
13 Subjective Programming

Programming problems are defined by a constraint set and an objective

function. The role of the constraint set is to limit the courses of action—

the technical word is activities—to those that are feasible, and the role of

the objective function is to give the preference relation on the activities.1

The aim is to find a feasible activity that is preferred or indi¤erent to all

other feasible activities. The objective function is assumed to be given as

a numerical function on the space of activities; preferred activities corre-

spond to higher values of the function. If the objective function is linear

and the constraint set is a polyhedron, the computational methods of

linear programming are applicable. Computational techniques are also

available for some kinds of problems in which the objective function is

not linear, but in any case all such techniques do use a numerically

defined objective function.

There is, however, a large class of practical problems in which there is

no a priori numerical objective function readily available. For example,

many of the programming problems that arise in the military establish-

ment are not concerned with the maximization of some definite and

measurable quantity, such as dollar profit, but rather with the max-

imization of vague concepts like ‘‘military worth.’’ Mathematical tech-

niques for dealing with these problems are useless unless military worth is

adequately defined and some method is given for measuring it. Nor are

they limited to the military establishment; any organization that does not

operate on a profit motive (including any government department) is in

a similar situation. Even ordinary profit-making business corporations

may face such problems when they must decide among activities whose

e¤ect on the profit-making mechanism, though vital, is too remote and

complex to be e¤ectively calculable. For example, many employee-

assignment problems are of this kind; so are those that involve activities

whose main e¤ect is on good will. Also, in a business operation there are

often multiple motives that may conflict—for example, advancing the

interests of a division or of the whole corporation of which it is a part. In

such cases it may well be impossible to measure the objective simply in

dollar terms.
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1. The word ‘‘alternative’’ is sometimes used in the sense that we use ‘‘activity.’’ Other
terms that have been used more or less synonymously in various contexts are ‘‘outcome’’ or
‘‘prize’’ (in von Neumann–Morgenstern utility theory), ‘‘commodity bundle’’ (in econom-
ics), and ‘‘activity vector’’ (in linear programming).



The object in all these problems is still to find a ‘‘best possible’’ activity

in the constraint set, but the term ‘‘best possible’’ is no longer defined by

a numerical objective function. Instead, we must assume that there is some

kind of preference structure defined on the set of all activities and solve

our problem in terms of this structure. The preferences are presumably

those of the individual responsible for making decisions. Hence the name

‘‘subjective programming;’’ the decision is to be made on the basis of

subjective preferences rather than objectively measurable quantities. Per-

haps ‘‘nonnumerical programming’’ would have been a more accurate

description of the mathematical context, but the name we have chosen is,

we think, more suggestive of the applications.

One general method of attack on subjective programming problems is

to follow the natural bent of the mathematician: rather than solve the

problem directly, reduce it to one that has already been solved or at least

that we know more about. Specifically, the idea is to transform the given

‘‘subjective’’ nonnumerical problem into one of ‘‘objective’’ numerical

maximization. The basic tool in this transformation is the notion of

utility—a numerical function that in some appropriate sense ‘‘represents’’

the given preference structure.

The aim of this chapter is to investigate the implications of this attack,

the di‰culties that result, and to review and synthesize the work that has

been done. There are many open questions in this area. Some are mathe-

matically well defined and must be answered either ‘‘yes’’ or ‘‘no;’’ in

others that are more conceptual in nature the chief di‰culty at this

stage is one of formulation. One of our major purposes here is to put

these important problems into a coherent framework, with the hope that

they will attract the attention they deserve.

Our approach is novel in two basic respects. First, the preference

orders with which we work are in general not complete; that is, it is not

assumed that all activities are comparable in the preference order. We

feel that not only is the completeness assumption not satisfied in practice,

but, more important, it is not even defensible as a norm of rational be-

havior. Heretofore it has been assumed almost universally in discussions

of preference; but probably this has been more because of conceptual

and mathematical convenience or inertia (previous investigators having

assumed it) than out of conviction.

Second, we consider the word ‘‘utility’’ to be a generic name for a

number of related but distinct concepts, all of which are tools for solving

subjective programming problems. However, di¤erent situations call for

di¤erent utilities. Most subjective programming problems have some

inherent mathematical structure other than the order, and to solve them

it is convenient to use a utility that not only represents the order but also
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‘‘fits’’ the structure. Di¤erent problems have di¤erent structures, and this

leads to di¤erent utilities. For example, the utilities of von Neumann and

Morgenstern (1944) are particularly suited to problems involving risk,2

because they have the ‘‘expected utility property,’’ according to which the

utility of a risk equals the expected utility of its possible outcomes. This

property is a great mathematical convenience in dealing with risky situa-

tions. But in problems not involving risk the expected utility property is

useless, and it is often more convenient to use a kind of utility other than

that of von Neumann and Morgenstern.

As an illustration of this idea, we devote a considerable portion of the

sequel to an investigation of a particular class of nonrisky subjective pro-

gramming problems in which the activities have an additive structure,

that is, they can be meaningfully added to one another. It turns out to

be convenient in this situation to have available an additive (i.e., linear)

utility function; such a utility, when it exists, makes ordinary linear pro-

gramming techniques applicable. An example is an employee-assignment

problem in which the value of having a particular employee in a particu-

lar job is not given numerically at the outset; all that is given is a partial

preference order on the assignment plans. Conditions for the existence of

additive utilities in this situation are then presented. Even in this special

area, more questions will be raised than answered.

The basic definitions concerning orders, maximality, and so on, are

presented in the following section, with a brief discussion of transitivity

and completeness. Subsequent sections are devoted to the problems with

additive structures that we mentioned in the preceding paragraph: their

treatment is motivated by giving two important examples; conditions for

the existence of additive utilities are stated and proved; the assumptions

and conclusions from both an intuitive and a mathematical viewpoint

are discussed and some of the open problems are pointed out; and an

important variant of the basic additivity assumption, about which little is

known to date, is outlined. The remainder of the chapter is devoted to a

survey of the utility concept, and its application to subjective program-

ming, in the context of various mathematical structures. We discuss the

area from a general intuitive viewpoint and give our views concerning

the uses and misuses of utility. We go into technical details concerning

the mathematical structure of programming problems by means of six

examples that describe various contexts in which they may occur. These

examples are followed up in four sections, in which utilities are defined

and illustrated in each of the six contexts, and their existence, uniqueness,

2. Strategic games, though they may not explicitly involve risk, usually do involve it
implicitly, because of the need for using mixed strategies to obtain optimal results.
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and application to subjective programming is discussed. Finally, we

review briefly the outstanding problems that have been mentioned in

preceding sections and add two others that have not been mentioned.

The chapter demands only a modicum of mathematical sophistication.

Nevertheless, the problems in this area are really fascinating. We have

tried to keep the nonmathematical material as independent as possible of

the mathematical.

Preference Orders

Let X be a set of points. A partial preference order or simply order on X

is a relation 9 on X, called preference or indi¤erence, which satisfies

the conditions of

transitivity x9 y and y9 z imply x9 z

and

reflexivity x9 x

for all x, y, z in X. The relations t ( preference) and @ (indi¤erence) are

defined in terms of 9 : xt y if x9 y but not y9 x; xt y if x9 y and

y9 x. If neither x9 y nor y9 x, then x and y are called incomparable;

otherwise they are comparable. The order is complete if it satisfies the

condition of

completeness For all x and y in X, either x9 y or y9 x (or both).

