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1 Introduction

Several years ago, a game theoretic model that took explicit account of

power relationships was introduced to analyse taxation in a democratic

society (Aumann and Kurz, 1977a, b). Those analyses were set in the

context of private goods, so that only redistribution and exchange were at

issue. In the current paper we apply a similar analysis to public goods.

The framework within which we work is that of a public goods econ-

omy, defined by a set of agents, a collection of public goods, a collection

of non-consumable resources, and a technology (enabling public goods to

be produced from resources); moreover, each agent has a utility function

for public goods, an initial endowment of resources, and a voting weight.

It will be assumed that the agents form a non-atomic continuum, i.e. that

there are many agents, each of whom is individually insignificant.

We consider two games, the voting game and the non-voting game. In

the voting game, any coalition (i.e. set of agents) with a majority of the

vote may produce public goods, using its own resources only; once pro-

duced, the public goods may be enjoyed by all agents.1 In the non-voting

game, any coalition, irrespective of its size, may produce public goods,

using its own resources only; public goods produced by di¤erent (disjoint)

coalitions may be enjoyed by all. (For example, if we are discussing tele-

vision, any programme produced by any coalition may be viewed by any

agent.)

To these games we shall apply the solution notion known as the

Harsanyi–Shapley Non-Transferable-Utility (NTU) Value;2 the resulting

outcomes (i.e. bundles of public goods produced) will be called value

outcomes. We obtain the following:

theorem The voting game has the same value outcomes as the non-voting

game.

In Aumann, Kurz and Neyman (1987) (henceforth AKN) we prove a

related result, namely that the value outcomes in the voting game are in-

dependent of the voting weights. This follows from the current theorem,

since obviously the voting weights cannot a¤ect the outcome of the non-

This chapter originally appeared in Review of Economic Studies 50 (1983): 677–694.
Reprinted with permission.

1. See Section 9a for an alternative description of the voting game, parallel to that used for
the redistribution games of Aumann and Kurz (1977a, b) (i.e. allowing for expropriation of
the minority’s resources by the majority, and their destruction by the minority).

2. Shapley (1969).



voting game. But the theorem of AKN was proved under weaker con-

ditions, under which the voting and non-voting games can actually have

di¤erent value outcomes (cf. Examples 6 and 7). Briefly, in AKN, it is

the voting weights that turn out irrelevant; here, the whole institution of

voting turns out to be irrelevant.

The paper is organized as follows. In Section 2 we formally describe

public goods economies and set forth our assumptions. Section 3 contains

the formal description of our games. Section 4 specifies the variant of the

Harsanyi–Shapley NTU value used in this paper, thus completing the

formal specification of all terms appearing in the above statements of the

theorems. In Section 5 we demonstrate the theorem informally, stressing

the intuitive background. Section 6 contains illustrations and counter-

examples, and Section 7 the formal proof of the theorem. Section 8 is

devoted to discussion.

The paper is constructed so that readers who are not interested in the

formal treatment can avoid it entirely. Such readers, after completing the

introduction, should go immediately to Section 5, then peruse the infor-

mal part of Section 6, and then read Section 8. Conversely, readers inter-

ested only in the formal proofs may omit Sections 5, 6, and 8.

2 Public Goods Economies

The real line is represented by R, the euclidean space of dimension n by

E n, its non-negative orthant by E n
þ (i.e. E n

þ ¼ fx A E n : xj Z 0 for all jg).
A non-atomic public goods economy consists of

i. A measure space (T ,C,m) (T is the space of agents or players, C the

family of coalitions, and m the population measure); we assume that

mðTÞ ¼ 1 and that m is s-additive, non-atomic and non-negative.

ii. Positive integers l (the number of di¤erent kinds of resources) and m

(the number of di¤erent kinds of public goods).

iii. A correspondence G from E l
þ to Em

þ (the production correspondence).

iv. For each t in T , a member eðtÞ of E l
þ ðeðtÞmðdtÞ is dt’s endowment of

resources).

v. For each t in T , a function ut : E
m
þ ! R (dt’s von Neumann–

Morgenstern utility).

vi. A s-additive, non-atomic, non-negative measure n on (T ;C) (the

voting measure); we assume nðTÞ ¼ 1.

Note that the total endowment of a coalition S—its input into the

production technology if it wishes to produce public goods by itself—is
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Ð
s
eðtÞmðdtÞ; for simplicity, this vector is sometimes denoted eðSÞ. A public

goods bundle is called jointly producible if it is in GðeðTÞÞ, i.e. can be

produced by all of society.

We assume that the measurable space (T ;C) is isomorphic3 to the unit

interval [0, 1] with the Borel sets. This assumption is less restrictive than

it sounds; any non-denumerable Borel subset of any euclidean space (or

indeed, of any complete separable metric space) is isomorphic to [0, 1].

We also assume the following (as usual xY y means xj Y y j for all j):

assumption 1 utðyÞ is Borel measurable simultaneously in t and y, con-

tinuous in y for each fixed t, and bounded uniformly in t and y.

assumption 2 G has compact and non-empty values.

assumption 3 If xY y, then GðxÞHGðyÞ and utðxÞY utðyÞ for all t.

assumption 4 0 A Gð0Þ.

assumption 5 Either (i) ut is C1 (continuously di¤erentiable) on4 Em
þ

and the derivatives qut=qy
i are strictly positive and uniformly bounded,

or (ii) there are only finitely many di¤erent utility functions ut.

Assumption 3 may be called ‘‘monotonicity of production and utility’’

or ‘‘free disposal of resources and of public goods’’. The theorem is

actually false without this assumption; see Example 6. Assumption 4 says

that the technology is capable of producing nothing from nothing. In

Assumption 5, we assume that either the utility functions are smooth, or

that there are only finitely many ‘‘utility types’’ (though perhaps a con-

tinuum of ‘‘endowment types’’). The situation is reminiscent of that in

Geometric Topology, where to avoid ‘‘wild imbeddings’’ one may assume

either that all maps are piecewise linear, or that they are di¤erentiable.

We require Assumption 5 for the proof, but we do not know whether the

theorem is actually false without it; see Section 8d.

