
2 Game Theory

Introduction

‘‘Interactive Decision Theory’’ would perhaps be a more descriptive

name for the discipline usually called Game Theory. This discipline con-

cerns the behaviour of decision makers ( players) whose decisions a¤ect

each other. As in non-interactive (one-person) decision theory, the analy-

sis is from a rational, rather than a psychological or sociological view-

point. The term ‘‘Game Theory’’ stems from the formal resemblance

of interactive decision problems (games) to parlour games such as chess,

bridge, poker, monopoly, diplomacy or battleship. The term also under-

scores the rational, ‘‘cold,’’ calculating nature of the analysis.

The major applications of game theory are to economics, political

science (on both the national and international levels), tactical and

strategic military problems, evolutionary biology, and, most recently,

computer science. There are also important connections with account-

ing, statistics, the foundations of mathematics, social psychology, and

branches of philosophy such as epistemology and ethics. Game theory

is a sort of umbrella or ‘‘unified field’’ theory for the rational side of

social science, where ‘‘social’’ is interpreted broadly, to include human as

well as non-human players (computers, animals, plants). Unlike other

approaches to disciplines like economics or political science, game theory

does not use di¤erent, ad hoc constructs to deal with various specific

issues, such as perfect competition, monopoly, oligopoly, international

trade, taxation, voting, deterrence, and so on. Rather, it develops meth-

odologies that apply in principle to all interactive situations, then sees

where these methodologies lead in each specific application. Often it

turns out that there are close relations between results obtained from the

general game-theoretic methods and from the more ad hoc approaches.

In other cases, the game-theoretic approach leads to new insights, not

suggested by other approaches.

We use a historical framework for discussing some of the basic ideas of

the theory, as well as a few selected applications. But the viewpoint will

be modern; the older ideas will be presented from the perspective of

where they have led. Needless to say, we do not even attempt a system-

atic historical survey.

This chapter originally appeared in The New Palgrave: A Dictionary of Economics, Volume
2, edited by J. Eatwell, M. Milgate, and P. Newman, pp. 460–482, Macmillan, London,
1987. Reprinted with permission.



1910–1930

During these earliest years, game theory was preoccupied with strictly

competitive games, more commonly known as two-person zero-sum

games. In these games, there is no point in cooperation or joint action of

any kind: if one outcome is preferred to another by one player, then the

preference is necessarily reversed for the other. This is the case for most

two-person parlour games, such as chess or two-sided poker; but it seems

inappropriate for most economic or political applications. Nevertheless,

the study of the strictly competitive case has, over the years, turned

out remarkably fruitful; many of the concepts and results generated

in connection with this case are in fact much more widely applicable, and

have become cornerstones of the more general theory. These include the

following:

i. The extensive (or tree) form of a game, consisting of a complete formal

description of how the game is played, with a specification of the

sequence in which the players move, what they know at the times they

must move, how chance occurrences enter the picture, and the payo¤

to each player at the end of play. Introduced by von Neumann (1928),

the extensive form was later generalized by Kuhn (1953), and has been

enormously influential far beyond zero-sum theory.

ii. The fundamental concept of strategy (or pure strategy) of a player,

defined as a complete plan for that player to play the game, as a function

of what he observes during the course of play, about the play of others

and about chance occurrences a¤ecting the game. Given a strategy for

each player, the rules of the game determine a unique outcome of the

game and hence a payo¤ for each player. In the case of two-person zero-

sum games, the sum of the two payo¤s is zero; this expresses the fact that

the preferences of the players over the outcomes are precisely opposed.

iii. The strategic (or matrix) form of a game. Given strategies s1; . . . ; sn

for each of the n players, the rules of the game determine a unique out-

come, and hence a payo¤ Hiðs1; . . . ; snÞ for each player i. The strategic

form is simply the function that associates to each profile s :¼ ðs1; . . . ; snÞ
of strategies, the payo¤ profile

HðsÞ :¼ ðH1ðsÞ; . . . ;HnðsÞÞ:

For two-person games, the strategic form often appears as a matrix: the

rows and columns represent pure strategies of Players 1 and 2 respec-

tively, whereas the entries are the corresponding payo¤ profiles. For zero-

sum games, of course, it su‰ces to give the payo¤ to Player 1. It has been

said that the simple idea of thinking of a game in its matrix form is in
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itself one of the greatest contributions of Game Theory. In facing an

interactive situation, there is a great temptation to think only in terms of

‘‘what should I do?’’ When one writes down the matrix, one is led to a

di¤erent viewpoint, one that explicitly takes into account that the other

players are also facing a decision problem.

iv. The concept of mixed or randomized strategy, indicating that rational

play is not in general describable by specifying a single pure strategy.

Rather, it is often non-deterministic, with specified probabilities asso-

ciated with each one of a specified set of pure strategies. When random-

ized strategies are used, payo¤ must be replaced by expected payo¤.

Justifying the use of expected payo¤ in this context is what led to

expected utility theory, whose influence extends far beyond game theory

(see 1930–1950, viii).

v. The concept of ‘‘individual rationality.’’ The security level of Player i

is the amount max min HiðsÞ that he can guarantee to himself, indepen-

dent of what the other players do (here the max is over i’s strategies, and

the min is over (n� 1)-tuples of strategies of the players other than i ). An

outcome is called individually rational if it yields each player at least his

security level. In the game tic-tac-toe, for example, the only individually

rational outcome is a draw; and indeed, it does not take a reasonably

bright child very long to learn that ‘correct’ play in tic-tac-toe always

leads to a draw.

Individual rationality may be thought of in terms of pure strategies or,

as is more usual, in terms of mixed strategies. In the latter case, what is

being ‘‘guaranteed’’ is not an actual payo¤, but an expectation; the word

‘‘guarantee’’ means that this level of payo¤ can be attained in the mean,

regardless of what the other players do. This ‘‘mixed’’ security level is

always at least as high as the ‘pure’ one. In the case of tic-tac-toe, each

player can guarantee a draw even in the stronger sense of pure strategies.

Games like this—i.e. having only one individually rational payo¤ profile

in the ‘pure’ sense—are called strictly determined.

Not all games are strictly determined, not even all two-person zero-

sum games. One of the simplest imaginable games is the one that game

theorists call ‘‘matching pennies,’’ and children call ‘‘choosing up’’

(‘‘odds and evens’’). Each player privately turns a penny either heads up

or tails up. If the choices match, 1 gives 2 his penny; otherwise, 2 gives 1

his penny. In the pure sense, neither player can guarantee more than �1,

and hence the game is not strictly determined. But in expectation, each

player can guarantee 0, simply by turning the coin heads up or tails up

with 1/2–1/2 probabilities. Thus (0,0) is the only payo¤ profile that is

individually rational in the mixed sense. Games like this—i.e. having

only one individually rational payo¤ profile in the ‘‘mixed’’ sense—are
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called determined. In a determined game, the (mixed) security level is

called the value, strategies guaranteeing it optimal.

vi. Zermelo’s theorem. The very first theorem of Game Theory (Zermelo,

1913) asserts that chess is strictly determined. Interestingly, the proof

does not construct ‘‘correct’’ strategies explicitly; and indeed, it is not

known to this day whether the ‘‘correct’’ outcome of chess is a win for

white, a win for black, or a draw. The theorem extends easily to a wide

class of parlour games, including checkers, go, and chinese checkers, as

well as less well-known games such as hex and gnim (Gale, 1979, 1974);

the latter two are especially interesting in that one can use Zermelo’s

theorem to show that Player 1 can force a win, though the proof is non-

constructive, and no winning strategy is in fact known. Zermelo’s theo-

rem does not extend to card games such as bridge and poker, nor to the

variant of chess known as kriegsspiel, where the players cannot observe

their opponents’ moves directly. The precise condition for the proof

to work is that the game be a two-person zero-sum game of perfect

information. This means that there are no simultaneous moves, and that

everything is open and ‘above-board’: at any given time, all relevant

information known to one player is known to all players.

The domain of Zermelo’s theorem—two-person zero-sum games of

perfect information—seems at first rather limited; but the theorem has

reverberated through the decades, creating one of the main strands of

game theoretic thought. To explain some of the developments, we must

anticipate the notion of strategic equilibrium (Nash, 1951; see 1950–1960,

i). To remove the two-person zero-sum restriction, H. W. Kuhn (1953)

replaced the notion of ‘‘correct,’’ individually rational play by that of

equilibrium. He then proved that every n-person game of perfect informa-

tion has an equilibrium in pure strategies.

In proving this theorem, Kuhn used the notion of a subgame of a

game; this turned out crucial in later developments of strategic equilib-

rium theory, particularly in its economic applications. A subgame relates

to the whole game like a subgroup to the whole group or a linear

subspace to the whole space; while part of the larger game, it is self-

contained, can be played in its own right. More precisely, if at any time,

all the players know everything that has happened in the game up to that

time, then what happens from then on constitutes a subgame.

From Kuhn’s proof it follows that every equilibrium (not necessarily

pure) of a subgame can be extended to an equilibrium of the whole game.

This, in turn, implies that every game has equilibria that remain equi-

libria when restricted to any subgame. R. Selten (1965) called such equi-

libria subgame perfect. In games of perfect information, the equilibria

that the Zermelo–Kuhn proof yields are all subgame perfect.
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But not all equilibria are subgame perfect, even in games of perfect

information. Subgame perfection implies that when making choices, a

player looks forward and assumes that the choices that will subsequently

be made, by himself and by others, will be rational; i.e. in equilibrium.

Threats which it would be irrational to carry through are ruled out. And

it is precisely this kind of forward-looking rationality that is most suited

to economic application.

Interestingly, it turns out that subgame perfection is not enough to

capture the idea of forward-looking rationality. More subtle concepts

are needed. We return to this subject below, when we discuss the great

flowering of strategic equilibrium theory that has taken place since 1975,

and that coincides with an increased preoccupation with its economic

applications. The point we wished to make here is that these develop-

ments have their roots in Zermelo’s theorem.

A second circle of ideas to which Zermelo’s theorem led has to do with

the foundations of mathematics. The starting point is the idea of a game

of perfect information with an infinite sequence of stages. Infinitely long

games are important models for interactive situations with an indefinite

time horizon—i.e. in which the players act as if there will always be a

tomorrow.

To fix ideas, let A be any subset of the unit interval (the set of real

numbers between 0 and 1). Suppose two players move alternately, each

choosing a digit between 1 and 9 at each stage. The resulting infinite

sequence of digits is the decimal expansion of a number in the unit inter-

val. Let GA be the game in which 1 wins if this number is in A, and

2 wins otherwise. Using Set Theory’s ‘‘Axiom of Choice,’’ Gale and

Stewart (1953) showed that Zermelo’s theorem is false in this situation.

One can choose A so that GA is not strictly determined; that is, against

each pure strategy of 1, Player 2 has a winning pure strategy, and against

each pure strategy of 2, Player 1 has a winning pure strategy. They also

showed that if A is open or closed, then GA is strictly determined.

Both of these results led to significant developments in foundational

mathematics. The axiom of choice had long been suspect in the eyes of

mathematicians; the extremely anti-intuitive nature of the Gale–Stewart

non-determinateness example was an additional nail in its co‰n, and led

to an alternative axiom, which asserts that GA is strictly determined for

every set A. This axiom, which contradicts the axiom of choice, has been

used to provide an alternative axiomatization for set theory (Mycielski

and Steinhaus, 1964), and this in turn has spawned a large literature (see

Moschovakis, 1980, 1983). On the other hand, the positive result of Gale

and Stewart was successively generalized to wider and wider families of

sets A that are ‘‘constructible’’ in the appropriate sense (Wolfe, 1955;
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Davis, 1964), culminating in the theorem of Martin (1975), according to

which GA is strictly determined whenever A is a Borel set.

Another kind of perfect information game with infinitely many stages

is the di¤erential game. Here time is continuous but usually of finite

duration; a decision must be made at each instant, so to speak. Typical

examples are games of pursuit. The theory of di¤erential games was first

developed during the 1950s by Rufus Isaacs at the Rand Corporation; his

book on the subject was published in 1965, and since then the theory has

proliferated greatly. A di¤erential game need not necessarily be of perfect

information, but very little is known about those that are not. Some eco-

nomic examples may be found in Case (1979).

vii. The minimax theorem. The minimax theorem of von Neumann

(1928) asserts that every two-person zero-sum game with finitely many

pure strategies for each player is determined; that is, when mixed

strategies are admitted, it has precisely one individually rational payo¤

vector. This had previously been verified by E. Borel (e.g. 1924) for

several special cases, but Borel was unable to obtain a general proof. The

theorem lies a good deal deeper than Zermelo’s, both conceptually and

technically.

For many years, minimax was considered the elegant centrepiece of

game theory. Books about game theory concentrated on two-person zero-

sum games in strategic form, often paying only desultory attention to the

non-zero sum theory. Outside references to game theory often gave the

impression that non-zero sum games do not exist, or at least play no role

in the theory.

The reaction eventually set in, as it was bound to. Game theory came

under heavy fire for its allegedly exclusive concern with a special case

that has little interest in the applications. Game theorists responded by

belittling the importance of the minimax theorem. During the fall semester

of 1964, the writer of these lines gave a beginning course in Game Theory

at Yale University, without once even mentioning the minimax theorem.

All this is totally unjustified. Except for the period up to 1928 and a

short period in the late Forties, game theory was never exclusively or

even mainly concerned with the strictly competitive case. The forefront

of research was always in n-person or non-zero sum games. The false

impression given of the discipline was due to the strictly competitive

theory being easier to present in books, more ‘‘elegant’’ and complete.

But for more than half a century, that is not where most of the action has

been.

Nevertheless, it is a great mistake to belittle minimax. While not the

centrepiece of game theory, it is a vital cornerstone. We have already seen
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how the most fundamental concepts of the general theory—extensive

form, pure strategies, strategic form, randomization, utility theory—were

spawned in connection with the minimax theorem. But its importance

goes considerably beyond this.

The fundamental concept of non-cooperative n-person game theory—

the strategic equilibrium of Nash (1951)—is an outgrowth of minimax,

and the proof of its existence is modelled on a previously known proof

of the minimax theorem. In cooperative n-person theory, individual

rationality is used to define the set of imputations, on which much of the

cooperative theory is based. In the theory of repeated games, individual

rationality also plays a fundamental role.

In many areas of interest—stochastic games, repeated games of

incomplete information, continuous games (i.e. with a continuum of pure

strategies), di¤erential games, games played by automata, games with

vector payo¤s—the strictly competitive case already presents a good

many of the conceptual and technical di‰culties that are present in gen-

eral. In these areas, the two-person zero-sum theory has become an

indispensable spawning and proving ground, where ideas are developed

and tested in a relatively familiar, ‘‘friendly’’ environment. These theories

could certainly not have developed as they did without minimax.

