
chosen ”uniformly” from SL2(Z) the quotients SL2(p) are expanders

Theorem 5.16 (Shalom [181]) Let H < SL2(Z) be a subgroup which is
normal in some congruence subgroup. If λ0(H2/H) < 0.22, then there exists
N < ∞ such that the projection of H to SL2(Fp) is onto for p > N and there
exists a finite set S ⊂ H such that Cay(SL2(Fp), S) for p > N is a family of
expanders.

Let us note that there are many normal subgroups H of congruence sub-
groups with λ0(H2/H) < 0.22. This happens for example if H = [∆, ∆]
for some congruence subgroup ∆, or more generally if ∆/H is amenable, in
which case λ0(H2/H) = 0. The 0.22 in the above theorem comes from the
current state of knowledge regarding Selberg’s conjecture (λ1 ≥ 1

4
, see Chap-

ter 4). Assuming Selberg’s conjecture, Theorem 5.16 would say that every
non-trivial normal subgroup of SL2(Z) would contain S as in Theorem 5.16
(see also [181] for related results when SL2(Z) is replaced by a suitable lattice
in SL2(Qp). In this case one also gets many ”uniform” generators for SL2(p)
which give rise to expanders).

Theorem 5.17 (Gamburd [69]) Let H < SL2(Z) be a subgroup such that
the Hausdorff dimension of its limit set is at least 5

6
. Then there exists

N < ∞ such that the projection of H to SL2(Fp) is onto for p > N and
there exists a finite set S ⊂ H such that Cay(SL2(Fp), S) for p > N is a
family of expanders.

But at this point the following problems are open.

Problem 5.18 Are {SL2(p); p prime > 3} expanders with respect to{(
1 3
0 1

)
,

(
1 0
3 1

)}
?

Problem 5.19 Let S be a finite subset of SL2(Z) which generates a non-
solvable subgroup ∆ of SL2(Z) (equivalently, it generates a subgroup which
is Zariski dense in SL2). It follows from the Strong Approximation Theorem
for linear groups [194] that there exists l ∈ N such that ∆ is mapped onto
SL2(p) for any p > l. Is {X(SL2(p); S); p > l} a family of expanders?
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Problem 5.20 Is {SL2(p); p prime} a family of uniformly expanding groups?

An even more ambitious is to ask:

Problem 5.21 Let G be a Chevaley group defined over Z. Is {G(Fp); p prime}
a family of uniformly expanding groups? Is for a fixed prime p, {G(Fpl); l ∈
N} a family of uniformly expanding groups?

In both cases, it follows from Theorem 4.4 above, that they are expanders
with respect to some choice of generators.

While Problem 5.21 suggests that for a fixed n the family

Gn = {SLn(p); p prime}

may be uniformly expanding (this family is certainly expanding by Theo-
rem 4.4) the ”vertical family”

Gp = {SLn(p); n ≥ 2}

is certainly not uniformly expanding. In [139] it was shown that SLn(p)
for a fixed p and n → ∞ has a bounded set of generators Sn for which
Cay(SLn(p), Sn) are not expanders. In fact, it was even shown there that the
compact group Kp = Πn≥2SLn(p) has a finitely generated dense amenable
subgroup. So the family Gn behaves like ”property (T)” while Gp behaves as
an ”amenable” family. We do not know however the answer to the following
problems:

Problem 5.22 1. Is {Sym(n)} a family of expanders ?

2. Is some infinite subset of {Sym(n)} a family of expanders ?

Recall that Sym(n) are not expanders with respect to the generators
{τ = (1, 2), σ = (1, 2, . . . , n)} (see [122] page 51).

Problem 5.23 Fix a prime p. Is Gp = {SLn(p); n = 2, 3, . . .} a family of
expanders? It will be interesting to understand which families of finite simple
groups are expanding families.
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5.4 Diameter of finite simple groups

On a connected graph there is a natural metric on the set of vertices. Namely
the distance between two vertices is the minimal number of edges needed
to connect them. A diameter of a graph X, denoted diam(X), is the
maximum of the distances between two vertices.

An easy property of expanders is

Proposition 5.24 If X is a finite graph of degree k then

diam(X) ≤ − ln(2|X|)
ln(λ1(X))

.

Thus whenever we get a family of expanders we also get a logarithmic bound
on their diameters.

For Cayley graphs the diameter has a group theoretic meaning. This is
smallest l such that every element in the group can be written as a word of
length at most l, using the generators.

The Selberg theorem (Theorem 4.1) implies

Corollary 5.25

diamCay

(
SL2(p);

(
1 1
0 1

)
,

(
1 0
1 1

))
= O(ln(p)).

In spite of the easy down to earth formulation we do not know an elemen-
tary proof for it. Larsen managed to get close to it by elementary arguments
and with a probabilistic algorithm.

Theorem 5.26 ([114]) There exist constants c1 and c2 > 0 and a polyno-
mial P such that one trial of the given algorithm will find a word of length
≤ c1 ln p ln ln p in time ≤ P (ln p) representing a given element α ∈ SL2(Fp)
with probability ≥ c2.

To illustrate the non-triviality of Corollary 5.25 let us mention that

diamCay

(
SL2(p);

(
1 2
0 1

)
,

(
1 0
2 1

))
= O(ln(p))

for p > 2. But the question from [123] whether this holds for the generators{(
1 3
0 1

)
,

(
1 0
3 1

)}
(for p > 3) is still open. This is also related to

Problem 5.18.
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Corollary 5.25 was the starting point for the following theorem, though
it turned out to have a proof which does not need the Selberg Theorem.

Theorem 5.27 (Babai-Kantor-Lubotzky [10]) There exists a constant
C such that every non-abelian finite simple group G has a set of seven gen-
erators such that diam(Cay(G, S)) ≤ C ln(|G|).

It is still an open question whether this holds for two generators (see [99]
and [100]). Some interesting results concerning the case when S is a normal
subset of G were obtained by Liebeck and Shalev.

Theorem 5.28 ([119]) There exists a constant C such that if G is a finite
simple non-abelian group and S ⊂ G a nontrivial normal subset, then

diam(X(G, S)) ≤ C ln(|G|)/ ln(|S|).

But of course, as S contains conjugacy classes, the size of S is going to infinity
with G.

There are still many open problems concerning the expansion and diam-
eters of finite simple groups. Just as an illustration let us mention that it
is not known if a random k-tuple of elements of SL2(p) has a logarithmic
diameter. It is not even known whether the family SL2(p) has any system of
generators with respect to which the diameter is not logarithmic. For Sn (or
An) on the other hand, ”non-logarithmic” generators exists (e.g. τ = (1, 2)
and σ = (1, . . . , n) for which diam(Cay(Sn; {τ, σ})) = O(n2) > n log n) but
it is not known what is the diameter of random generators. For more results
and more questions see [9] and more recently [7].

5.5 Ramanujan groups

The bound in the definition of Ramanujan graphs is due to the fact that λ0

for the Laplace operator on a k-regular tree is 1− 2
√

k−1
k

. This is an instance
of a more general phenomenon, discussed in Section 4.6.

Theorem 5.29 ([79],[81]) (i) Let X be an infinite connected graph and Xn

a family of its quotients. Then

lim sup
|Xn|→∞

λ1(Xn) ≤ λ0(X).
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(ii) If Γ is a group generated by a finite set S and L = {Ni} a family of
finite index subgroups then

lim sup
n→∞

λ1(Cay(Γ/Ni, S)) ≤ λ0(Cay(Γ, S)).

This leads to the following definition

Definition 5.30 Let Γ be a group generated by a finite set S and L = {Ni}
a family of finite index subgroups of the group Γ. The triple (Γ, S,L) is called
Ramanujan if for every i

λ1(Cay(Γ/Ni, S)) ≥ λ0(Cay(Γ, S)).

The group Γ will be said to be residually Ramanujan if there exists a
Ramanujan triple (Γ, S,L) with ∩{Ni|Ni ∈ L} = {1}.

In [137] examples of residually Ramanujan and non-residually Ramanu-
jan groups are constructed. Note that the definition depends on the choice of
generators, though at this point it is not clear whether this is really the case.
What is known is that the definition strongly depends on the algebraic struc-
ture of Γ and not only on the Cayley graph Cay(Γ, S). For example there
are two groups Γ1 and Γ2 = F p+1

2
×F q+1

2
both lattices in SL2(Qp)×SL2(Qq)

acting simply transitively on the product of two trees Xp+1 × Xq+1 (hence
with respect to suitable generators have the same Cayley graphs) but the
first is residually Ramanujan while the second is non-residually Ramanujan.
Indeed,

Proposition 5.31 ([137]) Let Γ1 and Γ2 be two nonamenable, residually
finite groups. Then Γ1 × Γ2 is not residually Ramanujan.

Proof Let S be a finite set of generators for Γ1×Γ2. In this proof all Cayley
graphs we consider are with respect to the set S or its quotient. Suppose
that Γ1 × Γ2 is Ramanujan with respect to the infinite family of finite index
normal subgroups Ni and S, i.e.

λ1((Γ1 × Γ2)/Ni) ≥ λ0(Γ1 × Γ2).

One of the families {Γ1 ∩Ni} or {Γ1 ∩Ni} is infinite. Suppose that the first
case holds. Then by Theorem 4.22 and Corollary 4.21

lim sup
i→∞

λ1(Γ1/Ni ∩ Γ1) ≤ λ0(Γ1) < λ0(Γ1 × Γ2) ≤ lim inf
i→∞

λ1((Γ1 × Γ2)/Ni).
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The inequality in the middle is strict, because Γ2 is non-amenable. But

λ1(Γ1/Ni ∩ Γ1) ≥ λ1((Γ1 × Γ2)/Ni),

which gives a desired contradiction. 2
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Chapter 6

The product replacement
algorithm

In this chapter we present, following [129] a quite unexpected application
of property (τ) to analysis of the product replacement algorithm (PRA for
short) which generates (pseudo) random elements in a finite group G.

The analysis suggests one old and one new problem on the possibility of
a ”non-commutative Selberg Theorem”.

6.1 The algorithm

In this section we describe the product replacement algorithm which produces
a pseudo random elements from a finite group given by a set of generators.

The algorithm, proposed by Leedham-Green and Soifer has shown out-
standing performances in practice [39] and became very quickly popular in
computational group theory. Its theoretical analysis is still not fully under-
stood. It works as follows: Given a finite group G, let Ωk(G) be the set
of k-tuples (g) = (g1, . . . , gk) of elements of G such that 〈g1, . . . , gk〉 = G.
We call the elements of Ωk(G) the generating k-tuples. Given a generating
k-tuple (g1, . . . , gk), define a move on it in the following way: Choose uni-
formly a random pair (i, j), such that 1 ≤ i 6= j ≤ k, then apply one of the
following four operations with equal probability :

R±i,j : (g1, . . . , gi, . . . , gk) → (g1, . . . , gi · g±1
j , . . . , gk)

L±i,j : (g1, . . . , gi, . . . , gk) → (g1, . . . , g
±1
j · gi, . . . , gk)

97
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Note that these moves map a generating k-tuple into a generating k-tuple.
Now apply these moves t times and return a random component of the result-
ing generating k-tuple. This is the desired “random” element of the group
G.

Another way to think about the algorithm, is to define on Ωk(G) a struc-
ture of a graph induced by maps R±i,j and L±i,j. This makes Ωk(G) into a
4k(k − 1)-regular graph with no orientation on edges, but with loops when
k > d(G), where d(G) is the minimal number of generators of G. Now the
algorithm consists of running a nearest neighbor random walk on this graph
(for t steps) and returning a random component. We refer to this random
walk as product replacement random walk. By abuse of notation, we denote
this graph Ωk(G) as well.

