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Abstract
In interactive contexts such as games and economies, it is important to

take account not only of what the players believe about substantive matters
(such as payoffs), but also of what they believe about the beliefs of other
players. Two different but equivalent ways of dealing with this matter, the
semantic and the syntactic, are set forth. Canonical and universal semantic
systems are then defined and constructed, and the concepts of common
knowledge and common priors formulated and characterized. The last two
sections discuss relations with Bayesian games of incomplete information
and their applications, and with interactive epistemology – the theory of
multi-agent knowledge and belief as formulated in mathematical logic.
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1. Introduction

In interactive contexts such as games and economies, it is important to take ac-
count not only of what the players believe about substantive matters (such as
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payoffs), but also of what they believe about the beliefs of other players. This
chapter sets forth several ways of dealing with this matter, all essentially equiva-
lent.
There are two basic approaches, the syntactic and the semantic; while the

former is conceptually more straightforward, the latter is more prevalent, espe-
cially in game and economic contexts. Each appears in the literature in several
variations.
In the syntactic approach, the beliefs are set forth explicitly: One specifies

what each player believes about the substantive matters in question, about the
beliefs of the others about these substantive matters, about the beliefs of the
others about the beliefs of the others about the substantive matters, and so on
ad infinitum. This sounds – and is – cumbersome and unwieldy, and from the
beginning of research into the area, a more compact, manageable way was sought
to represent interactive beliefs.
Such a way was found in the semantic approach, which is “leaner” and less

elaborate, but also less transparent. It consists of a set of states of the world (or
simply states), and for each player and each state, a probability distribution on
the set of all states. We will see that this provides the same information as the
syntactic approach.
The subject of common priors is discussed in Section 9; applications to Game

Theory, in Section 10; and finally, Section 11 contains a brief discussion of the
theory from the viewpoint of mathematical logic.

2. The Semantic Approach

Given a set N of players, a (finite) semantic belief system consists of
(i) a finite set Ω, the state space, whose elements are called states of the world,

or simply states, and whose subsets are called events; and
(ii) for each player i and state ω, a probability distribution πi(·;ω) on Ω; if E

is an event, πi(E;ω) is called i’s probability for E in ω.
Conceptually, a “state of the world” is meant to encompass all aspects of

reality that are relevant to the matter under consideration, including the beliefs
of all players in that state. As in probability theory, an event is a set of states;
thus the event “it will snow tomorrow” is represented by a set of states – those
in which it snows tomorrow.
We assume that

(2.1) if πi({ν};ω) > 0, then πi(E; ν) = πi(E;ω) for all E.
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In words: If in state ω, player i considers state ν possible (in the sense of assigning
to it positive probability), then his probabilities for all events are the same in state
ν as in state ω. That is, he does not seriously entertain the possibility that his
own probability for some event E is different from what it actually is; he is sure1

of his own probabilities.
The restriction to finite systems in this section is for simplicity only; for a

general treatment, see Section 6.

3. An Example

Here N = {Ann,Bob}, Ω = {α, β, γ}, and the probabilities πi({ν};ω) are as
follows:

ν = α β γ
α 1/2 1/2 0

ω = β 1/2 1/2 0
γ 0 0 1

πAnn

ν = α β γ
α 1 0 0

ω = β 0 1/2 1/2
γ 0 1/2 1/2

πBob
In each of the states α and β, Ann attributes probability 1/2 to each of α and

β, whereas in γ, she knows that γ is the state; and Bob, in each of the states β
and γ, attributes probability 1/2 to each of β and γ, whereas in α, he knows that
α is the state.
Now let E = {α, γ}, and let us consider the probabilities of the players in

state β. To start with, each player assigns probability 1/2 to E. At the next
level, each player assigns probability 1/2 to the other assigning probability 1/2
to E, and probability 1/2 to the other being sure2 of E. At the next level, Ann
assigns probability 1/2 to Bob being sure that she assigns probability 1/2 to E;
and probability 1/2 to Bob’s assigning probability 1/2 to her being sure of E, and
probability 1/2 to her assigning probability 1/2 to E. The same holds if Ann and

1By “sure” we mean “assigns probability 1 to” (probabilists use “almost sure” for this,
but here it would make the text unnecessarily cumbersome and opaque.) Actually, in these
models players “know” their own probabilities; i.e., they do not admit any possibility, even
with probability 0, of having a different probability (see Section 7). Indeed, a person’s own
probability judgments would appear to be among the few things of which he can justifiably be
absolutely certain.

2Indeed, Ann assigns 1/2− 1/2 probabilities to the states α and β. In β, Bob assigns prob-
ability 1/2 to E, and in α, Bob is sure of E. This demonstrates our assertion about Ann’s
probabilities for Bob’s probabilities. The calculation of Bob’s probabilities for Ann’s probabili-
ties is similar.
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Bob are interchanged. That’s already quite a mouthful; we refrain from describing
the subsequent levels explicitly.
The previous paragraph, with its explicit description of each player’s proba-

bilities for the other player’s probabilities, is typical of the syntactic approach.
The complexity of the description increases exponentially with the “depth” of the
level, and there are infinitely many levels. Because this example is particularly
symmetric, the description is relatively simple; in general, things are even more
complex, by far. Note, moreover, that the syntactic treatment corresponds to just
one of the states in the semantic model.
By contrast, the semantic model encapsulates the whole mess, simultaneously

for all the states, in just two compact (3× 3) tables.

4. The Syntactic Approach

The syntactic approach may be formalized by “belief hierarchies.” One starts with
an exhaustive set of mutually exclusive “states of nature” (like “snow”, “rain”,
“cloudy”, or “clear” at noon tomorrow). The first level of the hierarchy specifies,
for each player, a probability distribution on the states of nature. The second
level specifies, for each player, a joint probability distribution on the states of
nature and the others’ probability distributions. The third level specifies, for each
player, a joint probability distribution on the states of nature and the probability
distributions of the others at the first and second levels. And so on. Certain
consistency conditions are required (Mertens and Zamir 1985; see Section 8 below).
Since there is a continuum of possibilities for the probability distributions at

the first level, the probability distributions at the second and higher levels may
well3 be continuous (i.e., have nonatomic components). So one needs some kind
of additional structure – a topology or a measurable structure (σ-field) – on
the space of probability distributions at each level. With finitely many states of
nature, this offers no difficulty at the first and second levels. But already the third
level consists of a probability distribution on the space of probability distributions
on a continuum, which requires a topology or measurable structure on the space
of probability distributions on a continuum– a nontrivial matter. Of course, this
applies also to higher levels.