The other assumptions are of a technical nature. Note that con-

ceptually, uniform boundedness involves no loss of generality. Indeed, in

each of the games we will consider, the set of feasible public goods bun-

dles is contained in a compact set (see the end of Section 3); by changing

the ut outside this set, we can make them bounded without really a¤ect-

ing anything. Uniform boundedness can then be obtained by applying

(possibly di¤erent) positive linear transformations to each of the ut.

Omitting the assumption altogether might however cause technical di‰-

3. An isomorphism is a one-to-one correspondence that is measurable in both directions.

4. A function is C1 on a closed set A if it can be extended to a C1 function on an open set
containing A.
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culties, since transformations of this kind might a¤ect the integrability of

the utility functions utðyÞ when weighted by the comparison function lðtÞ
(see Section 4). While the di‰culties may be circumventable, it did not

seem worthwhile to expend our energy—or the readers’—in removing

this conceptually harmless assumption.

3 The Games

For a verbal description of the games we shall define here, see Section 1.

Recall that a strategic game5 with player space (T ;C; m) is defined by

specifying, for each coalition S, a set Xs of strategies, and for each pair

(s; t) of strategies belonging respectively to a coalition S and its comple-

ment T nS, a payo¤ function hsst from T to R.

In formally defining the games, we shall describe pure strategies only;

but it is to be understood that arbitrary mixtures of pure strategies are

also available to the players. The pure strategies we shall describe will

have a natural Borel structure, and mixed strategies should be under-

stood as random variables whose values are pure strategies.

In the non-voting game, a pure strategy for S is simply a member x of

GðeðSÞÞ, i.e. a choice of a public goods bundle which can be produced

from the total resource bundle eðSÞ. If S has chosen x A GðeðSÞÞ and

T nS has chosen y A GðeðT nSÞÞ, then the payo¤ to any t is utðxþ yÞ.
In the voting game, a strategy for a coalition S in the majority

(nðSÞ > 1=2) is again a member x of GðeðSÞÞ. Minority coalitions

(nðSÞ < 1=2) have only one strategy (essentially ‘‘doing nothing’’). If a

majority coalition S chooses x A GðeðsÞÞ and T nS chooses its single

strategy (as it must), then the payo¤ to any t is utðxÞ. The definition of

strategies and payo¤s for coalitions with exactly half the vote is not im-

portant, as these coalitions play practically no role in the analysis; the

reader may define them in any way he considers appropriate.

Note that the set of feasible public goods bundles—those that can

actually arise as outcomes of one of our games—is precisely the compact

set GðeðTÞÞ.

4 Value Outcomes

We shall be working here with the asymptotic value,6 an analogue of the

finite-game Shapley value for games with a continuum of players,

5. See Section 4 of Aumann and Kurz (1977b).

6. Kannai (1966).
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obtained by taking limits of finite approximants. Let G be the voting

or the non-voting game. A comparison function is a non-negative valued

m-integrable function l on T that is positive on a set of agents of posi-

tive measure; the corresponding comparison measure l is defined by

lðdtÞ ¼ lðtÞmðdtÞ, i.e. lðSÞ ¼
Ð
s
lðtÞmðdtÞ. A value outcome in G is then a

random bundle of public goods associated with the Harsanyi-Shapley

NTU value based on f; i.e. a random variable
~
y with values in GðeðTÞÞ,

for which there exists a comparison function l such that the Harsanyi

coalitional form7 vGl of the game lG is defined and has an asymptotic

value, and

ðfvGl ÞðSÞ ¼
ð
s

Eutð
~
yÞlðdtÞ for all S A C; ð1Þ

where Eutð
~
yÞ is the expected utility of

~
y.

5 An Informal Demonstration of the Theorems

We start by briefly reviewing Section 5 of AKN; the reader is referred to

there for a more comprehensive treatment. Let us use the word outcome

for a bundle of public goods.8 Let l be a comparison measure, i.e. a non-

negative measure on the agent space; lðdtÞ is interpreted as an infin-

itesimal ‘‘exchange rate’’ that enables comparison of agent dt’s utility ut
with that of other agents. For each coalition S and each outcome y, write

UyðSÞ ¼
ð
s

utðyÞlðdtÞ:

UyðSÞ represents the ‘‘total’’ payo¤ to S when the exchange rates lðdtÞ
are used and y is the total bundle of public goods produced by all coali-

tions; this follows from the fact that all agents can enjoy all public goods

produced by anybody.

Denote the non-voting and voting games by A and B respectively, and

let G be either A or B. Define

wG
l ðSÞ ¼ max min½UyðSÞ �UyðT nSÞ�; ð2Þ

7. vGl is formally defined in Section 7 of AKN; for an informal definition, see (3).

8. In general, the outcomes arising in the analysis of the non-voting game are ‘‘mixed’’, i.e.
random variables whose values are pure outcomes; but for simplicity, the informal dis-
cussion of this section is restricted to pure outcomes. For the general case, one need only
replace pure outcomes y by mixed outcomes y, and the utilities utðyÞ by expected utilities
EutðyÞ. The voting game always leads to pure outcomes.
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where the max and the min are over the strategies of S and T nS respec-

tively. Set

vGl ðSÞ ¼
ðwG

l ðSÞ þ wG
l ðTÞÞ

2
: ð3Þ

Briefly, wG
l ðSÞ measures S’s bargaining strength, or ability to threaten;

vGl ðSÞ, the total utility that S can expect from the resulting e‰cient com-

promise.

Recall that an outcome y in G is a value outcome i¤

ðfvGl ÞðdtÞ ¼ utðyÞlðdtÞ; ð4Þ

where f is the Shapley value; i.e., i¤ it is feasible, and its utility for each

infinitesimal agent dt, in terms of the exchange rates lðdtÞ, is precisely his

value in the coalitional game vGl .