Finally, minimax has had considerable influence on several disciplines

outside of game theory proper. Two of these are statistical decision

theory and the design of distributed computing systems, where minimax

is used for ‘‘worst case’’ analysis. Another is mathematical programming;

the minimax theorem is equivalent to the duality theorem of linear pro-

gramming, which in turn is closely related to the idea of shadow pricing

in economics. This circle of ideas has fed back into game theory proper;

in its guise as a theorem about linear inequalities, the minimax theorem

is used to establish the condition of Bondareva (1963) and Shapley

(1967) for the non-emptiness of the core of an n-person game, and the

Hart–Schmeidler (1989) elementary proof for the existence of correlated

equilibria.

viii. Empirics. The correspondence between theory and observation was

discussed already by von Neumann (1928), who observed that the need to

randomize arises endogenously out of the theory. Thus the phenomenon

of blu‰ng in poker may be considered a confirmation of the theory. This

kind of connection between theory and observation is typical of game

theory and indeed of economic theory in general. The ‘‘observations’’ are

often qualitative rather than quantitative; in practice, we do observe

blu‰ng, though not necessarily in the proportions predicted by theory.

As for experimentation, strictly competitive games constitute one of

the few areas in game theory, and indeed in social science, where a fairly
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sharp, unique ‘‘prediction’’ is made (though even this prediction is in

general probabilistic). It thus invites experimental testing. Early experi-

ments failed miserably to confirm the theory; even in strictly determined

games, subjects consistently reached individually irrational outcomes. But

experimentation in rational social science is subject to peculiar pitfalls, of

which early experimenters appeared unaware, and which indeed mar

many modern experiments as well. These have to do with the motivation

of the subjects, and with their understanding of the situation. A deter-

mined e¤ort to design an experimental test of minimax that would avoid

these pitfalls was recently made by B. O’Neill (1987); in these experi-

ments, the predictions of theory were confirmed to within less than one

per cent.

1930–1950

The outstanding event of this period was the publication, in 1944, of the

Theory of Games and Economic Behavior by John von Neumann and

Oskar Morgenstern. Morgenstern was the first economist clearly and

explicitly to recognize that economic agents must take the interactive

nature of economics into account when making their decisions. He and

von Neumann met at Princeton in the late Thirties, and started the col-

laboration that culminated in the Theory of Games. With the publication

of this book, Game Theory came into its own as a scientific discipline.

In addition to expounding the strictly competitive theory described

above, the book broke fundamental new ground in several directions.

These include the notion of a cooperative game, its coalitional form, and

its von Neumann–Morgenstern stable sets. Though axiomatic expected

utility theory had been developed earlier by Ramsey (1931), the account

of it given in this book is what made it ‘‘catch on.’’ Perhaps most impor-

tant, the book made the first extensive applications of game theory, many

to economics.

To put these developments into their modern context, we discuss here

certain additional ideas that actually did not emerge until later, such as

the core, and the general idea of a solution concept. At the end of this

section we also describe some developments of this period not directly

related to the book, including games with a continuum of strategies, the

computation of minimax strategies, and mathematical advances that

were instrumental in later work.

i. Cooperative games. A game is called cooperative if commitments—

agreements, promises, threats—are fully binding and enforceable (Har-

sanyi 1966, p. 616). It is called non-cooperative if commitments are not
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enforceable, even if pre-play communication between the players is pos-

sible. (For motivation, see 1950–1960, iv.)

Formally, cooperative games may be considered a special case of non-

cooperative games, in the sense that one may build the negotiation and

enforcement procedures explicitly into the extensive form of the game.

Historically, however, this has not been the mainstream approach.

Rather, cooperative theory starts out with a formalization of games (the

coalitional form) that abstracts away altogether from procedures and

from the question of how each player can best manipulate them for his

own benefit; it concentrates, instead, on the possibilities for agreement.

The emphasis in the non-cooperative theory is on the individual, on what

strategy he should use. In the cooperative theory it is on the group: What

coalitions will form? How will they divide the available payo¤ between

their members?

There are several reasons that cooperative games came to be treated

separately. One is that when one does build negotiation and enforcement

procedures explicitly into the model, then the results of a non-cooperative

analysis depend very strongly on the precise form of the procedures, on

the order of making o¤ers and counter-o¤ers, and so on. This may be

appropriate in voting situations in which precise rules of parliamentary

order prevail, where a good strategist can indeed carry the day. But

problems of negotiation are usually more amorphous; it is di‰cult to pin

down just what the procedures are. More fundamentally, there is a feel-

ing that procedures are not really all that relevant; that it is the possibil-

ities for coalition forming, promising and threatening that are decisive,

rather than whose turn it is to speak.

Another reason it that even when the procedures are specified, non-

cooperative analyses of a cooperative game often lead to highly non-

unique results, so that they are often quite inconclusive.

Finally, detail distracts attention from essentials. Some things are seen

better from a distance; the Roman camps around Metzada are indis-

cernible when one is in them, but easily visible from the top of the

mountain. The coalitional form of a game, by abstracting away from

details, yields valuable perspective.

The idea of building non-cooperative models of cooperative games has

come to be known as the Nash program since it was first proposed by

John Nash (1951). In spite of the di‰culties just outlined, the programme

has had some recent successes (Harsanyi, 1982; Harsanyi and Selten,

1972; Rubinstein, 1982). For the time being, though, these are isolated;

there is as yet nothing remotely approaching a general theory of cooper-

ative games based on non-cooperative methodology.
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ii. A game in coalitional form, or simply coalitional game, is a function

v associating a real number vðSÞ with each subset S of a fixed finite set

I, and satisfying vðqÞ ¼ 0 (q denotes the empty set). The members of

I are called players, the subsets S of I coalitions, and vðSÞ is the worth

of S.

Some notation and terminology: The number of elements in a set S is

denoted jSj. A profile (of strategies, numbers, etc.) is a function on I

(whose values are strategies, numbers, etc.). If x is a profile of numbers

and S a coalition, we write xðSÞ :¼
P

i A S x
i.

An example of a coalitional game is the 3-person voting game; here

jIj ¼ 3, and vðSÞ ¼ 1 or 0 according as to whether jSjX 2 or not. A coa-

lition S is called winning if vðSÞ ¼ 1, losing if vðSÞ ¼ 0. More generally, if

w is a profile of non-negative numbers (weights) and q (the quota) is pos-

itive, define the weighted voting game v by vðSÞ ¼ 1 if wðSÞX q, and

vðSÞ ¼ 0 otherwise. An example is a parliament with several parties. The

players are the parties, rather than the individual members of parliament,

wi is the number of seats held by party i, and q is the number of votes

necessary to form a government (usually a simple majority of the parlia-

ment). The weighted voting game with quota q and weights wi is denoted

[q; w]; e.g., the three-person voting game is [2; 1, 1, 1].

Another example of a coalitional game is a market game. Suppose

there are l natural resources, and a single consumer product, say ‘bread’,

that may be manufactured from these resources. Let each player i have

an endowment ei of resources (an l-vector with non-negative coor-

dinates), and a concave production function ui that enables him to pro-

duce the amount uiðxÞ of bread given the vector x ¼ ðx1; . . . ; xlÞ of

resources. Let vðSÞ be the maximum amount of bread that the coalition S

can produce; it obtains this by redistributing its resources among its

members in a manner that is most e‰cient for production, i.e.

vðSÞ ¼ max

�X
i A S

uiðxiÞ:
X
i A S

xi ¼
X
i A S

ei
�

where the xi are restricted to have non-negative coordinates.

These examples illustrate di¤erent interpretations of coalitional games.

In one interpretation, the payo¤ is in terms of some single desirable

physical commodity, such as bread; vðSÞ represents the maximum total

amount of this commodity that the coalition S can procure for its mem-

bers, and it may be distributed among the members in any desired way.

This is illustrated by the above description of the market game.

Underlying this interpretation are two assumptions. First, that of

transferable utility (TU): that the payo¤ is in a form that is freely trans-
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ferable among the players. Second, that of fixed threats: that S can

obtain a maximum of vðSÞ no matter what the players outside of S do.

Another interpretation is that vðSÞ represents some appropriate index

of S’s strength (if it forms). This requires neither transferable utility nor

fixed threats. In voting games, for example, it is natural to define

vðSÞ ¼ 1 if S is a winning coalition (e.g. can form a government or ensure

passage of a bill), 0 if not. Of course, in most situations represented by

voting games, utility is not transferable.

Another example is a market game in which the xi are consumption

goods rather than resources. Rather than bread,
P

i A S u
iðxiÞ may repre-

sent a social welfare function such as is often used in growth or taxation

theory. While vðSÞ cannot then be divided in an arbitrary way among the

members of S, it still represents a reasonable index of S’s strength. This is

a situation with fixed threats but without TU.

Von Neumann and Morgenstern considered strategic games with

transferable payo¤s, which is a situation with TU but without fixed

threats. If the profile s of strategies is played, the coalition S may divide

the amount
P

i A S H
iðSÞ among its members in any way it pleases. How-

ever, what S gets depends on what players outside S do. Von Neumann

and Morgenstern defined vðSÞ as the maxmin payo¤ of S in the two-

person zero-sum game in which the players are S and I\S, and the payo¤

to S is
P

i A S H
iðsÞ; i.e., as the expected payo¤ that S can assure itself (in

mixed strategies), no matter what the others do. Again, this is a reason-

able index of S’s strength, but certainly not the only possible one.

We will use the term TU coalitional game when referring to coalitional

games with the TU interpretation.

In summary, the coalitional form of a game associates with each coali-

tion S a single number vðSÞ, which in some sense represents the total

payo¤ that that coalition can get or may expect. In some contexts, vðSÞ
fully characterizes the possibilities open to S; in others, it is an index that

is indicative of S’s strength.

iii. Solution concepts. Given a game, what outcome may be expected?

Most of game theory is, in one way or another, directed at this question.

In the case of two-person zero-sum games, a clear answer is provided: the

unique individually rational outcome. But in almost all other cases, there

is no unique answer. There are di¤erent criteria, approaches, points of

view, and they yield di¤erent answers.

A solution concept is a function (or correspondence) that associates

outcomes, or sets of outcomes, with games. Usually an ‘‘outcome’’ may

be identified with the profile of payo¤s that outcome yields to the players,

though sometimes we may wish to think of it as a strategy profile.
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Of course a solution concept is not just any such function or corre-

spondence, but one with a specific rationale; for example, the strategic

equilibrium and its variants for strategic form games, and the core, the

von Neumann–Morgenstern stable sets, the Shapley value and the nucle-

olus for coalitional games. Each represents a di¤erent approach or point

of view.

What will ‘‘really’’ happen? Which solution concept is ‘‘right’’? None

of them; they are indicators, not predictions. Di¤erent solution concepts

are like di¤erent indicators of an economy; di¤erent methods for calcu-

lating a price index; di¤erent maps (road, topo, political, geologic, etc.,

not to speak of scale, projection, etc.); di¤erent stock indices (Dow Jones,

Standard and Poor’s NYSE, etc., composite, industrials, utilities, etc.);

di¤erent batting statistics (batting average, slugging average, RBI, hits,

etc.); di¤erent kinds of information about rock climbs (arabic and roman

di‰culty ratings, route maps, verbal descriptions of the climb, etc.);

accounts of the same event by di¤erent people or di¤erent media; di¤er-

ent projections of the same three-dimensional object (as in architecture

or engineering). They depict or illuminate the situation from di¤erent

angles; each one stresses certain aspects at the expense of others.

Moreover, solution concepts necessarily leave out altogether some of

the most vital information, namely that not entering the formal descrip-

tion of the game. When applied to a voting game, for example, no solu-

tion concept can take into account matters of custom, political ideology,

or personal relations, since they don’t enter the coalitional form. That

does not make the solution useless. When planning a rock climb, you

certainly want to take into account a whole lot of factors other than the

physical characteristics of the rock, such as the season, the weather, your

ability and condition, and with whom you are going. But you also do

want to know about the ratings.

A good analogy is to distributions (probability, frequency, population,

etc.). Like a game, a distribution contains a lot of information; one is

overwhelmed by all the numbers. The median and the mean summarize

the information in di¤erent ways; though other than by simply stating the

definitions, it is not easy to say how. The definitions themselves do have a

certain fairly clear intuitive content; more important, we gain a feeling

for the relation between a distribution and its median and mean from

experience, from working with various specific examples and classes of

examples over the course of time.

The relationship of solution concepts to games is similar. Like the

median and the mean, they in some sense summarize the large amount of

information present in the formal description of a game. The definitions

themselves have a certain fairly clear intuitive content, though they are
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not predictions of what will happen. Finally, the relations between a

game and its core, value, stable sets, nucleolus, and so on is best revealed

by seeing where these solution concepts lead in specific games and classes

of games.

iv. Domination, the core and imputations. Continuing to identify ‘‘out-

come’’ with ‘‘payo¤ profile,’’ we call an outcome y of a game feasible if

the all-player set I can achieve it. An outcome x dominates y if there

exists a coalition S that can achieve at least its part of x, and each of

whose members prefers x to y; in that case we also say that S can improve

upon y. The core of a game is the set of all feasible outcomes that are not

dominated.

In a TU coalitional game v, feasibility of x means xðIÞW vðIÞ, and x

dominating y via S means that xðSÞW vðSÞ and xi > yi for all i in S. The

core of v is the set of all feasible y with yðSÞX vðSÞ for all S.
At first, the core sounds quite compelling; why should the players

be satisfied with an outcome that some coalition can improve upon? It

becomes rather less compelling when one realizes that many perfectly

ordinary games have empty cores, i.e. every feasible outcome can be

improved upon. Indeed, this is so even in as simple a game as the 3-

person voting game.

For a coalition S to improve upon an outcome, players in S must trust

each other; they must have faith that their comrades inside S will not

desert them to make a coalition with other players outside S. In a TU

3-person voting game, y :¼ ð1=3; 1=3; 1=3Þ is dominated via {1, 2} by

x :¼ ð1=2; 1=2; 0Þ. But 1 and 2 would be wise to view a suggested move

from y to x with caution. What guarantee does 1 have that 2 will really

stick with him and not accept o¤ers from 3 to improve upon x with, say,

(0, 2/3, 1/3)? For this he must depend on 2’s good faith, and similarly 2

must depend on 1’s.

There are two exceptions to this argument, two cases in which domi-

nation does not require mutual trust. One is when S consists of a single

player. The other is when S ¼ I, so that there is no one outside S to lure

one’s partners away.

The requirement that a feasible outcome y be undominated via one-

person coalitions (individual rationality) and via the all-person coalition

(e‰ciency or Pareto optimality) is thus quite compelling, much more so

than that it be in the core. Such outcomes are called imputations. For TU

coalitional games, individual rationality means that yi X vðiÞ for all i

(we do not distinguish between i and {i}), and e‰ciency means that

yðIÞ ¼ vðIÞ. The outcomes associated with most cooperative solution

concepts are imputations; the imputations constitute the stage on which

most of cooperative game theory is played out.
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The notion of core does not appear explicitly in von Neumann and

Morgenstern, but it is implicit in some of the discussions of stable sets

there. In specific economic contexts, it is implicit in the work of Edge-

worth (1881) and Ransmeier (1942). As a general solution concept in its

own right, it was developed by Shapley and Gillies in the early Fifties.

Early references include Luce and Rai¤a (1957) and Gillies (1959).

v. Stable sets. The discomfort with the definition of core expressed above

may be stated more sharply as follows. Suppose we think of an outcome

in the core as ‘‘stable.’’ Then we should not exclude an outcome y just

because it is dominated by some other outcome x; we should demand that

x itself be stable. If x is not itself stable, then the argument for excluding

y is rather weak; proponents of y can argue with justice that replacing it

with x would not lead to a more stable situation, so we may as well stay

where we are. If the core were the set of all outcomes not dominated by

any element of the core, there would be no di‰culty; but this is not so.