A crucial ingredient in analyzing the performances of the algorithm (though
not the only ingredient [11]) is to evaluate the mixing time of the random
walk on Ωk(G).

To present the connection with (τ), let us start with some general defini-
tions and questions.

6.2 Congruence subgroups of Aut(H)

Let H be a finitely generated residually finite group. An old result of Baum-
slag [17] asserts that Γ = Aut(H) is also residually finite i.e., Γ is Hausdorff
with respect to the profinite topology. Let us now define on Γ a weaker
topology in the following way:

For every finite index characteristic subgroup I of H, let

Γ(I) = Ker(Aut(H) → Aut(H/I)).

Define the ”congruence topology” on Γ to be the one for which the groups

{Γ(I); I characteristic finite index in H}

serve as a fundamental system of neighborhoods of the identity. The inclusion
H → Ĥ induces an inclusion i : Γ = Aut(H) → Aut(Ĥ). Note, that as Ĥ is

a finitely generated profinite group, Aut(Ĥ) is a profinite group [57] and one
can easily check that the closure Γ∼ = i(Γ) is isomorphic to the completion

of Γ with respect to the congruence topology. Moreover, as Γ̂ and Aut(Ĥ)
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are profinite groups containing Γ we have a map

π : Γ̂ = Âut(H) → Aut(Ĥ)

where Im(π) = Γ∼.
All this is just a generalization of the classical case for H = Zk when we

get

Âut(Zn) = ĜLn(Z) → GLn(Ẑ) = Aut(Ẑn). (6.1)

Note that in (6.1), unlike with

ŜLk(Z) → SLk(Ẑ) (6.2)

the map is not surjective. The surjectivity of (6.2) is due to the strong
approximation theorem, which is true for SLn but not GLn. It is also not
true, in general, for our π, i.e. Γ∼ is usually a proper subgroup of Aut(Γ̂).

One may still formulate the congruence subgroup problem for Γ, i.e.

Is Ker(π) = 1?

There are two cases which are of special interest (see [95])

Problem 6.1 Let H be the free group Fk on k ≥ 2 generators, or H =
π1(Mg) the fundamental group of a surface of genus g ≥ 2. Does Γ = Aut(H)
have the congruence subgroup property (CSP for short), i.e. is

Âut(H) → Aut(Ĥ)

injective, or equivalently, does every finite index subgroup of Γ contain Γ(I)
for some I?

In [126] it is shown that for H = Fk, k = 2, 3 and for π1(Mg), g = 2
the answer is negative - but in all other cases the problem is open. One may
wonder whether these cases indicate the true answer in the general case or
maybe, just as in the abelian case - where GL2(Z) does not have the CSP,
but GLk(Z) has for k ≥ 3, also in the non-abelian setting, we should expect
positive results if k and g are large enough.

Let us call the attention that Mozes [156] has proved an affirmative answer
to a different kind of a congruence subgroup problem for free groups, which
are tree lattices.

Anyway once we define congruence subgroups we can also define:
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Definition 6.2 The group Γ = Aut(H) is said to have the Selberg prop-
erty if it has (τ) with respect to the family L = {Γ(I)} as above.

Problem 6.3 Let H be Fk or π1(Mg) as in Problem 6.1. Does Γ = Aut(H)
have property (T)? Does it have property (τ)? Does it have the Selberg prop-
erty?

All these problems are widely open, except again if k = 2 or 3 or g = 2,
when Γ does not have (T) nor (τ). It is not clear if it has the Selberg property
[126].

We are now ready to relate the algorithm and the Selberg property.

6.3 The PRA and the Selberg property

Let Fk be the free group on k generators x1, . . . , xk. For every group G, the
set Ωk(G) introduced in Section 6.1, can be identified with E = Epi(Fk, G)
- the set of epimorphisms from Fk onto G. Now, Γ = Aut(Fk) acts on E in
the following way: If α ∈ Γ and φ ∈ E, α(φ) = φα−1. Moreover, if R±ij and
L±ij are the Nielsen automorphisms of Fk defined by

R±ij(xi) = xix
±1
j , and R±ij(xl) = xl if l 6= i

L±ij(xi) = x±1
j xi, and L±ij(xl) = xl if l 6= i

then the action of them on Ωk(G) is exactly the same as the R±ij and L±ij
defined in Section 6.1. It is known that the subgroup Γ1 of Γ generated
by R±ij and L±ij is of index 2 in Γ (it is the preimage of SLk(Z) under the
canonical map Aut(Fk) → GLk(Z)). Altogether, we can deduce that the
product replacement algorithm graphs introduced in Section 6.1 are Schreier
graphs of Γ1. (More precisely: in general Ωk(G) is not necessarily connected,
but every connected component of it is such a Schreier graph). Moreover,
given the finite group G, let

I = I(G) =
⋂
{Ker(φ); φ ∈ Epi(Fk, G)}.

Then it is easy to see that Γ(I) acts trivially on Ωk(G). So every connected
component of the latter is a quotient graph of the Cayley graph of Γ1/Γ(I).
One can therefore deduce
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Theorem 6.4 (Lubotzky-Pak [129]) If Aut(Fk) has the Selberg property
then

1. for every finite group G, every connected component of Ωk(G) is an
expander;

2. the mixing time mix(g) of the lazy random walk on every connected
component of Ωk(G) is bounded by C(k) ln |G| where C(k) is a constant
depending on k.

By the lazy random walk we mean the random walk which with proba-
bility 1

2
stays at the same vertex and with probability 1

2
moves to a neighbor

(this is just to avoid the complications in case the graph is bipartite). Note
that 2 follows from 1 by considerations from Section 2.1.2.

As mention before in Problem 6.3 above, it is not known whether Aut(Fk)
has the Selberg property. Still, a variant of the above theorem can give some
unconditional results: Let W be a characteristic subgroup of Fk. There is
a natural homomorphism π : Aut(Fk) → Aut(Fk/W ), whose image we will
denote by A(Fk/W ). For general W the group A(Fk/W ) can have an in-
finite index in Aut(Fk/W ). Still one can talk about congruence subgroups
of A(Fk/W ) as A(Fk/W ) ∩ Γ(I) when I is a finite index characteristic sub-
group of Fk/W and Γ = Aut(Fk/W ). This is just the topology induced on

A(Fk/W ) from its embedding into Aut(F̂k/W ). Similarly we can talk about
the Selberg property of A(Fk/W ), i.e., (τ) with respect to the congruence
subgroups.

As before we deduce

Theorem 6.5 If the group A(Fk/W ) has the Selberg property, then for every
finite group G which is a quotient of Fk/W , every connected component of
Ωk(G) is an expander.

For example, if W is the commutator subgroup of Fk, then A(Fk/W )
is GLk(Z). The latter has the Selberg property for every k and even (T) if
k ≥ 3. Moreover, the Nielsen moves are projected to the elementary matrices
for which Shalom [183] and Kassabov [103] estimated the Kazhdan constant.

Theorem 6.6 ([103]) The Kazhdan constants for SLn(Z) with respect to
elementary matrices are bounded below by (33

√
n + 317)−1
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One can deduce:

Theorem 6.7 (Lubotzky-Pak [129]) Let G be an abelian group, (g) =
(g1, . . . , gk) be the initial generating k-tuple, and let Γ′ ⊂ Γk(G) be a con-
nected component containing (g). Then for the mixing time of the lazy prod-
uct replacement random walk starting at (g), we have mix(g) ≤ C ·k2 · log |G|,
where C is a universal constant.

Proof We estimate mix(g) using Proposition 2.3

mix(g) ≤
1

λ1(Γk(G))
(log |Γk(G)|+ 1).

First of all we relate the spectral gap to Kazhdan constants using a result
which takes into account the symmetries of the set of generators.

Proposition 6.8 ([158]) Let Γ be a dicrete group generated by a finite set
S which has property (T) with Kazhdan constant ε(S). Assume that there is
a finite group H < Aut(Γ) such that H(S) = S and the action of H on S
has m orbits. Then for every finite index subgroup N of Γ

λ1(Γ/N, S) ≥ ε2(S)

2m
.

In the case of the elmentary matrices, Sn < SLn(Z) as a subgroup of
the group of automorphism of SLn(Z) acts transitively on them. Thus by
Proposition 6.7 and Theorem 6.6 we get λ1 ≥ C ′k2. As log |Γk(G)| = k log |G|
we get the desired bound. 2

More generally

Theorem 6.9 Let W = γi+1(Fk), where γi+1(Fk) is the (i+1)-th term of the
lower central series of Fk. Then A(Fk/W ) has (T) for every k ≥ 3. Hence
for a fixed k and i and any nilpotent group G of class at most i we have
mix(g) ≤ C(k, i) · log |G|.

Proof The group theoretic structure of Aut(Fk(i)) was described by An-
dreadakis [5]: First, denote J = Ker(Aut(Fk(i)) → Aut(Fk(i − 1))). Every
α ∈ J is an automorphism which takes each of the free generators x1, . . . , xk

of Fk(i) to x1ζ1, . . . , xkζk, where ζ1, . . . , ζk ∈ γi(Fk)/γi+1(Fk). It is not dif-
ficult to check that α → (ζ1, . . . , ζk) defines an isomorphism from J onto
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(γi(Fk)/γi+1(Fk))k. From Witt formula ([144], Theorem 5.11) and by induc-
tion we can now deduce that Aut(Fk(i)) is an extension:

(∗) 1 → M̃k(i) → Aut(Fk(i)) → GLk(Z) → 1 ,

where M̃k(i) is the group of IA-automorphisms of Fk(i), i.e. the group of
automorphisms which act trivially on the commutator quotient. The group
M̃k(i) is a nilpotent group of class (i− 1) and of Hirsh rank mi:

mk(i) = k

 i−1∑
j=1

1

j

∑
d | j

µ(d) kj/d

 ,

where µ is a classical Möbius function. See [5] for details.
Let Uk(i) be a free nilpotent group over R associated to Fk(i). The group

Aut(Uk(i)) has a similar structure:

(∗∗) 1 → Ñk(i) → Aut(Uk(i)) → GLk(R) → 1 ,

where Ñk(i) is a simply connected nilpotent group of dimension mk(i).
Now, from the description it is clear that Aut(Fk(i)) is a discrete subgroup

of Aut(Uk(i)). It is not a lattice there, but it is a lattice in the preimage of
SL±k (R) under π, where SL±k (R) denotes the group of k × k matrices of
determinant ±1.

Unlike (∗), the sequence (∗∗) splits, and so

Aut(Uk(i)) = Ñk(i) o SL±k (R).

Let us look now at Ak(i), which is the image of A+(Fk) in Aut(Fk(i)), as

a subgroup of Aut(Uk(i)). Let Mk(i) be the intersection of Ak(i) with M̃k(i).

We have that Mk(i) is a discrete subgroup of Ñk(i); it is a subgroup of

M̃k(i) = Ker(Aut(Fk(i)) → GLk(Z)),

which is a lattice in Ñk(i). Let Nk(i) be the Zariski closure of Mk(i) in Ñk(i).
One can prove by induction on the dimension of a nilpotent unipotent group
that every subgroup of a lattice is a lattice in its Zariski closure. Hence Mk(i)
is a lattice in Nk(i).
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The image of Ak(i) in SL±k (R) is SLk(Z) which is Zariski dense in SLk(R),
and since Ak(i) normalizes Mk(i), SLk(R) normalizes Nk(i). We can summa-
rize: The group Ak(i) is a lattice in the Lie group Gk(i) = Nk(i) o SLk(R).