3A discrete distribution would mean, e.g., that Ann knows that Bob assigns probability
precisely 0, 1/2 or 1 to snow. While possible, this seems unlikely. When modelling beliefs about
the beliefs of others, some fuzziness seems natural.
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An alternative syntactic formalism, which avoids these complications, works
with sentences4 or assertions rather than with probability distributions.5 Start
with a set {x, y, ...} of “natural sentences” (like “rain”, “warm”, and “humid” at
noon tomorrow), which need be neither exhaustive nor mutually exclusive. One
may operate on these in two ways: by logical operators and connectives, like “not”
(¬), “or” (∨), and “and” (∧), and by belief operators pαi , whose interpretation
is “player i attributes probability at least α to ... .” The operations may be
concatenated in any way one wishes; for example, p1/2Ann(x∨ p3/4Bob(¬p1/4Anny)) means
that Ann ascribes probability at least 1/2 to the contingency that either x or that
Bob ascribes probability at least 3/4 to her ascribing probability less than 1/4 to
y. A syntactic belief system is a collection of such sentences that satisfies certain
natural completeness, coherence, and consistency conditions (Section 8).
It may be seen that a syntactic belief system contains precisely the same

substantive information as a belief hierarchy, without the topological or measure-
theoretic complications.

5. From Semantics to Syntax

We now indicate how the syntactic formalism is derived from the semantic one in
a general framework.
Suppose given a semantic belief system with state space Ω, and a family of

“distinguished” events X, Y, ... (corresponding6 to the above “natural sentences”
x, y, ...); such a pair is called an augmented semantic belief system. Let πi(E;ω) be
the probability of player i for event E in state ω. For numbers α between 0 and 1,
let Pαi E be the event that i’s probability for E is at least α; i.e., the set of all states
ω at which πi(E;ω) ≥ α. Thus the operator P αi in the semantic model corresponds
to the operator pαi in the syntactic model. As usual, the set operations ∪ (union)
and Ω\ (complementation) correspond to the logical operations ∨ (disjunction)
and ¬ (negation). Thus each sentence in the syntactic formalism corresponds to an

4Usually called formulas in the literature.
5Some workers reserve the term “syntactic” for this kind of system only – i.e., one using

sentences and syntactic rules. We prefer a more substantive terminology, in which syntactic
refers to any system that directly describes the actual beliefs of the players, whereas semantic
refers to a (states-of-the-world) model from which these beliefs can be derived.

6I.e., with the same conceptual content. Thus if in the syntactic treatment, x is the sentence
“it will snow tomorrow,” then in the semantic treatment, X is the event “it will snow tomorrow”
(the set of all states in which it snows tomorrow).

5



event in the semantic formalism. For example, the sentence p1/2Ann(x∨p3/4Bob(¬p1/4Anny))
discussed above corresponds to P 1/2Ann(X∪P 3/4Bob(Ω\P 1/4AnnY )), namely the event that
Ann ascribes probability at least 1/2 to the event that either X or that Bob
ascribes probability at least 3/4 to her ascribing probability less than 1/4 to Y.
Now fix a state ω. If e is a sentence and E the corresponding event, say that e

holds in ω if ω is in E. If we think of ω as the “true” state of the world, then the
“true” sentences are precisely those that hold in ω. These sentences constitute a
syntactic belief system in the sense of the previous section.
To summarize: Starting from a pair consisting of an augmented semantic belief

system and a state ω, we have constructed a syntactic belief system L. We call
this pair (or just the state ω) a model for L.

6. Removing the Finiteness Restriction

Given a set N of players, a (general) semantic belief system consists of
(ia) a set Ω, the state space, whose elements are the states;
(ib) a σ-field F of subsets of Ω – the events; and
(ii) for each player i and state ω, a probability distribution πi(·;ω) on F .

We assume that

(6.1) πi(E;ω) is F-measurable in ω for each fixed event E, and
(6.2) πi({ν : πi(E; ν) 6= πi(E;ω)};ω) = 0 for each event E and state ω.
The interpretation is as in Section 2.

7. Knowledge and Common Knowledge

In the formalism of Sections 2 and 6, the concept of knowledge – in the sense of
absolute certainty7 rather than probability 1 – plays no explicit role. However,
this concept can be derived from that formalism. Indeed, for each state ω and
player i, let Ii(ω) be the set of all states in which i’s probabilities (for all events)
are the same as in ω; call it i’s information set in ω. The information sets of i
form a partition Pi of Ω, called i’s information partition. Say that i knows an
event E in a state ω if E includes Ii(ω), and denote by KiE the set of all states
ω in which i knows E. Conceptually, this formulation of knowledge presupposes
that players know their own probabilities with absolute certainty, which is not

7I.e., with error impossible: If i “knows” an event E at a state ω, then ω must be in E.
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unreasonable. It may be seen that

(7.1) KiE ⊂ P 1i E,
i.e., that players ascribe probability 1 to whatever they know, and that

(7.2) Pαi E ⊂ KiP
α
i E,

which formally expresses the principle, enunciated above, that players know their
own probabilities.
Let KE be the set ∩iKiE of all states in which all players know E, and set