Von Neumann and Morgenstern were thus led to the following defi-

nition: A set K of imputations is called stable if it is the set of all impu-

tations not dominated by any element of K.

This definition guarantees neither existence nor uniqueness. On the

face of it, a game may have many stable sets, or it may have none. Most

games do, in fact, have many stable sets; but the problem of existence

was open for many years. It was solved by Lucas (1969), who constructed

a ten-person TU coalitional game without any stable set. Later, Lucas

and Rabie (1982) constructed a fourteen-person TU coalitional game

without any stable set and with an empty core to boot.

Much of the Theory of Games is devoted to exploring the stable sets of

various classes of TU coalitional games, such as 3- and 4-person games,

voting games, market games, compositions of games, and so on. (If v and

w have disjoint player sets I and J, their composition u is given by

uðSÞ :¼ vðSV IÞ þ wðSV JÞ. During the 1950s many researchers carried

forward with great vigour the work of investigating various classes of

games and describing their stable sets. Since then work on stable sets has

continued unabated, though it is no longer as much in the forefront of

game-theoretic research as it was then. All in all, more than 200 articles

have been published on stable sets, some 80 per cent of them since 1960.

Much of the recent activity in this area has taken place in the Soviet

Union.

It is impossible here even to begin to review this large and varied liter-

ature. But we do note one characteristic qualitative feature. By definition,

a stable set is simply a set of imputations; there is nothing explicit in it

about social structure. Yet the mathematical description of a given stable
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set can often best be understood in terms of an implicit social structure or

form of organization of the players. Cartels, systematic discrimination,

groups within groups, all kinds of subtle organizational forms spring to

one’s attention. These forms are endogenous, they are not imposed

by definition, they emerge from the analysis. It is a mystery that just

the stable set concept, and it only, is so closely allied with endogenous

notions of social structure.

We adduce just one, comparatively simple example. The TU 3-person

voting game has a stable set consisting of the three imputations (1/2, 1/2,

0), (1/2, 0, 1/2), (0, 1/2, 1/2). The social structure implicit in this is that

all three players will not compromise by dividing the payo¤ equally.

Rather, one of the three 2-person coalitions will form and divide the

payo¤ equally, with the remaining player being left ‘‘in the cold.’’

Because any of these three coalitions can form, competition drives them

to divide the payo¤ equally, so that no player will prefer any one coali-

tion to any other.

Another stable set is the interval fða; 1� a; 0Þg, where a ranges from 0

to 1. Here Player 3 is permanently excluded from all negotiations; he

is ‘‘discriminated against.’’ Players 1 and 2 divide the payo¤ in some

arbitrary way, not necessarily equally; this is because a coalition with 3 is

out of the question, and so competition no longer constrains 1 and 2 in

bargaining with each other.

vi. Transferable utility. Though it no longer enjoys the centrality that it

did up to about 1960, the assumption of transferable utility has played

and continues to play a major role in the development of cooperative

game theory. Some economists have questioned the appropriateness of

the TU assumption, especially in connection with market models; it has

been castigated as excessively strong and unrealistic.

This situation is somewhat analogous to that of strictly competitive

games, which as we pointed out above (1930–1950, vii), constitute a

proving ground for developing and testing ideas that apply also to more

general, non-strictly competitive games. The theory of NTU (non-trans-

ferable utility) coalitional games is now highly developed (see 1960–1970,

i), but it is an order of magnitude more complex than that of TU games.

The TU theory is an excellent laboratory or model for working out ideas

that are later applied to the more general NTU case.

Moreover, TU games are both conceptually and technically much

closer to NTU games than strictly competitive games are to non-strictly

competitive games. A very large part of the important issues arising in

connection with non-strictly competitive games do not have any counter-

part at all in strictly competitive games, and so simply cannot be

addressed in that context. But by far the largest part of the issues and
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questions arising in the NTU theory do have counterparts in the TU

theory, they can at least be addressed and dealt with there.

Almost every major advance in the NTU theory—and many a minor

advance as well—has had its way paved by a corresponding advance in

the TU theory. Stable sets, core, value, and bargaining set were all

defined first for TU games, then for NTU. The enormous literature on

the core of a market and the equivalence between it and competitive

equilibrium (c.e.) in large markets was started by Martin Shubik (1959a)

in an article on TU markets. The relation between the value and c.e. in

large markets was also explored first for the TU case (Shapley, 1964;

Shapley and Shubik, 1969b; Aumann and Shapley, 1974; Hart, 1977a),

then for NTU (Champsaur, 1975, but written and circulated circa 1970;

Aumann, 1975; Mas-Colell, 1977; Hart, 1977b). The same holds for the

bargaining set; first TU (Shapley and Shubik, 1984); then NTU (Mas-

Colell, 1988). The connection between balanced collections of coalitions

and the non-emptiness of the core (1960–1970, viii) was studied first

for TU (Bondavera, 1963; Shapley, 1967), then for NTU (Scarf, 1967;

Billera, 1970b; Shapley, 1973a); this development led to the whole subject

of Scarf ’s algorithm for finding points in the core, which he and others

later extended to algorithms for finding market equilibria and fixed

points of mappings in general. Games arising from markets were first

abstractly characterized in the TU case (Shapley and Shubik, 1969a),

then in the NTU case (Billera and Bixby, 1973; Mas-Colell, 1975).

Games with a continuum of players were conceived first in a TU appli-

cation (Milnor and Shapley, 1978, but written and circulated in 1961),

then NTU (Aumann, 1964). Strategic models of bargaining where time is

of the essence were first treated for TU (Rubinstein, 1982), then NTU

(Binmore, 1987). One could go on and on.

In each of these cases, the TU development led organically to the NTU

development; it isn’t just that the one came before the other. TU is to

cooperative game theory what Drosophila is to genetics. Even if it had no

direct economic interest at all, the study of TU coalitional games would

be justified solely by their role as an outstandingly suggestive research

tool.

vii. Single play. Von Neumann and Morgenstern emphasize that their

analysis refers to ‘‘one-shot’’ games, games that are played just once,

after which the players disperse, never to interact again. When this is not

the case, one must view the whole situation—including expected future

interactions of the same players—as a single larger game, and it, too, is

to be played just once.

To some extent this doctrine appears unreasonable. If one were to take

it literally, there would be only one game to analyse, namely the one
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whose players include all persons ever born and to be born. Every human

being is linked to every other through some chain of interactions; no

person or group is isolated from any other.

Savage (1954) has discussed this in the context of one-person decisions.

In principle, he writes, one should ‘‘envisage every conceivable policy for

the government of his whole life in its most minute details, and decide

here and now on one policy. This is utterly ridiculous . . .’’ (p. 16). He

goes on to discuss the small worlds doctrine, ‘‘the practical necessity

of confining attention to, or isolating, relatively simple situations . . .’’

(p. 82).

To a large extent, this doctrine applies to interactive decisions too.

But one must be careful, because here ‘‘large worlds’’ have qualitative

features totally absent from ‘‘small worlds.’’ We return to this below

(1950–1960, ii, iii).

viii. Expected utility. When randomized strategies are used in a strategic

game, payo¤ must be replaced by expected payo¤ (1910–1930, iv). Since

the game is played only once, the law of large numbers does not apply, so

it is not clear why a player would be interested specifically in the mathe-

matical expectation of his payo¤.

There is no problem when for each player there are just two possible

outcomes, which we may call ‘‘winning’’ and ‘‘losing,’’ and denominate

1 and 0 respectively. (This involves no zero-sum assumption; e.g. all

players could win simultaneously.) In that case the expected payo¤ is

simply the probability of winning. Of course each player wants to max-

imize this probability, so in that case use of the expectation is justified.

Suppose now that the values of i’s payo¤ function H i are numbers

between 0 and 1, representing win probabilities. Thus, for the ‘‘final’’

outcome there are still only two possibilities; each pure strategy profile s

induces a random process that generates a win for i with probability

HiðsÞ. Then the payo¤ expectation when randomized strategies are used

still represents i’s overall win probability.

Now in any game, each player has a most preferred and a least pre-

ferred outcome, which we take as a win and a loss. For each payo¤ h,

there is some probability p such that i would as soon get h with certainty

as winning with probability p and losing with probability 1� p. If we

replace all the h’s by the corresponding p’s in the payo¤ matrix, then we

are in the case of the previous paragraph, so use of the expected payo¤ is

justified.

The probability p is a function of h, denoted uiðhÞ, and called i’s von

Neumann–Morgenstern utility. Thus, to justify the use of expectations,

each player’s payo¤ must be replaced by its utility.
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The key property of the function ui is that if h and g are random pay-

o¤s, then i prefers h to g i¤ EuiðhÞ > EuiðgÞ, where E denotes expecta-

tion. This property continues to hold when we replace ui by a linear

transform of the form aui þ b, where a and b are constants with a > 0.

All these transforms are also called utility functions for i, and any one of

them may be used rather than ui in the payo¤ matrix.

Recall that a strictly competitive game is defined as a two-person game

in which if one outcome is preferred to another by one player, the pref-

erence is reversed for the other. Since randomized strategies are admitted,

this condition applies also to ‘‘mixed outcomes’’ (probability mixtures of

pure outcomes). From this it may be seen that a two-person game is

strictly competitive if and only if, for an appropriate choice of utility

functions, the utility payo¤s of the players sum to zero in each square of

the matrix.

The case of TU coalitional games deserves particular attention. There

is no problem if we assume fixed threats and continue to denominate the

payo¤ in bread (see ii). But without fixed threats, the total amount of

bread obtainable by a coalition S is a random variable depending on

what players outside S do; since this is not denominated in utility, there is

no justification for replacing it by its expectation. But if we do denomi-

nate payo¤s in utility terms, then they cannot be directly transferred. The

only way out of this quandary is to assume that the utility of bread is

linear in the amount of bread (Aumann, 1960). We stress again that no

such assumption is required in the fixed threat case.

ix. Applications. The very name of the book, Theory of Games and Eco-

nomic Behavior, indicates its underlying preoccupation with the applica-

tions. Von Neumann had already mentioned Homo Economicus in his

1928 paper, but there were no specific economic applications there.

The method of von Neumann and Morgenstern has become the arche-

type of later applications of game theory. One takes an economic prob-

lem, formulates it as a game, finds the game-theoretic solution, then

translates the solution back into economic terms. This is to be dis-

tinguished from the more usual methodology of economics and other

social sciences, where the building of a formal model and a solution con-

cept, and the application of the solution concept to the model, are all

rolled into one.

Among the applications extensively treated in the book is voting. A

qualitative feature that emerges is that many di¤erent weight-quota

configurations have the same coalitional form; [5; 2, 3, 4] is the same as

[2; 1, 1, 1]. Though obvious to the sophisticated observer when pointed

out, this is not widely recognized; most people think that the player

with weight 4 is considerably stronger than the others (Vinacke and
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Arko¤, 1957). The Board of Supervisors of Nassau County operates by

weighted voting; in 1964 there were six members, with weights of 31, 31,

28, 21, 2, 2, and a simple majority quota of 58 (Lucas, 1983, p. 188).

Nobody realized that three members were totally without influence, that

[58; 31, 31, 28, 21, 2, 2]¼ [2; 1, 1, 1, 0, 0, 0].

In a voting game, a winning coalition with no proper winning subsets

is called minimal winning (mw). The game [q; w] is homogeneous if

wðSÞ ¼ q for all minimal winning S; thus [3; 2, 1, 1, 1] is homogeneous,

but [5; 2, 2, 2, 1, 1, 1] is not. A decisive voting game is one in which a

coalition wins if and only if its complement loses; both the above games

are decisive, but [3; 1, 1, 1, 1] is not. TU decisive homogeneous voting

games have a stable set in which some mw coalition forms and divides

the payo¤ in proportion to the weights of its members, leaving nothing

for those outside. This is reminiscent of some parliamentary democracies,

where parties in a coalition government get cabinet seats roughly in pro-

portion to the seats they hold in parliament. But this fails to take into

account that the actual number of seats held by a party may well be quite

disproportional to its weight in a homogeneous representation of the

game (when there is such a representation).

The book also considers issues of monopoly (or monopsony) and oli-

gopoly. We have already pointed out that stable set theory concerns the

endogenous emergence of social structure. In a market with one buyer

(monopsonist) and two sellers (duopolists) where supply exceeds demand,

the theory predicts that the duopolists will form a cartel to bargain with

the monopsonist. The core, on the other hand, predicts cut-throat com-

petition; the duopolists end up by selling their goods for nothing, with the

entire consumer surplus going to the buyer.

This is a good place to point out a fundamental di¤erence between the

game-theoretic and other approaches to social science. The more con-

ventional approaches take institutions as given, and ask where they lead.

The game theoretic approach asks how the institutions came about, what

led to them? Thus general equilibrium theory takes the idea of market

prices for granted; it concerns itself with their existence and properties,

calculating them, and so on. Game Theory asks, why are there market

prices? How did they come about? Under what conditions will all traders

trade at given prices?

Conventional economic theory has several approaches to oligopoly,

including competition and cartelization. Starting with any particular one

of these, it calculates what is implied in specific applications. Game

Theory proceeds di¤erently. It starts with the physical description of the

situation only, making no institutional or doctrinal assumptions, then

applies a solution concept and sees where it leads.
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In a sense, of course, the doctrine is built into the solution concept; as

we have seen, the core implies competition, the stable set cartelization. It

is not that game theory makes no assumptions, but that the assumptions

are of a more general, fundamental nature. The di¤erence is like that

between deriving the motion of the planets from Kepler’s laws or from

Newton’s laws. Like Kepler’s laws, which apply to the planets only, oli-

gopoly theory applies to oligopolistic markets only. Newton’s laws apply

to the planets and also to apples falling from trees; stable sets apply to

markets and also to voting.

To be sure, conventional economics is also concerned with the genesis

of institutions, but on an informal, verbal, ad hoc level. In Game Theory,

institutions like prices or cartels are outcomes of the formal analysis.

x. Games with a continuum of pure strategies were first considered

by Ville (1938), who proved the minimax theorem for them, using an

appropriate continuity condition. To guarantee the minimax (security)

level, one may need to use a continuum of pure strategies, each with

probability zero. An example due to Kuhn (1952) shows that in general

one cannot guarantee anything even close to minimax using strategies

with finite support. Ville’s theorem was extended in the fifties to strategic

equilibrium in non-strictly competitive games.

xi. Computing security levels, and strategies that will guarantee them, is

highly non-trivial. The problem is equivalent to that of linear program-

ming, and thus succumbed to the simplex method of George Dantzig

(1951a, 1951b).

xii. The major advance in relevant mathematical methods during this

period was Kakutani’s fixed point theorem (1941). An abstract expression

of the existence of equilibrium, it is the vital active ingredient of countless

proofs in economics and game theory. Also instrumental in later work

were Lyapounov’s theorem on the range of a vector measure (1940) and

von Neumann’s selection theorem (1949).