Many of the orders we consider here are not complete. An order is called

pure if the indi¤erence relation is essentially absent, that is, if x@ y

implies x ¼ y.

Let A be a subset of X. A point x of A is said to be a maximum of A if

it is preferred or indi¤erent to all other members of A, that is, if for all y

in A, x9 y. It is said to be maximal in A if no member of A is preferred

to it, that is, if there is no y in A such that yt x. Thus a maximal mem-

ber of A can be advertised only as being ‘‘no worse than anything else,’’

whereas a maximum element can be advertised as being ‘‘at least as

good as anything else.’’ If the order is complete, then ‘‘maximum’’ and

‘‘maximal’’ are equivalent. More generally, if A has a maximum, then all

maximal elements are indi¤erent to it and are, a fortiori, themselves

maximum. Often, however, there will be a number of incomparable

maximal elements in A and no maximum element. Consider, for exam-

ple, the pure order on the Euclidean plane E2 defined by xt y if and
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only if x1 > y1 and x2 > y2. Let A be the triangle defined by x1 X 0,

x2 X 0, x1 þ x2 W 1 (see Figure 1). Then all points in A in the line

x1 þ x2 ¼ 1 (heavy line) are maximal, but they are all incomparable and

A has no maximum.

Of course, not every A need have even a maximal element; for exam-

ple, if X is the real line ordered in the usual way and A is an open inter-

val, then A has no maximal element.

A real-valued function u on X is said to represent the order if for all x,

y in X,

xt y implies uðxÞ > uðyÞ

x@ y implies uðxÞ ¼ uðyÞ:
ð1Þ

The representation is called faithful if

x9 y if and only if uðxÞX uðyÞ: ð2Þ

It is easily seen that every representation of a complete order is faithful,

and, conversely, if an order has a faithful representation, it is complete.

Thus a representation of an incomplete order cannot be faithful; if

uðxÞ > uðyÞ, x and y may be incomparable. We will say that u represents

the order on A if (1) holds for all x, y in A.

The most general formulation for a subjective programming problem is

the following: given a set X with an order, and a subset A of X, find the

maximal elements in A. One way to attack such a problem is to look for

numerical functions u that represent the order and try to maximize these

functions over A. Clearly, the result will always be a maximal element of

A. Little further of interest can be said in this extremely general context.

In the sequel it is shown how this principle can be applied in specific sit-

uations to the solution of subjective programming problems.

We close this section with an intuitive discussion of the transitivity and

completeness assumptions. The transitivity assumption is slightly con-

troversial, especially if the preferences in question are those of a group.

But without it a given constraint set may well have no maximal element,

even under the best of ‘‘regularity’’ conditions on it (for instance, even if

Figure 1
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it is finite), so that the programming problem becomes meaningless.

What is worse, without transitivity3 representation by a numerical func-

tion is usually impossible, so that we cannot apply our basic tool. We

shall return to this subject on page 254; for the present let us merely say

that our considerations apply to those situations in which transitivity

does obtain, and this is a large and significant group of problems.

The completeness assumption constitutes a restriction that is probably

much more significant than that of transitivity. In spite of the fact that

it has been almost universally assumed in discussions of preference, it

almost never holds in real-life situations. There is no reason to expect a

decision maker to have well-defined preferences between any two possi-

bilities, some of which may be very complicated or hypothetical. The

situation illustrated by Figure 1 is a perfect example—the decision maker

prefers one point to another if it is larger in both coordinates, but he is

unable or unwilling to decide, or is uninterested in deciding, on a sub-

stitution rate between the two coordinates. A more detailed discussion

of the completeness assumption in a more special context is given by

Aumann and Kruskal (1958, pp. 446–447). Here we shall usually not

assume completeness. This means that the solutions to our programming

problems will be maximal rather than maximum in the constraint set.

Problems with an Additive Structure: Motivation

For the next four sections the space X of activities is the set of all points

in Euclidean n-space En whose coordinates are nonnegative integers, that

is, the set of lattice points in the nonnegative orthant of En. Addition on

X is defined as ordinary vector (coordinatewise) addition.

This is the typical setting of ‘‘integer programming’’ problems, which

often, though basically subjective, are ‘‘objectivized’’ by a more or less

arbitrary choice of a numerical objective function. Consider the employee-

assignment problem mentioned on page 223: There are k jobs and k

candidates, and it is desired to assign the candidates to the jobs

‘‘optimally.’’ An ‘‘activity’’ (point in X ) is a particular assignment plan.

Each assignment plan can be thought of as a vector with k2 coordinates

xij , in which i and j run from 1 to k and xij is 1 or 0 according as the ith

candidate is or is not assigned to the jth job; X can therefore be taken

to be the set of lattice points in the nonnegative orthant of Euclidean

k2-space. The constraint set A is then the subset of X satisfying

3. More precisely, if the relation t has cycles.
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Xk

i¼1

xij ¼ 1; j ¼ 1; . . . ; k

Xk

j¼1

xij ¼ 1; i ¼ 1; . . . ; k:

The treatment of assignment problems in the literature often starts out

by saying ‘‘let us suppose, for simplicity, that each candidate is either

totally suited or totally unsuited to a given job.’’ In the first case the

assignment of the candidate to the job is given the ‘‘value’’ 1, in the sec-

ond, the ‘‘value’’ 0; all values for a particular assignment plan are added

to yield the ‘‘value of the plan,’’ and this total is then maximized over the

set A of feasible plans. No justification is given for the addition of the

values, and the assumption of total suitability or unsuitability is so

restrictive that it makes the whole discussion almost useless. Even in the

best of circumstances, that is, even if a given candidate really is either

‘‘totally suited’’ or ‘‘totally unsuited’’ to a given job, it is not clear exactly

what has been achieved when the total value has been maximized; has the

whole procedure any meaning or is it simply a magic rite to appease the

god of operations research?

Sometimes it is assumed that assigning candidate i to job j has value

cij, and it is not assumed that cij is necessarily 0 or 1. When cij can be

directly measured, say in dollars, then this procedure has some validity.

But more often this is not the case, even in business organizations; and

then it is not clear how the cij should be determined nor even what they

mean.

A similar problem has been treated at some length in a series of papers

and letters to the editor in Naval Research Logistics Quarterly (Smith,

1956; Suzuki, 1957; Aumann & Kruskal, 1958, 1959; McShane &

Solomon, 1958; Davis, 1959; Kruskal, 1959; Aumann, 1960). A number

of ships, or rather types of ships, and a number of types of electronic

equipment (such as radar, sonar, radio transmitters, all of various kinds)

are given. There is usually more than one ship of each type, and more

than one of each type of equipment. The electronic equipment, of which

only a limited amount is available, must be assigned to the ships. In some

variants of the problem a budget (i.e., sum of money) to buy the equip-

ment is given, rather than the equipment itself; this makes it necessary to

decide what equipment to buy in addition to allocating it once it is

bought.

The writers of the papers cited assumed that there was some military

authority with a preference order on the set of all possible allocation

plans and that this preference order could be represented by a numerical
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objective function obtained by giving a fixed value cij to the assignment

of an equipment of type i to a ship of type j and then summing all the

values for a particular allocation plan. Having made this assumption,

they then concentrated attention on practical methods for finding the cij.