For each y with 0Y yY 1, let yT denote a ‘‘diagonal coalition of size

y’’. Intuitively, yT may be thought of as a perfect sample of the pop-

ulation T of all agents, containing a proportion y of the agents. If r is a

non-atomic game and dt an agent, then (AKN, (5.7)),

ðfrÞðdtÞ ¼
ð1
0

ðrðyT W dtÞ � rðyTÞÞdy: ð5Þ

Let S be a perfect—or almost perfect—sample of the population T with

a clear majority; i.e. a coalition of the form aT , aT W dt, or aT ndt, where
a is larger than 1/2 by more than an infinitesimal. Then in the non-voting

game, the optimal threat of the minority is not to produce any public

goods. This is because any public goods produced by the minority will

also be enjoyed by the majority. Both are perfect—or almost perfect—

samples, so the per capita rise in utility from such production is about the

same in the two coalitions; but the majority is larger than the minority, so

its total utility rises by more. Thus in the di¤erence UyðSÞ �UyðT nSÞ
between the payo¤s to the two coalitions—which is the criterion for

defining the optimal threats (see (2))—any enjoyment by the minority is

more than o¤set by the corresponding enjoyment of the majority. The

upshot is that in the voting game, the minority may not produce; in the

non-voting game, it chooses not to produce; in any case, it does not pro-

duce. Therefore the outcome is the same in the two cases, namely what

the majority chooses to produce; thus suppressing the subscript l, we

conclude that

vAðSÞ ¼ vBðSÞ and vAðT nSÞ ¼ vBðT nSÞ: ð6Þ
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Set r ¼ vA � vB; we wish to show that fr ¼ 0. By (5), the relevant

coalitions U are those of the form yTor yT W dt. If y� ð1=2Þ is non-

infinitesimal, then each such coalition is either of the form S considered

in the previous paragraph, or is the complement of such a coalition.

Hence by (6), r vanishes on all such coalitions.

If y� ð1=2Þ is infinitesimal, then U is ‘‘near’’9 (1/2)T , and so also near

its complement TnU ; hence no matter what the outcome is, U and T nU
must have approximately the same utility, since all agents enjoy the same

public goods. Hence wGðUÞ is infinitesimal, and since wAðTÞ ¼ wBðTÞ, it
follows from (3) that rðUÞ is infinitesimal.

Summing up, the integrand in (5) vanishes when y� ð1=2Þ is not infin-
itesimal, and is infinitesimal when y� ð1=2Þ is infinitesimal. Hence fr is

the integral of an infinitesimal over an infinitesimal range, i.e. an infin-

itesimal of the second order, which may be ignored. Thus indeed fr ¼ 0.

Hence fvAl ¼ fvBl for all l, and so by (4), A and B have the same value

outcomes. This completes the demonstration of our theorem.

The second part of the argument (y near 1/2) breaks down in the case

of redistribution of private goods (Aumann and Kurz 1977a, b), or when

the majority may exclude the minority from enjoying the public goods. In

both cases, the minority may be prevented from consuming anything,

whereas the majority can at least use its own resources; so even when S

has only a slight n-majority, wBðSÞ will in general be very far from 0. The

theorem is actually false in these cases (see Examples 1 and 2).

The first part of the argument (y not near 1/2) works only if utilities

are monotonic (Assumption 3); for otherwise, the minority may threaten

to lower the majority’s total utility by producing public bads, more than

it lowers its own (Example 6).

6 Illustrations and Counterexamples

As above, wðSÞ denotes the di¤erence between total payo¤ to S and that

to T nS when they minimax the di¤erence. We denote by qðSÞ the total

payo¤ to S under the same circumstances (i.e. when the coalitions mini-

max the di¤erence), so that

wðSÞ ¼ qðSÞ � qðT nSÞ:

As above, vðSÞ denotes ðwðSÞ þ wðTÞÞ=2 and l denotes a comparison

measure. It may be verified that fv ¼ fq.

9. i.e., has similar characteristics, is statistically similar.
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In the examples of this section, we will describe the utilities only in the

‘‘relevant range’’—the compact set of feasible public goods bundles (see

the end of Section 3). Outside of the relevant range they can be chosen

arbitrarily, as long as they satisfy our assumptions. For example, the

phrase ‘‘linear utilities’’ means ‘‘utilities that are linear in the relevant

range’’; the utilities cannot, of course, be linear throughout Em
þ , since that

would violate the boundedness condition.

In the first four examples of this section, the comparison measure l and

the population measure m coincide. The subscript l is omitted in these

examples.

To provide contrast and perspective, we first consider two games dif-

ferent from those forming the main subject of this paper.

Example 1 A Redistribution Game. This is a variant of one of the

games discussed by Aumann and Kurz (1977a).10 There is one kind of

commodity, serving both as resource and consumption good; it is private,

in the sense that any amount consumed by one agent cannot also be

consumed by another agent. Each agent dt is endowed with an amount

eðdtÞ ¼ eðtÞmðdtÞ of this commodity, m being the population measure.

Utilities are linear; specifically utðxÞ ¼ x for all t and x. The vote measure

n may be di¤erent from m. A coalition with a majority of the vote

may redistribute its own resources in any way it pleases among its

own members; a minority coalition may consume nothing.11 We assume

eðTÞ ¼ nðTÞ ¼ 1.

It may be seen that qðSÞ ¼ eðSÞ or 0 according as nðSÞ > 1=2 or <1=2.

In particular, q is a function of the vector measure (e; n). For diagonal

coalitions, we get qðyTÞ ¼ 0 or y according as y < 1=2 or y >1=2 (see

Figure 1). For the value, (5) yields

ðfqÞðdtÞ ¼
ð1=2�nðdtÞ

0

þ
ð1=2
1=2�nðdtÞ

þ
ð1
1=2

" #
ðqðyT W dtÞ � qðyTÞÞdy: ð7Þ

In the first integral, both yT W dt and yT are minorities, so the integrand

vanishes identically. In the second integral, yT W dt is a majority whereas

yT is a minority; hence the integrandAðð1=2ÞTÞ ¼ 1=2, and so the inte-

gral is Að1=2ÞnðdtÞ. In the last integral, both are majorities; hence the

integrand is eðyT W dtÞ � eðyTÞ ¼ eðdtÞ, and the integral is ð1=2ÞeðdtÞ.
Summing up, we get fq ¼ ðnþ eÞ=2. Thus the vote measure n is an im-

portant component of the value, so that our theorem does not hold here.