K∞E := KE ∩KKE ∩KKKE ∩ ...;
thusK∞E is the set of all states in which all players knowE, all players know that,
all players know that, and so on ad infinitum. We say that E is commonly known
in ω if ω ∈ K∞E (Lewis 1969); for a comprehensive survey of common knowledge,
see Geanakoplos, this Handbook, Volume 2, Chapter 40. If P∞ is the meet (finest
common coarsening) of the information partitions Pi of all the players i, then
it may be seen (Aumann 1976, 1999a) that K∞E is the union of all the atoms
of P∞ that are included in E. The atoms of P∞ are called common knowledge
components (or simply components) of Ω. In a sense, one can always restrict the
discussion to such a component: The “true” state is always in some component,
and then it is commonly known that it is, and all considerations relating to other
components become irrelevant.
Some interactive probability formalisms (like Aumann 1999b) use a separate,

exogenous, concept of knowledge, and assume analogues of 7.1 and 7.2 (see 7.3 and
7.4 below). In the semantic framework, such a concept is redundant: Surprisingly,
knowledge is implicit in probability.
To see this, let Pi, Ii, andKi, as above, be the knowledge concepts derived from

the probabilities πi(·;ω), and let Qi, Ji, and Li be the corresponding exogenous
concepts. Assume

(7.3) LiE ⊂ P 1i E (players ascribe probability 1 to what they know8), and
(7.4) Pαi E ⊂ LiP αi E (players know their own probabilities).
It suffices to show that Ji(ω) = Ii(ω) for all ω. This follows from 7.3 and 7.4; we
argue from the verbal formulations. If ν ∈ Ji(ω), then by 7.4, i’s probabilities for
all events must be the same in ν and ω, so ν ∈ Ii(ω). Conversely, i knows in ν
that he is in Ji(ν), so by 7.3, his probability for Ji(ν) is 1. So if ν /∈ Ji(ω), then
Ji(ω) and Ji(ν) are disjoint, so in ν his probability for Ji(ω) is 0, while in ω it

8In the remainder of this section we use “know” in the exogenous sense.
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is 1. So his probabilities are different in ω and ν, so ν /∈ Ii(ω). Thus ν ∈ Ji(ω) if
and only if ν ∈ Ii(ω), as claimed.

8. Canonical Semantic Systems

One may think of a semantic belief system purely technically, simply as providing
the setting for a convenient, compact representation of a syntactic belief system,
as in the example of Section 3. But one may also think of it substantively, as
setting forth a model of interactive epistemology that reflects reality, including
those states of the world that are “actually” possible,9 and what the players know
about them. This substantive viewpoint raises several questions, foremost among
them being what the players know about the model itself. Does each know the
space of states? Does he know the others’ probabilities (in each state)? If so,
from where does this knowledge derive? If not, how can the formalism indicate
what each player believes about the others’ beliefs? For example, why would the
event P 1/2AnnP

3/4
BobE then signify that Ann ascribes probability at least 1/2 to Bob

ascribing probability at least 3/4 to E?
More generally, the whole idea of “state of the world,” and of probabilities that

accurately reflect the players’ beliefs about other players’ beliefs, is not transpar-
ent. What are the states? Can they be explicitly described? Where do they come
from? Where do the probabilities come from? What justifies positing this kind of
model, and what justifies a particular array of probabilities?
One way of overcoming these problems is by means of “canonical” or “univer-

sal” semantic belief systems. Such a system comprises a standard state space with
standard probabilities for each player in each state. The system does not depend
on reality; it is a framework, it fits any reality, so to speak, like the frames that
one buys in photo shops, which do not depend on who is in the photo – they
fit any photo with any subject, as long as the size is right. In brief, there is no
substantive information in the system.
There are basically two ways of doing this. Both depend on two parameters:

the set (or simply number n) of players and the set (or simply number) of “nat-
ural” eventualities. The first way (Mertens and Zamir 1985) is hierarchical. The
zero’th level of the hierarchy is a (finite) set X := {x, y, ...}, whose members rep-
resent mutually exclusive and exhaustive “states of nature,” but formally are just
abstract symbols. The first level H1 is the cartesian product of X with n copies

9Philosophers like the term “possible worlds.”
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of the X-simplex (the set of all probability distributions on X); a point in this
cartesian product describes the “true” state of nature, and also the probabilities
of each player for each state of nature.
A point h2 at the second level H2 consists of a first-level point h1 together with

an n-tuple of probability distributions on H1, one for each player; this describes
the “true” state of nature, the probabilities of each player for the state of nature,
and what each player believes about the other players’ beliefs about the state
of nature. There are two “consistency” conditions: First, the distribution on
H1 that h2 assigns to i must attribute10 probability 1 to the distribution on X
that h1 assigns to i; that is, i must know what he himself believes. Second, the
distribution11 on X that h2 assigns to i must coincide with the one that h1 assigns
to i.
A third-level point consists of a second-level point h2 together with an n-tuple

of probability distributions12 on H2, one for each player; again, i’s distribution on
H2 must assign probability 1 to the distribution on H1 that h2 assigns to i, and
its marginal on H1 must coincide with the distribution on H1 that h1 assigns to
i.
And so on. Thus an (m+1)’th-level point hm+1 is a pair consisting of anm’th-

level point hm and a distribution on Hm; we say that hm+1 elaborates hm. Define
a state h in the canonical semantic belief system H as a sequence h1, h2, ... in
which each term elaborates the previous one. To define the probabilities, proceed
as follows: For each subset Sm of Hm, set bSm = {h ∈ H : hm ∈ Sm}; let F be
the σ-field generated by all the bSm, where Sm is measurable; and let πi(bSm;h)
be the probability that i’s component of hm+1 assigns to Sm. In words, a state
consists of a sequence of probability distributions of ever-increasing depth; to get
the probability of a set of such sequences in a given state, one simply reads off the
probabilities specified by that state. That this indeed yields a probability on Fσ
follows from the Kolmogorov extension theorem, which requires some topological
assumptions.13

The second construction (Heifetz and Samet 1998, Aumann 1999b) of a canon-
10Technically, h2 assigns to i a distribution on H1 = X×∆(X), where ∆ denotes “the set of all

distributions on ...”. The first consistency condition says that the marginal of this distribution
on the second factor (i.e., on ∆(X)) is a unit mass concentrated on the distribution on X that
h1 assigns to i.
11Technically, the marginal on X of the distribution on H1 = X ×∆(X) that h2 assigns to i.

See the previous footnote.
12As indicated in Section 5, this involves topological issues, which we will not discuss.
13Without which things might not work (Heifetz and Samet 1998).