In the following sections we investigate and discuss to what extent and

under what conditions the methods described in the foregoing examples

can be justified.

Problems with an Additive Structure: Mathematical Treatment

Let X be as in the preceding section, that is, the set of lattice points in the

nonnegative orthant of En. Assume that there is a partial preference

order 9 on En satisfying the condition of

additivity

xt y implies xþ zt yþ z;

x@ y implies xþ z@ yþ z;
ð3Þ

for all z A x. A utility on X is a function u on X to the reals that repre-

sents the preference order and is additive; that is, it satisfies

uðxþ yÞ ¼ uðxÞ þ uðyÞ: ð4Þ

An additive function is necessarily linear; for if x ¼ ðx1; . . . ; xnÞ and

c1 ¼ uð1; 0; . . . ; 0Þ; . . . ; cn ¼ uð0; . . . ; 0; 1Þ, then it follows easily from (4)

that uðxÞ ¼ c1x1 þ � � � þ cnxn ¼ c � x. We wish to investigate conditions

under which utilities on X exist and what can be done with them once

they are found.

The first point to notice is that a utility need not always exist. For a

counterexample, let X be the set of lattice points x in the nonnegative

orthant of Euclidean 2-space E2, and let the order be the lexicographic

order; that is, xt y if and only if either x1 > y1 or x1 ¼ y1 and x2 > y2.

It is easily seen that there is then no utility.

To obtain the existence of a utility, we add a further condition, that of

finite generation. Intuitively, the order (not the space!) is said to be

finitely generated if there is a finite set of preferences and indi¤erences

from which all others can be deduced by means of repeated applications

of the transitivity and additivity (3) assumptions. More precisely, we shall

say that a preference order 9 is included in another one 9� if xt y

implies xt� y and x@ y implies x@� y. A set S of preference statements

and indi¤erence statements (statements of the form xt y or x@ y) is

said to generate a given additive preference order 9 if that order is the

minimum (with respect to inclusion) additive order in which the state-

ments of S are true; if S is consistent, that is, if there is any additive order
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in which the statements of S are true, then there is also a minimum such

order. An additive order generated by a finite set S of preference state-

ments and indi¤erence statements is said to be finitely generated.

theorem 1 Every finitely generated additive order on X has a utility.

The proof is based on the following:

theorem of the alternative Let z1; . . . ; zm be arbitrary vectors in En,

and let 1W kWm. Then either there is a vector c such that

c � zi > 0; i ¼ 1; . . . ; k;

and

c � zi ¼ 0; i ¼ k þ 1; . . . ;m;

or there are nonnegative numbers r1; . . . ; rk not all of which vanish, and

numbers (possibly negative) rkþ1; . . . ; rm, such that

Xm

i¼1

rizi ¼ 0:

Note that the last equation is a vector equation. This version of the

theorem of the alternative is a consequence, for example, of Tucker’s

Corollary 2A(ii) (1956, p. 10; Tucker’s A2 must be set equal to zero).

We also make use of the lemma that follows at once from transitivity

and additivity.

lemma 1 xt y and z9w imply xþ zt yþ w.

To prove Theorem 1, let S be a set of preference statements generating

the order. Let the statements in S be x1 t y1; . . . ; xk t yk; xkþ1 @
ykþ1; . . . ; xm @ ym. If k ¼ 0, there is nothing to prove, for then there is no

strict preference in our order, and 0 is a utility. Suppose therefore that

kX 1, set zi ¼ xi � yi for 1 ¼ i; . . . ;m, and apply the theorem of the

alternative. If the first alternative holds, we claim that c � x is a utility.

Indeed, let us define an order 9� by x9� y if and only if c � ðx� yÞX 0.

Since the first alternative holds, the statements of S are true in 9�; since

9 is the minimum order for which the statements in S hold, 9� includes

9. Hence xt y implies c � x > c � y and x@ y implies c � x ¼ c � y, and so

c � x is a utility.

On the other hand, suppose the second alternative holds. We may sup-

pose that all the ri are nonnegative; for, if some rj is negative, we may

reverse the roles of xj and yj to obtain rj positive. Moreover, we may

suppose that the ri are rational; for the zi are all rational (in fact integral),
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and the proof of the theorem of the alternative holds without change in

the rational field. (Alternatively, it is easily seen that a linear system with

rational coe‰cients that has any solution also has a rational solution.)

It follows that we can take the ri to be nonnegative integers, for we

can multiply through by a common denominator. From x1 t y1; . . . ;

xk t yk; xkþ1 @ ykþ1; . . . ; xm @ ym, Lemma 1, and the fact that not all the

r1; . . . ; rk vanish, it follows that

Xm

i¼1

rixi t
Xm

i¼1

riyi;

but this contradicts the second alternative, since t is by definition irre-

flexive. This completes the proof of Theorem 1.

As we have already pointed out, if a function u represents the order,

then maximization of u over a constraint set A leads to a maximal ele-

ment of A. If u is a utility, then it is linear as well as representing the

order; this means that the problem has been reduced to a numerical

‘‘integer programming’’ problem, for which an algorithm4 is available

(Gomory, 1958).

The finite generation condition on the preference order clearly holds in

many real-life situations, and it is to these situations that Theorem 1 is

most obviously applicable. For the purposes of solving subjective pro-

gramming problems, Theorem 1 can often be applied even when the

order is not finitely generated. In fact, we are interested only in the be-

havior of the order on the constraint set A. Maximization of a function

that represents the order on A yields a maximal member of A, even

though the representation may fail outside A. Now if A is finite—as it

usually is—we can look at the set S of all preferences and indi¤erences

between members of A. This set is certainly finite, and it is consistent

because all the statements in S hold in the given order 9 on X. Hence S

generates an order 90 on X; 90 coincides with the original order 9 on

A, but it is finitely generated, even though 9 may not be. Theorem 1

assures us that 90 has a utility; for the purpose of solving the given sub-

jective programming problem, this utility is just as good as a utility for

the original order 9 would have been. We have demonstrated

theorem 2 Let 9 be an additive preference order on X, and let A be a

finite subset of X. Then there is a linear function u that represents 9 on

A. A fortiori, the maximization of u over A leads to a maximal element

of A.

4. Certain restrictions must be placed on the constraint set A in order for the Gomory
algorithm to be applicable.
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We shall call u a utility on A or an A-utility. Practical methods for

finding A-utilities are identical with those for finding utilities (see p. 243).

It should be noted that the utilities, and a fortiori the A-utilities, need

not be unique. A simple counterexample is the pure order generated

on the lattice points in the nonnegative orthant of E2 by ð1; 0Þt 0;

ð0; 1Þt 0. All functions of the form c1x1 þ c2x2, where c1 > 0 and

c2 > 0, are utilities.

Problems with an Additive Structure: Discussion

The space X, on which the given preference order and the resulting utility

are defined, consists of all the activity vectors, not just those in the

constraint set. This corresponds to the real-life situation; the preference

relation and the constraint set are determined by completely di¤erent

considerations, and there is no reason to restrict one to the other. The

housewife, for example, may be able to express meaningful preferences

between various bundles of groceries, even though not all of them are

feasible from the point of view of the week’s budget. Furthermore, prices

of groceries or the family’s earnings might change without a¤ecting

preferences, so that this week’s infeasible vector may be feasible next

week. Thus the preference relation is ordinarily defined on many pairs of

vectors that are not in the constraint set, and this is perfectly reasonable.