Now, for k ≥ 3 and i ≥ 1, the Lie group Gk(i) = Nk(i) o SLk(R)
has property (T). Indeed it follows from [192] that a group like Gk(i), i.e.
a semidirect product of a nilpotent unipotent group and a connected non-
compact semisimple Lie group with property (T), has Kazhdan’s property
(T) if and only if Gk(i) = [Gk(i), Gk(i)]. Now, since Ak(i) is Zariski dense
in Gk(i) it therefore suffices to show that [Ak(i), Ak(i)] is of finite index in
Ak(i). To see this it is enough to show that [A, A] is of finite index in A,
where A = A+(Fk). In fact [A, A] is equal to A as can be seen from the
explicit presentation for A given by Gersten [74]. 2

So, again the connected components are expanders (in fact, if k > d(G),
Ωk(G) is connected) and the mixing time is linear. It is not known how
C(k, i) depends on k and i. Ideally (as predicted by Theorem 6.4) it should
depend only on k, and hopefully polynomially in k. But this is still an open
problem. See [129] for further discussion.

Another interesting problem is whether Aut(Fk/γi(Fk)) have property
(T) for k ≥ 3 and every i. The proof of Theorem 6.9 shows that this is the
case for A(Fk/γi(Fk)), but in general the latter is of infinite index in the first.
Kassabov [103] showed that Aut(Fk/γi(Fk)) has property (T) for k ≥ 3 and
i ≤ k(k − 1). For lager values of i the problem is still open.

6.4 The PRA and dependence on generators

In Chapter 5 we have discussed the issue to what extend the expansion
coefficient of (finite) groups depends on the choice of generators. We end the
current chapter with two remarks concerning that topic and the PRA.

Let Ωk(G) be the product replacement graph for G as above. The group
Aut(G) acts on it in the following way: β ∈ Aut(G) and (g1, . . . , gk) ∈ Ωk(G)
then

β(g1, . . . , gk) = (β(g1), . . . , β(gk)).

This action commutes with the action of Aut(Fk) on Ωk(G). Let Ω̃k(G) =

Ωk(G)/Aut(G). The vertices of Ω̃k(G) are in one to one correspondence with
the set {Kerφ; φ ∈ Epi(Fk, G)}. Indeed, (g1, . . . , gk) ∈ Ωk(G) gives rise to
φ ∈ Epi(Fk, G) with φ(xi) = gi, i = 1, . . . , k. Kerφ depends only on the
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orbit of Aut(G) in its action on Epi(Fk, G) which, as said before, can be

identified with Ωk(G). The set Ω̃k(G) has been studied in the group theoret-
ical literature under the name ”T-systems”. (This T and the T of property
(T) has nothing to do with each other - except of the curious connection
found in [129] and described above).

Anyway, Gilman [76] studied the action of Aut(Fk) on Ω̃k(G) for G =
PSL2(p) and showed that for k ≥ 4, the action is transitive. Moreover, if

N = |Ωk(G)|, Aut(Fk) acts on Ω̃k(G) as Sym(N) or Alt(N). This implies,
in particular, that for infinitely many values of n, Sym(n) or Alt(n) are
quotients of Aut(Fk). Moreover, they are quotients even through congruence
subgroups of Aut(Fk). This implies that if the answer to Problem 5.22 (ii)
is negative, then Aut(Fk) does not have the Selberg property and hence also
not (τ) and (T).

A second related remark: In [70] Gamburd and Pak related the expansion
coefficient of Ωk(G) to the minimal expansion coefficient of a Cayley graph
of G with k generators. Instead of bringing here their most general result, we
mention a corollary: If the answer to Problem 5.20 is positive, i.e. the family
SL2(p) is a uniform family of expanders, then for sufficiently large fixed k,
the PRA graphs {Ωk(PSL2(p)); p prime} are expanders.
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Chapter 7

Hyperbolic manifolds

In this chapter we shall describe the most unexpected applications of property
(τ). These applications are related to the following conjecture, which is
usually attributed to Thurston, though probably goes back to Waldhausen,
at least for n = 3.

Conjecture 7.1 Let M be a finite volume n-dimensional hyperbolic mani-
fold. Then M has a finite sheeted cover M ′ � M with β1(M

′) > 0, where
β1(M

′) = dimH1(M
′, R).

An equivalent formulation is: let Γ be a lattice in SO(n, 1). Then Γ has
a finite index subgroup ∆ with ∆ � Z (i.e. |∆/[∆, ∆]| = ∞).

Conjecture 7.1 is an important one especially for 3-manifolds. Dunfield
and Thurston [62] have recently checked by computer 10,986 hyperbolic man-
ifolds and showed that all of them satisfy the conjecture. The conjecture
implies that every 3-dimensional hyperbolic manifold is virtually Haken, i.e.
has a finite sheeted cover which is Haken. A 3-dimensional manifold M is
called Haken (or sufficiently large) if it is irreducible and if it contains an
incompressible surface, i.e. a properly embedded orientable surface S (other
than S2) such that π1(S) injects into π1(M).

A central conjecture in 3-manifolds theory is the following:

Conjecture 7.2 (Virtual Haken conjecture) A compact orientable ir-
reducible 3-manifold with infinite fundamental group is virtually Haken.

Thurston showed that if a 3-manifold is Haken, then it satisfies the ge-
ometrization conjecture. So, if M is virtually Haken, then M is a mani-
fold satisfying the geometrization conjecture modulo an action of a finite

107
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group. It then follows, though still highly non-trivial, that also M satisfies
the geometrization conjecture. Thus proving the Virtual Haken conjec-
ture would amount to finishing up half of the geometrization conjecture (the
half dealing with manifolds with infinite fundamental groups - so it does not
include the Poincaré conjecture).

Anyway, answering this problem just for hyperbolic 3-manifolds will be a
great step forward. Let us mention that being Haken also has a purely group
theoretical interpretation: a compact orientable, irreducible 3-manifold M is
Haken if and only if its fundamental group is either an HNN extension or
a free product with amalgamation in a non-trivial way. Now, a group is an
HNN extension in a non-trivial way if and only if it is mapped onto Z. So
we see that the Thurston conjecture (for n = 3) implies the virtual Haken
conjecture, for hyperbolic 3-manifolds.

In this chapter we show how property (τ) is related to all this in few
different ways. We start in Sections 7.1 and 7.2 with a proof based on (τ)
that arithmetic lattices in SO(n, 1) (for n 6= 3, 7) satisfy the Thurston con-
jecture. We continue in Section 7.3 with a discussion of the Lubotzky-Sarnak
conjecture, which asserts that no lattice in SO(n, 1) has (τ). This conjecture
is weaker than Thurston’s but Lackenby showed that together with another
very plausible conjecture in 3-manifolds, it would imply the virtual Haken
conjecture for hyperbolic 3-manifolds. His work will be described in Sec-
tion 7.4. In Section 7.5 we show how the theory of pro-p groups in general
and a recent result of Zelmanov in particular, can be relevant to attack the
above mentioned conjectures for hyperbolic 3-manifolds. We end in 7.6 with
a discussion of lattices in other rank one Lie groups. Along the way we also
describe the connections and applications these topics have towards Serre’s
conjecture on the congruence subgroup problem.

7.1 Thurston’s conjecture for arithmetic lat-

tices

Theorem 7.3 Conjecture 7.1 is true if Γ is an arithmetic lattice in SO(n, 1)
and n 6= 3, 7.

In fact also for n = 3, 7 it is true for many of the arithmetic lattices - see
below.
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Theorem 7.3 is the accumulation of the work of Millson [151], Labesse
and Schwermer [112], Li [117], Raghunathan-Venkataramana [164] and Li-
Millson [118] (see [125]). A unified proof was given in [125] using (τ), which
we will sketch here.

The main idea is the following Sandwich Lemma.

Lemma 7.4 (The Sandwich Lemma) Assume G1 ≤ G2 ≤ G3 are three
non-compact simple Lie groups. Assume for i = 1, 2, 3, Γi is an arithmetic
lattice in Gi, with Γ2 = G2 ∩ Γ3 and Γ1 = G1 ∩ Γ3 (= G1 ∩ Γ2).

(a) If Γ1 has the Selberg property and Γ3 does not have property (τ), then Γ2

does not have the congruence subgroup property.

(b) Assume Γ1 has the Selberg property and Γ3 has a congruence subgroup
Φ which is mapped onto Z. Then Γ2 has a congruence subgroup which is
mapped onto Z.

Proof (a) Follows easily from the Burger-Sarnak result from Section 4.2
(Proposition 4.5). Indeed, by Proposition 4.5 (i), Γ2 has the Selberg property
but Γ2 cannot have (τ) as by Proposition 4.5 (ii) Γ3 does not have (τ). So Γ2

has the Selberg property and no (τ) which means that it has non-congruence
subgroups.

(b) Let φ : Φ → Z be the given epimorphism and N = Ker(φ). For
every 0 < n ∈ Z, there is a unique subgroup Φn such that N ⊆ Φn ⊆ Φ
and [Φ : Φn] = n, so Φ1 = Φ. For every x ∈ C = Comm(Γ3) denote by Φx

n

the group x−1Φnx and φx will be the homomorphism φx : Φx → Z given by
φx(x−1γx) = φ(γ), for γ ∈ Φ.

Note that since Φ is a congruence subgroup of Γ3, so are Φx ∩ Γ3 in Γ3

and Φx ∩ Γ2 in Γ2. Also observe that if πm is the natural projection from Z
to Z/mZ, 0 < m ∈ Z, then Φx

m = Ker(πm ◦ φx). Now, to prove the lemma
it suffices to show that for some x ∈ C, φx|Φx∩Γ2 is non-trivial.

To this end, note that Φ does not have property (τ) with respect to the
family {Φm}0<m∈Z. This means that the G3-module ⊕

m
L2

0(Φm \ G3) weakly

contains the trivial representation. The same holds when we consider this as a
G2-module. By Proposition 4.6, it follows that the G2-module ⊕

x∈C
⊕

m∈Z
L2

0(Γ2∩
Φx

m ∩ Φ \ G2) weakly contains that trivial representation. But Γ2 has the
Selberg property, since Γ1 has it and we may apply Proposition 4.5 (i). Thus
for some m0 ∈ Z and some x0 ∈ C, Γ2∩Φx0

m0
∩Φ is not a congruence subgroup
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of Γ2. Since Γ2 ∩ Φ is a congruence subgroup, this means that Γ2 ∩ Φx0
m0

is
not.

On the other hand, as said before Γ2∩Φx0 is a congruence subgroup. This
shows that Γ2∩Φx0

m0
� Γ2∩Φx0 . This means that πm ◦φx0 is non trivial when

restricted to Γ2 ∩ Φx0 . Hence, φx0 is non-trivial when restricted to Γ2 ∩ Φx0

and the lemma is proved. 2

The second step in the proof of Theorem 7.3 is to put the arithmetic
lattice Γ of SO(n, 1) in the middle of a Sandwich as in Lemma 7.4 (b). Note
that while doing so our hands are very tied; G2 is SO(n, 1) but G3 should also
be a group of R-rank one, otherwise it would have property (T) and could
not have a lattice with an infinite abelianization. Well, such an embedding is
still possible for most arithmetic lattices, but one should go into the details
of their structure. This will be done in the next section.

7.2 Arithmetic lattices in SO(n, 1)

In SO(n, 1) there are arithmetic lattices of two kinds:

(a) The following lattices Γ2 are called “the lattices of the simplest type”
in [189]: Let K be a totally real number field and f =

∑n+1
i=1 aix

2
i a quadratic

form defined over K, i.e., ai ∈ K. Let σ1, . . . , σ` be the `-different em-
beddings of K into R where ` = [K : Q]. Consider for j = 1, . . . , `,
fσj =

∑n+1
i=1 σj(ai)x

2
i as a real quadratic form. Assume fσ1 is of signa-

ture (n, 1) while fσj is either positive definite or negative definite for every
j = 2, . . . , `. If O denotes the ring of integers in K and G2 = SO(f) the
K-algebraic subgroup of GLn+1 preserving f , then G2(O) is embedded diag-

onally in
∏̀
i=1

SO(fσi , R). For i = 2, . . . , `, SO(fσi , R) ∼= SO(n+1) is compact

and the image Γ2 of the projection of G2(O) to SO(fσ1 , R) ∼= SO(n, 1) is a
lattice in SO(n, 1).