9



ical belief system is based on sentences. It uses an “alphabet” x, y, ..., as well as
more elaborate sentences constructed from the alphabet by means of logical oper-
ations and probability operators pαi (as in Section 4). The letters of the alphabet
represent “natural sentences,” not necessarily mutually exclusive or exhaustive;
but formally, as above, they are just abstract symbols. In this construction, the
states γ in the canonical space Γ are simply lists of sentences; specifically, lists
that are complete, coherent, and closed in a sense presently to be specified. The
point is that a state is determined – or better, defined – by the sentences that
hold there; conceptually, the state is simply what happens.
More precisely: A list is complete if for each sentence f, it contains either f

itself or its negation ¬f ; coherent, if for each f, it does not contain both f and
¬f ; and closed, if it contains every logical consequence14 of the sentences in it.
This defines the states γ in the canonical semantic belief system; to complete

the definition of the system, we must define the σ-field F of events and the proba-
bilities πi(·; γ). For any sentence f, let Ef := {δ ∈ Γ : f ∈ δ}; that is, Ef is the set
of all states15 in the canonical system that contain f. We define F as the σ-field
generated by all the events Ef for all sentences f. Then to define i’s probabilities
on F in the state γ, it suffices to define his probabilities for each Ef . Since the
state is simply the list of all sentences that “hold in that state,” it follows that
Ef is the set of all states in which f holds – in brief, the event that f holds. The
probability that i assigns to Ef in the state γ is then implicit in the specification
of γ; namely, it is the supremum of all the rational α for which pαi f is in γ –
the supremum α such that in γ, player i assigns probability at least α to f. This
defines πi(Ef ; γ) for each i, γ, and f ; and since the Ef generate F , it follows
that it defines16 πi(·; γ). This completes the second construction, which has the
advantage of requiring no topological machinery.
The canonical semantic belief system Γ is universal in a sense that we now

14As used here, the term “logical consequence” is defined purely syntactically, by axioms
and inference rules (Meier 2001). But it may be characterized semantically: A sentence g is a
logical consequence of sentences f1, f2, ... if and only if g holds at any state of any augmented
semantic belief system at which f1, f2, ... hold; i.e., if any model for f1, f2, ... is also a model for
g (Meier 2001). The axiomatic system is infinitary, as indeed it must be: For example, p1i f is
a logical consequence of p1/2i f, p

3/4
i f, p

7/8
i f, ..., but of no finite subset thereof. Meier’s beautiful,

path-breaking paper is not yet published.
15Recall that a state is a list of sentences.
16That is, since the Ef generate F , there cannot be two different probability measures on

F with the given values on the Ef . That there is one such measure follows from a theorem of
Caratheodory on extending measures from a field to the σ-field it generates.
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describe. Let x, y, ... be letters in an alphabet, and Ω,Ω0 semantic belief systems
with the same players, augmented by “distinguished” eventsX, Y, ... andX 0, Y 0, ...,
corresponding to the letters x, y, ... (simply “systems” for short). A mapping M
from Ω into Ω0 is called a belief morphism if M−1(X 0) = X, M−1(Y 0) = Y, ..., and
πi(M

−1(E0);ω) = π0i(E
0;M(ω)) for all players i, events E0 in Ω0, and states ω in

Ω; i.e., if it preserves the relevant aspects of the system (as usual for morphisms).
A system Υ is called universal if for each system Ω, there is a belief morphism
from Ω into Υ.
To see that Γ is universal, let Ω be a system. Then for each state ω in Ω, the

family D(ω) of sentences that hold in ω (see Section 5) is a state in the canonical
space Γ, and the mapping D : Ω→ Γ is a belief morphism – indeed the only one
(Heifetz and Samet 1998). The construction of Mertens and Zamir (1985) also
leads to a universal system, and the two canonical systems are isomorphic.17

At the end of the previous section, we noted that a separate, exogenous notion
of knowledge is semantically redundant. Syntactically, it is not. To understand
why, consider two two-player semantic belief systems, Ω and Ω0. The first has just
one state ω, to which, of course, both players assign probability 1. The second
has two states, ω and ω0. In ω, both players assign probability 1 to ω; in ω0,
Ann assigns probability 1 to ω, whereas Bob assigns probability 1 to ω0. Now
augment both systems by assigning x to ω. Then the syntactic belief system
derived from ω in Ω – the family D(ω) of all sentences that hold there – is
identical to that derived from ω in Ω0. So syntactically, the two situations are
indistinguishable. But semantically, they are different: In Ω, Ann knows for sure
in ω that Bob assigns probability 1 to x; in Ω0, she does not. There is no way to
capture this syntactically without explicitly introducing knowledge operators ki
for the various players i (as in Aumann 1999b; see also 1998). In particular, the
canonical semantic system Γ has just one component18 – the whole space.

9. Common Priors

Call a semantic belief system regular19 if it is finite, has a single common knowledge
component, and in each state, each player assigns positive probability to that state.
17I.e., there is a one-one belief morphism from the one onto the other.
18Except when there is only one player. This is because the probability syntax can only

express beliefs of the players, not that a player knows anything about another one for sure.
19Regularity enables uncluttered statements of the definitions and results. No real loss of

generality is involved.
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A common prior on a regular semantic belief system Ω is defined as a probability
distribution π on Ω such that

(9.1) π(E ∩ Ii(ω)) = πi(E;ω)π(Ii(ω))

for each event E, player i, and state ω; that is, the personal probabilities πi in a
state ω are obtained from the common prior π by conditioning on each player’s
private information in that state. In Section 3, for example, the distribution that
assigns probability 1/3 to each of the three states is the unique common prior.
Common priors can easily fail to exist; for example, if Ω has just two states, in
each of which Ann assigns 1/2 - 1/2 probabilities to the two states, and Bob,
1/3 - 2/3 probabilities. Conceptually, existence of a common prior signifies that
differences in probability assessments are due to differences in information only
(Aumann 1987, 1998); that people who have always been fed precisely the same
information will not differ in their probability assessments.
With a common prior, players cannot “agree to disagree” about probabilities.