The Additivity Assumption

It is this assumption that enables us to find linear functions that represent

the order. There is no doubt that it is a strong assumption, that it severely

limits the range of problems to which the theory developed in the pre-

ceding section may be applied. In particular, unlike transitivity, it cannot

be considered a generally applicable ‘‘rationality’’ assumption. Roughly,

it holds whenever the usefulness of an activity does not depend on other

activities being performed at the same time. Otherwise, it will usually fail:

for example, four tires may be preferred to a Cadillac without tires (at

least the tubes can be used for swimming), but many would prefer a

Cadillac with tires to eight tires; so we have reversed preferences simply

by adding four tires. Other examples in which the additivity assumption

does not hold are those governed by a law of diminishing returns, or

personnel assignment problems in which compatibility considerations

play an important part.

Here are some examples in which the additivity assumption does hold:

1. Problems in which the various activity units operate entirely indepen-

dently of one another. For instance, consider an employment agency with
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a number of candidates and a number of firms on its roster; each firm has

only one vacancy. To keep things subjective, assume that the agency gets

a fixed fee for each assignment and is therefore interested only in max-

imizing good will.

2. Programming problems in which the interactions between the activity

units are relatively minor and di‰cult to analyze. Allocation of clerical

and other semiskilled workers in a single organization might be an

example. Another example of the same kind is the naval electronics

problem (see p. 237).

3. Certain situations governed by a law of diminishing returns, but in which

we are interested only in adding to current activity in relatively small

amounts. Intuitively, though the ‘‘utilities’’ here will not in general be

linear (which we demand in our formal definition), theymay be ‘‘marginally

linear.’’ We give a more precise description at the end of the next section.

Another aspect of the additivity assumption is open to some question.

It is asserted that xt y implies xþ zt yþ z for all z, no matter how

large. Now, in reality there may often be some practical limit on the size

of the activities involved in preference statements. For example, the

housewife, though willing to express preferences between certain bundles

of groceries, may call a halt when she is confronted with a pair of bundles

each of which contains millions of cans of vegetables. Thus the additivity

assumption as it stands may have to be regarded as an idealization of the

true situation.

The Converse of Theorem 1

We are particularly concerned with the relation between the additivity

assumption and the existence of a utility in the sense described on page

238. Assume that a given preference relation has a utility; must the

additivity assumption be satisfied? The answer is in general no5; but the

additivity assumption must be satisfied whenever xþ z and yþ z are

comparable. More precisely, let us define the preference order to be

weakly additive if

1. xt y implies either that xþ zt yþ z or that xþ z and yþ z are

incomparable; and

2. x@ y implies either that xþ z@ yþ z or that xþ z and yþ z are

incomparable.

5. Let X be the nonnegative integers and suppose that the preference relation contains (in
addition to the statements x9 x) only the single statement 19 0 (from which it follows that
1t 0). This has a utility given by uðxÞ ¼ x, but obviously the preference relation is not
additive.
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Every preference relation for which there is a utility must be weakly

additive. It must also be weakly transitive and reflexive if these concepts

are defined in the corresponding manner. On the other hand, nothing of

this kind can be said about finite generation.

An alternative statement of the converse is that a preference relation

for which there is a utility may be extended to one that is transitive and

additive. The proof of the converse is trivial.

Significance of the Converse

The converse says that we cannot expect a linear objective function for a

programming problem unless additivity holds. On page 241 we discussed

the intuitive meaning of additivity and pointed out that it is a strong

assumption. We now see that though it is strong it necessarily holds in

any situation in which linear programming is even potentially applicable.

In particular, this should serve as a warning to those who blithely

add together the ‘‘worths’’ of components in order to get the ‘‘worth’’ of

a whole system; such a procedure is valid only in certain circumstances

(see p. 241).

Finding All the Maximal Elements of the Constraint Set

As we have pointed out, it is obvious that maximization of a utility over

the constraint set yields a maximal element. The question is whether

every maximal element can be obtained in this way. In this context the

answer is no. Consider, for example, the pure order on the nonnegative

integers generated by 3t 2t 0. This order is additive and we have

0s 2s 3s � � �, but 1 and 2 are incomparable. An essentially unique

utility is uðxÞ ¼ x. If we let A ¼ f1; 2g, then 1 is maximal in A, but no

utility maximizes it.

Conditions under which the question can be answered positively are

discussed on page 253.

Computing the Utilities

At the end of the last section we mentioned that in general there is no

unique utility; thus what we are looking for is the set of all utilities. Let

uðxÞ ¼ c � x be a utility; we have already remarked that all utilities have

this form. Then if xt y, it follows that c � ðx� yÞ > 0; if x@ y, it follows

that c � ðx� yÞ ¼ 0. If the order is finitely generated, then there is a finite

set S of preference statements and indi¤erence statements that generate

the order. Form the system S� of strict inequalities and equations corre-

sponding to the statements in S; any feasible solution of this system is

a utility, and conversely any utility is given by a feasible solution of the

system.
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If the order is not finitely generated, the same idea may be applied to

obtain an A-utility. Of course, it is not necessary to use all comparisons

within A; a set of comparisons that generates the order on A would

su‰ce.

From a practical viewpoint the question of computing the utility is

often more complicated. In this chapter we wish to avoid a detailed dis-

cussion of the practical di‰culties6; we merely mention one which has

some theoretical interest and significance. The set S of basic (generating)

decisions may be extremely large; it is often impractical to ascertain all of

these decisions explicitly. The result of having a set of available decisions

smaller than the true set is that the polyhedron of feasible solutions to the

resulting system of equations and inequalities is larger than the true poly-

hedron of utilities. So we are not sure that a member of the larger poly-

hedron is actually a utility; in some sense, though, we may call it an

approximate utility. The first questions are in what sense is it an approx-

imation and can we give any measure of how good the approximation is?

We are not really interested in the utility as such, but in its use as a tool

for solving programming problems. Application of the approximate util-

ity in a programming problem may be expected to lead to an answer that

is not generally optimal; we may hope that it is ‘‘close’’ to optimal. The

basic question here is how to define ‘‘closeness;’’ when we have done this

we may be able to use the resulting measure of closeness on the space X

of activity vectors to define an appropriate closeness measure on the

space of utilities. We feel that the measure of closeness on X should be

based on the polyhedron of true utilities, but it is not clear exactly how.

Once these basic questions have been answered, it is possible to ask

whether there are any good techniques of approximation of general val-

idity. More precisely, suppose we have some control over the questions

on which the decision maker will be asked to decide, the results of which

will be used to find approximate utilities; how should we exercise this

control in an e‰cient manner in order to make the approximation good?

Generalizations are discussed in later sections (see pp. 245–53).

The Restricted Additivity Assumption

We wish to pursue further the question raised on pp. 241–42 in the pre-

ceding section. Let us say that the decision maker wishes to restrict his

preference statements to a certain set A of activity vectors. Within A the

6. The reader is referred to the papers cited on page 237 in connection with the naval elec-
tronics problem for a discussion of some of the problems.
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additivity assumption is assumed to hold; that is, it holds whenever x, y,

xþ z, and yþ z are in A. As before, the order within A is only partial,

and the set A need by no means be restricted to the constraint set; on the

contrary, in general it will be large enough to contain all the constraint

sets that the decision maker thinks may arise in a given context and may

be a good deal larger. We wish to know whether Theorem 1 still holds in

this situation, that is, whether it is possible to define a utility on A.