Let W be a three dimensional subspace of Kn+1 and f0 be the form f
restricted to W . Choose W in such a way that fσ1

0 is of signature (2, 1).
Then G1 = SO(f0) is a K-algebraic subgroup of G2 and denote by Γ1 the
projection of G1(O) into SO(fσ1

0 , R) ∼= SO(2, 1) ≈ PSL2(R). Γ1, which is a
lattice in PSL2(R), has the Selberg property (see Section 4.1).

Let L = K(
√
−1) and f̃ the Hermitian form on Ln+1 given by f̃ =∑n+1

i=1 ai|xi|2. Let G3 be the K-algebraic group SU(f̃). Then G3(O) contains
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G2(O), G3(K ⊗ R) = SU(f̃σ1 , R) × C where C is a compact group and the

projection Γ3 of G3(O) to SU(f̃σ1) ∼= SU(n, 1) is an arithmetic lattice there.
Γ3 has a finite index congruence subgroup Φ which is mapped onto Z, by
Kazhdan [105] if n = 2, by Shimura [184] for general n if Γ3 is a non-uniform
lattice in SU(n, 1), and by Borel-Wallach [22] if Γ3 is cocompact.

(b) If n is odd, SO(n, 1) has more arithmetic lattices. They are con-
structed as follows (see [189] and [118] for missing details): Let K be a
totally real number field, D a quaternion algebra over K with the involution
σ given by σ(x) = tr(x) − x, x ∈ D. Let V be an m-dimensional D-vector
space and h : V × V → D a non-degenerate skew-Hermitian form (so that
for λ, µ ∈ D and v, w ∈ V , h(λv, µw) = σ(λ)h((v, w)µ)). Let G2 = SU(h)
the special unitary group of this form h. Assume h was chosen in such a way
that G2(K ⊗

Q
R) ∼= SO(n, 1)×C where C is a compact group and n+1 = 2m.

If O is the ring of integers of K, then the projection Γ2 of G2(O) to SO(n, 1)
is a cocompact arithmetic lattice.

Let W be a two dimensional D-subspace of V and h0 be the form h
restricted to W . Choose W in such a way that if G1 = SU(h0), then
G1(K ⊗

Q
R) ∼= SO(3, 1) × C where C is a compact group (such a choice

indeed exists!). Then G1(O) gives rise to a lattice in SO(3, 1) ≈ SL2(C).
Thus Γ1 has the Selberg property (see Section 4.1).

Let now L/K be a quadratic extension which is totally imaginary and
splits D. Denote by ` → ¯̀ the action of the non-trivial element of Gal(L/K).
Let DL = D⊗

K
L and σ̃ : DL → DL be the involution σ̃(λ ⊗ `) = σ(λ) ⊗ ¯̀,

λ ∈ D and ` ∈ L. Let VL = V ⊗
K

L and extend h to hL : VL × VL → DL by

hL(v1⊗`1, v2⊗`2) = h(v1, v2)⊗`1`2 for all v1, v2 ∈ V and `1, `2 ∈ L. Consider
now the K-algebraic group G3 = SU(hL). Then G3(K ⊗

Q
R) = SU(n, 1)×C

where C is a compact group. Thus the projection Γ3 of G3(O) to SU(n, 1)
is an arithmetic lattice in SU(n, 1) which contains Γ2. Moreover, as L splits
D, DL is isomorphic to M2(L) and thus G3 can be presented as a unitary
group of an Hermitian form in n+1 = 2m variables defined via K and L. So
as in (a), we can deduce from [105], [184] and [22] that Γ3 has a finite index
congruence subgroup Φ with a positive Betti number.

It is interesting to note that the arithmetic lattices of type (a) above con-
tain lattices of SO(2, 1) ≈ SL2(R) while for type (b) we must use SO(3, 1) ≈
SL2(C). Fortunately for both SL2(R) and SL2(C), the arithmetic lattices
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Figure 7.1: The Dinkin diagram of type Dn+1
2

have the additional interpretation as coming from units of quaternion alge-
bras. Thus as explained in Section 4.1, the Jacquet-Langlands correspon-
dence can be applied and they all have the Selberg property. Well, as we
said in Chapter 4, all arithmetic lattices in characteristic zero have the Sel-
berg property including therefore all lattices in SO(n, 1). But we showed
explicitly how the Burger-Sarnak method enables one to deduce it directly
from SL2(R) and SL2(C).

One should also remark that for the lattices of type (a) we do not need
to apply this. A much easier proof exists which even shows that they have
a subgroup of finite index which is mapped onto a non-abelian free group
[122]. It is not known whether this holds for the lattices of type (b).

If n 6= 3, 7 the above methods give all possible arithmetic lattices in
SO(n, 1). In SO(3, 1) there are more arithmetic lattices (all come from units
of suitable quaternion algebras). The case n = 3 is different from the general
n as SO(3, 1) is locally isomorphic to SL2(C) and hence has also a complex
structure. The case n = 7 is also special; for every odd n , SO(n, 1) is a
real form of Dn+1

2
whose diagram is as in Figure 7.1, where this diagram has

l = n+1
2

vertices. If l 6= 4 this diagram has only two automorphisms while for
l = 4 it has 6. These automorphisms give rise to more ”forms” on D4 and
more arithmetic lattices. For these arithmetic lattices the method described
here does not work and the Thurston conjecture is still open.
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7.3 The Lubotzky-Sarnak conjecture

Conjecture 7.5 Let M be an n-dimensional finite volume hyperbolic man-
ifold. Then for every ε > 0, M has a finite cover M ′ with λ1(M

′) < ε.

By Proposition 2.9, this conjecture is equivalent to

Conjecture 7.5’ Let Γ be a lattice in SO(n, 1). Then it does not have
property (τ).

To put it into perspective, let us observe

Thurston conjecture ⇒ Lubotzky-Sarnak conjecture ⇒ Serre conjecture

By Serre’s conjecture we mean here the assertion that arithmetic lattices
in SO(n, 1) do not have the congruence subgroup property (see Section 1.4.2
Conjecture 1.23). To see these implications note that if the Thurston conjec-
ture holds, Γ does not have FAb and hence does not have (τ) by Corollary
1.29. Now if an arithmetic lattice in SO(n, 1) does not have (τ) it follows
that it has plenty of non-congruence subgroups since Γ is known to have the
Selberg property. This shows that the Lubotzky-Sarnak conjecture implies
the Serre conjecture.

The current state of knowledge is as follows: In dimension n ≥ 4 the
Thurston conjecture is known for all arithmetic lattices except from n = 7.
For the exceptional lattices in dimension 7 (i.e. those coming from the tri-
ality effect of D4) nothing is known (these lattices deserve a special study!).
Now, for non-arithmetic lattices, Thurston’s conjecture is known (see [124])
for all known non-arithmetic lattices (which are either generated by reflec-
tions or constructed by the interbreeding method of Gromov and Piatetski-
Shapiro [85]) but not in general. Of course, Thurston’s conjecture implies all
other conjectures so in these cases they are also known, but when Thurston’s
conjecture is not known, nothing is known about the other conjectures.

For n = 2 and 3 the situation is different. For n = 2 all conjectures
are known and easy. For n = 3 Thurston’s conjecture is known for all non-
uniform lattices. In fact, by passing to a finite index torsion free subgroup we
get a group Γ with deficiency def(Γ) = 1, i.e. a group presented by one more
generators then relations. So Γ → Z and satisfies the Thurston conjecture.
It is also known for the two types of arithmetic lattices and the two types of
non-arithmetic lattices mentioned before, as well as for some more arithmetic
lattices (see [44]). But the conjecture is still open and is considered to be one
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HOMEOMORPHISM 
BETWEEN BOUNDARIES

= M

Figure 7.2: The Heegaard splitting

of the most outstanding problems in the geometry of 3-manifolds. On the
other hand, Serre’s conjecture is proved in full generality for SO(3, 1) (see
Theorem 7.18 below). Thus the Lubotzky-Sarnak conjecture is of special
interest in this case, as an intermediate step towards the Thurston conjecture.
In fact, in the next section we will see that it may lead to the virtual Haken
conjecture.

7.4 3-manifolds, Heegaard splittings and prop-

erty (τ)

Throughout this section M is a connected, closed, orientable and irreducible
(i.e. any S2 bounds B3) 3-manifold.

Heegaard splitting of M is a way to decompose M as a union of ”simple”
pieces. More precisely, this is a pair (V1, V2) where Vi is a handle-body
(i = 1, 2) such that M = V1 ∪ V2 and V1 ∩ V2 = ∂V1 = ∂V2 (see Figure 7.2).
Every M has such a splitting [93].
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Note that the boundary of a handle-body with n handles V is a closed
surface of Euler characteristic 2 − 2n, so V1 and V2 have the same number
of handles - called the genus of the splitting. The minimal n for which M
has a Heegaard splitting into two handle-bodies with n handles is called the
Heegaard genus of M and denoted C(M). A slightly better invariant for
M is χh

−(M) which is −χ(F ) where F is the boundary surface in a minimal
Heegaard spliting and χ(F ) is the Euler characteristic of F , so χh

−(M) =
2(C(M)− 1).

Given a Heegaard splitting one can construct a presentation for π1(M)
with n generators and n relators, where n is the number of handles in V1

(and V2). This gives another proof of the fact used in Section 7.5 below, that
M has a presentation with the same number of generators and relations. It
also proves un upper bound on the size d(π1(M)) of the smallest generating
subset.

Proposition 7.6

d(π1(M)) ≤ C(M) =
χh
−(M)

2
+ 1.

Our interest is in the behavior of χh
−(M) when one passes to finite sheeted

covers M ′. One way is to lift the Heegaard splitting. This simply multiples
the genus of the splitting surface by the degree of the cover. This shows that
χh
−(M ′) ≤ [M ′ : M ]χh

−(M). In fact, Lackenby even shows that if M ′ can
be chosen to be of sufficiently large injectivity radius that one can arrange
to ensure that χh

−(M ′) < [M ′ : M ]χh
−(M). This applies for example to

hyperbolic manifolds.

Definition 7.7 Let Γ = π1(M), L = {Ni} a family of finite index subgroups,
{Mi} the corresponding covers. Define

χh
L(M) = inf

{
χh
−(Mi)

[Mi : M ]
|Ni ∈ L

}
.

χh
L(M) is the infimal Heegaard gradient of M with respect to L.

This number χh
L(M) is non-negative provided that M is not covered by

the 3-sphere. It can be zero. This happens for example if M is a hyperbolic
manifold that fibers over the circle and one takes the family of cyclic covers
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dual to the fibers. In group theoretical terms this means that Γ = π1(M)
has a finitely generated normal subgroup N (isomorphic to a surface group)
such that Γ/N ' Z and we take L = {Ni} where Ni is the unique subgroup
containing N with Γ/Ni ' Z/iZ.

Conjecture 7.8 (Heegaard gradient conjecture) [113] M has a family
of covers L as before with χh

L(M) = 0 if and only if M fibers over a circle.

On the other hand, there is a connection - at least in one direction -
between χh(M) and h(M) the isoperimetric Cheeger constant of M .

Theorem 7.9 (Lackenby [113]) Let M be a closed Riemannian 3-manifold
and K < 0 its supremal sectional curvature (K = −1 if M is hyperbolic).
Then

h(M) ≤
4πχh

−(M)

|K|vol(M)
.