10. Example 7.1 there; it di¤ers from this example only in that there, the vote and pop-
ulation measures are the same.

11. This formulation of the strategic game is di¤erent from, but equivalent to, that of
Aumann and Kurz (1977a). See the discussion in Section 8a.
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Figure 1
Three voting games.
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Example 2 Public Goods With Exclusion. Here we are back in a public

goods context, but we allow the coalition producing the goods to exclude

others from using it. To keep the example simple, we assume one kind of

resource (l ¼ 1), which is non-consumable; one public good (m ¼ 1); one

unit of the public good may be produced from each unit of the resource

(GðxÞ ¼ ½0; x�); agent dt is endowed with eðdtÞ ¼ eðtÞmðdtÞ units of the

resource; and utðxÞ ¼ x. Only coalitions with a majority of the vote mea-

sure n may produce public goods, using their own resources only; they

may (and therefore in the optimal threat do) prevent non-members from

using the output. We assume mðTÞ ¼ eðTÞ ¼ nðTÞ ¼ 1.

If S is a majority coalition, it will produce eðSÞ, and hence its payo¤

qðSÞ isð
s

utðeðSÞÞmðdSÞ ¼ mðSÞeðSÞ:

If S is a minority, then qðSÞ ¼ 0. For diagonal coalitions, we get

qðyTÞ ¼ 0 or y2 according as y < ð1=2Þ or y > ð1=2Þ (see Figure 1).

Applying (7), we find that the first integral vanishes and the second one

yields nðdtÞ=4. The integrand in the third integral is

mðyT W dtÞeðyT W dtÞ � mðyTÞeðyTÞ;

which works out to yðeðdtÞ þ mðdtÞÞ plus an infinitesimal of higher order.

Since
Ð 1
1=2 ydy ¼ 3=8, we conclude that

fq ¼ ð1=4Þnþ ð3=8Þeþ ð3=8Þm:

Thus the vote measure n is again an important component of the value.

Example 3 A Non-Voting Game. With this example, we return to the

main subject of this paper. Suppose that the specifications are precisely as

in the previous example, except that all may produce public goods, and

all enjoy any produced. A coalition will produce if and only if it gains

more out of such production than its complement; since all the utilities

are the same, this means simply that it is larger than its complement.

Thus a coalition will produce what it can if it is in the majority, and

otherwise will produce nothing; all coalitions will enjoy whatever is

produced. Therefore

qðSÞ ¼ mðSÞeðSÞ if mðSÞ > 1
2

mðSÞð1� eðSÞÞ if mðSÞ < 1
2 :

�

For diagonal coalitions, we get qðyTÞ ¼ y maxðy; 1� yÞ (see figure 1).

Again using (7), we find that this time the middle integral is an infin-

itesimal of the second order, and so may be ignored; the other two inte-
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grals yield

fq ¼ ð3=4Þmþ ð1=4Þe:

Of course, the vote measure n does not figure in the expression for the

value, since it does not figure in the description of the game.

Example 4 A Voting Game. Like the previous example, except that

coalitions with a minority of the vote measure n may not produce public

goods. This time a coalition will produce if and only if it wants to and

may; i.e. i¤ nðSÞ > 1
2 and mðSÞ > 1

2. Denoting the q of the previous exam-

ple by qA, we find that

qðSÞ ¼ qAðSÞ if ðmðSÞ � 1
2ÞðnðSÞ � 1

2Þ > 0
0 otherwise

�

(see figure 2). Since the diagonal is wholly within the area in which

q ¼ qA, we get the same worth for diagonal coalitions as before (see

figure 1).

By the theorem, the value fq is the same as in the previous example,12

i.e. ð3=4Þmþ ð1=4Þe.
The characteristic feature of the first two examples, which is absent

from the last two, is the jump in qðyTÞ at y ¼ 1
2. It is because of this jump

that the middle integral in (7) contributes non-negligibly to ðfqÞðdtÞ. The
contribution is precisely nðdtÞ times the size of the jump; only here does

the vote measure put in an appearance. Thus the discontinuity in qðyTÞ
at 1

2 is intimately associated with the relevance of the vote measure. A

little thought will convince the reader that this makes economic sense as

well. An individual’s vote is only significant because it may pivot, i.e.

turn a minority into a majority; if nothing much happens to anybody

even when pivoting occurs, the vote can’t be very important.

Example 4 bears further examination because though qðyTÞ is con-

tinuous, q itself has an essential discontinuity at ð1=2ÞT . To enable the

discussion to take place in two dimensions, let us take eðtÞ1 1, i.e.

eðSÞ ¼ mðSÞ. If in Figure 2 one approaches the centre ð1=2ÞT of the

diagonal from the southwest or northeast, then q ! 1=4, whereas q ! 0

if it is approached from the northwest or southeast. If one considers v

instead of q, one finds

12. The perspicacious reader will have observed that (5) (or (7) applied directly to this q
yields a result di¤erent from ð3=4Þmþ ð1=4Þe, in fact one that is obviously ‘‘wrong’’ in that it
does not satisfy the e‰ciency axiom for values (ðfqÞðTÞ ¼ qðTÞ). This demonstrates once
more that rough, intuitive methods have their limitations, and are no substitute for careful
proofs.
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vðSÞ ¼
ð2m2ðSÞ � mðSÞ þ 1Þ=2 if mðSÞ > 1

2 and nðSÞ > 1
2

ðmðSÞ � 2m2ðSÞ þ 1Þ=2 if mðSÞ < 1
2 and nðSÞ < 1

2

1
2 otherwise.

8><
>:

Note that whereas vðSÞ, too, is discontinuous along almost all of the

‘‘voting line’’ nðSÞ ¼ 1=2, it is continuous along the line mðSÞ ¼ 1=2; in

particular, the discontinuity at ð1=2ÞT itself has disappeared.

In a sense, qðSÞ is an unnatural object, because it is the payo¤ to S

when S is acting with a di¤erent objective in mind: not its own payo¤,

but the di¤erence between the payo¤s to it and to its complement. This

accounts for q’s bad behaviour. However, it is not this bad behaviour

that causes the discontinuities in qðyTÞ; in each of our three examples,

vðyTÞ has the same jump (or lack of it) at y ¼ 1=2 as qðyTÞ.