1950–1960

The 1950s were a period of excitement in game theory. The discipline

had broken out of its cocoon, and was testing its wings. Giants walked

the earth. At Princeton, John Nash laid the groundwork for the general

non-cooperative theory, and for cooperative bargaining theory; Lloyd

Shapley defined the value for coalitional games, initiated the theory of

stochastic games, co-invented the core with D. B. Gillies, and, together

with John Milnor, developed the first game models with continua of
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players; Harold Kuhn worked on behaviour strategies and perfect recall;

Al Tucker discovered the prisoner’s dilemma; the O‰ce of Naval

Research was unstinting in its support. Three Game Theory conferences

were held at Princeton, with the active participation of von Neumann

and Morgenstern themselves. Princeton University Press published the

four classic volumes of Contributions to the Theory of Games. The Rand

Corporation, for many years to be a major centre of game theoretic

research, had just opened its doors in Santa Monica. R. Luce and

H. Rai¤a (1957) published their enormously influential Games and Deci-

sions. Near the end of the decade came the first studies of repeated

games.

The major applications at the beginning of the decade were to tactical

military problems: defense from missiles, Colonel Blotto, fighter-fighter

duels, etc. Later the emphasis shifted to deterrence and cold war strategy,

with contributions by political scientists like Kahn, Kissinger, and Schel-

ling. In 1954, Shapley and Shubik published their seminal paper on the

value of a voting game as an index of power. And in 1959 came Shubik’s

spectacular rediscovery of the core of a market in the writings of F. Y.

Edgeworth (1881). From that time on, economics has remained by far the

largest area of application of game theory.

i. An equilibrium (Nash, 1951) of a strategic game is a (pure or mixed)

strategy profile in which each player’s strategy maximizes his payo¤ given

that the others are using their strategies.

Strategic equilibrium is without doubt the single game theoretic solu-

tion concept that is most frequently applied in economics. Economic

applications include oligopoly, entry and exit, market equilibrium,

search, location, bargaining, product quality, auctions, insurance, princi-

pal-agent, higher education, discrimination, public goods, what have you.

On the political front, applications include voting, arms control, and

inspection, as well as most international political models (deterrence, etc.).

Biological applications of game theory all deal with forms of strategic

equilibrium; they suggest a simple interpretation of equilibrium quite dif-

ferent from the usual overt rationalism (see 1970–1986, i). We cannot

even begin to survey all this literature here.

ii. Stochastic and other dynamic games. Games played in stages, with

some kind of stationary time structure, are called dynamic. They include

stochastic games, repeated games with or without complete information,

games of survival (Milnor and Shapley, 1957; Luce and Rai¤a, 1957;

Shubik, 1959b) or ruin (Rosenthal and Rubinstein, 1984), recursive games

(Everett, 1957), games with varying opponents (Rosenthal, 1979), and

similar models.
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This kind of model addresses the concerns we expressed above (1930–

1950, vii) about the single play assumption. The present can only be

understood in the context of the past and the future: ‘‘Know whence you

came and where you are going’’ (Ethics of the Fathers III:1). Physically,

current actions a¤ect not only current payo¤ but also opportunities and

payo¤s in the future. Psychologically, too, we learn: past experience

a¤ects our current expectations of what others will do, and therefore our

own actions. We also teach: our current actions a¤ect others’ future

expectations, and therefore their future actions.

Two dynamic models—stochastic and repeated games—have been

especially ‘‘successful.’’ Stochastic games address the physical point, that

current actions a¤ect future opportunities. A strategic game is played at

each stage; the profile of strategies determines both the payo¤ at that

stage and the game to be played at the next stage (or a probability distri-

bution over such games). In the strictly competitive case, with future

payo¤ discounted at a fixed rate, Shapley (1953a) showed that stochastic

games are determined; also, that they have optimal strategies that are

stationary, in the sense that they depend only on the game being played

(not on the history or even on the date). Bewley and Kohlberg (1976)

showed that as the discount rate tends to 0 the value tends to a limit; this

limit is the same as the limit, as k ! y, of the values of the k-stage

games, in each of which the payo¤ is the mean payo¤ for the k stages.

Mertens and Neyman (1981) showed that the value exists also in the

undiscounted infinite stage game, when payo¤ is defined by the Cesaro

limit (limit, as k ! y, of the average payo¤ in the first k stages). For an

understanding of some of the intuitive issues in this work, see Blackwell

and Ferguson (1968), which was extremely influential in the modern

development of stochastic games.

The methods of Shapley, and of Bewley and Kohlberg, can be used to

show that non-strictly competitive stochastic games with fixed discounts

have equilibria in stationary strategies, and that when the discount tends

to 0, these equilibria converge to a limit (Mertens, 1982). But unlike in

the strictly competitive case, the payo¤ to this limit need not correspond

to an equilibrium of the undiscounted game (Sorin, 1986b). It is not

known whether undiscounted non-strictly competitive stochastic games

need at all have strategic equilibria.

iii. Repeated games model the psychological, informational side of

ongoing relationships. Phenomena like cooperation, altruism, trust, pun-

ishment, and revenge are predicted by the theory. These may be called

‘‘subjective informational’’ phenomena, since what is at issue is informa-

tion about the behaviour of the players. Repeated games of incomplete
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information (1960–1970, ii) also predict ‘‘objective informational’’ phe-

nomena such as secrecy, and signalling of substantive information. Both

kinds of informational issue are quite di¤erent from the ‘‘physical’’ issues

addressed by stochastic games.

Given a strategic game G, consider the game Gy each play of which

consists of an infinite sequence of repetitions of G. At each stage, all

players know the actions taken by all players at all previous stages. The

payo¤ in Gy is some kind of average of the stage payo¤s; we will not

worry about exact definitions here.

Here we state only one basic result, known as the Folk Theorem. Call

an outcome (payo¤ profile) x feasible in G if it is achievable by the all-

player set when using a correlated randomizing device; i.e. is in the con-

vex hull of the ‘‘pure’’ outcomes. Call it strongly individually rational if no

player i can be prevented from achieving xi by the other players, when

they are randomizing independently; i.e. if xi Xmin max HiðsÞ, where
the max is over i’s strategies, and the min is over (n� 1)-tuples of mixed

strategies of the others. The Folk Theorem then says that the equilibrium

outcomes in the repetition Gy coincide with the feasible and strongly

individually rational outcomes in the one-shot game G.

The authorship of the Folk Theorem, which surfaced in the late Fifties,

is obscure. Intuitively, the feasible and strongly individually rational out-

comes are the outcomes that could arise in cooperative play. Thus the

Folk Theorem points to a strong relationship between repeated and

cooperative games. Repetition is a kind of enforcement mechanism;

agreements are enforced by ‘‘punishing’’ deviators in subsequent stages.

iv. The Prisoner’s Dilemma is a two-person non-zero sum strategic game

with payo¤ matrix as depicted in Figure 1. Attributed to A. W. Tucker,

it has deservedly attracted enormous attention; it is said that in the social

Figure 1
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psychology literature alone, over a thousand papers have been devoted

to it.

One may think of the game as follows: Each player decides whether

he will receive $1000 or the other will receive $3000. The decisions are

simultaneous and independent, though the players may consult with each

other before deciding.

The point is that ordinary rationality leads each player to choose the

$1000 for himself, since he is thereby better o¤ no matter what the other

player does. But the two players thereby get only $1000 each, whereas

they could have gotten $3000 each if both had been ‘‘friendly’’ rather

than ‘‘greedy.’’

The universal fascination with this game is due to its representing, in

very stark and transparent form, the bitter fact that when individuals act

for their own benefit, the result may well be disaster for all. This principle

has dozens of applications, great and small, in everyday life. People who

fail to cooperate for their own mutual benefit are not necessarily foolish or

irrational; they may be acting perfectly rationally. The sooner we accept

this, the sooner we can take steps to design the terms of social intercourse

so as to encourage cooperation.

One such step, of very wide applicability, is to make available a mech-

anism for the enforcement of voluntary agreements. ‘‘Pray for the welfare

of government, without whose authority, man would swallow man alive’’

(Ethics of the Fathers III:2). The availability of the mechanism is itself

su‰cient; once it is there, the players are naturally motivated to use it. If

they can make an enforceable agreement yielding (3, 3), they would

indeed be foolish to end up with (1, 1). It is this that motivates the defi-

nition of a cooperative game (1930–1950, i).

The above discussion implies that (g, g) is the unique strategic equilib-

rium of the prisoner’s dilemma. It may also be shown that in any finite

repetition of the game, all strategic equilibria lead to a constant stream of

‘‘greedy’’ choices by each player; but this is a subtler matter than the

simple domination argument used for the one-shot case. In the infinite

repetition, the Folk Theorem (iii) shows that (3, 3) is an equilibrium out-

come; and indeed, there are equilibria that lead to a constant stream of

‘‘friendly’’ choices by each player. The same holds if we discount future

payo¤ in the repeated game, as long as the discount rate is not too large

(Sorin, 1986a).

R. Axelrod (1984) has carried out an experimental study of the

repeated prisoner’s dilemma. Experts were asked to write computer pro-

grammes for playing the game, which were matched against each other in

a ‘‘tournament.’’ At each stage, the game ended with a fixed (small)

probability; this is like discounting. The most successful program in the
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tournament turned out to be a ‘‘cooperative’’ one: Matched against itself,

it yields a constant stream of ‘‘friendly’’ choices; matched against others,

it ‘‘punishes’’ greedy choices. The results of this experiment thus fit in

well with received theoretical doctrine.

The design of this experiment is noteworthy because it avoids the pit-

falls so often found in game experiments: lack of su‰cient motivation

and understanding. The experts chosen by Axelrod understood the game

as well as anybody. Motivation was provided by the investment of their

time, which was much more considerable than that of the average sub-

ject, and by the glory of a possible win over distinguished colleagues.

Using computer programmes for strategies presaged important later

developments (1970–1986, iv).

Much that is fallacious has been written on the one-shot prisoner’s

dilemma. It has been said that for the reasoning to work, pre-play com-

munication between the players must be forbidden. This is incorrect. The

players can communicate until they are blue in the face, and agree sol-

emnly on ( f, f ); when faced with the actual decision, rational players will

still choose g. It has been said that the argument depends on the notion

of strategic equilibrium, which is open to discussion. This too is incorrect;

the argument depends only on strong domination, i.e. on the simple

proposition that people always prefer to get another $1000. ‘‘Resolu-

tions’’ of the ‘‘paradox’’ have been put forward, suggesting that rational

players will play f after all; that my choosing f has some kind of

‘‘mirror’’ e¤ect that makes you choose it also. Worse than just nonsense,

this is actually vicious, since it suggests that the prisoner’s dilemma does

not represent a real social problem that must be dealt with.

Finally, it has been said that the experimental evidence—Axelrod’s

and that of others—contradicts theory. This too is incorrect, since most

of the experimental evidence relates to repeated games, where the friendly

outcome is perfectly consonant with theory; and what evidence there is in

one-shot games does point to a preponderance of ‘‘greedy’’ choices. It is

true that in long finite repetitions, where the only equilibria are greedy,

most experiments nevertheless point to the friendly outcome; but fixed

finite repetitions are somewhat artificial, and besides, this finding, too, can

be explained by theory (Neyman, 1985a; see 1970–1986, iv).

v. We turn now to cooperative issues. A model of fundamental impor-

tance is the bargaining problem of Nash (1950). Formally, it is defined as

a convex set C in the Euclidean plane, containing the origin in its inte-

rior. Intuitively, two players bargain; they may reach any agreement

whose payo¤ profile is in C; if they disagree, they get nothing. Nash listed

four axioms—conditions that a reasonable compromise solution might be
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expected to satisfy—such as symmetry and e‰ciency. He then showed

that there is one and only one solution satisfying them, namely the point

x in the non-negative part of C that maximizes the product x1x2. An

appealing economic interpretation of this solution was given by Harsanyi

(1956).

By varying the axioms, other authors have obtained di¤erent solutions

to the bargaining problem, notably Kalai–Smorodinski (1975) and

Maschler–Perles (1981). Like Nash’s solution, each of these is charac-

terized by a formula with an intuitively appealing interpretation.

Following work of A. Rubinstein (1982), K. Binmore (1987) con-

structed an explicit bargaining model which, when analyzed as a non-

cooperative strategic game, leads to Nash’s solution of the bargaining

problem. This is an instance of a successful application of the ‘‘Nash

program’’ (see 1930–1950, vi). Similar constructions have been made for

other solutions of the bargaining problem.

An interesting qualitative feature of the Nash solution is that it is very

sensitive to risk aversion. A risk loving or risk neutral bargainer will get a

better deal than a risk averse one; this is so even when there are no overt

elements of risk in the situation, nothing random. The very willingness to

take risks confers an advantage, though in the end no risks are actually

taken.

Suppose, for example, that two people may divide $600 in any way

they wish; if they fail to agree, neither gets anything. Let their utility

functions be u1ð$xÞ ¼ x and u2ð$xÞ ¼
ffiffiffi
x

p
, so that 1 is risk neutral, 2 risk

averse. Denominating the payo¤s in utilities rather than dollars, we find

that the Nash solution corresponds to a dollar split of $400–$200 in

favour of the risk neutral bargainer.

This corresponds well with our intuitions. A fearful, risk averse person

will not bargain well. Though there are no overt elements of risk, no

random elements in the problem description, the bargaining itself con-

stitutes a risk. A risk averse person is willing to pay, in terms of a less

favourable settlement, to avoid the risk of the other side’s being adamant,

walking away, and so on.

vi. The value (Shapley, 1953b) is a solution concept that associates with

each coalitional game v a unique outcome fv. Fully characterized by a set

of axioms, it may be thought of as a reasonable compromise or arbitrated

outcome, given the power of the players. Best, perhaps, is to think of it

simply as an index of power, or what comes to the same thing, of social

productivity.

It may be shown that Player i’s value is given by

fiv ¼ ð1=n!Þ
X

viðSi
RÞ;
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where
P

ranges over all n! orders on the set I of all players, Si
R is the set

of players up to and including i in the order R, and viðSÞ is the contribu-

tion vðSÞ � vðSniÞ of i to the coalition S; note that this implies linearity of

fv in v. In words, fiv is i’s mean contribution when the players are

ordered at random; this suggests the social productivity interpretation, an

interpretation that is reinforced by the following remarkable theorem

(Young, 1985): Let c be a mapping from games v to e‰cient outcomes

cv, that is symmetric among the players in the appropriate sense. Sup-

pose civ depends only on the 2n�1 contributions viðSÞ, and monotonically

so. Then c must be the value f. In brief, if it depends on the con-

tributions only, it’s got to be the value, even though we don’t assume lin-

earity to start with.

An intuitive feel for the value may be gained from examples. The value

of the 3-person voting game is (1/3, 1/3, 1/3), as is suggested by symme-

try. This is not in the core, because {1, 2} can improve upon it. But so

can {1, 3} and {2, 3}; starting from (1/3, 1/3, 1/3), the players might be

well advised to leave things as they are (see 1930–1950, iv). Di¤erently

viewed, the symmetric stable set predicts one of the three outcomes (1/2,

1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2). Before the beginning of bargaining,

each player may figure that his chances of getting into a ruling coalition

are 2/3, and conditional on this, his payo¤ is 1/2. Thus his ‘‘expected

outcome’’ is the value, though in itself, this outcome has no stability.