Unfortunately, the answer is no. Roughly we may say that it is possible

for the comparisons within A to carry within them the ‘‘seeds’’ of con-

tradiction but that this contradiction need not take place until we

have gone beyond A (and thus beyond the responsibility of the decision

maker).

There are several directions in which we might proceed to save the sit-

uation. We might try in various reasonable ways to restrict the kind of set

that A may be, for example, by demanding that it be ‘‘convex’’ (i.e., the

intersection of a convex set with the lattice points), that it contain with a

given point x all non-negative lattice points y which have coordinates no

greater than those of x, or both. None of these conditions will do the

trick, as is shown by the following example: let A be the set of all lattice

points x in Euclidean 4-space E4 satisfying xi X 0 for i ¼ 1; . . . ; 4, andP4
i¼1 xi W 2. Write a ¼ ð1; 0; 0; 0Þ; . . . ; d ¼ ð0; 0; 0; 1Þ; the order on A is

defined by 0s as bs cs ds 2as aþ bs 2bs aþ cs aþ ds
bþ cs 2cs bþ ds cþ ds 2d; note that it is total. Let u be a utility;

we obtain uðbÞ þ uðdÞ > 2uðcÞ and uðbÞ þ uðcÞ > uðaÞ þ uðdÞ. Hence

2uðbÞ þ uðcÞ þ uðdÞ > 2uðcÞ þ uðaÞ þ uðdÞ; therefore 2uðbÞ > uðaÞ þ uðcÞ,
contradicting 2bs aþ c. Thus even a complete order on a perfectly

‘‘well behaved’’ set does not always possess a utility.

Another counterexample has been given by Kraft, Pratt, and Seiden-

berg (1959). They exhibited an additive order on the unit cube in E5 (i.e.,

the set of all lattice points in E5 whose coordinates are 0 or 1) in con-

nection with an attempt to define numerical subjective probabilities from

qualitative comparisons of probabilities of the kind ‘‘this is more prob-

able than that.’’

Possibly positive results can be obtained if some other kind of geo-

metric shape is assumed for A.

A completely di¤erent approach is as follows: let A be the set on which

the preference order is defined and B the set on which a utility is needed

(say the union of the constraint sets likely to occur in practice). In gen-

eral, A contains B. It seems intuitively clear, and indeed is not di‰cult to

prove, that if A is large enough with respect to B (but still finite) a utility

will be definable on B (any contradictions caused by the preference order

on B must be realized ‘‘not too far’’ from B). Now the question arises,

how large must A be, as a function of B, for a utility to be definable on B?
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The problem of defining a utility on B is equivalent to that of extend-

ing the given order to all of the lattice points in En; this follows from

Theorem 1. Thus the foregoing problem may be formulated as follows:

let B be a fixed subset of X and let A be a superset of B. How large must

A be chosen so that every preference order on B that is extendable to A is

already extendable to all of X?

We are now in a position to explain what we meant by ‘‘marginal lin-

earity’’ (see p. 241). We are concerned with a situation in which a large

number of activities have already been performed, and we are interested

in performing a small number of additional activities. The additivity

assumption is assumed to hold ‘‘in the small,’’ that is, as long as z stays in

the ‘‘marginal’’ range (i.e., does not cause xþ z and yþ z to become too

large compared with the activity vector already performed). If it is possi-

ble to extend the preference order in an additive manner beyond the

marginal range, it will be possible to define a utility within the marginal

range, even though the extended preference order may be totally unreal-

istic outside the marginal range. Since we are concerned only with the

marginal range, the unrealism of the preference order outside it need not

disturb us.

General Preference Structures and Utilities

We have already investigated a situation in which preferences are defined

on a space with an additive structure. These preferences were assumed

to ‘‘fit’’ the additive structure—that was the content of the additivity

assumption (3). It was found that to solve subjective programming prob-

lems in this context, it was possible and convenient to make use of func-

tions that represented the preference order and that also ‘‘fitted’’ the

additive structure (4). Such functions were called ‘‘utilities.’’

That situation is typical. Subjective programming problems are usually

set in the context of a space with, in addition to the preference order, an

underlying mathematical structure of a di¤erent kind. The preferences

are assumed to ‘‘fit’’ this structure in some sense; to solve subjective pro-

gramming problems, it then turns out to be possible and convenient to

use functions that represent the preference order and also fit the structure.

We propose to call such functions ‘‘utilities,’’ in whatever context they

occur; thus the precise meaning of the word varies from context to con-

text, depending on the underlying structure.

Actually this is not a new proposal but merely a confirmation of exist-

ing usage. Much of mathematical economics is set in the context of a

space of commodity bundles; preference orders on this space satisfy a
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certain continuity condition, and a utility is defined to be a function that

represents the order and is continuous. The ‘‘structure’’ in this case is a

topological one; roughly, this means that there is defined in the space a

notion of nearness on which the notion of continuity is based. In game

theory and statistics, on the other hand, the space consists of lotteries,

that is, risky outcomes. Here the structure is an algebraic one, which

allows us to combine lotteries to obtain new ones. Preference orders are

required to ‘‘fit’’ this structure, as are utilities; the fact that the utilities

‘‘fit’’ is expressed by the expected utility hypothesis. Our usage of the

word ‘‘utility’’ in the preceding sections, which corresponds to the occa-

sional use of the word ‘‘utility’’ for ‘‘objective function’’ in numerical

(objective) programming problems, is again di¤erent.

Much confusion and pointless polemic could be avoided if it were

realized that the word ‘‘utility’’ is used with di¤erent (but related) mean-

ings in di¤erent contexts and that this is perfectly proper. Utilities are

tools, and di¤erent tools are needed to solve di¤erent problems. Nobody

would think of saying ‘‘the only real axe is the climber’s ice-axe; a

woodsman’s axe is not really an axe at all.’’ Still less would anybody use

an ice-axe to chop down a tree, when both kinds are available; nor does

the question ‘‘how should an axe be built?’’ have meaning when the job

to be done with it is not specified. It is just as meaningless to try to

‘‘measure’’ utility or military worth without taking into account how

these measures are to be used. These facts should be obvious once they

are pointed out, and they have been pointed out repeatedly. Unfortu-

nately, they are still not generally understood, and much of what has

been and is being written about utility and related notions is rendered

meaningless by the failure to understand them.