It follows therefore that if π1(M) has (τ) with respect to L = {Ni} then
χh
L(M) > 0. This gives an interesting topological information on the covers

Mi.
For example

Corollary 7.10 Let M be an arithmetic hyperbolic 3-manifold. Then there
are positive constants c and C such that for every congruence cover Mi → M

cvol(Mi) ≤ χh
−(Mi) ≤ Cvol(Mi).

Proof The upper bound follows from the general fact that the Heegaard
genus of covers of M grows at most linearly. The lower bound follows from
the previous theorem and the fact that arithmetic lattices in SL2(C) have
the Selberg property (see Chapter 4). 2

Combining with Theorem 3.1 above, Theorem 7.9 can give a potential
way to attack the Thurston conjecture via Heegaard splittings.

Corollary 7.11 Let M be a closed hyperbolic 3-manifold, Γ = π1(M) and
L = {Ni} the family of all finite index normal subgroups of Γ and Mi the
corresponding covers. If χh

−(Mi)/
√

[Mi : M ] has zero infimum then there
exists i such that β1(Mi) = dimH1(Mi, R) 6= 0.
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Proof By Theorem 7.9 we have that h(Mi)
√

[Mi : M ] has zero infimum and
so by Theorem 3.1 we get the positive virtual β1. 2

In fact, Lackenby’s result is stronger: he defined an invariant C+(M)
which depends on ”generalized Heegaard splitting” of M and satisfies C+(M) ≤
χh
−(M). He then shows that the virtual positive β1 for M is equivalent to

C+(Mi)/
√

[Mi : M ] has zero infimum (or to C+(Mi) has a bounded sub-
sequence). Hence, these conditions are equivalent to all the conditions in
Theorem 3.1. We refer the reader to the original paper and to [38] and [175].

Moreover Lackenby showed that the infimal Heegaard conjecture together
with Lubotzky-Sarnak conjecture implies the virtual Haken conjecture. In-
deed, he proved

Theorem 7.12 Let M be a closed, orientable 3-manifold and L = {Mi} a
family of finite regular covers of M . Suppose that

1. π1(M) fails to have (τ) with respect to {π(Mi)},

2. the infimal Heegaard gradient χh
L(M) is positive.

Then M is virtually Haaken.

In fact, Lackenby showed that by the assumptions of Theorem 7.12, for
infinitely many i, Mi has a ”thin generalized Heegaard splitting” which is
not a Heegaard splitting. Now by the work of Casson and Gordon [38], it
is known that, if a 3-manifold has a generalized Heegaard splitting, which is
not Heegaard splitting, then it has an incompressible surface, i.e. it is Haken.

Anyway we can deduce

Claim 7.13 The Lubotzky-Sarnak conjecture (Conjecture 7.5) and the infi-
mal Heegaard gradient conjecture (Conjecture 7.8) together imply the virtual
Haken conjecture (Conjecture 7.2) for hyperbolic 3-manifolds.

Proof Let M be a 3-dimensional hyperbolic manifold and Γ = π1(M). By
Lubotzky-Sarnak conjecture, Γ does not have (τ) so there exists L = {Ni} of
finite index normal subgroups with respect to which Γ does not have property
(τ). Let χh

L(M) be the infimal Heegaard gradient of M with respect to L. If
χh
L(M) = 0, then by the infimal Heegaard gradient conjecture, M virtually

fibers over the circle and in particular is virtually Haken. If χh
L(M) > 0 then

Theorem 7.12 implies that M is anyway virtually Haken. 2
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7.5 Pro-p groups and 3-manifolds

Let us suggest now some new ways to tackle the 3-manifold problems men-
tioned in the previous section using group theory in general and pro-p groups
in particular.

We start with the following

Conjecture 7.14 Let G be a group presented by d generators and d relations
and such that for some prime p, dp(Γ) ≥ 5, where dp(Γ) = dimFp(Γ/[Γ, Γ]Γp).
Then

lim sup (log |N/[N, N ]|/[G : N ])

is infinite when N runs over all finite index normal subgroups of Γ.

Note that Conjecture 7.14 implies Thurston’s conjecture for compact hy-
perbolic 3-manifolds (for finite volume non compact it is known anyway).
Indeed, if M is such a manifold, the π = π1(M) is a cocompact lattice in
SL2(C).

Recall:

Proposition 7.15 ([121]) If Γ0 is a finitely generated not virtually solvable
linear group, then for every prime p, and every positive integer k, Γ0 has a
finite index subgroup Γ, with dp(Γ) ≥ k.

We can apply Proposition 7.15 to Γ0 = π to replace π by a finite index
subgroup Γ with dp(Γ) ≥ 5 (note that we can choose p arbitrarily and we
can in fact make dp(Γ) as large as we wish). Now, Γ being the fundamental
group of a finite sheeted cover of M has also deficency zero (as does every
closed 3-manifold group - see [63]), i.e. it is presented by d generators and d
relators. So by Conjecture 7.14, the abelian quotients are not exponentially
bounded. Theorem 3.9 now implies that there exists a finite index subgroup
N of Γ with N/[N, N ] infinite, i.e. Thurston’s conjecture holds.

Let us remark that Conjecture 7.14 is not true without the extra assump-
tion that dp(Γ) is large. Indeed, the Higman group

H = 〈x0, x1, x2, x3|x−1
i+1xixi+1 = x2

i , for i ∈ Z/4Z}

is a 4-generator 4-relator group with no finite index subgroup (see [178] page
18) and H?(n) = H ? . . . ? H is a 4n-generated, 4n-related group with the
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same property. Thus some assumption on dp(Γ) is necessary. The assumption
that dp(Γ) ≥ 5 implies that the pro-p completion G = Γp̂ of Γ is a Golod-
Shafarevitch group (see below) and opens the door to try to apply pro-p
methods for proving Conjecture 7.14. Various methods in pro-p theory have
been applied to the study of the size of the abelian quotients of finite index
subgroups (see [134], [97], [127]) but usually in the opposite direction, i.e., to
get upper bound on |N/[N, N ]| in terms of [Γ : N ]. This time we need lower
bounds.

One may try to use pro-p methods to prove the Lubotzky-Sarnak conjec-
ture. To explain this we should elaborate on the notion of Golod-Shafarevitch
groups. After doing so we will show how these considerations can prove
Serre’s conjecture for lattices in SL2(C). As explained earlier (Section 7.3)
the Lubotzky-Sarnak conjecture is stronger than Serre’s conjecture, but there
is some hope that pro-p methods can also be useful for it.

Consider the free group F (d) on d generators and its free pro-p completion
F (d)p̂ that is the free pro-p group on d generators.

Now let A be the free associative algebra over the field Fp, |Fp| = p, on the
free generators a1, . . . , ad. The algebra A is graded: A =

∑∞
i=0 Ai, where Ai

is spanned by all monomials of length i while A0 = Fp · 1. Consider the ideal
I =

∑∞
i=1 Ai of A, A = Fp · 1 + I. The ideals Im =

∑∞
i≥m Ai, m = 1, 2, . . .

define a topology on A. Let Â be the completion of A with respect to this
topology. Â is the algebra of infinite series over Fp on d non-commuting
variables.

Consider the group of the invertible elements from Â (we denote it by
Â∗) with the induced topology. The closed subgroup of Â∗ generated by
1 + a1, . . . , 1 + ad is the free pro-p group having 1 + ai, 1 ≤ i ≤ d, as free
generators.

Hence, an arbitrary element f of the free pro-p group F (d)p̂ on d gen-

erators can be viewed as an element of the algebra Â upon substituting
xi = 1 + ai, 1 ≤ i ≤ d,

f(1 + a1, . . . , 1 + ad) = 1 + f ′(a1, . . . , ad),

where f ′(a1, . . . , ad) is an element of degree ≥ 1.
Consider a d-generated pro-p group G presented by generators and rela-

tions G = 〈x1, . . . , xd|f1, f2, . . .〉. Substituting 1 + ai for xi, 1 ≤ i ≤ d, we
get

fj(1 + a1, . . . , 1 + ad) = 1 + f ′j(a1, . . . , ad), f ′j ∈ I.
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The algebra

B = 〈a1, . . . , ad|f ′j(a1, . . . , ad) = 0, j = 1, 2, . . .〉

is closely related to the group G in the following way.
For an open normal subgroup H of G, let ω(H) denote the ideal of the

group algebra Fp[G] generated by the elements 1−h, h ∈ H. In other words,
ω(H) is the kernel of the homomorphism Fp[G] → Fp[G/H] induced by the
natural homomorphism G → G/H. So ω(G) is the augmentation ideal of
Fp[G].

The ideals ω(H) define a topology on the group algebra Fp[G]. The
completion of Fp[G] with respect to this topology is isomorphic to the algebra
B [89]. Hence,

HB(t) = 1 +
∞∑
i=1

dim(ω(G)i/ω(G)i+1)ti,

where HB(t) is the Hilbert series of the algebra B.
Suppose that all relators f1, f2, . . . have degrees ≥ 2. Suppose further

that there are r2 relators of degree 2, there are r3 relators of degree 3 and so
on. Denote

HR(t) = r2t
2 + r3t

3 = . . . .

Then the fundamental result of Golod and Shafarevitch is (see[78])

HB(t)

1− t
(1− dt + HR(t)) ≥ 1

1− t
(7.1)

where the inequality of the power series means term by term.

Definition 7.16 We say that a set of relators of a pro-p group G is small
in the sense of Golod-Shafarevitch if all relators have degrees ≥ 2 and there
exists a number 0 < t0 < 1 such that 1 − dt0 + HR(t0) < 0. Groups which
admit small presentations are called Golod-Shafarevitch groups.

A group presented by a small set of relators is necessarily infinite. Indeed,
the series HB(t0) cannot converge as otherwise the left-hand side of (7.1) for
t = t0 would be negative, while the right hand side of (7.1) is positive.

Let d(G) be the minimal number of generators for G and r(G) the minimal
number of relations in a pro-p presentation of G.

Examples of groups with small sets of relators are for instance given by
the following.
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Proposition 7.17 (i) A pro-p group G which is presented by d(G) ≥ 4

generators and r(G) < d(G)2

4
relators is a Golod-Shafarevitch group.

(ii) Let Γ be a discrete group generated by d generators and r relators.

Assume dp(Γ) ≥ 4 and r ≤ d = dp(Γ)2

4
− dp(Γ). Then G = Γp̂ is a Golod-

Shafarevitch group.

In [120] it was observed that groups defined by small sets of relators are
even not p-adic analytic (see also [57]). Let now Γ be an arithmetic lattice
in SL2(C). As explained above, we may, after replacing Γ by a finite in-
dex subgroup, assume that dp(Γ) is as large as we want and thus Γ has a
balanced presentation (i.e. a presentation with the same number of gener-
ators and relators). We conclude from Proposition 7.17 that G = Γp̂ is a
Golod-Shafarevitch group and hence not a p-adic analytic group.

On the other hand, it is not difficult to show that if Γ is an arithmetic
group (in characteristic 0) satisfying the congruence subgroup property, then
Γp̂ must be p-adic analytic. We can deduce Serre’s conjecture:

Theorem 7.18 (Lubotzky [120]) If Γ is an arithmetic cocompact lattice
in SL2(C), then it does not have the congruence subgroup property.

Remark If Γ is a torsion-free arithmetic lattice in SL2(C) which is not
cocompact, then it has a presentation with one more generator than relators.
So |Γ/[Γ, Γ]| = ∞ which easily implies that Γ does not have the congruence
subgroup property.