In the homogeneous weighted voting game [3; 2, 1, 1, 1], the value

is (1/2, 1/6, 1/6, 1/6); the large player gets a disproportionate share,

which accords with intuition: ‘‘l’union fait la force.’’

Turning to games of economic interest, we model the market with two

sellers and one buyer discussed above (1930–1950, ix) by the TU

weighted voting game [3; 2, 1, 1]. The core consists of the unique point

(1, 0, 0), which means that the sellers must give their merchandise, for

nothing, to the buyer. While this has clear economic meaning—cutthroat

competition—it does not seem very reasonable as a compromise or an

index of power. After all, the sellers do contribute something; without

them, the buyer could get nothing. If one could be sure that the sellers

will form a cartel to bargain with the buyer, a reasonable compromise

would be (1/2, 1/4, 1/4). In fact, the value is (2/3, 1/6, 1/6), representing

something between the cartel solution and the competitive one; a cartel is

possible, but is not a certainty.

Consider next a market in two perfectly divisible and completely com-

plementary goods, which we may call right and left gloves. There are four

players; initially 1 and 2 hold one and two left gloves respectively, 3 and

4 hold one right glove each. In coalitional form, vð1234Þ ¼ vð234Þ ¼ 2,

vðijÞ ¼ vð12jÞ ¼ vð134Þ ¼ 1, vðSÞ ¼ 0 otherwise, where i ¼ 1, 2, and
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j ¼ 3, 4. The core consists of (0, 0, 1, 1) only; that is, the owners of the

left gloves must simply give away their merchandise, for nothing. This in

itself seems strange enough. It becomes even stranger when one realizes

that Player 2 could make the situation entirely symmetric (as between 1,

2 and 3, 4) simply by burning one glove, an action that he can take alone,

without consulting anybody.

The value can never su¤er from this kind of pathological breakdown in

monotonicity. Here fv ¼ ð1=4, 7/12, 7/12, 7/12), which nicely reflects the

features of the situation. There is an oversupply of left gloves, and 3 and

4 do benefit from it. Also 2 benefits from it; he always has the option of

nullifying it, but he can also use it (when he has an opportunity to strike

a deal with both 3 and 4). The brunt of the oversupply is thus born by 1

who, unlike 2, cannot take measures to correct it.

Finally, consider a market with 2,000,001 players, 1,000,000 holding

one right glove each, and 1,000,001 holding one left glove each. Again,

the core stipulates that the holders of the left gloves must all give away

their merchandise, for nothing. True, there is a slight oversupply of left

gloves; but one would hardly have imagined so drastic an e¤ect from one

single glove out of millions. The value, too, takes the oversupply into

account, but not in such an extreme form; altogether, the left-glove

holders get about 499,557 pairs, the right about 500,443 (Shapley and

Shubik, 1969b). This is much more reasonable, though the e¤ect is still

surprisingly large: The short side gains an advantage that amounts to

almost a thousand pairs.

The value has many di¤erent characterizations, all of them intuitively

meaningful and interesting. We have already mentioned Shapley’s origi-

nal axioms, the value formula, and Young’s characterization. To them

must be added Harsanyi’s (1959) dividend characterization, Owen’s

(1972) fuzzy coalition formula, Myerson’s (1977) graph approach,

Dubey’s (1980) diagonal formula, the potential of Hart and Mas-Colell

(1989), the reduced game axiomatization by the same authors, and

Roth’s (1977) formalization of Shapley’s (1953b) idea that the value rep-

resents the utility to the players of playing a game. Moreover, because of

its mathematical tractability, the value lends itself to a far greater range

of applications than any other cooperative solution concept. And in

terms of general theorems and characterizations for wide classes of games

and economies, the value has a greater range than any other solution

concept, bar none.

Previously (1930–1950, iii), we compared solution concepts of games

to indicators of distributions, like mean and median. In fact the value is

in many ways analogous to the mean, whereas the median corresponds to

something like the core, or to core-like concepts such as the nucleolus
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(1960–1970, iv). Like the core, the median has an intuitively transparent

and compelling definition (the point that cuts the distribution exactly in

half ), but lacks an algebraically neat formula; and like the value, the

mean has a neat formula whose intuitive significance is not entirely

transparent (though through much experience from childhood on, many

people have acquired an intuitive feel for it). Like the value, the mean is

linear in its data; the core, nucleolus, and median are not. Both the mean

and the value are very sensitive to their data: change one datum by a

little, and the mean (or value) will respond in the appropriate direction;

neither the median nor the core is sensitive in this way: one can change

the data in wide ranges without a¤ecting the median (or core) at all. On

the other hand, the median can suddenly jump because of a moderate

change in just one datum; thus the median of 1,000,001 zeros and

1,000,000 ones is 0, but jumps to 1 if we change just one datum from 0 to

1. We have already seen that the core may behave similarly, but the mean

and the value cannot. Both the mean and the value are mathematically

very tractable, resulting in a wide range of applications, both theoretical

and practical; the median and core are less tractable, resulting in a nar-

rower (though still considerable) range of applications.

The first extensive applications of the value were to various voting

games (Shapley and Shubik, 1954). The key observation in this seminal

paper was that the value of a player equals his probability of pivoting—

turning a coalition from losing to winning—when the players are ordered

at random. From this there has grown a very large literature on voting

games. Other important classes of applications are to market games

(1960–1970, v) and political-economic games (e.g. Aumann and Kurz,

1977; Neyman, 1985b).

vii. Axiomatics. The Shapley value and Nash’s solution to the bargaining

problem are examples of the axiomatic approach. Rather than defining a

solution concept directly, one writes down a set of conditions for it to

satisfy, then sees where they lead. In many contexts, even a relatively

small set of fairly reasonable conditions turn out to be self-contradictory;

there is no concept satisfying all of them. The most famous instance of

this is Arrow’s (1951) impossibility theorem for social welfare func-

tions, which is one of the earliest applications of axiomatics in the social

sciences.

It is not easy to pin down precisely what is meant by ‘‘the axiomatic

method.’’ Sometimes the term is used for any formal deductive system,

with undefined terms, assumptions, and conclusions. As understood

today, all of game theory and mathematical economics fits that defi-

nition. More narrowly construed, an axiom system is a small set of

individually transparent conditions, set in a fairly general and abstract

Game Theory75



framework, which when taken together have far-reaching implications.

Examples are Euclid’s axioms for geometry, the Zermelo–Fraenkel

axioms for set theory, the conditions on multiplication that define a

group, the conditions on open sets that define a topological space, and the

conditions on preferences that define utility and/or subjective probability.

Game theoretic solution concepts often have both direct and axiomatic

characterizations. The direct definition applies to each game separately,

whereas most axioms deal with relationships between games. Thus the

formula for the Shapley value fv enables one to calculate it without

referring to any game other than v. But the axioms for f concern rela-

tionships between games; they say that if the values of certain games are

so and so, then the values of certain other, related games must be such

and such. For example, the additivity axiom is fðvþ wÞ ¼ fvþ fw. This

is analogous to direct vs. axiomatic approaches to integration. Direct

approaches such as limit of sum work on a single function; axiomatic

approaches characterize the integral as a linear operator on a space of

functions. (Harking back to the discussion at (vi), we note that the

axioms for the value are quite similar to those for the integral, which

in turn is closely related to the mean of a distribution.)

Shapley’s value and the solutions to the bargaining problem due to

Nash (1950), Kalai–Smorodinski (1975) and Maschler–Perles (1981)

were originally conceived axiomatically, with the direct characterization

coming afterwards. In other cases the process was reversed; for example,

the nucleolus, NTU Shapley value, and NTU Harsanyi value were all

axiomatized only years after their original direct definition (see 1960–

1970). Recently the core, too, has been axiomatized (Peleg, 1985, 1986).

Since axiomatizations concern relations between di¤erent games, one

may ask why the players of a given game should be concerned with other

games, which they are not playing. This has several answers. Viewed as

an indicator, a solution of a game doesn’t tell us much unless it stands in

some kind of coherent relationship to the solutions of other games. The

ratings for a rock climb tell you something if you have climbed other

rocks whose ratings you know; topographic maps enable you to take in a

situation at a glance if you have used them before, in di¤erent areas. If

we view a solution as an arbitrated or imposed outcome, it is natural to

expect some measure of consistency from an arbitrator or judge. Indeed,

much of the law is based on precedent, which means relating the solution

of the given ‘‘game’’ to those of others with known solutions. Even when

viewing a solution concept as a norm of actual behaviour, the very word

‘‘norm’’ implies that we are thinking of a function on classes of games

rather than of a single game; outcomes are largely based on mutual

expectations, which are determined by previous experience with other

games, by ‘‘norms.’’
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Axiomatizations serve a number of useful purposes. First, like any

other alternative characterization, they shed additional light on a con-

cept, enable us to ‘‘understand’’ it better. Second, they underscore and

clarify important similarities between concepts, as well as di¤erences

between them. One example of this is the remarkable ‘‘reduced game

property’’ or ‘‘consistency principle,’’ which is associated in various dif-

ferent forms with just about every solution concept, and plays a key role

in many of the axiomatizations (see 1970–1986, vi). Another example

consists of the axiomatizations of the Shapley and Harsanyi NTU values.

Here the axioms are exact analogues, except that in the Shapley case they

refer to payo¤ profiles, and in the Harsanyi case to 2n-tuples of payo¤

profiles, one for each of the 2n coalitions (Hart, 1985a). This underscores

the basic di¤erence in outlook between those two concepts: The Shapley

value assumes that the all-player coalition eventually forms, the inter-

mediate coalitions being important only for bargaining chips and threats,

whereas the Harsanyi value takes into account a real possibility of the

intermediate coalitions actually forming.

Last, an important function of axiomatics relates to ‘‘counterintuitive

examples,’’ in which a solution concept yields outcomes that seem

bizarre; e.g. the cores of some of the games discussed above in (vi). Most

axioms appearing in axiomatizations do seem reasonable on the face of

it, and many of them are in fact quite compelling. The fact that a rela-

tively small selection of such axioms is often categoric (determines a

unique solution concept), and that di¤erent such selections yield di¤erent

answers, implies that all together, these reasonable-sounding axioms are

contradictory. This, in turn, implies that any one solution concept will

necessarily violate at least some of the axioms that are associated with

other solution concepts; thus if the axioms are meant to represent intu-

ition, counter-intuitive examples are inevitable.

In brief, axiomatics underscores the fact that a ‘‘perfect’’ solution con-

cept is an unattainable goal, a fata morgana; there is something ‘‘wrong’’

—some quirk—with every one. Any given kind of counterintuitive

example can be eliminated by an appropriate choice of solution concept,

but only at the cost of another quirk turning up. Di¤erent solution con-

cepts can therefore be thought of as results of choosing not only which

properties one likes, but also which examples one wishes to avoid.

1960–1970

The Sixties were a decade of growth. Extensions such as games of

incomplete information and NTU coalitional games made the theory
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much more widely applicable. The fundamental underlying concept of

common knowledge was formulated and clarified. Core theory was

extensively developed and applied to market economies; the bargaining

set and related concepts such as the nucleolus were defined and inves-

tigated; games with many players were studied in depth. The discipline

expanded geographically, outgrowing the confines of Princeton and

Rand; important centres of research were established in Israel, Germany,

Belgium and the Soviet Union. Perhaps most important was the forging

of a strong, lasting relationship with mathematical economics and eco-

nomic theory.

i. NTU coalitional games and NTU value. Properly interpreted, the coa-

litional form (1930–1950, ii) applies both to TU and to NTU games;

nevertheless, for many NTU applications one would like to describe the

opportunities available to each coalition more faithfully than can be done

with a single number. Accordingly, define a game in NTU coalitional

form as a function that associates with each coalition S a set V(S) of

S-tuples of real numbers (functions from S to R). Intuitively, V(S) repre-

sents the set of payo¤ S-tuples that S can achieve. For example, in an

exchange economy, V(S) is the set of utility S-tuples that S can achieve

when its members trade among themselves only, without recourse to

agents outside of S. Another example of an NTU coalitional game

is Nash’s bargaining problem (1950–1960, iii), where one can take

Vðf1; 2gÞ ¼ C, Vð1Þ ¼ f0g, Vð2Þ ¼ f0g.
The definitions of stable set and core extend straightforwardly to NTU

coalitional games, and these solution concepts were among the first to be

investigated in that context (Aumann and Peleg, 1960; Peleg, 1963a;

Aumann, 1961). The first definitions of NTU value were proposed by

Harsanyi (1959, 1963), but they proved di‰cult to apply. Building on

Harsanyi’s work, Shapley (1969) defined a value for NTU games that has

proved widely applicable and intuitively appealing.

For each profile l of non-negative numbers and each outcome x, define

the weighted outcome lx by ðlxÞi ¼ lixi. Let vlðSÞ be the maximum total

weight that the coalition S can achieve,

vlðSÞ ¼ max

�X
i A S

lixi; x A VðSÞ
�
:

Call an outcome x an NTU value of V if x A VðNÞ and there exists a

weight profile l with lx ¼ fvl; in words, if x is feasible and corresponds

to the value of one of the coalitional games vl.

Intuitively, vlðSÞ is a numerical measure of S’s total worth and hence

fivl measures i’s social productivity. The weights li are chosen so that
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the resulting value is feasible; an infeasible result would indicate that

some people are overrated (or underrated), much like an imbalance

between supply and demand indicates that some goods are overpriced (or

underpriced).

The NTU value of a game need not be unique. This may at first sound

strange, since unlike stability concepts such as the core, one might expect

an ‘‘index of social productivity’’ to be unique. But perhaps it is not so

strange when one reflects that even a person’s net worth depends on the

prevailing (equilibrium) prices, which are not uniquely determined by the

exogenous description of the economy.

The Shapley NTU value has been used in a very wide variety of eco-

nomic and political-economic applications. To cite just one example, the

Nash bargaining problem has a unique NTU value, which coincides with

Nash’s solution. For a partial bibliography of applications, see the refer-

ences of Aumann (1985).

We have discussed the historical importance of TU as pointing the way

for NTU results (1930–1950, vi). There is one piquant case in the reverse

direction. Just as positive results are easier to obtain for TU, negative

results are easier for NTU. Non-existence of stable sets was first dis-

covered in NTU games (Stearns, 1964), and this eventually led to Lucas’s

famous example (1969) of non-existence for TU.

ii. Incomplete information. In 1957, Luce and Rai¤a wrote that a funda-

mental assumption of game theory is that ‘‘each player . . . is fully aware

of the rules of the game and the utility functions of each of the players . . .

this is a serious idealization which only rarely is met in actual situations’’

(p. 49). To deal with this problem, John Harsanyi (1967) constructed the

theory of games of incomplete information (sometimes called di¤erential

or asymmetric information). This major conceptual breakthrough laid

the theoretical groundwork for the great blooming of information eco-

nomics that got under way soon thereafter, and that has become one of

the major themes of modern economics and game theory.