Example 5 The Optimal Quantity of a Public Good. Examples 3 and 4

are instructive from the point of view of understanding the TU analysis

in this paper, which underlies the NTU analysis. But the NTU analysis

itself is in these particular games trivial, since there is only one public

good, so that in the end all agents will agree to produce a maximum

amount of it. To obtain a non-trivial NTU example, we require at least

two public goods, so that there can be some di¤erence of opinion as to

Figure 2
qðSÞ in Example 4 when e1 1
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how much of each one should be produced. Since the comparison mea-

sure will now be endogenous, we abandon the convention that l ¼ m. We

do adopt the normalization

lðTÞ ¼ 1: ð8Þ

Our public goods economy has a single resource (l ¼ 1). There are two

kinds of public goods, and the utility functions are of the form

utðyÞ ¼ ftðy1Þ þ y2;

where ft is concave, di¤erentiable, increasing on the non-negative reals,

and satisfies f 0t ð0Þ > 1 > f 0t ð1=2Þð f 0t ð0Þ ¼ y is not excluded); it will be

convenient to call the first good concave, and the second one linear.

Given an amount z of resource, any combination of public goods total-

ling up to z may be produced; i.e.

GðzÞ ¼ fy A E2
þ : y1 þ y2 Y zg:

The total endowment eðTÞ of the resource is 1.
Intuitively, one may think of the concave good as representing some

particular government activity on which one wishes to focus attention,

say defence; the problem is to determine its budget. The linear good rep-

resents an amalgam of all other government activity, and the resource z

an amalgam of all resources; one may think of z in units of money. We

consider the voting and the non-voting games, which as we know have

the same value outcomes.

The point of the example is that the agents di¤er in their assessment of

the concave good. Since f 0t ð0Þ > 1, all agents would like some of this

good to be produced, but they di¤er as to how much. If dt could decide

by himself what is to be done with the total amount of resource available

to Society (namely 1), he would produce that amount y1t of the concave

good for which f 0t ðy1t Þ ¼ 1; the remaining resources would be allocated

to production of the linear good. Since f 0t ð1=2Þ < 1, it follows that

y1t < 1=2.

Let l be given. We have

ðfvlÞðdtÞ ¼ ðfqlÞðdtÞ ¼
ð1
0

ðqlðyT W dtÞ � qlðyTÞÞdy:

From Section 5 we know that if y > 1=2, then the optimal strategy for yT

is to produce a y that will maximizeð
yT

utðyÞlðdtÞ ¼ y

ð
T

ð ftðy1Þ þ y2ÞlðdtÞ ¼ yy2 þ yFlðy1Þ;
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where

Flðy1Þ ¼
ð
T

ftðy1ÞlðdtÞ:

From f 0t ð0Þ > 1 > f 0t ð1=2Þ and lðTÞ ¼ 1 it follows that F 0
lð0Þ > 1 >

F 0
lð1=2Þ; hence there is a y1l between 0 and 1/2 with F 0

lðy1lÞ ¼ 1. If

y > 1=2, then the optimal strategy for yT is to produce precisely y1l of the

concave good; the remainder of the resource will be used for producing

the linear good, yielding y� y1l of the linear good. The optimal strategy

for the complementary coalition ð1� yÞT is to produce nothing.

Consider next the coalition yT W ds, where still y > 1=2. The arrival of

ds places additional resources in the amount of eðdsÞ at the disposal of

the coalition. Since y1l < 1=2, the coalition is already producing all it

wants of the concave good, so that this additional amount will be used to

produce the linear good. Each agent dt in yT will therefore obtain an

additional utility of eðdsÞlðdtÞ; all together, they obtain an additional

utility of

eðdsÞlðyTÞ ¼ yeðdsÞlðTÞ ¼ yeðdsÞ;

by the normalization condition (8). By joining the coalition yT , though,

ds causes an increase in utility in another way, namely by adding his own

utility for the entire bundle now present. This is

ðfsðy1lÞ þ y� y1lÞlðdsÞ:

Hence we conclude that for y > 1=2,

qðyT W dsÞ � qðyTÞ ¼ yeðdsÞ þ ð fsðy1lÞ þ y� y1lÞlðdsÞ: ð9Þ

Suppose next that y < 1=2. The optimal strategy for yT is to produce

nothing; and for its complement (1� yÞT , it is to produce

(y1l; ð1� yÞ � y1l), which all agents will enjoy, including those in yT . If

ds joins yT , then the resources of the complement decrease by eðdsÞ.
Since 1� y > 1=2, we are in the interior of the range where the linear

good is being produced, so that the loss in utility to yT by having ds join

it is

eðdsÞlðyTÞ ¼ yeðdsÞ;

i.e. a gain of �yeðdsÞ. On the other hand, there is a gain to yT of ds ’s

own utility, given by

ð fsðy1lÞ þ ð1� yÞ � y1lÞlðdsÞ:
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Hence we conclude that for y < 1=2,

qðyT W dsÞ � qðyTÞ ¼ �yeðdsÞ þ ð fsðy1lÞ þ ð1� yÞ � y1lÞlðdsÞ: ð10Þ

The analysis of Section 5 shows that the immediate neighbourhood of

ð1=2ÞT may be ignored. Hence using (9) and (10), we find

ðfvlÞðdsÞ ¼
ð1
0

ðqðyT W dsÞ � qðyTÞÞdy

¼ eðdsÞ
ð1=2
0

ð�yÞdy
 !

þ
ð1
1=2

ydy

 !
þ ½ fsðy1lÞ þ ð1� y1lÞ�lðdsÞ

� lðdsÞ
ð1=2
0

ydyþ
ð1
1=2

ð1� yÞdy
 !

¼ ½ fsðy1lÞ þ ð1� y1lÞ�lðdsÞ þ 1
4 eðdsÞ � 1

4 lðdsÞ: ð11Þ

Suppose now that we are at a value outcome. This means that we have

found a l such that the utility to each ds of the optimal outcome pro-

duced by the all-player set T is precisely equal to the value of ds. The

optimal outcome produced by T is (y1l; 1� y1l), and its utility to ds is

½ fsðy1lÞ þ ð1� y1lÞ�lðdsÞ:

Equating this with ðfvlÞðdsÞ and using (11), we find that for all s,

1
4 eðdsÞ � 1

4 lðdsÞ ¼ 0;

which means e ¼ l. Thus in this example, the weights turn out to be the

initial resources; there is a unique value outcome, found by maximizingÐ
t utðyÞeðdtÞ. More precisely, the value outcome is (y1e ; 1� y1e ), where y

1
e is

that amount of the concave good for which
Ð
T
f 0t ðy1eÞeðdtÞ ¼ 1; i.e. a sort

of average of the y1t , weighted by the eðdtÞ and taking the utilities into

account.