That is, if it is commonly known in some state that for some specific α, β, and
E, Ann and Bob assign probabilities α and β respectively to the event E, then
α = β. This is the “Agreement Theorem” (Aumann 1976).
The question arises (Gul 1998) whether the existence of a common prior can

be characterized syntactically. That is, can one characterize those syntactic belief
systems L that are associated with common priors?20 By a syntactic characteri-
zation, we mean one couched directly in terms of the sentences in L.
The answer is “yes.” Indeed, there are two totally different characterizations.

The first is based on the following, which is both a generalization of and a converse
to the agreement theorem.

Proposition 9.2 (Morris 1994, Samet21 1998b, Feinberg 2000).22 Let Ω be a
regular semantic belief system, ω a state in Ω. Suppose first that there are just
two players, Ann and Bob. Then there is no common prior on Ω if and only if
there is a random variable23 x for which it is commonly known in ω that Ann’s
20More precisely, those L for which there is a state ω in some finite augmented semantic belief

system with a common prior such that L is the collection of sentences holding at ω.
21Samet’s proof, which uses the elementary theory of convex polyhedra, is the briefest and

most elegant.
22For an early related result, see Nau and McCardle (1990).
23A real function on Ω. Although the concept of random variable may seem essentially seman-

tic, it is not; in an augmented semantic system, random variables can in general be expressed
in terms of sentences (Feinberg 2000, Heifetz 2001).
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expectation of x is positive and Bob’s is negative.24

With n players, there is no common prior on Ω if and only if there are n
random variables xi identically25 summing to 0 for whom it is commonly known
in ω that each player i’s expectation of xi is positive.

In the two-person case, one may think of x as the amount of a bet between Ann
and Bob, possibly with odds that depend on the outcome. Thus the proposition
says that with a common prior, it is impossible for both players to expect to gain
from such a bet. The interpretation in the n-person case is similar; one may think
of pari-mutuel betting in horse-racing, the track being one of the players.
In brief, common priors exist if and only if it is commonly known that you can’t

make something out of nothing: I.e., in a situation that is objectively zero-sum,
it cannot be commonly known that all sides expect to gain.
The importance of this proposition lies in that it is formulated in terms of

one single state ω only. We are talking about what Ann expects in that state,
what she thinks in that state that Bob may expect, what she thinks in that state
that Bob thinks that she may expect, and so on; and similarly for Bob. That is
precisely what is needed for a syntactic characterization.26

Actually to derive a fully syntactic characterization from this proposition is,
however, a different matter. To do so, one must provide syntactic formulations
of (i) common knowledge, (ii) random variables and their expectations, and (iii)
finiteness of the state space. The first is not difficult; setting k := ∧iki, call a
sentence e syntactically commonly known if e, ke, kke, kkke, ... all obtain. But (ii)
and (iii), though doable – indeed elegantly (Feinberg 2000, Heifetz 2001) – are
more involved; we will not discuss the matter further here.
Proposition 9.2 holds also for infinite state spaces that are “compact” in a

natural sense. As before, this enables a syntactic characterization in the compact
case; to do this properly one must characterize compactness syntactically. With-
out compactness, the proposition fails. Feinberg (2000) discusses these matters
fully.
The second syntactic characterization of common priors is in terms of iterated

expectations. Again, consider first the two-person case. If ν is a state and y a
random variable, then Ann’s and Bob’s expectations of y in ν are
24Explicitly, the commonly known event in question is

{ν : P
ξ∈Ω πAnn({ξ}; ν)x(ξ) > 0 >

P
ξ∈Ω πBob({ξ}; ν)x(ξ)}.

25At each state in Ω.
26Recall that we use the term syntactic rather broadly, as referring to anything that “actually

obtains,” such as the beliefs – and hence expectations – of the players. See Footnote 5.
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(EAnny)(ν) :=
P

ξ∈Ω πAnn({ξ}; ν)y(ξ) and
(EBoby)(ν) :=

P
ξ∈Ω πBob({ξ}; ν)y(ξ).

Both EAnny and EBoby are themselves random variables, as they are functions of
the state ν. So one may form the iterated expectations

(9.3) EAnny,EBobEAnny,EAnnEBobEAnny,EBobEAnnEBobEAnny,... and
(9.4) EBoby,EAnnEBoby,EBobEAnnEBoby,EAnnEBobEAnnEBoby,... .

Proposition 9.5 (Samet 1998a). Each of these two sequences (9.3 and 9.4) of
random variables converges to a constant (independent of the state); the system
has a common prior if and only if for each random variable y, these two constants
coincide; and in that case, the common value of the two constants is the expecta-
tion of y over Ω w.r.t. the common prior π.

The proof uses finite state Markov chains.
Samet illustrates the proposition with a story about two stock analysts. Ann

has an expectation for the price y of IBM in one month from today. Bob does not
know Ann’s expectation, but has some idea of what it might be; his expectation
of her expectation is EBobEAnny. And so on.
Like the previous characterization of common priors (Proposition 9.2), this

one appears semantic, but in fact is syntactic: All the iterated expectations can
be read off from a single syntactic belief system. As before, actually deriving a
fully syntactic characterization requires formulating finiteness of the state space
syntactically, which we do not do here. Unlike the previous characterization, this
one has not been established for compact state spaces.
With n players, one considers arbitrary infinite sequences Ei1y,Ei2Ei1y,

Ei3Ei2Ei1y,Ei4Ei3Ei2Ei1y,..., where i1, i2, ... is any sequence of players (with rep-
etitions, of course), the only requirement being that each player appears in the
sequence infinitely often. The result says that each such sequence converges to a
constant; the system has a common prior if and only if all the constants coincide;
and in that case, the common value of the constants is the expectation of y over
Ω w.r.t. the common prior π.

