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1 Introduction

The Shapley value is an a priori measure of a game’s utility to its players;

it measures what each player can expect to obtain, ‘‘on the average,’’ by

playing the game. Other concepts of cooperative game theory, such as the

Core, Bargaining Set [6], and N–M Solution [26] predict outcomes (or

sets of outcomes) that are in themselves stable, that cannot be success-

fully challenged or upset in some appropriate sense. Almost invariably,

they fail to define a unique result; and in a significant proportion of the

cases, they do not define any result at all.1 The Shapley value, although it

is not in any formal sense defined as an average of such ‘‘stable’’ out-

comes, nevertheless can be considered a mean, which takes into account

the various power relationships and possible outcomes.

It follows from this that the Shapley value may also be thought of as

a reasonable compromise, the outcome of an arbitration procedure. A

player should be willing to settle for a compromise that yields with cer-

tainty what he otherwise would only have expected in the mean. For

example, the symmetric N–M solution of the 3-person majority game

predicts one of the three payo¤ vectors (1/2, 1/2, 0), (1/2, 0, 1/2), and

(0, 1/2, 1/2), corresponding to the three possible 2-person majorities.

Before the beginning of bargaining, each player may figure that his

chances of getting into a ruling coalition are 2/3, and conditional on this,

his payo¤ is 1/2; the ‘‘expected outcome’’ would then be (1/3, 1/3, 1/3),

and this is also the Shapley value. It would, therefore, also be a reason-

able compromise; but it is not in itself stable, since it can be easily

improved upon by any two-person coalition.

Mathematically, the Shapley value is perhaps the most tractable of all

the concepts of cooperative game theory. This has led to the growth of a

considerable theory, which in turn has enabled a wide range of applica-

tions to Economics and Political Science. Here we survey some of the

more recent of these developments.

2 General Definition in the Transferable Utility Case

We begin by recalling that a coalitional game, or simply game for short, is

a real-valued function v on the s-field C of a measurable space ðI ;CÞ,

This chapter originally appeared in Proceedings of the International Congress of Mathema-
ticians, Helsinki, 1978, pp. 995–1003, Academia Scientiarum Fennica, 1980. Reprinted with
permission.

1. The Bargaining Set is the only one of these three covered by a general existence theorem.



with vðqÞ ¼ 0. Here I is the player space, the members of C are

coalitions, and vðSÞ is the worth of a coalition S. A game is called mono-

tonic if SIT implies vðSÞX vðTÞ.
Fix ðI ;CÞ. An outcome (or payo¤ vector) is a finitely additive game.2

For each game v and automorphism (one-one bimeasurable function) Y

of ðI ;CÞ, define the game Y�v by ðY�vÞðSÞ ¼ vðYSÞ for all S.
Let us be given a linear space Q of games, which is symmetric in the

sense that Y�Q ¼ Q for all Y. An operator j from Q to outcomes is

called symmetric if jðY�vÞ ¼ Y�ðjvÞ for all v in Q and all automorphisms

Y; monotonic if jv is monotonic whenever v is; and e‰cient if

ðjvÞðIÞ ¼ vðIÞ for all v in Q. A value on Q is an operator from Q to out-

comes that is linear, monotonic, symmetric, and e‰cient.

3 Finite Games

A game v is called finite if there is a finite subset N of I (a support of v)

such that vðSÞ ¼ vðSXNÞ for all S. The finite games form a linear space

on which there is a unique value; it is given by

ðcvÞðfigÞ ¼ EðvðS i W figÞ � vðS iÞÞ; ð3:1Þ

where S i is the set of players (members of N) preceding i in a random

order on N, and E is the expectation operator when each order on N has

probability 1=jNj! [36]. It is easy to check that (3.1) does indeed define a

value; as for uniqueness, perhaps the simplest proof is that of Dubey [7],

who uses an induction on jNj to show that every finite game is a linear

combination of unanimity games (games for which vðSÞ ¼ 1 or 0 accord-

ing as SIN or SON).

4 Nonatomic Games, Partition Values, and the Diagonal Property

Diametrically opposed to the finite games are the nonatomic games,

which model situations in which no individual player has any significance

[2]. Examples are games of the form f � m, where m is a nonatomic vector

measure, and f is a real-valued function on the range of m vanishing at 0.

One approach to defining a value for a nonatomic game v is via approx-

imations by finite games. Specifically, if P is a measurable partition of

I—i.e. a finite subfield of C—we may define a finite game vP, whose

support consists of the atoms of P, by vP ¼ vjP; then vP is a kind of

2. Intuitively, the sharing of proceeds in an additive game involves no di‰culties, so that
by associating an additive game to a non-additive game, we have essentially specified an
outcome.
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finite approximant to v. Given a coalition S in C, an increasing sequence

fP1;P2; . . .g of such partitions is called S-admissible if S 2 P1 and
S

i Pi

generates C. A value j on a space Q is called a partition value [30] if for

each game v in Q and each coalition S, there is an S-admissible sequence

fP1;P2; . . .g such that

lim
n!y

ðcvPn
ÞðSÞ ! ðjvÞðSÞ; ð4:1Þ

where c is the value for finite games. If for a specific game v and outcome

jv, (4.1) holds for all S and all S-admissible sequences, then we write

v A ASYMP and call jv the asymptotic value [16] of v. Whereas the par-

tition value is defined in terms of the imbedding space Q, the definition of

asymptotic value is independent of any imbedding space; its existence

depends on the game v only.