For an instance of an explicit calculation, take

ftðzÞ ¼ wðtÞ logð1þ zÞ;

where 1 < wðtÞ < 3=2 (this comes from f 0t ð0Þ > 1 > f 0t ð1=2Þ). Then

y1t ¼ wðtÞ � 1, and the unique value outcome is given by y1e ¼
Ð
T
y1t eðdtÞ.

In this example the utility functions are separable, with a linear utility

for one of the goods. This is reminiscent of the utility function tradition-

ally used to get a TU e¤ect in an NTU pure exchange private goods

economy (see Aumann and Shapley (1974), Sections 30 and 34, and

the sources quoted there). The resemblance is, however, superficial. The
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presence of a private good with a separable linear utility is tantamount

to having side payments, and in particular l must coincide with m. Here

the linear good is public, not private, and so cannot be used for side

payments; and we have already seen that l need not coincide with m.

Example 6 Public Bads. Without the monotonicity assumption, Assump-

tion 3, our theorem fails. To show this, we modify Example 5 by adding

a public good y0 with a negative utility (called a ‘‘bad’’), and a resource

z0 that can be used only to produce the bad. Formally,

utðy0; yÞ ¼ ftðy1Þ þ y2 � y0

Gðz0; zÞ ¼ fðy0; yÞ A E3
þ : y

1 þ y2 Y z; y0 Y z0g;

where y, z, ft, and the endowment e of the ‘‘old’’ resource z are exactly as

in Example 5. The total endowment e0ðTÞ of the new (or ‘‘nuisance’’)

resource is 1, but no particular relationship between e and e0 is assumed.

In both the voting and the non-voting games, majority coalitions near

the diagonal will produce no bads, and will produce public goods in

exactly the same amounts as in Example 5. But a minority coalition near

the diagonal will behave di¤erently in the voting and non-voting games.

In the voting game, it has no licence to produce, and must simply con-

sume what is produced by the majority. But in the non-voting game, it

will produce all it can of the public bad, since it su¤ers less than the

majority from it (because it is smaller than the majority), and its aim is to

minimize the di¤erence between the majority’s payo¤ and its own; and as

in Example 5, it will produce nothing of the original public ‘‘goods’’ y1

and y2.

In the voting game, therefore, the value outcome is exactly the same as

in Example 5. In the non-voting game, we obtain for y > 1=2

qðyT W dsÞ � qðyTÞ ¼ yeðdsÞ þ ye0ðdsÞ þ ð fsðy1lÞ þ y� y1l�ð1� yÞÞlðdsÞ:

The right side here di¤ers from that in (9) in two places: first, in the term

ye0ðdsÞ, which is the total increment caused to the entire coalition by

having ds deny its ‘‘bad’’ resource e0ðdsÞ to the minority opposition coa-

lition; and second, in the term �ð1� yÞ which now appears in the terms

describing the utility of ds for the entire bundle now present, and which

is due to the production of public bad by the minority coalition. In a

similar manner, we obtain

qðyT W dsÞ � qðyT Þ ¼ �yeðdsÞ � ye0ðdsÞ þ lðsÞð fsðy1lÞ

þ ð1� yÞ � y1l � yÞlðdsÞ
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when y < 1=2. Proceeding as in (11), we obtain

ðfvlÞðdsÞ ¼ ½ fsðy1lÞ þ ð1� y1lÞ�lðdsÞ þ 1
4 eðdsÞ þ 1

4 e
0ðdsÞ � 1

2 lðdsÞ: ð12Þ

Since a value outcome is Pareto optimal, no public bad is produced in the

end; therefore the expression for the value outcome, is, as in Example 5,

of the form (0; y1l; 1� y1l), and hence its utility to ds is given by

½ fsðy1lÞ þ ð1� y1lÞ�lðdsÞ: ð13Þ

(The value outcome itself is of course not as in Example 5, since l is dif-

ferent, as we shall soon see.) Equating (13) with ðfvlÞðdsÞ and using (12),

we deduce l ¼ ðeþ e0Þ=2; this is quite di¤erent from the comparison

measure obtained for the voting game, namely l ¼ e. Specifically, in the

logarithmic example calculated at the end of Example 5, we obtain

y1l ¼

ð
T

y1t eðdtÞ in the voting game

ð
T

y1t ðeðdtÞ þ e0ðdtÞÞ=2 in the non-voting game.

8>>><
>>>:

Example 7 Our theorem also fails if we modify the voting game so that

the majority is allowed to expropriate some of the resources of the

minority against its will. To show this, we change Example 6 slightly, by

making the ‘‘bad’’ y0 into a ‘‘good,’’ i.e., setting

utðy0; yÞ ¼ ftðy1Þ þ y2 þ y0;

and specifying that the resource z0 is expropriable against the minority’s

will. The production function G and all other features of the example are

as before.

If he wishes, the reader may think of z as labour (or ‘‘time’’), and z0 as

land. A person can ‘‘destroy’’ his productive time simply by refusing to

work, and thus avoid taxation; but land cannot be destroyed (compare

Section 8a).

In the non-voting game, land and labour play similar roles; the calcu-

lations are like those of Examples 5 and 6, and yield l ¼ ðeþ e0Þ=2. In the

modified voting game, though, private ownership of the land is essentially

meaningless, since the majority can—and therefore will—always expro-

priate the land. The calculations then yield l ¼ e. Thus the result is as in

Example 6; the formula for the value outcome y1l in the logarithmic case

is of course also the same.

Both this example and the previous one are examples of ‘‘public goods

games’’ in the sense of AKN. This implies that the outcomes are inde-

pendent of the voting weights, as indeed is apparent from the results (n
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does not enter the formulas). But as these examples show, the stronger

theorem of this paper fails for these games. In a sense, resources that can

be expropriated by the majority against the will of the minority are to all

intents and purposes public property, and cannot enter the calculations

like privately held resources.

7 Formal Proof

The proof of our theorem uses much of the machinery developed in con-

nection with the proof of the main theorem of AKN, in Section 7 of that

paper. Rather than reviewing all this material, we simply assume that it is

before us, and continue the development from there. For convenience, we

use a separate numeration of formulas in this section, starting from

(7.10); Formulas (7.1) through (7.9) are in AKN.