10. Incomplete Information Games

The theory of incomplete information, whose general, abstract form is outlined in
the foregoing sections of this chapter, has historical roots in a concrete application:
games. Until the mid-sixties, game theorists did not think carefully about the
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informational underpinnings of their analyses. Luce and Raiffa (1957) did express
some malaise on this score, but left the matter at that. The primary problem was
each player’s uncertainty about the payoff (or utility) functions of the others; to
a lesser extent, there was also concern about the players’ uncertainty about the
strategies available to others, and about their own payoffs.
In path-breaking research in the mid-sixties, for which he got the Nobel Prize

some thirty years later, John Harsanyi (1967-8) succeeded both in formulating
the problem precisely, and in solving it. In brief, the formulation is the syntactic
approach, whereas the solution is the semantic approach. Let us elaborate.
Harsanyi started by noting that though usually the players do not know the

others’ payoff functions, nevertheless, as good Bayesians, each has a (subjective)
probability distribution over the possible payoff functions of the others. But that
is not enough to analyze the situation. Each player must also take into account
what the others think that he thinks about them. Even there it does not end;
he must also take into account what the others think that he thinks that they
think about him. And so on, ad infinitum. Harsanyi saw this infinite regress as a
Gordian knot, not given to coherent, useful analysis.
To cut the knot, Harsanyi invented the notion of “type.” Consider the case of

two players, Ann and Bob. Each player, he said, may be one of several types. The
type of a player determines his payoff function, and also a probability distribution
on the other player’s possible types. Since Bob’s type determines his payoff func-
tion, Ann’s probability distribution on his types induces a probability distribution
on his payoff functions. But it also induces a probability distribution on his prob-
ability distributions on Ann’s types, and so on Ann’s payoff functions. And so on.
Thus a “type structure” yields the whole infinite regress of payoff functions, dis-
tributions on payoff functions, distributions on distributions on payoff functions,
and so on.
The reader will realize that the “infinite regress” is a syntactic belief hierarchy

in the sense of Section 6, the “states of nature” being n-tuples of payoff functions;
whereas a “type structure” is a semantic belief system, the “states of the world”
being n-tuples of types. In modern terms, Harsanyi’s insight was that a semantic
system yields a syntactic system. Though this may seem obvious today (see
Section 3), it was far from obvious at the time; indeed it was a major conceptual
breakthrough, which enabled extending many of the fundamental concepts of game
theory to the incomplete information case, and led to the opening of entirely new
areas of research (see below).
The converse – that every syntactic system can be encapsulated in a semantic
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system – was not proved by Harsanyi. Harsanyi argued for the type structure
on intuitive grounds. Roughly speaking, he reasoned that every player’s brain
must be configured in some way, and that this configuration should determine
both the player’s utility or payoff function and his probability distribution on the
configuration of other players’ brains.
The proof that indeed every syntactic system can be encapsulated in a se-

mantic system is outlined in Section 8 above; the semantic system in question is
simply the canonical one. This proof was developed over a number of years by
several workers (Armbruster and Böge 1979, Böge and Eisele 1979), culminating
in the work of Mertens and Zamir (1985) cited in Section 8 above.
Also the assumption of common priors (Section 9) was introduced by Harsanyi

(1967-8), who called this the consistent case. He pointed out that in this case –
and only in this case – an n-person game of incomplete information in strategic
(i.e., normal) form can be represented by an n-person game of complete infor-
mation in extensive form, as follows: First, “chance” chooses an n-tuple of types
(i.e., a state of the world), using the common prior π for probabilities. Then, each
player is informed of his type, but not of the others’ types. Then the n players
simultaneously choose strategies. Finally, payoffs are made in accordance with
the types chosen by nature and the strategies chosen by the players.
The concept of strategic (“Nash”) equilibrium generalizes to incomplete infor-

mation games in a natural way. Such an equilibrium – often called a Bayesian
Nash equilibrium – assigns to each type ti of each player i a (mixed or pure)
strategy of i that is optimal for i given ti’s assessment of the probabilities of the
others’ types and the strategies that the equilibrium assigns to those types. In the
consistent (common prior) case, the Bayesian Nash equilibria of the incomplete
information strategic game are precisely the same as the ordinary Nash equilibria
of the associated complete information extensive game (described in the previous
paragraph).
Since Harsanyi’s seminal work, the theory of incomplete information games has

been widely developed and applied. Several areas of application are of particular
interest. Repeated games of incomplete information deal with situations where the
same game is played again and again, but the players have only partial information
as to what it is. This is delicate because by taking advantage of his private
information, a player may implicitly reveal it, possibly to his detriment. For
surveys up to 1991, see this Handbook, Volume I, Chapter 5 (Zamir) and Chapter
6 (Forges). Since 1992, the literature on this subject has continued to grow; see
Aumann and Maschler (1995), whose bibliography is fairly complete up to 1994.
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A more complete and modern treatment,27 unfortunately as yet unpublished, is
Mertens, Sorin, and Zamir (1994).
Other important areas of application include auctions (see Wilson, this

Handbook, Volume I, Chapter 8), bargaining with incomplete information (Bin-
more, Osborne, and Rubinstein I,7 and Ausubel, Cramton, and Deneckere III,50),
principal-agent problems (Dutta and Radner II,26), inspection (Avenhaus, von
Stengel, and Zamir III,51), communication and signalling (Myerson II,24 and
Kreps and Sobel II,25), and entry deterrence (Wilson I,10).

Not surveyed in this Handbook are coalitional (cooperative) games of incom-
plete information. Initiated by Wilson (1978) and Myerson (1984), this area is to
this day fraught with unresolved conceptual difficulties. Allen (1997) and Forges,
Minelli, and Vohra (2001) are surveys.
Finally, games of incomplete information are useful in understanding games

of complete information – ordinary, garden-variety games. Here the applications
are of two kinds. In one, the given complete information game is “perturbed”
by adding some small element of incomplete information. For example, Harsanyi
(1973) uses this technique to address the question of the significance of mixed
strategies: Why would a player wish to randomize, in view of the fact that when-
ever a mixed strategy µ is optimal, it is also optimal to use any pure strategy
in the support of µ? His answer is that indeed players never actually use mixed
strategies. Rather, even in a complete information game, the payoffs should be
thought of as commonly known only approximately. In fact, there are small vari-
ations in the payoff to each player that are known only to that player himself;
these small variations determine which pure strategy s in the support of µ he
actually plays. It turns out that the probability with which a given pure strategy
s is actually played in this scenario approximates the coefficient of s in µ. Thus,
a mixed strategy of a player i appears not as a deliberate randomization on i’s
part, but as representing the estimate of other players as to what i will do.
Another application of this kind comes under the heading of reputational ef-