As an example of what we have been saying, consider a problem with

an additive structure, say an assignment problem (see pp. 235–43); sup-

pose the additivity assumption (3) holds. Now imagine that instead of

defining an additive utility in the sense described on page 238 and solving

the problem with such a utility, we were to try to apply von Neumann–

Morgenstern utilities. This could, in fact, be done. Each feasible activity

would have to be considered, as well as the set of all lotteries whose

outcomes are feasible activities. The original preference order on the

activities would have to be extended to the set of all lotteries over the

activities; the extended preference order would yield a von Neumann–

Morgenstern utility. Since, in particular, this utility represents the origi-

nal order, its maximization would actually solve the original problem,

that is, it would yield a feasible assignment that is maximal in the original

preference order. So the attempt to use N–M utilities here would seem to

have been crowned with success.
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In fact, though, such an attempt would be both highly impractical and

completely absurd. It would be necessary to ask many questions of the

decision maker in order to establish preferences between the lotteries,

that is, risky outcomes; all of them would be irrelevant to the original

problem, which contained no element of risk. Moreover, the resulting

utility would presumably be nonlinear, which would make the numerical

solution much harder, if not completely impractical. For example,

although the decision maker has additive preferences, he might be

unwilling to take risks; thus he might be indi¤erent between a sure prize

of 3 activity units on the one hand and a 1/2–1/2 lottery of 0 activity

units and 10 activity units on the other hand. This yields uð10Þ ¼ 10,

uð3Þ ¼ 5, uð0Þ ¼ 0, a nonlinear function. The nonlinearity has nothing to

do with the original problem; it is a result of the decision maker’s attitude

to risk. This is irrelevant, since neither the original problem nor its

solution contains risky alternatives. On the other hand, use of a utility

that fits the relevant structure of the problem, that is, an additive (linear)

utility, would permit the application of standard linear programming

techniques.

Of course, this works both ways; where an N–M utility is called for, an

additive utility should not be used. Consider, for example, a two-person

game whose outcomes happen to be imbedded in a space with an additive

structure; suppose that the preference orders of both players on this space

obey the additivity assumption. It might be tempting to use additive

utilities (which are usually easier to calculate than N–M utilities) as en-

tries in the payo¤ matrix of such a game. But ‘‘optimal’’ mixed strategies

calculated on this basis would be completely meaningless and, in fact, not

optimal. A special case of this mistake is setting the N–M utility of

money equal to money. Similar remarks apply to many problems in stat-

istical decision making.

The remainder of this chapter is devoted to a review, from the mathe-

matical viewpoint, of various spaces on which there is defined both an

underlying mathematical structure and an order that in some sense ‘‘fits’’

or is ‘‘consistent with’’ this structure. Such spaces are called ‘‘preference

spaces;’’ this is therefore a loose generic term with an intuitive meaning

only. We are particularly interested in utilities on such spaces and in

subjective programming problems on them. In the following section the

more important examples of such spaces are presented in some detail;

these examples have been chosen because of their applications to various

problems of human judgments and optimality. In subsequent sections the

concepts and methods in which we are interested are applied to each of

these examples in turn, with the object of bringing out the parallels that

exist between the various kinds of preference spaces.
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Examples of Preference Spaces

The symbol X is used to denote a preference space.

1. In this example X is assumed to be a topological space7 on which there

is defined a preference order. The consistency requirement imposed is

that the preference order be ‘‘continuous,’’ that is, if xn ! x, yn ! y, and

xn 9 yn for8 all n, then x9 y; an equivalent formulation is that the set

fðx; yÞ : x9 yg is closed in the product space X � X . When the order is

complete, this in turn is equivalent to saying that the sets fx : x9 yg and

fx : y9 xg are closed9 in X. However, this is not so for a partial order.

This situation has been extensively studied in economics; X is then the

nonnegative orthant of the Euclidean space En of n dimensions, and the

members of X represent commodity bundles. The sets fx : x@ yg are the

‘‘indi¤erence curves.’’ The topology is the ordinary Euclidean topology,

that is, it is induced by the Euclidean metric. For a detailed treatment see

Debreu (1959).

2. X is an Abelian semigroup, a space on which there is defined a com-

mutative and associative addition. On X there is also defined a preference

order, which is assumed to be ‘‘consistent’’ with the semigroup structure

in the sense that xt y implies xþ zt yþ z, and x@ y implies

xþ z@ yþ z (this is what we called ‘‘additivity’’ (3)). An example of an

Abelian semigroup is the set of lattice points in the nonnegative orthant

of En; this example and its application have already been discussed in

some detail. We shall see that much of this discussion remains valid in the

more general context of an arbitrary Abelian semigroup. It also applies

to Abelian groups, which are special cases of semigroups. An example of

a group is the set of all lattice points in a Euclidean space (not just those

in the nonnegative orthant).

7. Those readers not familiar with this term may substitute the notion of metric space, that
is, space on which the notion of ‘‘distance between two points’’ is defined.

8. If X is not separable, then the convergence must be taken in the sense of Moore–Smith
(Kelley, 1955); that is, fxng and fyng are nets rather than sequences. The applications
usually involve subspaces of Euclidean spaces, which are all separable.

9. Suppose that fx: x9 yg and fx: y9xg are closed. Then by completeness, fx: xt yg
and fx: ytxg are open. Let A ¼ fðx; yÞ: xt yg and suppose ðx; yÞ A A, that is, xt y.
Either there is a z such that xt zt y, or for all z A X either z9 x or y9 z (again by
completeness). In the first case fw: wt zg � fv: zt vg is an open neighborhood of (x; y)
entirely contained in A. In the second case fw: w9xg ¼ fw: wt yg, and so the right side is
open; similarly fv: y9 vg is open. Then fw: w9 xg � fv: y9 vg is an open neighborhood
of (x; y) entirely contained in A. In any case, A is open, hence its complement fðx; yÞ: y9 xg
is closed. The proof of the converse is trivial.
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3. X is a mixture space, that is, a space in which convex combinations are

defined. More precisely, if x1; . . . ; xn A X and a1; . . . ; an are nonnegative

real numbers summing to 1, then the convex combination
Pn

i¼1 aixi is

defined as a member of X. Convex combinations are assumed to obey all

the rules of ordinary vector space sums, but the coe‰cients are always

nonnegative and sum to 1. The idea of convex combination has topo-

logical as well as algebraic aspects: the topology of the space of coef-

ficients a is a significant structural element. On X there is defined a

preference order, on which two consistency requirements are imposed,

corresponding to the algebraic and topological aspects of the structure.

The algebraic requirement is that for 0 < aW 1 and for all z; x9 y if and

only if axþ ð1� aÞz9 ayþ ð1� aÞz. The topological requirement is that

fa : axþ ð1� aÞy9 zg is closed (Herstein & Milnor, 1953). This set-up

is most familiar in connection with the utility theory of von Neumann

and Morgenstern (1944). There the members of X are probability combi-

nations of ‘‘prizes’’ or ‘‘pure outcomes,’’ and the order is complete.

Aumann (1962) has investigated a variant of this theory in which the

order is partial; in that investigation the topological requirement was

somewhat weaker than the one quoted here. Another example of a mix-

ture space is the set of all fixed amounts of, say, liquids; convex combi-

nations are taken by mixing in the appropriate proportions, and the

space is ordered by the relation ‘‘hotter than.’’

4. X is a vector space over the real field. This is a variant of example 2,

corresponding to subjective noninteger programming problems. A pref-

erence order is imposed on X, and, in addition to the consistency

requirement imposed in example 2, we require here that x9 y imply

ax9 ay for all positive scalars a. This is a purely algebraic requirement,

making no use of the topology of the real line.

Since a vector space over the reals is, in particular, a mixture space, we

may ask what the connection is between the requirements of examples 3

and 4. The answer is that the requirements of 3 are stronger; for example,

they exclude the lexicographic order on E2, whereas this order is ad-

mitted under 4 (under the lexicographic order on E2, x9 y if and only if

either x1 > y1 or x1 ¼ y1 and x2 X y2). Hausner (1954) has investigated

completely ordered vector spaces. He has also investigated the more gen-

eral situation of completely ordered mixture spaces in which no topo-

logical requirement is imposed.