Denote the non-voting and voting games by A and B respectively. Set

r ¼ vA � vB. As in Section 7 of AKN, we may assume that utðyÞ is strictly
positive. Let e > 0 be given.

First assume (i) in Assumption 5. For each j with 1Y jYm and each y

in C, define

U
y
j ðSÞ ¼

ð
s

u
j
t ðyÞðdtÞ;

where u
j
t ðyÞ ¼ qutðyÞ=qyj. Note that U

y
j ðT Þ > 0, since u

j
t ðyÞ > 0 for all

j; define a probability measure ÛU
y
j by ÛU

y
j ¼ U

y
j =U

y
j ðTÞ. Let C consist of

all the measures ÛUy
j , together with the ÛUy defined in Section 7 of AKN,

and the voting measure n; let D ¼ UðC; eÞ. By Lemma 7.7, C is compact,

and hence by Lemma 7.8, D is a diagonal neighbourhood.

Before proceeding, we note that
q

qyj
UyðSÞ ¼ U

y
j ðSÞ; ð7:10Þ

this follows from Lebesgue’s dominated convergence theorem and the

mean value theorem (which implies that the di¤erence ratios tending to

qutðyÞ=qyj are uniformly bounded). Again using the mean value theorem,

we obtain from (7.2) and (7.10) that if x, y, and xþ y are in C, then for

any S there is a point z on the line segment connecting x to xþ y such

that

HxþyðSÞ �HxðSÞ ¼
Xm
j¼1

yjðUz
j ðSÞ �Uz

j ðT nSÞÞ: ð7:11Þ

Now let q ¼ S0 H � � � HSk ¼ T be a chain in D, which we call W. Let
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i1 be the greatest index for which nðS1Þ < 1=2� e, and i2 the smallest

index for which nðSiÞ > 1=2þ e. Define five chains W1; . . . ;W5 exactly as

in Section 7 of AKN. First, let iZ i2. From the definition of D it follows

that ÛUz
j ðSiÞ > 1=2 for all z in C and all j; hence ÛUz

j ðT nSiÞ < 1=2, and

therefore Uz
j ðSiÞ �Uz

j ðT nSiÞ > 0. Thus if x, y, and xþ y are in C, then

(7.11) yields

HxþyðSiÞZHxðSiÞ: ð7:12Þ

Since nðSiÞ > 1=2, the coalition St—but not its complement T nSi—may

produce public goods in the voting game B, and hence

wBðSiÞ ¼ max
x A GðeðSiÞÞ

HxðSiÞ: ð7:13Þ

In the non-voting game A, both S1 and T nSi may produce; hence by

(7.12), by 0 A GðeðT nSiÞÞ (Assumptions 3 and 4), and by (7.13),

wAðSiÞ ¼ max
x A GðeðSiÞÞ

min
y A GðeðTnSiÞÞ

HxþyðSiÞ

¼ max
x A GðeðSiÞÞ

HxðSiÞ ¼ wBðSiÞ:
ð7:14Þ

Hence vAðSiÞ ¼ vBðSiÞ, hence rðSiÞ ¼ 0, and so krkW5
¼ 0. If iY i1, the

same proof applied to T nSi instead of Si shows that rðSiÞ ¼
�rðT nSiÞ ¼ 0, whence krkW1

¼ 0.

Next, proceeding exactly as in Section 7 of AKN (using vA and vB

instead of vn and vz), one shows that krkW3
< 16eK , krkW2

< 8eK , and

krkW4
< 8eK . Thus

kvA � vBkW ¼ krkW < 0þ 8eK þ 16eK þ 8eK þ 0 ¼ 32eK :

Hence by Lemmas 7.5 and 7.6, the proof of our theorem under the dif-

ferentiability assumption, Assumption 5(i) is complete.

Finally, assume (ii) in Assumption 5, i.e. that there are only finitely

many utility types T1 . . . ;Th; thus all agents in a fixed Tj have the same

utility function uj , and
Sh

j¼1 Tj ¼ T . Define

ljðSÞ ¼
lðSXTjÞ=lðTjÞ if lðTjÞ > 0,

0 if lðTjÞ ¼ 0.

(

Let C consist of the voting measure n and all the lj , and let D ¼ UðC; eÞ.
Since c is finite, D is by definition a diagonal neighbourhood. Let

q ¼ S0 H � � � HSk ¼ T be a chain in D, which we call W. Let i1 be the

greatest index for which nðSiÞ < 1=2� e, and i2 the smallest index for

which nðSiÞ > ð1=2Þ þ e. Define five chains W1; . . . ;W5 exactly as in Sec-

tion 7 of AKN.
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First let i > i2. From the definition of D it follows that when lðTjÞ > 0,

then ljðSiÞ > 1=2, hence ljðT nSiÞ < 1=2, and hence ljðSiÞ� ljðT nSiÞ > 0.

Hence for all x and y in Em
þ , the monotonicity of the utilities (Assump-

tion 3) yields

HxþyðSiÞ ¼ UxþyðSiÞ �UxþyðT nSiÞ

¼
Xh
j¼1

lðTjÞujðxþ yÞðljðSiÞ � ljðT nSiÞÞ

Z
Xh
j¼1

lðTjÞujðxÞðljðSiÞ � ljðT nSiÞÞ ¼ HxðSiÞ:

Now this is precisely (7.12), and the remainder of the proof is as in the

di¤erentiable case.

8 Discussion

a Description of the Voting Game

In describing the voting game, we specified that only majority coalitions

were permitted to produce, using their own resources only. This appears

di¤erent from the corresponding description in Aumann and Kurz

(1977a), in which it was specified that the majority may expropriate

resources from the minority, but that faced with expropriation, the

minority may destroy part or all of its resources.

In fact, the descriptions are equivalent. Since the minority may destroy

its own resources, and the majority may also e¤ectively destroy the

minority’s resources (simply by refusing to use them), destruction of the

minority’s resources is an option available to either side. But the zero-

sum nature of the threat game implies that for some pair of optimal

strategies, any option available to both sides will be taken up by at least

one of them, since at least one of the sides will gain (or at least not lose)

by doing so. Thus there is no loss of generality in specifying that the

minority’s resources will in fact be destroyed.

b The Coase Theorem and Related Issues

The ‘‘Theorem’’ of Coase (1960) asserts, among other things, that prop-

erty rights do not a¤ect the level at which economic activities that

generate externalities are performed.13 For example, suppose steam

13. The assertion concerns rational economic agents who are permitted to trade in their
property rights.
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locomotives emit sparks that damage crops on nearby land. The Coase

Theorem states that whether the train runs is independent of whether the

railroad must recompense the farmer for lost crops. If profits from run-

ning the train exceed the value of the lost crops, it will run; otherwise it

won’t. Property rights determine the level (and direction) of side pay-

ments, but not that of the actual activities.