Let us observe now, that the arguments above give more. Let Γ be any
cocompact lattice in SL2(C) and p an arbitrary prime. As before, by passing
to a finite index subgroup we can assume

(a) Γ is torsion free and residually finite,

(b) dp(Γ) is as large as we need,

(c) G = Γp̂ has a presentation with dp(Γ) generators and dp(Γ) relations,
so G is a Golod-Shafarevitch group.

The following theorem shows that Γp̂ is a very large pro-p group.

Theorem 7.19 (Zelmanov [196]) Let G be a Golod-Shafarevich pro-p group.
Then G contains a non-abelian free pro-p group F on two generators.

Let us show right away a non-trivial application to hyperbolic 3-manifolds.
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Proposition 7.20 Let M be a 3-dimensional hyperbolic manifold and H an
arbitrary finite p-group. Then M has two finite sheeted covers M ′ and M ′′

such that M ′′ is a Galois cover of M ′ with Galois group isomorphic to H.

Proof Let Γ = π1(M). The proposition is equivalent to the assertion that
Γ has two finite index subgroups Γ′′ / Γ′ ≤ Γ such that Γ′/Γ′′ ' H.

Now, by replacing Γ by a finite index subgroup as above, we can assume
that G = Γp̂ is a GS-group. So G contains F by Zelmanov’s theorem. F has
a free pro-p subgroups on d generators for any d, in particular it has a closed
subgroup F1 with an epimorphism π : F1 → H. Let N = kerπ, and K an
open normal subgroup of G with K ∩ F1 ≤ N (such K clearly exists as G is
a profinite group).

Let now G′ = KF1 and Γ′ = G′ ∩ Γ. So G′/K = KF1/K ' F1/K ∩ F1

is mapped onto F1/N ' H. As Γ′ is dense in G′ it is mapped onto H and
proposition is proved. 2

We expect that Proposition 7.20 holds for every finite group. We do
not know how to prove this proposition directly even for p-groups. It shows
that the theory of pro-p groups has the potential to be useful for studying
3-manifolds.

Zelmanov’s theorem implies that given a cocompact lattice Γ in SL2(C)
and a finite p-group H, Γ has a finite index subgroup Λ with an epimorphism
Λ → H. Unfortunately it does not (and neither its proof) give any informa-
tion on the index of Λ. Such an information could be very useful in trying
to prove the Lubotzky-Sarnak conjecture.

The following conjecture suggests itself:

Conjecture 7.21 (i) Let {Gi}i∈I be a family of finite groups such that every
finite group H is a subquotient of Gi for some i (i.e. for some i, Gi has two
subgroups A/B with B/A ' H). Then the family {Gi}i∈I is not an expanding
family (i.e. cannot be made into a family of expanders with respect to a
bounded number of generators).

(ii) The same conjecture with the relaxed condition that H is an arbitrary
finite p-group (for a fixed prime p).

So Conjecture 7.21 (ii) (with Zelmanov’s theorem) would imply the Lubotzky-
Sarnak conjecture. It would also answer in the negative Problems 5.22 and
5.23 from Chapter 5.
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7.6 Lattices in other rank one groups

In the previous sections we have looked at lattices in SO(n, 1). There are

more simple Lie groups of rank one: SU(n, 1), Sp(n, 1) and F(−20)
4 . These

are the isometry groups of the complex hyperbolic spaces, the quaternionic
hyperbolic spaces and the hyperbolic plane over the Cayley numbers, recep-
tively. The lattices in these groups suggest some interesting problems and
challenges that we briefly review here.

Let us start with SU(n, 1). The arithmetic lattices of SU(n, 1) are con-
structed in the following way: Let E be a CM -field (this means that E
is a totally imaginary quadratic extension of a totally real field K, e.g.
E = Q(

√
−d), d > 0). Let D = Db be a central algebra over E of rank

b with an involution d → d′ of the second kind (i.e., this is antiautomor-
phism of D which induces on the center E the unique nontrivial element of
Gal(E/K)). The involution can be extended to Ma(Db) and we can define
the unitary group G = {g ∈ GLa(Db); gg′ = 1}, which is a K-algebraic
group. It follows that if O is the ring of integers in K, then G(O) is a lattice
in G(K⊗R). If n+1 = ab, then under various arithmetical conditions on E,
K and D, it may happen that G(K ⊗R) is equal to SU(n, 1)×K when K is
a compact group. Hence G(O) will give us an arithmetic lattice in SU(n, 1).
All arithmetic lattices in SU(n, 1) are obtained in this way.

Now, if b = 1, Db = E and G is just the group preserving an Hermitian
form of E over K. In this way we get the lattices of the simple type. These are
the lattices Γ into which the arithmetic lattices of SO(n, 1) were embedded
(see Section 7.2 above). At the other end of the spectrum, we have the
lattices for which a = 1. These are obtained from G, the group of units of
the division algebra D.

All the arithmetic lattices in SU(n, 1) have property τ(L) when L is
the family of congruence subgroups, i.e. they all have the Selberg prop-
erty. But apparently there is a big difference concerning property FAb(L).
Kazhdan [105], Shimura [184] and Borel-Wallach [22] showed that if Γ is a
lattice of the simple type it has congruence subgroups with infinite abelian-
izations (and we have made a crucial use of this in Section 7.2 to deduce
such a result for the arithmetic lattices on SO(n, 1)). On the other hand
Rapoport-Zink [165], Rogawski [168] and Clozel [42] showed that for the lat-
tices obtained from units of division algebras, H1(∆, R) always vanishes for
congruence subgroup ∆, i.e. they have property FAb(L).

This shows (see Proposition 2.15) that for the lattices of the simple type
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H1(Γ, L2(Γ̂L)) 6= 0 while for division algebra units H1(Γ, L2(Γ̂L)) = 0.
This mysterious phenomenon deserves some attention: It goes against the

common believe that ”lattices in the same group behave similarly”.
Let us mention that if n + 1 is not a prime then beside the two cases

described above there are also ”intermediate cases” when both a and b are
greater than 1. For these nothing has been proven, but we have learned from
Rogawski that we should expect they behave like lattices of the simple type,
namely, they also satisfy the Thurston conjecture (i.e. do not have FAb(L)).

We should mention however that FAb is not known for the lattices coming
from units of division algebras, only FAb(L) with respect to L = {congruence
subgroups}. The congruence subgroup problem is completely open for them.

Regarding non-arithmetic lattices even less is known: It is known that
SU(n, 1) for n = 2 and 3 have some non-arithmetic lattices. Examples were
constructed by Mostow [155], Deligne-Mostow [51] and Livne. For one of the
examples constructed by Livne (see [51]) it is known that it is mapped onto
a non-abelian free group, so it does not have FAb or (τ). It is not known
whether SU(n, 1) for other n’s have non-arithmetic lattices.

The story of the lattices in Sp(n, 1) and F(−20)
4 is completely different.

As mentioned in Theorem 1.6 these groups and their lattices have property
(T). So the analogue of Thurston’s and Lubotzky-Sarnak’s conjectures do not
hold here. Moreover as lattices in these groups satisfy super-rigidity and are
all arithmetic one may suspect that the lattices in Sp(n, 1) and F(−20)

4 satisfy
the congruence subgroup property (see the discussion in Section 4.4). We
mention in passing that solving affirmatively the congruence subgroup prob-
lem even for one such lattice would solve a well known problem on hyperbolic
groups:

Claim 7.22 If there exists a cocompact arithmetic lattice Γ in Sp(n, 1) or

F(−20)
4 satisfying the congruence subgroup property, then there exists a non-

residually finite hyperbolic group.

Proof Recall that Γ is a hyperbolic group (which is of course residually
finite as Γ is linear). Now, in a hyperbolic group Γ, for most sufficiently large
elements γ ∈ Γ, the normal closure N of γ in Γ is infinite and the quotient
group Γ/N is a hyperbolic group ∆ (see [82] and [75]). We claim that such ∆
is not residually finite. Indeed, if ∆ has infinitely many finite index normal
subgroups {∆i}i∈I then their preimages {∆̃i}i∈I in Γ give an infinite family
of finite index normal subgroups in Γ. They are all congruence subgroups of
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Γ by our assumption. Now, in an arithmetic subgroup of a simple algebraic
group, the intersection of infinitely many normal congruence subgroups must
be finite and central. This is a contradiction since all the {∆̃i}i∈I contain N ,
which is, by our construction, an infinite normal subgroup. This shows that
∆ has only finitely many finite index normal subgroups and hence it is not
residually finite. 2

Remark The proof actually shows that by replacing ∆ by the intersection
of its finite index subgroups, we get even a hyperbolic group with no finite
index subgroup. Indeed, it was proved in [102] that if a non-residually finite
hyperbolic group exists then there exists also a hyperbolic group without any
finite index subgroup.
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Chapter 8

Uniqueness of invariant
measures

In this chapter we apply (τ) to the Ruziewicz problem: The uniqueness of
the Haar measure on some compact groups. Some counter intuitive examples
will be given in Section 8.2.

8.1 Open compact subgroups of local adelic

groups

Let G be a compact group. It has a uniquely defined Haar measure, which
is G invariant (under the left multiplication, in fact also under right) and
countably additive. If one relaxes the condition from ”countably additive”
to ”finitely additive” the uniqueness is not automatic any more. In fact, S1-
the circle has uncountably many different finitely additive invariant measures.
The study of finitely additive measures has its origin in the Banach-Tarski
paradox and in the theory of amenable groups - see [122] and the references
there. It turns out that this topic is very much related to our discussion and
this is due to what we have seen in Section 2.3.1 Proposition 2.10: The Haar
measure is the only finitely additive invariant measure of G if and only if G
as a discrete group acting on L2

0(G, µ) does not weakly contain the trivial
representation. This actually amounts to saying that µ is unique if and
only if G has a finitely generated dense subgroup ∆ whose representation on
L2

0(G, µ) does not weakly contain the trivial representation. This is exactly
what brought us to Corollary 2.11 that Γ has τ(L) if and only if µ is the
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unique finitely additive measure on Γ̂L.
As we have shown various examples of τ(L), we can now deduce:

Theorem 8.1 Let G be a connected semi-simple algebraic group defined over
a global field k with the ring of integers O. Then for every profinite open
subgroup K of G(Af

k) or G(kv), for some valuation v of k, the Haar measure

of K is the only finitely additive invariant measure of K (Af
k denotes the

finite adèles).

Proof Let us first consider the local case: K ⊂ G(kv). As we saw in
Chapter 4 Theorem 4.4 for some valuation v0 6∈ S∞ ∪ {v}, Γ = G(OS) has
the Selberg property when S = S∞ ∪ {v0}. The closure of Γ in G(kv) is
commensurable with K and the induced topology on Γ is weaker than the
congruence topology of Γ. This shows that the Haar measure is unique on
the closure of Γ and this implies the uniqueness also for K.

Let now K be open in G(Af
k). Let v0 be a valuation of k provided by

Theorem 4.4. Write G(Af
k) = G(kv0) × H. Replacing K by a finite index

subgroup (which is allowed) we can assume that K = K1 × K2 where K1

is open compact in G(kv) and K2 in H. G(k) is also a subgroup of H.
Look at Γ = G(k) ∩ K2. This is an S arithmetic group for S = S∞ ∪ {vo}
which is dense in K2. By Theorem 4.4, Γ has the Selberg property, so the
Haar measure is the unique invariant measure on K2. The uniqueness for K1

and for K2 implies the existence of suitable finitely generated subgroups and
ensures the uniqueness for K. 2

8.2 Uniqueness and non-uniqueness with re-

spect to dense subgroups

In [139] the question whether the property of being expanders depends on
the generators or not was discussed. As a way to construct examples which
depend on generators, it was suggested to look for a profinite group G with
two dense finitely generated subgroups Γ1 and Γ2 such that Γ1 is amenable
and Γ2 has (T). By Theorem 4.12 and Proposition 2.5 the finite quotients
of G are expanders with respect to the generators of Γ2 and are not with
respect to the generators of Γ1. But, at the same time, it was suggested
that maybe such a triple (G, Γ1, Γ2) is impossible unless G = Γ1 = Γ2 is
finite. This is still an open problem, but let us show that the solution to
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”dependence problem” in [2] as presented here in Theorem 5.10 above gives
us the following interesting situation:

Theorem 8.2 There exists a profinite group G with two finitely generated
dense subgroups Γ1 and Γ2 such that the representation of Γ1 on L2

0(G) weakly
contains the trivial representation and the representation of Γ2 on L2

0(G)
does not. Or equivalently, the Haar measure is the only finitely additive Γ2

invariant measure on G, but there are different finitely additive Γ1 invariant
measures.