fects. Seminal in this genre was the work of the “gang of four” (Kreps, Milgrom,
Roberts, and Wilson 1982), in which a repeated prisoner’s dilemma is perturbed
by assuming that with some arbitrarily small exogenous probability, the play-
ers are “irrational” automata who always play “tit-for-tat.” It turns out that in
equilibrium, the irrationality “takes over” in some sense: Almost until the end of
the game, the rational players themselves play tit-for-tat. Fudenberg and Maskin
(1986) generalize this to “irrational” strategies other than tit-for-tat; as before,
27Including also the general theory of incomplete information covered in this chapter.
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equilibrium play mimics the irrational perturbation, even when (unlike tit-for-tat)
it is inefficient. Aumann and Sorin (1989) allow any perturbation with “bounded
recall;” in this case equilibrium play “automatically” selects an efficient equilib-
rium.
The second kind of application of incomplete information technology to com-

plete information games is where the object of incomplete information is not the
payoffs of the players but the actual strategies they use. For example, rather
than perturbing payoffs a la Harsanyi (1973 – see above), one can say that even
without perturbed payoffs, players other than i simply do not know what pure
strategy i will play; i’s mixed strategy represents the probabilities of the other
players as to what i will do. Works of this kind include Aumann (1987), in which
correlated equilibrium in a complete information game is characterized in terms
of common priors and common knowledge of rationality; and Aumann and Bran-
denburger (1995), in which Nash equilibrium in a complete information game is
characterized in terms of mutual knowledge of rationality and of the strategies be-
ing played, and when there are more than two players, also of common priors and
common knowledge of the strategies being played (for a more detailed account,
see Hillas and Kohlberg, this Handbook, Volume III, Chapter 42).
The key to all these applications is Harsanyi’s “type” definition– the semantic

representation – without which building a workable model for applications would
be hopeless.

11. Interactive Epistemology

Historically, the theory of incomplete information outlined in this chapter has two
parents: (i) incomplete information games, discussed in the previous section, and
(ii) that part of mathematical logic, sometimes called modal logic, that treats
knowledge and other epistemological issues, which we now discuss. In turn, (ii)
itself has various ancestors. One is probability theory, in which the “sample space”
(or “probability space”) and its measurable subsets (there, like here, “events”)
play a role much like that of the space Ω of states of the world; whereas subfields
of measurable sets, as in stochastic processes, play a role much like that of our
information partitions Pi (Section 7). Another ancestor is the theory of extensive
games, originated by von Neumann and Morgenstern (1944), whose “information
sets” are closely related to our information sets Ii(ω) (Section 7).
Formal epistemology, in the tradition of mathematical logic, began some forty

years ago, with the work of Kripke (1959) and Hintikka (1962); these works were

18



set in a single-person context. Lewis (1969) was the first to define common knowl-
edge, which of course is a multi-person, interactive concept; though verbal, his
treatment was entirely rigorous. Computer scientists became interested in the
area in the mid-eighties; see Fagin et al. (1995).
Most work in formal epistemology concerns knowledge (Section 7) rather than

probability. Though the two have much in common, knowledge is more elemen-
tary, in a sense that will be explained presently. Both interactive knowledge and
interactive probability can be formalized in two ways: semantically, by a states-
of-the-world model, or syntactically, either by a hierarchic model or by a formal
language with sentences and logical inference governed by axioms and inference
rules. The difference lies in the nature of logical inference. In the case of knowl-
edge, sentences, axioms, and inference rules are all finitary (Fagin et al. 1995;
Aumann 1999a). But probability is essentially infinitary (Footnote 14); there is
no finitary syntactic model for probability.
Nevertheless, probability does have a finitary aspect. Heifetz and Mongin

(2001) show that there is a finitary system A of axioms and inference rules such
that if f and g are finitary probability sentences then g is a logical consequence28

of f if and only if it is derivable from f via the finitary system A. That is, though
in general the notion of “logical consequence” is infinitary, for finitary sentences
it can be embodied in a finitary framework.
Finally, we mention the matter of backward induction in perfect information

games, which has been the subject of intense epistemic study, some of it based
on probability 1 belief. This is a separate area, which should have been covered
elsewhere in the Handbook, but is not.
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Appendix: Limitations of the Syntactic
Approach

Aviad Heifetz

The interpretation of the universal model of Section 8 as “canonical,” with the
association of beliefs to states “self-evident” by virtue of the states’ inner structure,
relies nevertheless on the non-trivial assumption that the players’ beliefs cannot
be but σ-additive. This is highlighted by the following example.
In the Mertens-Zamir (1985) construction mentioned in Section 8, we shall

focus our attention on a subspace Ω whose states ω can be represented in the
form

ω = (s, i1i2i3 . . . , j1j2j3 . . .)

where each digit s, ik, jk may assume the value 0 or 1. The state of nature is
s. The sequences i1i2i3 . . . , j1j2j3 . . . encode the beliefs of the players i and j,
respectively, in the following way. If the sequence starts with 1, the player assigns
probability 1 to the true state of nature s in ω. Otherwise, if her sequence starts
with 0, she assigns probabilities half-half to the two possible states of nature.
Inductively, suppose we have already described the beliefs of the players up to
level n. If in+1 = 1, i believes with probability 1 that the n-th digit of j equals
the actual value of jn in ω, and otherwise – if in+1 = 0 – she assigns equal
probabilities to each of the possible values of this digit, 0 or 1. This belief of
i is independent of i’s lower-level beliefs. In addition, i assigns probability 1 to
her own lower-level beliefs. The n + 1-th level of belief of individual j is defined
symmetrically.
Notice that up to every finite level n there are finitely many events to consider,

so the beliefs are trivially σ-additive. Therefore, by the Kolmogorov extension
theorem, for the hierarchy of beliefs of every sequence, there is a unique σ-additive
coherent extension to a probability measure29 over Ω. When in = 0 for all n, the
strong law of large numbers asserts that this limit extension assigns probability 1
to the sequences of j where

lim
n→∞

j1 + j2 + . . . jn
n

=
1

2
.