For simplicity, we confine attention to strategic form games in which

each player has a fixed, known set of strategies, and the only uncertainty

is about the utility functions of the other players; these assumptions are

removable. Bayesian rationality in the tradition of Savage (1954) dictates

that all uncertainty can be made explicit; in particular, each player has

a personal probability distribution on the possible utility (payo¤ ) func-

tions of the other player. But these distributions are not su‰cient to

describe the situation. It is not enough to specify what each player

thinks about the other’s payo¤s; one must also know what he thinks they

think about his (and each others’) payo¤s, what he thinks they think he
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thinks about their payo¤s, and so on. This complicated infinite regress

would appear to make useful analysis very di‰cult.

To cut this Gordian knot, Harsanyi postulated that each player may be

one of several types, where a type determines both a player’s own utility

function and his personal probability distribution on the types of the

other players. Each player is postulated to know his own type only. This

enables him to calculate what he thinks the other players’ types—and

therefore their utilities—are. Moreover, his personal distribution on their

types also enables him to calculate what he thinks they think about his

type, and therefore about his utility. The reasoning extends indefinitely,

and yields the infinite regress discussed above as an outcome.

Intuitively, one may think of a player’s type as a possible state of mind,

which would determine his utility as well as his distribution over others’

states of mind. One need not assume that the number of states of mind

(types) is finite; the theory works as well for, say, a continuum of types.

But even with just two players and two types for each player, one gets a

non-trivial infinite string of beliefs about utilities, beliefs about beliefs,

and so on.

A model of this kind—with players, strategies, types, utilities, and per-

sonal probability distributions—is called an I-game (incomplete informa-

tion game). A strategic equilibrium in an I-game consists of a strategy for

each type of each player, which maximizes that type’s expected payo¤

given the strategies of the other players’ types.

Harsanyi’s formulation of I-games is primarily a device for thinking

about incomplete information in an orderly fashion, bringing that wild,

bucking infinite regress under conceptual control. An (incomplete) anal-

ogy is to the strategic form of a game, a conceptual simplification without

which it is unlikely that game theory would have gotten very far. Practi-

cally speaking, the strategic form of a particular game such as chess is

totally unmanageable, one can’t even begin to write it down. The advan-

tage of the strategic form is that it is a comparatively simple formulation,

mathematically much simpler than the extensive form; it enables one to

formulate and calculate examples, which suggest principles that can be

formulated and proved as general theorems. All this would be much

more di‰cult—probably unachievable—with the extensive form; one

would be unable to see the forest for the trees. A similar relationship

holds between Harsanyi’s I-game formulation and direct formulations in

terms of beliefs about beliefs. (Compare the discussion of perspective

made in connection with the coalitional form (1930–1950, i). That sit-

uation is somewhat di¤erent, though, since in going to the coalitional

form, substantive information is lost. Harsanyi’s formulation of I-games

loses no information; it is a more abstract and simple—and hence trans-
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parent and workable—formulation of the same data as would be con-

tained in an explicit description of the infinite regress.)

Harsanyi called an I-game consistent if all the personal probability dis-

tributions of all the types are derivable as posteriors from a single prior

distribution p on all n-tuples of types. Most applications of the theory

have assumed consistency. A consistent I-game is closely related to the

ordinary strategic game (C-game) obtained from it by allowing ‘nature’

to choose an n-tuple of types at random according to the distribution p,

then informing each player of his type, and then playing the I-game as

before. In particular, the strategic equilibria of a consistent I-game are

essentially the same as the strategic equilibria of the related C-game. In

the cooperative theory, however, an I-game is rather di¤erent from the

related C-game, since binding agreements can only be made after the

players know their types. Bargaining and other cooperative models

have been treated in the incomplete information context by Harsanyi and

Selten (1972), Wilson (1978), Myerson (1979, 1984), and others.

In a repeated game of incomplete information, the same game is

played again and again, but the players do not have full information

about it; for example, they may not know the others’ utility functions.

The actions of the players may implicitly reveal private information, e.g.

about preferences; this may or may not be advantageous for them. We

have seen (1950–1960, iii) that repetition may be viewed as a paradigm

for cooperation. Strategic equilibria of repeated games of incomplete

information may be interpreted as a subtle bargaining process, in which

the players gradually reach wider and wider agreement, developing trust

for each other while slowly revealing more and more information (Hart

1985b).

iii. Common knowledge. Luce and Rai¤a, in the statement quoted at the

beginning of (ii), missed a subtle but important point. It is not enough

that each player be fully aware of the rules of the game and the utility

functions of the players. Each player must also be aware of this fact, i.e.

of the awareness of all the players; moreover, each player must be aware

that each player is aware that each player is aware, and so on ad infin-

itum. In brief, the awareness of the description of the game by all players

must be a part of the description itself.

There is evidence that game theorists had been vaguely cognizant of

the need for some such requirement ever since the late Fifties or early

Sixties; but the first to give a clear, sharp formulation was the philos-

opher D. K. Lewis (1969). Lewis defined an event as common knowledge

among a set of agents if all know it, all know that all know it, and so on

ad infinitum.

Game Theory81



The common knowledge assumption underlies all of game theory and

much of economic theory. Whatever be the model under discussion,

whether complete or incomplete information, consistent or inconsistent,

repeated or one-shot, cooperative or non-cooperative, the model itself

must be assumed common knowledge; otherwise the model is insu‰-

ciently specified, and the analysis incoherent.

iv. Bargaining set, kernel, nucleolus. The core excludes the unique sym-

metric outcome (1/3, 1/3, 1/3) of the three-person voting game, because

any two-person coalition can improve upon it. Stable sets (1930–1950, v)

may be seen as a way of expressing our intuitive discomfort with this

exclusion. Another way is the bargaining set (Davis and Maschler, 1967).

If, say, 1 suggests (1/2, 1/2, 0) to replace (1/3, 1/3, 1/3), then 3 can sug-

gest to 2 that he is as good a partner as 1; indeed, 3 can even o¤er 2/3 to

2, still leaving himself with the 1/3 he was originally assigned. Formally,

if we call (1/2, 1/2, 0) an objection to (1/3, 1/3, 1/3), then (0, 2/3, 1/3) is a

counter-objection, since it yields to 3 at least as much as he was originally

assigned, and yields to 3’s partners in the counter-objection at least as

much as they were assigned either originally or in the objection. In brief,

the counter-objecting player tells the objecting one, ‘‘I can maintain my

level of payo¤ and that of my partners, while matching your o¤ers to

players we both need.’’ An imputation is in the core i¤ there is no objec-

tion to it. It is in the bargaining set i¤ there is no justified objection to it,

i.e. one that has no counter-objection.

Like the stable sets, the bargaining set includes the core (dominating

and objecting are essentially the same). Unlike the core and the set of

stable sets, the bargaining set is for TU games never empty (Peleg, 1967).

For NTU it may be empty (Peleg, 1963b); but Asscher (1976) has defined

a non-empty variant; see also Billera (1970a).

Crucial parameters in calculating whether an imputation x is in the

bargaining set of v are the excesses vðSÞ � xðSÞ of coalitions S w.r.t. x,

which measure the ability of members of S to use x in an objection (or

counter-objection). Not, as is often wrongly assumed, because the ini-

tiator of the objection can assign the excess to himself while keeping his

partners at their original level, but for precisely the opposite reason:

because he can parcel out the excess to his partners, which makes counter-

objecting more di‰cult.

The excess is so ubiquitous in bargaining set calculations that it even-

tually took on intuitive significance on its own. This led to the for-

mulation of two additional solution concepts: the kernel (Davis and

Maschler, 1965), which is always included in the bargaining set but is

often much smaller, and the nucleolus (Schmeidler, 1969), which always

consists of a single point in the kernel.
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To define the nucleolus, choose first all those imputations x whose

maximum excess (among the 2n excesses vðSÞ � xðSÞÞ is minimum

(among all imputations). Among the resulting imputations, choose next

those whose second largest excess is minimum, and so on. Schmeidler’s

theorem asserts that by the time we have gone through this procedure 2n

times, there is just one imputation left.

We have seen that the excess is a measure of a coalition’s ‘manoeuv-

ring ability’; in these terms the greatest measure of stability, as expressed

by the nucleolus, is reached when all coalitions have manoeuvring ability

as nearly alike as possible. An alternative interpretation of the excess is as

a measure of S’s total dissatisfaction with x, the volume of the cry that S

might raise against x. In these terms, the nucleolus suggests that the final

accommodation is determined by the loudest cry against it. Note that the

total cry is determining, not the average cry; a large number of moder-

ately unhappy citizens can be as potent a force for change as a moderate

number of very unhappy ones. Variants of the nucleolus that use the

average excess miss this point.

When the core is non-empty, the nucleolus is always in it. The nucleo-

lus has been given several alternative characterizations, direct (Kohlberg,

1971, 1972) as well as axiomatic (Sobolev, 1975). The kernel was axio-

matically characterized by Peleg (1986), and many interesting relation-

ships have been found between the bargaining set, core, kernel, and

nucleolus (e.g. Maschler, Peleg and Shapley, 1979). There is a large body

of applications, of which we here cite just one: In a decisive weighted

voting game, the nucleolus constitutes a set of weights (Peleg, 1968).

Thus the nucleolus may be thought of as a natural generalization of

‘‘voting weights’’ to arbitrary games. (We have already seen that value

and weights are quite di¤erent: see 1950–1960, vi.)

v. The Equivalence Principle. Perhaps the most remarkable single phe-

nomenon in game and economic theory is the relationship between the

price equilibria of a competitive market economy, and all but one of the

major solution concepts for the corresponding game (the one exception is

the stable set, about which more below). By a ‘‘market economy’’ we

here mean a pure exchange economy, or a production economy with

constant returns.

We call an economy ‘‘competitive’’ if it has many agents, each indi-

vidual one of whom has too small an endowment to have a significant

e¤ect. This has been modelled by three approaches. In the asymptotic

approach, one lets the number of agents tend to infinity, and shows that

in an appropriate sense, the solution concept in question—core, value,

bargaining set, or strategic equilibrium—tends to the set of competitive
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allocations (those corresponding to price equilibria). In the continuum

approach, the agents constitute a (non-atomic) continuum, and one shows

that the solution concept in question actually equals the set of com-

petitive allocations. In the non-standard approach, the agents constitute a

non-standard model of the integers in the sense of Robinson (1970), and

again one gets equality. Both the continuum and the non-standard

approaches require extensions of the theory to games with infinitely many

players; see vi.

Intuitively, the equivalence principle says that the institution of market

prices arises naturally from the basic forces at work in a market, (almost)

no matter what we assume about the way in which these forces work.

Compare (1930–1950, ix).

For simplicity in this section, unless otherwise indicated, the terms

‘‘core,’’ ‘‘value,’’ etc., refer to the limiting case. Thus ‘‘core’’ means the

limit of the cores of the finite economies, or the core of the continuum

economy, or of the non-standard economy.

For the core, the asymptotic approach was pioneered by Edgeworth

(1881), Shubik (1959a) and Debreu and Scarf (1963). Anderson (1986) is

an excellent survey of the large literature that ensued. Early writers on

the continuum approach included Aumann (1964) and Vind (1965); the

non-standard approach was developed by Brown and Robinson (1975).

Except for Shubik’s, all these contributions were NTU. See the entry on

core. After a twenty-year courtship, this was the honeymoon of game

theory and mathematical economics, and it is di‰cult to convey the

palpable excitement of those early years of intimacy between the two

disciplines.

Some early references for the value equivalence principle, covering

both the asymptotic and continuum approaches, were listed above (1930–

1950, vi). For the non-standard approach, see Brown and Loeb (1976).

Whereas the core of a competitive economy equals the set of all com-

petitive allocations, this holds for the value only when preferences are

smooth (Shapley, 1964; Aumann and Shapley, 1974; Aumann 1975; Mas-

Colell, 1977). Without smoothness, every value allocation is competitive,

but not every competitive allocation need be a value allocation. When

preferences are kinky (non-di¤erentiable utilities), the core is often quite

large, and then the value is usually a very small subset of the core; it gives

much more information. In the TU case, for example, the value is always

a single point, even when the core is very large. Moreover, it occupies a

central position in the core (Hart, 1980; Tauman, 1981; Mertens, 1987);

in particular, when the core has a centre of symmetry, the value is that

centre of symmetry (Hart, 1977a).
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For example, suppose that in a glove market (1950–1960, vi), the

number (or measure) of left-glove holders equals that of right-glove

holders. Then at a price equilibrium, the price ratio between left and right

gloves may be anything between 0 and y (inclusive!). Thus the left-glove

holders may end up giving away their merchandise for nothing to the

right-glove holders, or the other way around, or anything in between.

The same, of course, holds for the core. But the value prescribes precisely

equal prices for right and left gloves.

It should be noted that in a finite market, the core contains the com-

petitive allocations, but usually also much more. As the number of agents

increases, the core ‘‘shrinks,’’ in the limit leaving only the competitive

allocations. This is not so for the value; in finite markets, the value allo-

cations may be disjoint from the core, and a fortiori from the competitive

allocations (1950–1960, vi).

We have seen (1930–1950, iv) that the core represents a very strong

and indeed not quite reasonable notion of stability. It might therefore

seem perhaps not so terribly surprising that it shrinks to the competitive

allocations. What happens, one may ask, when one considers one of the

more reasonable stability concepts that are based on domination, such as

the bargaining set or the stable sets?

For the bargaining set of TU markets, an asymptotic equivalence

theorem was established by Shapley and Shubik in the mid-Seventies,

though it was not published until 1984. Extending this result to NTU, to

the continuum, or to both seemed di‰cult. The problems were con-

ceptual as well as mathematical; it was di‰cult to give a coherent for-

mulation. In 1986, Shapley presented the TU proof at a conference on

the equivalence principle that took place at Stony Brook. A. Mas-Colell,

who was in the audience, recognized the relevance of several results that

he had obtained in other connections; within a day or two he was able

to formulate and prove the equivalence principle for the bargaining set

in NTU continuum economies (Mas-Colell, 1988). In particular, this

implies the core equivalence principle; but it is a much stronger and more

satisfying result.

For the strategic equilibrium the situation had long been less sat-

isfactory, though there were results (Shubik, 1973; Dubey and Shapley,

1994). The di‰culty was in constructing a satisfactory strategic (or

extensive) model of exchange. Very recently Douglas Gale (1986) pro-

vided such a model and used it to prove a remarkable equivalence theo-

rem for strategic equilibria in the continuum mode.

The one notable exception to the equivalence principle is the case of

stable sets, which predict the formation of cartels even in fully com-

petitive economies (Hart, 1974). For example, suppose half the agents in
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a continuum initially hold 2 units of bread each, half initially hold 2 units

of cheese, and the utility functions are concave, di¤erentiable, and sym-

metric (e.g., uðx; yÞ ¼
ffiffiffi
x

p
þ ffiffiffi

y
p

). There is then a unique price equilib-

rium, with equal prices for bread and cheese. Thus each agent ends up

with one piece of bread and one piece of cheese; this is also the unique

point in the core and in the bargaining set, and the unique NTU value.

But stable set theory predicts that the cheese holders will form a cartel,

the bread holders will form a cartel, and these two cartels will bargain

with each other as if they were individuals. The upshot will depend on the

bargaining, and may yield an outcome that is much better for one side

than for the other. Thus at each point of the unique stable set with the

full symmetry of the game, each agent on each side gets as much as each

other agent on that side; but these two amounts depend on the bargain-

ing, and may be quite di¤erent from each other.