This is subject to a lot of ‘‘ifs’’: no transaction costs, no income

e¤ects,14 and so on. In e¤ect, one must assume a transferable utility

(TU) context. But in that case ordinary Pareto optimality dictates that

the protagonists always engage in whatever activities are necessary to

maximize the sum of the payo¤s, regardless of the capabilities (or

‘‘rights’’) of individuals or subcoalitions (who can always be compensated

by transfers). Thus the Coase Theorem is simply an expression of Pareto

optimality in the context of externalities.15

Public goods are a classic instance of externalities, and the vote may be

considered analogous to property rights. Thus our result, which implies

that the choice of public goods is independent of who has the vote,

sounds like a version of the Coase Theorem. But the resemblance is

superficial; our result goes much further.

To clarify this issue, note first that as stated, our model permits no side

payments. When side payments are impossible, the Coase Theorem pre-

dicts only Pareto optimality, and, of course, there are in general many

Pareto optimal outcomes. The choice among these outcomes may very

well be a¤ected by property rights; if the railroad is prevented from com-

pensating the farmer, his property rights may be decisive in determining

whether the train will run. Similarly, one would expect that when side

payments are impossible, the vote does a¤ect the choice of public goods.

But our theorem says that it does not.

Consider next the TU version of our model, in which it is possible to

make side payments so that the utility lost by the payor always precisely

equals that gained by the payee. This yields a model like the one in this

paper, but with an exogenous comparison measure l that expresses actual

rates of exchange. In that case the Coase principle (i.e. the principle of

Pareto optimality) leads us to expect a choice of public goods that is

independent of the voting weights, but with compensation between the

agents that does depend on the voting weights. Here again our theorem

goes much further: it says that the choice of public goods and the sched-

ule of compensations between the agents is independent of the vote.

14. Dolbear (1967).

15. We are referring to the principle expounded by Coase (1960), not to later developments
that discuss the formation of markets in externalities.
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Finally, consider the possibility of making side payments that cause the

payor to lose and the payee to gain utility, but not necessarily in equal

amounts.16 In spite of appearances this is essentially an NTU (non-

transferable utility) situation, much like that in which no side payments

at all are permitted. While we have not considered this model explicitly,

our methods can be applied to it in a straightforward fashion; the con-

clusion is that as in the cardinal TU case, both the choice of public goods

and the schedule of side payments are independent of the vote. This is to

be contrasted with the Coase Theorem, which with similar side payments

allows both the level of externality-producing activity and the schedule

of side payments to depend on property rights, stipulating only that the

overall outcome be Pareto optimal.

The question arises, what economic factors that are absent in the

Coase case account for our strong results. Part of the answer is that we

deal with a large number of individually insignificant agents—‘‘a perfect

competition’’ context, so to speak; whereas Coase considers any number

of agents, and in fact most of his examples have just two. There is more

to it than that, though; the reader is invited to consult Section 6 of AKN.

c Existence of Value Outcomes

This paper has concentrated on equivalence results—on relationships

between value outcomes of di¤erent games—and has avoided questions

of existence. We have proved a statement of the form ‘‘two games have

the same set of value outcomes,’’ it being understood that the set may be

empty. Here we briefly address the existence problem.

This problem divides naturally into two parts: (i) Existence of an

asymptotic value for the game vl with given l, and (ii) given a positive

solution to (i), finding equilibrium l (i.e. solving (1)).

As far as (i) is concerned, it is likely that a di¤erentiability assumption

in the spirit of Assumption 5(i) would be su‰cient to ensure existence of

an asymptotic value for the non-voting and voting games vAl and vBl . The

proof would perhaps use methods similar to those used for exchange

economies (Aumann and Shapley (1974), Chapters VI and VII), and

the finite dimensionality of the outcome space would further simplify

matters.17

Without di¤erentiability matters become more problematic. Even with

a finite type assumption like Assumption 5(ii), the asymptotic value in

16. We called this ‘‘ordinal TU’’ in Section 9 of AKN, to distinguish it from the previous
case, which we called ‘‘cardinal TU’’ there, and which is the plain ‘‘TU’’ of most of the
literature.

17. Exchange economies have infinite dimensional outcome spaces.
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general fails to exist in the case of exchange economies (op. cit., Section

19), and presumably for our public goods economies as well. Hart

(1977) has demonstrated the existence of an asymptotic value for non-

di¤erentiable exchange economies obeying a certain symmetry condition;

perhaps a similar result could be proved here.

For (ii), the main problem would be continuity of the value fvl as a

function of l. With di¤erentiability, this would probably be OK. But

without di¤erentiability, it would cause di‰culties even when (i) is sat-

isfactorily resolved; the value, which is a kind of average derivative,

would not in general be continuous in l when one passes over a kink.

Summing up, it appears that an appropriate di¤erentiability condition

is probably su‰cient to ensure existence of a value outcome, and that for

a general existence theorem, one cannot get away with much less. On the

other hand, a generic existence theorem may well be provable without

any kind of di¤erentiability condition.

We stress that we do not have any existence proof; the remarks in this

subsection should be considered conjectures.

d The Role of Di¤erentiability

The proof of the theorem depends on Formula (7.14), which asserts that

wAðSÞ ¼ wBðSÞ for any coalition S that is ‘‘close to the diagonal’’ and

has a ‘‘considerable’’ majority; more precisely, that

for any d > 0 there is a diagonal neighbourhood D such that

wAðSÞ ¼ wBðSÞ whenever S 2 D and nðSÞ > 1
2 þ d: ð13Þ

Assumption 5—that the utilities are either di¤erentiable or are of finitely

many di¤erent types—is essential to prove (13): It is possible18 to con-

struct a public goods economy satisfying Assumptions 1 through 4—but

not 5—and violating (13). Thus Assumption 5 is essential for our line of

proof. It is not known whether the theorem is actually false without it.
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