29With the σ-field generated by the events that depend on finitely many digits.
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However, there are finitely additive coherent extensions to i’s finite level beliefs
that are concentrated on the disjoint set of j’s sequences where

lim inf
n→∞

j1 + j2 + . . . jn
n

>
1

2
(A.1)

and in fact there are finitely additive coherent extensions concentrated on any tail
event of sequences j1j2j3 . . . , i.e., an event where every possible initial segment
j1 . . . jn appears in some sequence.30

Thus, though the finite-level beliefs single out unique σ-additive limit beliefs
over Ω, nothing in them can specify that these limit beliefs must be σ-additive. If
finitely additive beliefs are not ruled out in the players’ minds, we cannot assume
that the inner structure of the states ω ∈ Ω specifies uniquely the beliefs of the
players.
A similar problem presents itself if we restrict our attention to knowledge. In

the syntactic formalism of Section 4, replace the belief operators pαi with knowledge
30To see this, observe that to any event defined by k out of j’s digits, the sequence

i1i2i3 . . . = 000 . . . (A.2)

assigns the probability 2−k. Therefore, the integral I w.r.t. this belief is well defined over the
vector space V of real-valued functions which are each measurable w.r.t. finitely many of j’s
digits. Now, for every real-valued function g on j’s sequences, define the functional

I(g) = inf{I(f) : f ∈ V, g ≤ f}.
Then I is clearly sub-additive, I(αg) = αI(g) for α ≥ 0, and I = I on V. Therefore, by the
Hahn-Banach theorem, there is an extension (in fact, many extensions) of I as a positive linear
functional to the limits of sequences of functions in V, and further to all the real-valued functions
on Ω, satisfying

I(g) ≤ I(g).
Restricting our attention to characteristic functions g, we thus get a finitely additive coherent
extension of (A.2) over Ω.
The proof of the Hahn-Banach theorem proceeds by consecutively considering functions g to

which I is not yet extended, and defining

I(g) = I(g).

If the first function g1 to which I is extended is a characteristic function of a tail event (like
A.1), the smallest f ∈ F majorizing g1 is the constant function f ≡ 1, so

I(g) = I(1) = 1,

and the resulting coherent extension of (A.2) assigns probability 1 to the chosen tail event.
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operators ki.When associating sentences to states of an augmented semantic belief
system in Section 5, say that the sentence kie holds in state ω if ω ∈ KiE,

31

where E is the event that corresponds to the sentence e. The canonical knowledge
system Γ will now consist of those lists of sentences that hold in some state of
some augmented semantic belief system. The information set Ii(γ) of player i at
the list γ ∈ Γ will consist of all the lists γ0 ∈ Γ that contain exactly the same
sentences of the form kif as in γ. It now follows that

kif ∈ γ ⇔ γ ∈ KiEf (A.3)

where Ef ⊆ Γ is the event that f holds,32 and the knowledge operator Ki is as in
Section 7: KiE = {γ ∈ Γ : Ii(γ) ⊆ E}.
However, there are many alternative definitions for the information sets Ii(γ)

for which (A.3) would still obtain.33 Thus, by no means can we say that the
information sets Ii(γ) are “self-evident” from the inner structure of the lists γ
which constitute the canonical knowledge system.
To see this, consider the following example (similar to that in Fagin et al.

1991). Ana, Bjorn and Christina participate in a computer forum over the web.
At some point Ana invites Bjorn to meet the next evening. At that stage they
leave the forum to continue the chat in private. If they eventually exchange n
messages back and forth regarding the meeting, there is mutual knowledge of
level n between them that they will meet, but not common knowledge, which
they could attain, say, by eventually talking over the phone.
Christina doesn’t know how many messages were eventually exchanged be-

tween Ana and Bjorn, so she does not exclude any finite level of mutual knowledge
between them about the meeting. Nevertheless, Christina could still rule out the
possibility of common knowledge (say, if she could peep into Bjorn’s room and see
that he was glued to his computer the whole day and spoke with nobody). But if
this situation is formalized by a list of sentences γ, Christina does not exclude the
possibility of common knowledge between Ana and Bjorn with the above definition
of IChristina(γ). This is because there exists an augmented belief system Ω with
a state ω0 in which there is common knowledge between Ana and Bjorn, while
Christina does not exclude any finite level of mutual knowledge between them,
exactly as in the situation above. We then have γ0 ∈ IChristina(γ), where γ0 is the
list of sentences that hold in ω0. Thus, if we redefine IChristina(γ) by omitting γ0

31The semantic knowledge operator KiE is defined in Section 7.
32As in Section 8.
33In fact, as many as there are subsets of Γ! (Heifetz 1999.)
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from it, (A.3) would still obtain, because (A.3) refers only to sentences or events
that describe finite levels of mutual knowledge.
At first it may seem that this problem can be mitigated by enriching the syntax

with a common knowledge operator (for every subgroup of two or more players).
Such an operator would be shorthand for the infinite conjunction “everybody (in
the subgroup) knows, and everybody knows that everybody knows, and...”. This
would settle things in the above example, but create numerous new, analogous
problems. The discontinuity of knowledge is essential: The same phenomena
persist (i.e., (A.3) does not pin down the information sets Ii(γ)) even if the syntax
explicitly allows for infinite conjunctions and disjunctions of sentences of whatever
chosen cardinality (Heifetz 1994).

References

Fagin, R., Y. J. Halpern and M.Y. Vardi (1991), “A Model-Theoretic Analysis
of Knowledge,” Journal of the Association for Computing Machinery (ACM) 91,
382-428.

Heifetz, A. (1994), “Infinitary Epistemic Logic,” in Proceedings of the Fifth
Conference on Theoretical Aspects of Reasoning about Knowledge (TARK 5), Los
Altos, California: Morgan Kaufmann, 95-107. Extended version in Mathematical
Logic Quarterly 43 (1997), 333-342.

–– (1999), “How Canonical is the Canonical Model? A Comment on Au-
mann’s Interactive Epistemology,” International Journal of Game Theory 28,
435-442.

26