This example could be generalized slightly by substituting a ‘‘semi-

module’’ for a vector space. A semimodule (over the positive real num-

bers, say) is a set that is provided with a commutative and associative

addition and a multiplication by positive real scalars, satisfying the

appropriate conditions. The consistency requirements are as above. This
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corresponds to (nondiscrete) programming problems for nonnegative

variables, but little is gained from this generalization.10

5. A degenerate example is the one in which X is simply a point set. The

consistency requirement for the preference order is then vacuous, and we

simply have a set with an order.

6. If we let X be the constraint set of pp. 244–45, we will have a space

such that xþ y is defined for some, but not all, pairs of points x; y in X;

when it is defined, the addition is associative and commutative. For pref-

erence orders on such X the consistency requirement in example 2 is

imposed, but it is required to hold only when all the terms appearing in

the requirement are meaningful, that is, members of X.

Ordered mathematical structures have been the objects of mathemat-

ical interest in contexts that are not related to the notion of preference,

and there is a large literature on the subject.11 Workers in the field of

optimality and human judgments would do well not to ignore this work.

We close this section with the remark that the notion of ‘‘consistency’’

or ‘‘meshing’’ between two kinds of structures imposed on a space is

quite common in mathematics. Thus in a ring—a system in which both

multiplication and addition are defined—the consistency requirement is

the distributive law. In a topological group it is required that the group

operation be continuous. Preference spaces are mathematical structures

on which two kinds of structures are defined—one a preference order—

and the two structures are assumed to ‘‘mesh.’’

Utilities

A utility u on a preference space X is a function that represents the order

on X and fits the underlying structure of the space. Thus, like ‘‘preference

space,’’ it is a loose generic term whose precise meaning varies from con-

text to context. When X is a topological space, u is continuous. When X

is a semigroup, u is a homomorphism, that is, uðxþ yÞ ¼ uðxÞ þ uðyÞ.
When X is a mixture space, u has the expected utility property, that is,

10. Added in proof: A di¤erent generalization is obtained by replacing the real field by
an arbitrary ordered field (compare, for example, Charnes & Cooper, 1961, pp. 280 ¤.).
Utilities, too, may sometimes be generalized to have values in an ordered field, rather than
real values.

11. See, for example, papers in Mathematical Reviews listed under ‘‘Order, lattices,’’ under
‘‘Groups and generalizations—ordered groups and semigroups,’’ and under ‘‘Functional
analysis—partially ordered vector spaces,’’ or under similar subject headings (the headings
change slightly from year to year).
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uðaxþ ð1� aÞyÞ ¼ auðxÞ þ ð1� aÞuðyÞ:

When X is a vector space, u is linear, that is, u is a homomorphism and

uðaxÞ ¼ auðxÞ. When X has no underlying structure, no requirement is

placed on u (other than that it represents the order). When X is a system

in which xþ y is sometimes defined, we have uðxþ yÞ ¼ uðxÞ þ uðyÞ
whenever x, y, xþ y A X .

A utility represents the preference order, but not in general faithfully;

that is, it gives partial, not complete, information about the original

preference order. Given a utility on a space X, we cannot always recon-

struct the preference order from it. This is entirely typical of mappings on

mathematical structures: a continuous mapping does not determine a

topological space, a homomorphism does not determine a group, and so

on. The typical situation is that the image space—the real line (or part of

it) in our case—has more structure, more relations than the original

space. If two points in a topological space are ‘‘close’’ to each other, then

so are their images under a continuous function; but the images can be

close without the original points being close. If x ¼ yþ z in an Abelian

group G and u is a homomorphism, then uðxÞ ¼ uðyÞ þ uðzÞ; but the lat-

ter equation may hold even when the former does not. Similarly, though

xt y implies uðxÞ > uðyÞ for a utility u, we may have uðxÞ > uðyÞ with-
out xt y.

When the order is complete, then every utility does determine the pref-

erence order. This is the classical situation, as treated, for example, by

von Neumann and Morgenstern (1944), Debreu (1954, 1959), Hausner

(1954), Herstein and Milnor (1953), and so on. All of these authors

demanded faithful representation; but they were concerned only with

complete orders, and, for these, representation and faithful representation

are equivalent. Until recently the term ‘‘utility’’ was reserved for com-

plete orders; its first use in connection with partial orders was made by

Aumann (1962).

Existence of Utilities

Once the notion of utility has been defined, it is natural to ask whether a

given type of preference space has a utility. When X is a completely

ordered separable12 topological space, Debreu (1954) has shown that

there is a utility. When X is a mixture space with complete order, the

12. Having a countable basis; Debreu calls this ‘‘perfectly separable.’’ All subsets of Eucli-
dean spaces have this property.
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existence of a utility was first demonstrated by von Neumann and Mor-

genstern (1944). For partial orders on a finite dimensional13 mixture

space the existence of a utility was established by Aumann (1962); on the

other hand, when the space is not finitely generated, there may be no

utility.14 We have seen (p. 238) that a preference-ordered semigroup need

not have a utility; essentially the same example (the lexicographic order)

yields a counterexample for the existence of a utility in a preference-

ordered vector space. However, we know that a utility can be defined

when the preference order is finitely generated. The same holds in gen-

eral: let X be an Abelian semigroup, or a vector space, on which there is

imposed a finitely generated preference order consistent with the structure

of X. Then there is a utility on X. Here ‘‘finitely generated’’ has the obvi-

ous meaning corresponding to that given on page 238 (the precise

meaning is di¤erent for semigroups and vector spaces). The proof for

semigroups proceeds by reducing the situation to that given on page 238;

for vector spaces, it proceeds by analogy but turns out to be even simpler.

It would be interesting to know whether Debreu’s result for topological

preference spaces with complete orders (quoted above) could be extended

to the general case of partial orders.15 Development of utility theory for

infinite dimensional partially ordered topological linear spaces, and for

the corresponding mixture spaces, would also be desirable. In this con-

nection see Aumann (1962, p. 461).

Uniqueness of Utilities

For completely ordered preference spaces, utilities, when they exist, are in

some sense unique. The usual statement is that the utilities are unique

‘‘up to’’ some class of functions. More precisely, there is usually a class G

of strictly increasing functions from the real line into itself such that

(5) if u and v are utilities, then there is a g in G such that v ¼ gu (where

gu is the composition of g and u);

(6) if u is a utility and g is in G; then gu is also a utility:

13. Roughly, one that is generated by a finite number of ‘‘pure’’ prospects (see Aumann,
1962).

14. Added in proof: For additional work on spaces that are not finitely generated, see
Kannai (1963).

15. Added in proof: The following example due to B. Peleg (unpublished) shows that it
cannot: X is the unit circle in the plane (boundary only). The order is given by: x9x and
x9 ð1; 0Þ for all x in X; ða; bÞ9 ð�a; bÞ for all (a; b) in X such that a > 0 and b > 0. Possi-
bly, if the definition of continuity is strengthened, a positive result can be obtained.
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The class G of functions, like the utilities themselves, depends on the

kind of preference space under consideration. Thus for topological

spaces16 it consists of increasing continuous functions; for Abelian semi-

groups, of increasing additive functions (which are a fortiori linear); for

mixture spaces and vector spaces, of increasing linear functions; and for

unstructured spaces, of arbitrary increasing functions.