Proof Let Γ = SLd(Z) and Γ(qn) = Ker(SLd(Z) → SLd(Z/qnZ)). We saw
in Example 5.6 that the family {Γ(q)/Γ(qn); n ∈ N} is a family of finite q-
groups which are expanders with respect to a finite fixed set S1 of generators
for Γ(q).

Fix two different primes p and q. Let Hn = Γ(q)/Γ(qn), Gn = Fq[Hn]oHn,
H = lim←Hn and G = lim←Gn all with respect to the natural epimorphisms.
Then G = Fp [[H]] o H where Fp [[H]] = lim← Fp[Hn] is the completed group
algebra of H. Now, Example 5.15 and the proof of Theorem 5.13 show that
the subgroup Γ1 of G generated by S1 and the element 1 · e in Fp [[H]] is
dense in G. The quotients are not expanders, so the representation of Γ1 on
L2

0(G) weakly contains the trivial representation, so the Haar measure is not
the unique finitely additive Γ1 invariant measure of G. On the other hand,
the remark after Theorem 5.10 shows that for a suitable constant t, with
positive probability (with respect to the Haar measure of Fp [[H]] which, let
us recall, is different from the restriction to Fp [[H]] of the Haar measure of G)
a choice of a random set T of t elements in Fq [[H]], the set T ∪ S1 generates
a finitely generated dense subgroup Γ2, and its projection to Fp [[Hn]] o Hn

form a family of expanders. Thus the representation of Γ2 on L2
0(G) does not

weakly contain the trivial representation and µ is the only finitely additive
Γ2 invariant measure on G. 2
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Chapter 9

Property (τ) and C∗ algebras

Property (T) found its way into the theory of operators and C∗-algebras in
few different ways (see for example the works of Connes [46] and of Voiculescu
[190]). Sometimes property (τ) suffices for the applications and in some
cases it is even essential. For example, in [98] Junge and Pisier showed that
B(H)⊗B(H) has two different norms (when B(H) is the C∗ algebra of the
bounded linear operators of an infinite dimensional separable Hilbert space
H). Valette obtained some optimal bounds regarding the ratio between these
norms (see [186]) using the Ramanujan graphs. What was really used there
is the fact that the free group on q+1 generators, q being a prime power, has
an infinite series of finite dimensional representations with a special property
expressed by the bound on the eigenvalues of the graphs, i.e. they have
(τ) with respect to a special class of normal subgroups and with an explicit
optimal constant.

In another direction the work of Benveniste and Szarek [21] uses (τ) to get
explicit examples of n×n matrices of norm 1 which cannot be approximated
within an explicit constant by any matrix which decomposes as an orthogonal
direct sum of smaller matrices.

Still, in the above mentioned applications what plays the crucial role is
either property (T) or the explicit constant which comes with (τ).

We choose to present here in more details an application of (τ) to the
question of separating the C∗-algebra of a group Γ by the finite dimensional
representations of Γ. This application is based essentially on the difference
between (T) and (τ). Then we will take a broader perspective and will

consider the ”location” of the finite representations Γ̃f of Γ within Γ̃-the
unitary dual of Γ. Property (τ) says that the non-trivial finite representations
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are bounded away from the trivial representation. We will consider a very
different property: the finite dimensional representations are dense in Γ̃.
This, in particular, implies that the C∗ algebra of Γ is seperated by the
finite (dimensional) representations. Free groups and surface groups have
this property while lattices in higher rank simple groups tend not to have it.

9.1 Separating C∗(Γ) by finite dimensional rep-

resentations: negative results

Let Γ be a finitely generated group and C∗(Γ) the full C∗-algebra of Γ. This
is the completion of the group algebra C[Γ] under the norm∥∥∥∥∥∑

γ

cγγ

∥∥∥∥∥ = sup

{∥∥∥∥∥∑
γ

cγπ(γ)

∥∥∥∥∥ ; π ∈ Γ̃

}

where Γ̃ is the unitary dual of Γ, i.e. the set of all (equivalent classes of)
unitary representations of Γ.

The following proposition follows easily from the fact that every finitely
generated linear group is residually finite.

Proposition 9.1 Let Γ be a finitely generated group. The following condi-
tions are equivalent:

1. the group Γ is residually finite;

2. the finite dimensional unitary representations of Γ separate the points
of Γ;

3. the finite dimensional unitary representations of Γ separate the points
of C[Γ].

Condition 3 means that for every α ∈ C[Γ] there exists a finite dimensional
unitary representation ρ of Γ such that ρ̃(α) 6= 0, when ρ̃ is the representation
induced on C[Γ] by Γ.

A much more difficult question is when the finite dimensional unitary
representations of Γ separate the points of C∗(Γ), equivalently, when is it
possible to embed C∗(Γ) in the C∗ direct sum of matrix algebras?

The following fact follows from the basic definition and enables us to
change the language to a question about density in the unitary dual.
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Proposition 9.2 Finite dimensional unitary representations of Γ separate
the points of C∗(Γ) if and only if the set of finite dimensional unitary rep-
resentations of Γ is dense in the unitary dual of Γ with respect to the Fell
topology.

Proof See [56] Chapter 18. 2

Let us say that a discrete group Γ has the finite dimensional density
property (FDD for short) if the set of finite dimensional unitary representa-
tions is dense in Γ̂. We say that it has the finitary density property (FD
for short) if the finite representations are dense in Γ̂. Clearly, FD implies
FDD.

Proposition 9.3 Let Γ be a discrete group and Λ a subgroup of Γ . If Γ has
FDD (respectively FD) the same holds for Λ.

Proof Let π be a representation of Λ. We have to prove that π is the limit
of finite dimensional representations. Let ρ = IndΓ

Λ(π), so by assumption ρ
is a limit of such representations {ρi}i∈I of Γ. Thus ResΓ

Λ(ρ) is a limit of
{ResΓ

Λ(ρi)}i∈I and the later are clearly also finite dimensional. We only need
to observe now that as Γ is discrete π is a subrepresentation of ResΓ

Λ(ρ) =
ResΓ

Λ(IndΓ
Λ(π)). Indeed, if V is the representation space of π then the space

of functions

{fv : Γ → V |v ∈ V, f(δ) = π(δ)v for δ ∈ Λ and f(γ) = 0 for γ 6∈ Γ \ Λ}

is a subspace of IndΓ
Λ(π) which is Λ-invariant and isomorphic to (V, π). 2

The next proposition gives exemples of residually finie groups without
FDD.

Proposition 9.4 Let ∆ be a finitely generated group such that:

1. ∆ has (τ) but not (T),

2. every finite dimensional representation of ∆ factors through a finite
quotient.

Then the finite dimensional representations of ∆ do not separate the points
of C∗(∆).
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Proof Indeed the finite dimensional representations of ∆ are bounded away
from the trivial, but the unitary dual is not. So they are not dense there. 2

Proposition 9.4 applies for example to SL2(Z[1
p
]) or SL2(Z[

√
p]), p a

prime.
But also for many groups with property (T), the finite dimensional rep-

resentations are not dense.

Theorem 9.5 (Bekka [19]) Let K be a number field, O its ring of integers,
S a finite set of primes of K including all archimedean ones, OS = {x ∈
K|v(x) ≥ 0 for all v 6∈ S} and let Γ = G(OS), when G is an absolutely
simple, simply connected K-algebraic group. Assume

1. K-rank (G) ≥ 1,

2. S-rank (G)(=
∑

v∈S Kv− rank (G)) ≥ 2.

Then the finite dimensional representations of Γ do not separate the points
of C∗(Γ), i.e. Γ does not have FDD.

Corollary 9.6 For Γ = SLd(Z), d ≥ 3, the finite dimensional unitary rep-
resentations do not separate the points of C∗(Γ) while for Γ = SL2(Z) they
do.

The fact that SL2(Z) has FDD and even FD will be shown in the next
section. Here we prove Theorem 9.5 from which the first half of Corollary
9.6 follows.

Proof of Theorem 9.5 Under the assumptions of theorem, the group Γ
satisfies:

(a) Every normal subgroup of it is either finite or of finite index (this is
Margulis normal subgroup theorem [149]).

(b) Γ has a non-trivial unipotent element γ since K− rank(G) ≥ 1. This
element is a u-element by [128]. Namely the length of γn with respect to a
fixed finite set of generators of Γ is O(log n).

(c) Γ satisfies the congruence subgroup property (see [161] and [162]).
Properties (a), (b) and (c) imply that every finite dimensional represen-

tation of Γ factors through a finite representation (in fact a congruence one).
Indeed, if ρ is a finite dimensional representation of Γ then by [128] the image
of a u-element γ must be a virtual unipotent element, i.e. ρ(γk) is unipotent
for some k ∈ N. But the unitary group Ud(C) has no non-trivial unipotent
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elements, so ρ(γk) = 1. This shows that Ker(ρ) is infinite and hence by (a)
of finite index and by (c) a congruence subgroup.

On the other hand, as K-rank (G) ≥ 1, there is an algebraic homomor-
phism with finite kernel from SL2 into G. This shows that Λ = SL2(Z) (or
Λ = PSL2(Z)) is embedded in Γ, up to commensurability, in such a way that
the congruence topology of Γ induces the congruence topology of SL2(Z).

Now if the finite representations of Γ separate the points of C∗(Γ), their
restrictions to Λ separate the points of C∗(Λ). But in our case, the finite
representations of Γ restricted to Λ give only the congruence quotients rep-
resentations of SL2(Z). By the Selberg Theorem (see Section 4.1) the latter
are bounded away from the trivial representation, while Λ does not have (T)
and so the finite congruence representations cannot be dense in the unitary
dual of Λ. This contradiction finishes the proof. 2

Remarks 1) Theorem 9.5 holds also in char(K) = p > 0. The proof is
similar, but Λ = SL2(Z) should be replaced by Λp = SL2(Fp[t]). The latter
is not finitely generated, but this is not crucial in the proof. The group
Λp has the Selberg property in the following sense: the representations of
it factoring through the congruence quotients are bounded away from the
trivial representation. This highly non-trivial fact is a corollary of a theorem
of Drinfeld who proved the Ramanujan conjecture for Λp (see [60]).

2) The proof can still work for many such groups of K−rank 0 (i.e. when
Γ is a cocompact lattice in the suitable semi-simple group), but not for all.
The proof needs that the congruence subgroup property holds for Γ. This is
known in many cases and conjecturally in all cases. We also need to show
that a K-rank zero group H with S-rank one can be embedded into G and
hence a subgroup Λ into Γ. This is a problematic point: in some cases Γ is a
minimal semi-simple group (e.g., if G is the norm one elements of a division
algebra of prime degree over Q) and contains no proper K-simple group and
in particular not such H. If such H exists, the rest of the proof will work as
the Selberg property is now known for all arithmetic lattices, provided Λ does
not have (T). This is the case in most S-rank one groups. The exceptional

cases being Sp(n, 1) and F(−20)
4 over R. Over non-archemedian local fields,

the lattices in rank one groups never have (T).