In a sense, the failure of stable set theory to fall into line makes the

other results even more impressive. It shows that there isn’t some implicit

tautology lurking in the background, that the equivalence principle

makes a substantive assertion.

In the Theory of Games, von Neumann and Morgenstern (1944) wrote

that

when the number of participants becomes really great, some hope emerges that
the influence of every particular participant will become negligible . . . These are,
of course, the classical conditions of ‘‘free competition’’ . . . The current assertions
concerning free competition appear to be very valuable surmises and inspiring
anticipations of results. But they are not results, and it is scientifically unsound to
treat them as such.

One may take the theorems constituting the equivalence principle as

embodying precisely this kind of ‘‘result.’’ Yet it is interesting that

Morgenstern himself, who died in 1977, never became convinced of the

validity of the equivalence principle; he thought of it as mathematically

correct but economically wrongheaded. It was his firm opinion that eco-

nomic agents organize themselves into coalitions, that perfect competi-

tion is a fiction, and that stable sets explain it all. The greatness of the

man is attested to by the fact that though scientifically opposed to the

equivalence principle, he gave generous support, both financial and

moral, to workers in this area.

vi. Many players. The preface to Contributions to the Theory of Games I

(Kuhn and Tucker, 1950) contains an agenda for future research that is

remarkable in that so many of its items—computation of minimax, exis-

tence of stable sets, n-person value, NTU games, dynamic games—did in

fact become central in subsequent work. Item 11 in this agenda reads,
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‘‘establish significant asymptotic properties of n-person games, for large

n.’’ We have seen (v) how this was realized in the equivalence principle

for large economies. But actually, political game models with many

players are at least as old as economic ones, and may be older. During

the early Sixties, L. S. Shapley, working alone and with various collabo-

rators, wrote a series of seven memoranda at the Rand Corporation

under the generic title ‘‘Values of Large Games,’’ several of which

explored models of large elections, using the asymptotic and the con-

tinuum approaches. Among these were models which had both ‘‘atoms’’—

players who are significant as individuals—and an ‘ocean’ of individually

insignificant players. One example of this is a corporation with many

small stockholders and a few large stockholders; see also Milnor and

Shapley (1978). ‘‘Mixed’’ models of this kind—i.e., with an ocean as well

as atoms—have been explored in economic as well as political contexts

using various solution notions, and a large literature has developed. The

core of mixed markets has been studied by Drèze, Gabszewicz and Gepts

(1969), Gabszewicz and Mertens (1971), Shitovitz (1973) and many

others. For the nucleolus of ‘‘mixed’’ voting games, see Galil (1974).

Among the studies of values of mixed games are Hart (1973), Fogelman

and Quinzii (1980), and Neyman (1987).

Large games in which all the players are individually insignificant—

non-atomic games—have also been studied extensively. Among the early

contributions to value theory in this connection are Kannai (1966), Riker

and Shapley (1968), and Aumann and Shapley (1974). The subject has

proliferated greatly, with well over a hundred contributions since 1974,

including theoretical contributions as well as economic and political

applications.

There are also games with infinitely many players in which all the

players are atoms, namely games with a denumerable infinity of players.

Again, values and voting games loom large in this literature. See, e.g.,

Shapley (1962), Artstein (1972) and Berbee (1981).

vii. Cores of finite games and markets. Though the core was defined as an

independent solution concept by Gillies and Shapley already in the early

Fifties, it was not until the Sixties that a significant body of theory was

developed around it. The major developments centre around conditions

for the core to be non-empty; gradually it came to be realized that such

conditions hold most naturally and fully when the game has an ‘‘eco-

nomic’’ rather than a ‘‘political’’ flavour, when it may be thought of as

arising from a market economy.

The landmark contributions in this area were the following: the Gale–

Shapley 1962 paper on the core of a marriage market; the work of
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Bondareva (1963) and Shapley (1967) on the balancedness condition for

the non-emptiness of the core of a TU game; Scarf ’s 1967 work on bal-

ancedness in NTU games; the work of Shapley and Shubik (1969a) char-

acterizing TU market games in terms of non-emptiness of the core; and

subsequent work, mainly associated with the names of Billera and Bixby

(1973), that extended the Shapley–Shubik condition to NTU games.

Each of these contributions was truly seminal, in that it inspired a large

body of subsequent work.

Gale and Shapley (1962) asked whether it is possible to match m

women with m men so that there is no pair consisting of an unmatched

woman and man who prefer each other to the partners with whom they

were matched. The corresponding question for homosexuals has a neg-

ative answer: the preferences of four homosexuals may be such that

no matter how they are paired o¤, there is always an unmatched pair of

people who prefer each other to the person with whom they were

matched. This is so, for example, if the preferences of a, b, and c are

cyclic, whereas d is lowest in all the others’ scales. But for the hetero-

sexual problem, Gale and Shapley showed that the answer is positive.

This may be stated by saying that the appropriately defined NTU coa-

litional game has a non-empty core. Gale and Shapley proved not only

the non-emptiness but also provided a simple algorithm for finding a

point in it.

This work has spawned a large literature on the cores of discrete

market games. One fairly general recent result is Kaneko and Wooders

(1982), but there are many others. A fascinating application to the

assignment of interns to hospitals has been documented by Roth (1984).

It turns out that American hospitals, after fifty years of turmoil, finally

developed in 1950 a method of assignment that is precisely a point in the

core.

We come now to general conditions for the core to be non-empty. Call

a TU game v superadditive at a coalition U if vðUÞX
P

j vðSjÞ for any

partition of U into disjoint coalition Sj. This may be strengthened by

allowing partitions of U into disjoint ‘‘part-time’’ coalitions yS, inter-

preted as coalitions S operating during a proportion y of the time

(0W yW 1). Such a partition is therefore a family fyjSjg, where the total

amount of time that each player in U is employed is exactly 1; i.e., whereP
j yjwSj ¼ wU, where wS is the indicator function of S. If we think of vðSÞ

as the revenue that S can generate when operating full-time, then the

part-time coalition yS generates yvðSÞ. Superadditivity at U for part-time

coalitions thus means thatX
j

yjwSj ¼ wU implies vðUÞX
X
j

yjvðSjÞ:
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A TU game v obeying this condition for U ¼ I is called balanced; for all

U, totally balanced.

Intuitively, it is obvious that a game with a non-empty core must be

superadditive at I; and once we have the notion of part-time coalitions, it

is only slightly less obvious that it must be balanced. The converse was

established (independently) by Bondareva (1963) and Shapley (1967).

Thus a TU game has a non-empty core if and only if it is balanced.

The connection between the core and balancedness (generalized super-

additivity) led to several lines of research. Scarf (1967) extended the

notion of balancedness to NTU games, then showed that every balanced

NTU game has a non-empty core. Unlike the Bondareva–Shapley proof,

which is based on linear programming methods, Scarf ’s proof was more

closely related to fixed-point ideas. Eventually, Scarf realized that his

methods could be used actually to prove Brouwer’s fixed-point theorem,

and moreover, to develop e¤ective algorithms for approximating fixed

points. This, in turn, led to the development of algorithms for approx-

imating competitive equilibria of economies (Scarf, 1973), and to a whole

area of numerical analysis dealing with the approximation of fixed

points.

An extension of the Bondareva–Shapley result to the NTU case that is

di¤erent from Scarf ’s was obtained by Billera (1970a).

Another line of research that grew out of balancedness deals with

characterizing markets in purely game-theoretic terms. When can a given

coalitional game v be expressed as a market game (1930–1950, ii)? The

Bondareva–Shapley theorem implies that market games have non-empty

cores, and this also follows from the fact that outcomes corresponding

to competitive equilibria are always in the core. Since a subgame of a

market game is itself a market game, it follows that for v to be a market

game, it is necessary that it and all its subgames have non-empty cores, i.e.,

that the game be totally balanced. (A subgame of a coalitional game v is

defined by restricting its domain to subcoalitions of a given coalition U.)

Shapley and Shubik (1969a) showed that this necessary condition is also

su‰cient. Balancedness itself is not su‰cient, since there exist games

with non-empty cores having subgames with empty cores (e.g., jIj ¼ 4,

vðSÞ :¼ 0, 0, 1, 1, 2 when jSj ¼ 0, 1, 2, 3, 4, respectively).

For the NTU case, characterizations of market games have been

obtained by Billera and Bixby (1973), Mas-Colell (1975), and others.

Though the subject of this section is finite markets, it is nevertheless

worthwhile to relate the results to non-atomic games (where the players

constitute a non-atomic continuum, an ‘‘ocean’’). The total balancedness

condition then takes on a particularly simple form. Suppose, for sim-

plicity, that v is a function of finitely many measures, i.e., vðSÞ ¼ f ðmðSÞÞ,
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where m ¼ ðm1; . . . ; mnÞ, and the mj are non-atomic measures. Then v is a

market game i¤ f is concave and 1-homogeneous ð f ðyxÞ ¼ yf ðxÞÞ when

yX 0). This is equivalent to saying that v is superadditive (at all coali-

tions), and f is 1-homogeneous (Aumann and Shapley, 1974).

Perhaps the most remarkable expression of the connection between

superadditivity and the core has been obtained by Wooders (1983). Con-

sider coalitional games with a fixed finite number k of ‘types’ of players,

the coalitional form being given by vðSÞ ¼ f ðmðSÞÞ, where mðSÞ is the

profile of type sizes in S, i.e. it is a vector whose i’th coordinate represents

the number of type i players in S. (To specify the game, mðIÞ must also

be specified.) Assume that f is superadditive, i.e. f ðxþ yÞX f ðxÞ þ f ðyÞ
for all x and y with non-negative integer coordinates; this assures the

superadditivity of v. Moreover, assume that f obeys a ‘Lipschitz’ con-

dition, namely that j f ðxÞ � f ðyÞj=kx� yk is uniformly bounded for all

x 6¼ y, where kxk :¼ maxj jxjj. Then for each e > 0, when the number of

players is su‰ciently large, the e-core is non-empty. (The e-core is defined

as the set of all outcomes x such that xðSÞX vðSÞ � ejSj for all S.)

Roughly, the result says that the core is ‘‘almost’’ non-empty for suf-

ficiently large games that are superadditive and obey the Lipschitz

condition. Intuitively, the superadditivity together with the Lipschitz

condition yield ‘‘approximate’’ 1-homogeneity, and in the presence of

1-homogeneity, superadditivity is equivalent to concavity. Thus f is ap-

proximately a 1-homogeneous concave function, so that we are back in

a situation similar to that treated in the previous paragraph. What makes

this result so remarkable is that other than the Lipschitz condition, the

only substantive assumption is superadditivity.

Wooders (1983) also obtained a similar theorem for NTU; Wooders

and Zame (1984) obtained a formulation that does away with the finite

type assumption.

1970–1986

We do not yet have su‰cient distance to see the developments of this

period in proper perspective. Political and political-economic models

were studied in depth. Non-cooperative game theory was applied to a

large variety of particular economic models, and this led to the study of

important variants on the refinements of the equilibrium concept. Great

strides forward were made in almost all the areas that had been initiated

in previous decades, such as repeated games (both of complete and of

incomplete information), stochastic games, value, core, nucleolus, bar-

gaining theory, games with many players, and so on (many of these
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developments have been mentioned above). Game Theory was applied to

biology, computer science, moral philosophy, cost allocation. New light

was shed on old concepts such as randomized strategies.

Sociologically, the discipline proliferated greatly. Some 16 or 17 people

participated in the first international workshop on game theory held

in Jerusalem in 1965; the fourth one, held in Cornell in 1978, attracted

close to 100, and the discipline is now too large to make such workshops

useful. An international workshop in the relatively restricted area of

repeated games, held in Jerusalem in 1985, attracted over fifty partic-

ipants. The International Journal of Game Theory was founded in 1972;

Mathematics of Operations Research, founded in 1975, was organized

into three major ‘‘areas,’’ one of them Game Theory. Economic theory

journals, such as the Journal of Mathematical Economics, the Journal of

Economic Theory, Econometrica, and others devoted increasing pro-

portions of their space to game theory. Important centres of research,

in addition to the existing ones, sprang up in France, Holland, Japan,

England, and India, and at many universities in the United States.

Gradually, game theory also became less personal, less the exclusive

concern of a small ‘‘in’’ group whose members all know each other. For

years, it had been a tradition in game theory to publish only a fraction of

what one had found, and then only after great delays, and not always

what is most important. Many results were passed on by word of mouth,

or remained hidden in ill-circulated research memoranda. The ‘‘Folk

Theorem’’ to which we alluded above (1950–1960, iii) is an example. This

tradition had both beneficial and deleterious e¤ects. On the one hand,

people did not rush into print with trivia, and the slow cooking of results

improved their flavour. As a result, phenomena were sometimes redis-

covered several times, which is perhaps not entirely bad, since you

understand something best when you discover it yourself. On the other

hand, it was di‰cult for outsiders to break in; non-publication caused

less interest to be generated than would otherwise have been, and signif-

icantly impeded progress.

Be that as it may, those day are over. There are now hundreds of

practitioners, they do not all know each other, and sometimes have never

even heard of one another. It is no longer possible to communicate in the

old way, and as a result, people are publishing more quickly. As in other

disciplines, it is becoming di‰cult to keep abreast of the important

developments. Game theory has matured.

i. Applications to biology. A development of outstanding importance,

whose implications are not yet fully appreciated, is the application of

game thory to evolutionary biology. The high priest of this subject is John
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Maynard Smith (1982), a biologist whose concept of evolutionarily stable

strategy, a variant of strategic equilibrium, caught the imagination both

of biologists and of game theorists. On the game theoretic side, the theme

was taken up by Reinhard Selten (1980, 1983) and his school; a confer-

ence on ‘‘Evolutionary theory in biology and economics,’’ organized by

Selten in Bielefeld in 1985, was enormously successful in bringing field

biologists together with theorists of games to discuss these issues. A typi-

cal paper was tit for tat in the great tit (Regelmann and Curio, 1986);

using actual field observations, complete with photographs, it describes

how the celebrated ‘‘tit for tat’’ strategy in the repeated prisoners’

dilemma (Axelrod, 1984) accurately describes the behaviour of males and

females of a rather common species of bird called the great tit, when

protecting their young from predators.

It turns out that ordinary, utility maximizing rationality is much more

easily observed in animals and even plants than it is in human beings.

There are even situations where rats do significantly better than human

beings. Consider, for example, the famous probability matching experi-

ment, where the subject must predict the values of a sequence of i.i.d.

random variables taking the values L and R with probabilities 3/4 and

1/4 respectively; each correct prediction is rewarded. It is of course opti-

mal always to predict L; but human subjects tend to match the proba-

bilities, i.e. to predict L about 3/4 of the time. On the other hand, while

rats are not perfect (i.e. do not predict L all the time), they do predict L

significantly more often than human beings.

Several explanations have been suggested. One is that in human exper-

imentation, the subjects try subconsciously to ‘‘guess right,’’ i.e., to guess

what the experimenter ‘‘wants’’ them to do, rather than maximizing util-

ity. Another is simply that the rats are more highly motivated. They are

brought down to 80 per cent of their normal body weight, are literally

starving; it is much more important for them to behave optimally than it

is for human subjects.