When the preference space is only partially ordered, there is no

uniqueness theorem. In the extreme case, when the order is empty (i.e.,

x9 y never holds), any function that is consistent with the underlying

structure is a utility. See also the remark following Theorem 2 (p. 240).

Programming Problems

Let X be a preference space and A a subset of X. It is desired to find an

element of A that is maximal in the order on X. Since every utility repre-

sents the preference order, it is obviously su‰cient to maximize a utility

over A to find a maximal element of A. For this purpose it is not even

necessary that the utility be consistent with the underlying structure. The

requirement of consistency is imposed on utilities only because it is more

convenient to work with functions that represent the order and fit the

structure of the space than just with representing functions.

When the order is complete, every utility constitutes a faithful repre-

sentation, so that every maximum element of A can be obtained by max-

imizing any utility over A. When the order is not complete, it may

happen that some maximal elements of A are achieved as the maxima of

utilities, whereas others are not. An example is given on page 243. A less

pathological example is the following: let X be the Euclidean plane con-

sidered either as a vector space or as a mixture space; let the order be

given by x9 y if and only if x1 X y1 and x2 X y2 (whence xt y if and

only if x1 X y1, x2 X y2, and x 6¼ y); and let A be the unit disk. The util-

ities are the functions of the form c1x1 þ c2x2, c1, c2 > 0 (plus possibly a

constant in case X is considered as a mixture space). The point (1, 0) is

maximal in A, but it is not a maximum of any utility.

We would like to find conditions on A and/or the preference order

which exclude this possibility, that is, under which

(7) an element x of A is maximal in A if and only if there is a utility u

on X that is maximized over A at x.

16. In this case (5) holds only when X is connected.
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For mixture spaces it has been shown (Aumann, 1962, Theorem B)

that (7) holds whenever A is a convex polyhedron.17 It can also be

demonstrated for vector spaces when A is a convex polyhedron and the

preference order is finitely generated. The topological case remains unex-

plored. It would be interesting to see results in this direction.

Index of Open Questions

This is simply a listing of the open questions mentioned in the foregoing

discussion, to which we add two that we have not covered.

Computing the utilities for problems with an additive structure (see

p. 243). Existence of utilities under the restricted additivity assumption,

either by limiting the shape of the constraint set or by surrounding it with

a su‰ciently large neighborhood (the second approach seems more

hopeful—see p. 244). Topological preference spaces: existence of utilities

for partially ordered spaces (see p. 252), finding all maximal elements of

the constraint set. Development of utility theory for partially ordered

topological linear spaces and the corresponding mixture spaces (see p. 251

and footnote 14).

We close with a statement of two additional questions. On page 235 we

discussed briefly the transitivity condition. Can this condition be dispensed

with? If the preference order contains ‘‘significant inconsistencies’’—if,

for example, all members of the space X are members of one large

cycle—then clearly the programming problem has no meaning. It could

happen, though, that only ‘‘small inconsistencies’’ are in the order and

that it would still be meaningful to look for an ‘‘approximately optimal’’

member of the constraint set. How can this notion be formalized, and

once it is formalized how can these ‘‘approximately optimal’’ members

be found? One suggestion for the second question is to define an ‘‘e-

representation’’ as a function u so that x9 y implies uðxÞX uðyÞ � e;

precautions must be taken to avoid trivial e-representations. One can then

work with ‘‘e-utilities,’’ that is, e-representations that ‘‘fit’’ the structure

of the space.

On page 251 we remarked that in case the order is not complete it is

usually not determined by a given utility. Our second question is, to what

extent, and under what conditions, does the set of all utilities determine

the order? For mixture spaces, this was discussed in Aumann (1962,

17. The demonstration given in Aumann (1962) is incorrect and the theorem as stated there
is false. However, the theorem is correct if the consistency requirement in Example 4 stated
on page 249 is used rather than the weaker one in Aumann (1962 [2.2]). A correction will be
published (Aumann, 1964).
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section 7). What can be said for topological preference spaces? The ques-

tion is similar in principle to questions occurring in algebra (group repre-

sentations or characters) and in functional analysis (reflexivity of Banach

spaces).

References

Aumann, R. J., & Kruskal, J. B. (1958). The coe‰cients in an allocation problem. Naval
Res. Logistics Quart., 5, 111–123 [Chapter 11].

Aumann, R. J., & Kruskal, J. B. (1959). Assigning quantitative values to qualitative factors
in the naval electronics problem. Ibid., 6, 1–16 [Chapter 12].

Aumann, R. J. (1960). Letter to the Editor. Ibid., 7, 85–88.

Aumann, R. J. (1962). Utility theory without the completeness axiom. Econometrica, 30,
445–462 [Chapter 14a].

Aumann, R. J. (1964). Utility theory without the completeness axiom: a correction. Econo-
metrica, 32, 210–212 [Chapter 14b].

Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of
linear programming. New York: Wiley.

Davis, R. G. (1959). Letter to the Editor, Naval Res. Logistics Quart., 6, 183–185.

Debreu, G. (1954). Representation of a preference ordering by a numerical function. In
R. M. Thrall, C. H. Coombs, & R. L. Davis (Eds.), Decision processes. New York: Wiley.
Pp. 159–165.

Debreu, G. (1959). Theory of Value, New York, Wiley.

Gomory, R. (1958). Outline of an algorithm for integer solutions to linear programs. Bull.
Amer. Math. Soc., 64, 275–278.

Hausner, M. (1954). Multidimensional Utilities. In R. M. Thrall, C. H. Coombs, & R. L.
Davis (Eds.), Decision processes. New York: Wiley. Pp. 167–180.

Herstein, I. N., & Milnor, J. (1953). An axiomatic approach to measurable utility. Econo-
metrica, 21, 291–297.

Kannai, Y. (1963). Existence of a utility in infinite dimensional partially ordered spaces.
Israel Jour. Math. 1, 229–234.

Kelley, J. (1955). General topology. Princeton, N.J.: Van Nostrand.

Kraft, C. H., Pratt, J. W., & Seidenberg, A. (1959). Intuitive probability on finite sets. Ann.
Math. Statist., 30, 408–419.

Kruskal, J. B. (1959). Letter to the Editor. Naval Res. Logistics Quart., 6, 261.

McShane, R. E., & Solomon, H. (1958). Letter to the Editor. Ibid., 5, 363–367.

Smith, J. W. (1956). A plan to allocate and procure electronic sets by the use of linear pro-
gramming techniques and analytical methods of assigning values to qualitative factors.
Naval Res. Logistics Quart. 3, 151–162.

Suzuki, G. (1957). Procurement and allocation of naval electronic equipment. Naval. Res.
Logistics Quart., 4, 1–8.

Tucker, A. W. (1956). Dual systems of homogeneous linear relations. In H. W. Kuhn &
A. W. Tucker (Eds.), Linear inequalities and related systems. Ann. Math. Study 38. Prince-
ton, N.J.: Princeton Univer. Press. Pp. 3–18.

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior.
Princeton, N.J.: Princeton Univer. Press.

Decision Theory: Utility and Subjective Probability256