It will be an interesting challenge to determine for all lattices in Lie groups
whether their finite dimensional representations separate their C∗-algebras.
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9.2 Seperating C∗(Γ) by finite dimensional rep-

resentations: positive results

In this section we show that some interesting groups have FDD. In fact we
will even show that they have FD. This is not just a minor improvement, in
fact, the FD property will be essential. It turns out that in some cases one
can deduce FD for a larger group Γ from FD of a subgroup Λ.

Easy examples of groups with FD are

Proposition 9.7 Let Γ be an amenable residually finite group. Then Γ has
property FD.

Proof For every residually finite group Γ, l2(Γ) is in the closure of the finite
representations (see Theorem 4.13). Now, if Γ is amenable then it is well

known that the closure of l2(Γ) is the whole Γ̃ and the proposition follows.
2

We now turn to FD for free groups. In [41] Choi proved FDD for the free
groups. The proof of FD given here is from [137] who attribute the main
idea to Tim Steeger.

Theorem 9.8 Let Γ = Fr be the free group on r generators 2 ≤ r ≤ ℵ0.
Then Γ has property FD, i.e., the finite representations of Γ are dense in the
unitary dual of Γ.

Let us first recall a general useful lemma.

Lemma 9.9 ([197]) If Γ is a discrete group and π a unitary Γ-representation.
Then there exists a probability measure preserving Γ-action on a standard
Lebesgue space (X, µ) such that π is a subrepresentation of the unitary Γ
representation on L2(X, µ). Moreover X can be chosen to be a compact met-
ric space on which Γ acts continuously.

Here is the main lemma.

Lemma 9.10 Assume Γ = Fr acts continuously on a compact metric space
X, preserving a probability measure µ. Then the induced unitary representa-
tion of Γ on L2(X, µ) is in the closure of finite representations of Γ.
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Proof The idea of the proof is to show that there are “arbitrarily small
perturbations” of any given action, which factor through a finite quotient.
First however, observe that we may assume µ has no atoms since for any
α > 0 there can be only finitely many atoms of weight α (µ has total mass
1), hence they form Γ-invariant subset on which the Γ-action factors through
a finite quotient. By removing all the atoms of µ we are reduced to the non-
atomic case. Let S ⊆ Γ be a free generating subset. Abusing notation, we
shall denote both the Γ-action on X and on L2(X) by ρ, i.e., for f ∈ L2(X)
we have: [ρ(g)f ](x) = f(ρ(g−1)x). Our strategy now goes as follows: Because
the subspace of continuous functions on X is dense in L2(X), it is enough,
given any finite number of continuous functions f1, · · · , fn on X, and any
ε > 0, to construct a new (µ-)measure preserving Γ-action ρ′ on X, which
factors through a finite quotient of Γ, such that for every g ∈ S∪S−1 (as well
as g = e) one has for the L2 norm: ||ρ(g)fi − ρ′(g)fi|| < ε for all 1 ≤ i ≤ n.

Let then ε and f1, · · · , fn be given. Choose δ > 0 so that d(x, y) < 2δ
implies |fi(x)−fi(y)| < ε for all i and x, y ∈ X. Now, again using continuity,
choose some 0 < θ < δ such that d(x, y) < θ implies d(ρ(g)x, ρ(g)y) < δ for
g ∈ S ∪ S−1. Next observe that X can be divided into a disjoint union of
subsets B1, · · · , Bk which have equal measure (of size 1/k) and diameter less
than θ. We shall leave the straightforward, yet rather tedious verification
of this fact to the reader, hinting only that it is easier to find first such a
subdivision where the measure of every Bi is rational (and then subdivide
arbitrarily all Bi’s to get pieces of equal measure), which of course uses the
fact that µ is non-atomic (it seems most convenient here to homemorphically
embed X in [0, 1]N and work with the latter).

We can now define the new Γ-action ρ′ on X. By freeness, it is enough to
define it for any g ∈ S and we fix such an element. Consider the two disjoint
subdivisions of X: X = ∪Bi = ∪Ci, where Ci = g(Bi). Let us call a couple
Bi and Cj “matched” if µ(Bi ∩ Cj) > 0. Because µ(Bi) = µ(Cj) = 1/k for
all i, j, it is easy to see that for every family of m Bi’s, the family of Cj’s
matched to at least one of its members has least m elements (and vice versa),
that is, Hall’s marriage theorem applies. We can therefore find a permutation
σg ∈ Sk with the property that g(Bi) ∩ Bσg(i) is non empty for all i. Notice
that defining σg−1 = (σg)−1, the latter holds also when g is replaced by g−1.

By freeness the permutation action of S on the set of Bi’s extends to a
permutation action of Γ, factoring through a finite quotient F (⊆ Sk). In
order to define a measure preserving Γ-action on X (and not only on the
collection of subsets Bi), which factors through an action of F and induces
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the previous permutation action on the Bi’s, we choose as a “model space”
any non-atomic standard Lebesgue space Y on which Sk acts by permuting
a disjoint subdivision of it to k subsets Yi. Identifying measure preservingly
each Bi and Yi, induces an F - (hence also Γ−)action on X, which in turn
induces the previously defined permutations {σg} of the sets Bi. This is the
promised ρ′.

Finally, given any 1 ≤ i ≤ n we show that ||ρ(g)fi − ρ′(g)fi|| < ε for any
g ∈ S ∪ S−1. In fact, we show that for all x ∈ X: |ρ(g)fi(x)− ρ′(g)fi(x)| <
ε. Let 1 ≤ j ≤ k be such that x ∈ Bj. Then ρ(g−1)x ∈ ρ(g−1)Bj, and
ρ′(g−1x) ∈ Bσg−1 (j). By the construction of σ the two Bi’s on the right hand
sides intersect, and by the choice of θ and δ they both have diameter < δ.
By triangle inequality it follows that d(ρ(g−1)x, ρ′(g−1)x) < 2δ, which by the
choice of δ implies |ρ(g)fi(x)− ρ′(g)fi(x)| = |fi(ρ(g−1)x)− fi(ρ

′(g−1)x)| < ε.
As this holds for every x ∈ X and µ is a probability measure, this establishes
the lemma. 2

Theorem 9.8 follows now immediately from the last two lemmas.

Let us now show, following [137] how knowing property FD for a subgroup
Λ can sometimes enable one to deduce FD for a bigger group Γ.

Proposition 9.11 Let Λ be a normal subgroup of Γ such that:
1) Λ is a finitely generated
2) Z(Λ̂) = 1 where Λ̂ is the profinite completion of Λ.
3) Γ/Λ is a amenable group.
4) Γ/Λ is residually finite.
If Λ has FD then so does Γ.

Proof We first show that conditions (1) and (2) imply that the profinite
topology of Γ induces on Λ the profinite topology of Λ. (Note, the profinite
topology of a group always induces a profinite topology on a subgroup, but
in many cases this is a weaker topology than the profinite topology of the
subgroup). This is equivalent to the statement that the map î from Λ̂ to
Γ̂, continuing the inclusion i : Λ → Γ is injective. To see this is really the
case, note that the conjugating the action of Γ on Λ, induces a map from
Γ → Aut(Λ) → Aut(Λ̂). Now, Aut(Λ̂) is a profinite group since Λ̂ is a finitely
generated profinite group [57], hence we have a map π : Γ̂ → Aut(Λ̂). The
latter is injective (since Z(Λ̂) = 1), hence π ◦ î and î are injective.

We can now prove the proposition: if ρ is a representation of Γ then π =
ResΓ

Λ(ρ) is a representation of Λ and hence a limit of finite representations
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{πi}i∈I of Λ, each one with kernel say Ni of finite index in Λ. By the argument
above, there exists N ′i /Γ of finite index such that Mi = Ni∩Λ is contained in
Ni. Now, πi ≺ l2(Λ/Ni) ≺ l2(Λ/Mi). Inducing up to Γ we get that indΓ

Λ(π)
is a limit of IndΓ

Λ(l2(Λ/Mi)) = l2(Γ/Mi).
As Γ/Λ is amenable, the trivial representation I ≺ l2(Γ/Λ) hence ρ ≺

ρ ⊗ l2(Γ/Λ) = IndΓ
Λ(ResΓ

Λ(ρ)) = IndΓ
Λ(π). So ρ is a limit of the l2(Γ/Mi)’s.

But each one of the Γ/Mi is residually finite (by condition 4 and the choice
of Mi) - so l2(Γ/Mi) is a limit of finite representations and so is ρ. The
proposition is now proven. 2

We can now deduce

Theorem 9.12 (Lubotzky-Shalom [137]) (i) The surface groups

Tg = 〈a1, . . . , ag, b1, . . . , bg|
∏

[ai, bi] = 1〉

have property FD.
(ii) SL2(Z[

√
−1]) and SL2(Z[

√
−3]) have FD.

Proof We start with (ii). It is known that if Γ0 is as in (ii) then it is
commensurable with a group Γ when Γ has a finitely generated normal free
(non-abelian) subgroup N and Γ/N is abelian []. Note also that for non
abelian free groups F , Z(F̂ ) = 1 [138]. So Proposition 9.11 gives the desired
result.

As far as (i) is concerned the surface groups can be embedded into the
groups of part (ii) of the theorem. In fact Maclachlan [143] showed that for
every d, PSL(2, Z[

√
−d]) contains a surface group. Moreover, it follows from

[47] that this holds for every non-uniform lattice in PSL(2, C).
Note that if Γ1 = PSL(2, Z[

√
−d]) contains Tg then Γ2 = SL(2, Z(

√
−d)

contains Tg′ for some g′ ≥ g (since Γ1 and Γ2 are commensurable, i.e. have
isomorphic finite index subgroups and a finite index subgroup of Tg is iso-
morphic to Tg′ for some g′ ≥ g). Now, if a finite index subgroup has FD, so
does the full group. 2

We end this topic with some remarks. The results of this chapter suggest
to see property FD as a strong negation of the congruence subgroup property,
i.e., there are many finite representations, enough to be dense in Γ̂. We do
not know how to connect the two properties directly. But the results here
strongly suggest that an aritmetic group Γ has the congruence subgroup
property if and only if it does not have FD. Combined with Conjecture 4.9
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the two conjectures imply that there is no arithmetic group with (τ) and FD.
One is tempted to believe that there is no group with (τ) and FD but we
have no idea how to start to prove such a speculation.



Bibliography

[1] N. Alon, Eigenvalues and expanders, Theory of computing (Singer Is-
land, Fla., 1984), Combinatorica 6 (1986), no. 2, 83–96.

[2] N. Alon, A. Lubotzky, A. Wigderson, Semi-direct product in groups and
Zig-zag product in graphs: Connections and applications, 42nd IEEE
Symposium on Foundations of Computer Science (Las Vegas, NV, 2001),
630–637, IEEE Computer Soc., Los Alamitos, CA, 2001.

[3] N. Alon, V. D. Milman, λ1, isoperimetric inequalities for graphs, and
superconcentrators, J. Combin. Theory Ser. B 38 (1985), no. 1, 73–88.

[4] R. Alperin, Locally compact groups acting on trees and property T ,
Monatsh. Math. 93 (1982), no. 4, 261–265.

[5] S. Andreadakis, On the automorphisms of free groups and free nilpotent
groups, Proc. London Math. Soc. (3), 15, 1965, 239–268.

[6] J. Arthur, Unipotent automorphic representations: conjectures, Orbites
unipotentes et représentations, II, Astérisque No. 171-172 (1989), 13–71.
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[158] I. Pak, A. Żuk, On Kazhdan constants and random walks on generating
subsets, Int. Math. Res. Not. 2002, 36, 1891–1905.

[159] P. Pansu, Formules de Matsushima, de Garland et propriété (T) pour
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