Returning to theory, though the notion of strategic equilibrium seems

on the face of it simple and natural enough, a careful examination of the

definition leads to some doubts and questions as to why and under what

conditions the players in a game might be expected to play a strategic

equilibrium. Evolutionary theory suggests a simple rationale for strategic

equilibrium, in which there is no conscious or overt decision making at

all. For definiteness, we confine attention to two-person games, though

the same ideas apply to the general case. We think of each of the two

players as a whole species rather than an individual; reproduction is

assumed asexual. The set of pure strategies of each player is interpreted

as the locus of some gene (examples of a locus are eye colour, degree of
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aggressiveness, etc.); individual pure strategies are interpreted as alleles

(blue or green or brown eyes, aggressive or timid behaviour, etc.). A

given individual of each species possesses just one allele at the given

locus; he interacts with precisely one individual in the other species, who

also has just one allele at the locus of interest. The result of the inter-

action is a definite increment or decrement in the fitness of each of the

two individuals, i.e. the number (or expected number) of his o¤spring;

thus the payo¤ in the game is denominated in terms of fitness.

In these terms, a mixed strategy is a distribution of alleles throughout

the population of the species (e.g., 40% aggressive, 60% timid). If each

individual of each species is just as likely to meet any one individual of

the other species as any other one, then the probability distribution of

alleles that each individual faces is precisely given by the original mixed

strategy. It then follows that a given pair of mixed strategies is a strategic

equilibrium if and only if it represents a population equilibrium, i.e. a

pair of distributions of characteristics (alleles) that does not tend to

change.

Unfortunately, sexual reproduction screws up this story, and indeed

the entire Maynard Smith approach has been criticized for this reason.

But to be useful, the story does not have to be taken entirely literally. For

example, it applies to evolution that is cultural rather than biological.

In this approach, a ‘‘game’’ is interpreted as a kind of confrontational

situation (like shopping for a car) rather than a specific instance of such a

situation; a ‘‘player’’ is a role (‘‘buyer’’ or ‘‘salesman’’), not an individual

human being; a pure strategy is a possible kind of behaviour in this role

(‘‘hard sell’’ or ‘‘soft sell’’). Up to now this is indeed not very di¤erent

from traditional game theoretic usage. What is di¤erent in the evolu-

tionary interpretation is that pure or mixed strategic equilibria do not

represent conscious rational choices of the players, but rather a pop-

ulation equilibrium which evolves as the result of how successful certain

behaviour is in certain roles.

ii. Randomization as ignorance. In the traditional view of strategy ran-

domization, the players use a randomizing device, such as a coin flip, to

decide on their actions. This view has always had di‰culties. Practically

speaking, the idea that serious people would base important decisions on

the flip of a coin is di‰cult to swallow. Conceptually, too, there are

problems. The reason a player must randomize in equilibrium is only to

keep others from deviating. For himself, randomizing is unnecessary; he

will do as well by choosing any pure strategy that appears with positive

probability in his equilibrium mixed strategy.

Of course, there is no problem if we adopt the evolutionary model de-

scribed above in (i); mixed strategies appear as population distributions,
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and there is no explicit randomization at all. But what is one to make of

randomization within the more usual paradigm of conscious, rational

choice?

According to Savage (1954), randomness is not physical, but represents

the ignorance of the decision maker. You associate a probability with

every event about which you are ignorant, whether this event is a coin flip

or a strategic choice by another player. The important thing in strategy

randomization is that the other players be ignorant of what you are

doing, and that they ascribe the appropriate probabilities to each of your

pure strategies. It is not necessary for you actually to flip a coin.

The first to break away from the idea of explicit randomization was J.

Harsanyi (1973). He showed that if the payo¤s to each player i in a game

are subjected to small independent random perturbations, known to i but

not to the other players, then the resulting game of incomplete informa-

tion has pure strategy equilibria that correspond to the mixed strategy

equilibria of the original game. In plain words, nobody really random-

izes. The appearance of randomization is due to the payo¤s not being

exactly known to all; each player, who does know his own payo¤ exactly,

has a unique optimal action against his estimate of what the others will

do.

This reasoning may be taken one step further. Even without perturbed

payo¤s, the players simply do not know which strategies will be chosen

by the other players. At an equilibrium of ‘‘matching pennies,’’ each

player knows very well what he himself will do, but ascribes 1/2–1/2

probabilities to the other’s actions; he also knows that the other ascribes

those probabilities to his own actions, though it is admittedly not quite

obvious that this is necessarily the case. In the case of a general n-person

game, the situation is essentially similar; the mixed strategies of i can

always be understood as describing the uncertainty of players other than i

about what i will do (Aumann, 1987).

iii. Refinements of strategic equilibrium. In analysing specific economic

models using the strategic equilibrium—an activity carried forward with

great vigour since about 1975—it was found that Nash’s definition does

not provide adequately for rational choices given one’s information at

each stage of an extensive game. Very roughly, the reason is that Nash’s

definition ignores contingencies ‘‘o¤ the equilibrium path.’’ To remedy

this, various ‘‘refinements’’ of strategic equilibrium have been defined,

starting with Selten’s (1975) ‘‘trembling hand’’ equilibrium. Please refer

to our discussion of Zermelo’s theorem (1930–1950, vi).

The interesting aspect of these refinements is that they use irrationality

to arrive at a strong form of rationality. In one way or another, all of

General94



them work by assuming that irrationality cannot be ruled out, that the

players ascribe irrationality to each other with a small probability. True

rationality requires ‘‘noise’’; it cannot grow in sterile ground, it cannot

feed on itself only.

iv. Bounded rationality. For a long time it has been felt that both game

and economic theory assume too much rationality. For example, the

hundred-times repeated prisoner’s dilemma has some 22
100

pure strategies;

all the books in the world are not large enough to write this number even

once in decimal notation. There is no practical way in which all these

strategies can be considered truly available to the players. On the face of

it, this would seem to render statements about the equilibrium points of

such games (1950–1960, iv) less compelling, since it is quite possible that

if the sets of strategies were suitably restricted, the equilibria would

change drastically.

For many years, little on the formal level was done about these prob-

lems. Recently the theory of automata has been used for formulations of

bounded rationality in repeated games. Neyman (1985a) assumes that

only strategies that are programmable on an automaton of exogenously

fixed size can be considered ‘‘available’’ to the players. He then shows

that even when the size is very large, one obtains results that are qual-

itatively di¤erent from those when all strategies are permitted. Thus in

the n-times repeated prisoner’s dilemma, only the greedy–greedy out-

come can occur in equilibrium; but if one restricts the players to using

automata with as many as eoðnÞ states, then for su‰ciently large n, one

can approximate in equilibrium any feasible individually rational out-

come, and in particular the friendly–friendly outcome. For example, this

is the case if the number of states is bounded by any fixed polynomial

in n. Recently, Neyman (MOR 1998) generalized this result from the

prisoner’s dilemma to arbitrary games; specifically, he shows that a result

similar to the Folk Theorem holds in any long finitely repeated game,

when the automaton size is limited as above to subexponential.

Another approach has been used by Rubinstein (1986), with dramati-

cally di¤erent results. In this work, the automaton itself is endogenous;

all states of the automaton must actually be used on the equilibrium path.

Applied to the prisoner’s dilemma, this assumption leads to the con-

clusion that in equilibrium, one cannot get anywhere near the friendly–

friendly outcome. Intuitively, the requirement that all states be used

in equilibrium rules out strategies that punish deviations from equilib-

rium, and these are essential to the implicit enforcement mechanism

that underlies the folk theorem. See the discussion at (1950–1960, iii)

above.
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v. Distributed computing. In the previous subsection (iv) we discussed

applications of computer science to game theory. There are also applica-

tions in the opposite direction; with the advent of distributed computing,

game theory has become of interest in computer science. Di¤erent units

of a distributed computing system are viewed as di¤erent players, who

must communicate and coordinate. Breakdowns and failures of one unit

are often modelled as malevolent, so as to get an idea as to how bad the

worst case can be. From the point of view of computer tampering and

crime, the model of the malevolent player is not merely a fiction; similar

remarks hold for cryptography, where the system must be made proof

against purposeful attempts to ‘‘break in.’’ Finally, multi-user systems

come close to being games in the ordinary sense of the word.

vi. Consistency is a remarkable property which, in one form or another,

is common to just about all game-theoretic solution concepts. Let us be

given a game, which for definiteness we denote v, though it may be NTU

or even non-cooperative. Let x be an outcome that ‘‘solves’’ the game in

some sense, like the value or nucleolus or a point in the core. Suppose

now that some coalition S wishes to view the situation as if the players

outside S get their components of x so to speak exogenously, without

participating in the play. That means that the players in S are playing the

‘‘reduced game’’ vSx, whose all-player set is S. It is not always easy to say

just how vSx should be defined, but let’s leave that aside for the moment.

Suppose we apply to vSx the same solution concept that when applied to v

yields x. Then the consistency property is that xjS (x restricted to S) is the

resulting solution. For example, if x is the nucleolus of v, then for each v,

the restriction xjS is the nucleolus of vSx.

Consistency implies that it is not too important how the player set is

chosen. One can confine attention to a ‘small world,’ and the outcome for

the denizens of this world will be the same as if we had looked at them in

a ‘‘big world.’’

In a game theoretic context, consistency was first noticed by J. Harsa-

nyi (1959) for the Nash solution to the n-person bargaining game. This is

simply an NTU game V in which the only significant coalitions are the

single players and the all-player coalition, and the single players are nor-

malized to get 0. The Nash solution, axiomatized by Harsanyi (1959), is

the outcome x that maximizes the product x1x2 . . . xn. To explain the

consistency condition, let us look at the case n ¼ 3, in which case

V({1, 2, 3}) is a subset of 3-space. If we let S ¼ f1; 2g, and if x0 is the

Nash solution, then 3 should get x30. That means that 1 and 2 are con-

fined to bargaining within that slice of V({1, 2, 3}) that is determined by

the plane x3 ¼ x30. According to the Nash solution for the two-person
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case, they should maximize x1x2 over this slice; it is not di‰cult to see

that this maximum is attained at ðx10; x20Þ, which is exactly what con-

sistency requires.

Davis and Maschler (1965) proved that the kernel satisfies a con-

sistency condition; so do the bargaining set, core, stable set, and nucleo-

lus, using the same definition of the reduced game vSx as for the kernel

(Aumann and Drèze, 1974). Using a somewhat di¤erent definition of vSx,

consistency can be established for the value (Hart and Mas-Colell, 1989).

Note that strategic equilibria, too, are consistent; if the players outside S

play their equilibrium strategies, an equilibrium of the resulting game on

S is given by having the players in S play the same strategies that they

were playing in the equilibrium of the large game.

Consistency often plays a key role in axiomatizations. Strategic equi-

librium is axiomatized by consistency, together with the requirement

that in one-person maximization problems, the maximum be chosen. A

remarkable axiomatization of the Nash solution to the bargaining prob-

lem (including the 2-person case discussed at 1950–1960, v), in which the

key role is played by consistency, has been provided by T. Lensberg

(1988). Axiomatizations in which consistency plays the key role have

been provided for the nucleolus (Sobolev, 1975), core (Peleg, 1985, 1986),

kernel (Peleg, 1986), and value (Hart and Mas-Colell, 1989). Con-

sistency-like conditions have also been used in contexts that are not

strictly game-theoretic, e.g. by Balinski and Young (1982), W. Thomson,

J. Roemer, H. Moulin, H. P. Young and others.

In law, the consistency criterion goes back at least to the 2000-year old

Babylonian Talmud (Aumann and Maschler, 1985). Though it is indeed

a very natural condition, its huge scope is still somewhat startling.

vii. The fascination of cost allocation is that it retains the formal struc-

ture of cooperative game theory in a totally di¤erent interpretation. The

question is how to allocate joint costs among users. For example, the cost

of a water supply or sewage disposal system serving several municipalities

(e.g. Bogardi and Szidarovsky, 1976); or the cost of telephone calls in an

organization such as a university or corporation (Littlechild and Owen,

1973, 1976). In the airport case, for example, each ‘‘player’’ is one land-

ing of one airplane, and vðSÞ is the cost of building and running an air-

port large enough to accommodate the set S of landings. Note that vðSÞ
depends not only on the number of landings in S but also on its compo-

sition; one would not charge the same for a landing of a 747 as for a

Piper, for example because the 747 requires a longer runway. The alloca-

tion of cost would depend on the solution concept; for example, if we are

using the Shapley value f, then the fee for each landing i would be fiv.
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The axiomatic method is particularly attractive here, since in this

application the axioms often have rather transparent meaning. Most fre-

quently used has been the Shapley value, whose axiomatic character-

ization is particularly transparent (Billera and Heath, 1982).

The literature on the game theoretic approach to cost allocation is

quite large, probably several hundred items, many of them in the

accounting literature (e.g., Roth and Verrecchia, 1979).

Concluding Remarks

i. Ethics. While game theory does have intellectual ties to ethics, it is im-

portant to realize that in itself, it has no moral content, makes no moral

recommendations, is ethically neutral. Strategic equilibrium does not

tell us to maximize utility, it explores what happens when we do. The

Shapley value does not recommend dividing payo¤ according to power,

it simply measures the power. Game Theory is a tool for telling us where

incentives will lead. History and experience teach us that if we want to

achieve certain goals, including moral and ethical ones, we had better see

to the incentive e¤ects of what we are doing; and if we do not want peo-

ple to usurp power for themselves, we had better build institutions that

spread power as thinly and evenly as possible. Blaming game theory—or,

for that matter, economic theory—for selfishness is like blaming bacteri-

ology for disease. Game theory studies selfishness, it does not recommend

it.

ii. Mathematical methods. We have had very little to say about mathe-

matical methods in the foregoing, because we wished to stress the con-

ceptual side. Worth noting, though, is that mathematically, game theoretic

results developed in one context often have important implications in

completely di¤erent contexts. We have already mentioned the implica-

tions of two-person zero-sum theory for the theory of the core and for

correlated equilibria (1910–1930, vii). The first proofs of the existence of

competitive equilibrium (Arrow and Debreu, 1954) used the existence of

strategic equilibrium in a generalized game (Debreu, 1952). Blackwell’s

1956 theory of two-person zero-sum games with vector payo¤s is of fun-

damental importance for n-person repeated games of complete informa-

tion (Aumann, 1961) and for repeated games of incomplete information

(e.g. Mertens, 1982; Hart, 1985b). The Lemke–Howson algorithm (1962)

for finding equilibria of 2-person non-zero sum non-cooperative games

was seminal in the development of the algorithms of Scarf (1967, 1973)

for finding points in the core and finding economic equilibria.
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iii. Terminology. Game Theory has sometimes been plagued by haphaz-

ard, inappropriate terminology. Some workers, notably L. S. Shapley

(1973b), have tried to introduce more appropriate terminology, and we

have here followed their lead. What follows is a brief glossary to aid the

reader in making the proper associations.

Used here Older term

Strategic form Normal form

Strategic equilibrium Nash equilibrium

Coalitional form Characteristic function

Transferable utility Side payment

Decisive voting game Strong voting game

Improve upon Block

Worth Characteristic function value

Profile n-tuple

1-homogeneous Homogeneous of degree 1
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