A partition value of a non-atomic game is a limit of values of large

finite approximants. The asymptotic value is the strongest possible parti-

tion value; if it exists, then no matter how the player space is cut up,3 in

the limit the result is the same.

Are there values that are not partition values? This leads us to the

diagonal property of values. Let n be a nonatomic nonnegative measure

on C with nðIÞ ¼ 1 (n A NA1 for short); P a partition of I into many—

say n—‘‘small’’ sets; and Qh the union of the first h atoms of P in a

random order on the atoms. For a fixed h, we will have nðQhÞA h=n

with high probability; moreover, for fixed e, if P is su‰ciently far out

in some S-admissible sequence, then the probability is > 1� e that

jnðQhÞ � ðh=nÞj < e simultaneously for all h. Thus if m A ðNA1Þm (i.e. m

is an m-tuple of NA1 measures), almost all the coalitions occurring in

Formula (3.1) as applied to vP will have m-measures very near the

‘‘diagonal’’ Dm ¼ fðt; . . . ; tÞ : t 2 ½0; 1�g of the m-cube. In particular, let j

be a partition value; then

if j is defined for two games v1 and v2 that agree on all coalitions S

with mðSÞ in some e-neighborhood of Dm; then jv1 ¼ jv2: ð4:2Þ

Any value j satisfying (4.2) for all vectors m of NA1 measures is called a

diagonal value.

All the values treated in [2] were diagonal, and for a long time it was

not known whether all values are diagonal. Finally, Neyman and Tau-

man [29] and Tauman [40]4 found examples of nondiagonal values. In

particular, not all values are partition values.

3. E.g. into n intervals of ‘‘length’’ 1/n, or into n of length 1/2n and n2 of length 1/2n2.

4. [40] avoids a certain undesirable pathology in [29].
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What, then, accounts for the diagonality of all previously considered

values? In [27], Neyman answered this question by showing that all

continuous values are diagonal; here continuity is w.r.t. (with respect to)

the variation norm, defined by

kvk ¼ sup
Xk
i¼1

jvðSiÞ � vðSi�1Þj: q ¼ S0 HS1 H � � � HSk ¼ I

( )
:

This norm plays a crucial role in the theory, and all previously considered

values had been continuous w.r.t. it.

Closely related to the diagonal property is the diagonal formula for

values. Let pNA denote the smallest variation-closed linear space con-

taining all games f � n, where n A NA1 and f is absolutely continuous.

There is a unique value on pNA, and pNAHASYMP [16]. Suppose now

that m A ðNA1Þm and f A C1ðRmÞ. Then f � m A pNA, and

jð f � mÞ ¼ m;

ð1
0

@f ðt; . . . ; tÞdt
� �

ð4:3Þ

[2, Theorem B]. To understand (4.3), note that it follows from Lyapu-

nov’s theorem that for each t in [0, 1] there is a coalition tI with

mðtIÞ ¼ ðt; . . . ; tÞ : the tI are called diagonal coalitions, and may be con-

sidered ‘‘perfect samples’’ of I as far as f � m is concerned. Let us now

think of a ‘‘player’’ in a non-atomic game as an infinitesimal coalition ds;

the marginal contribution of ds when added to tI is

ð f � mÞðtI W dsÞ � ð f � mÞðtIÞ ¼ mðdsÞ;@f ðt; . . . ; tÞh i:

Thus (4.3) says that the value of a player is his average contribution to a

diagonal coalition.

This principle, which is of fundamental importance in the theory of

nonatomic games and its applications, has been extended far beyond the

space pNA for which it was originally established. The deepest and fur-

thest-reaching work on this subject is due to J.-F. Mertens [20], who has

established the existence of a value obeying a suitable analogue of (4.3)

on a very large space of games, which even contains games not in

ASYMP.

5 Political Applications

A weighted majority (WM) game is one of the form fq � n, where n is a

non-negative measure with nðIÞ ¼ 1 (the vote measure), 0 < q < 1 and
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fqðxÞ ¼ 0 or 1 according as xW q or x > q. Finite WM games appear

already in [26]. Values of finite WM games were first studied by Shapley

and Shubik [38], who interpreted them as measures of political power.

They have since been applied to many voting situations, such as the UN

security council, the US electoral college, state legislatures, multi-party

parliaments, etc.; [18] is a good survey. Shapiro and Shapley [35], Milnor

and Shapley [21], and Hart [11] studied values of oceanic games, i.e. WM

games in which n contains a nonatomic part (the ‘‘ocean’’ of small voters)

as well as some atoms (large voters); [21] contains an application to cor-

porations with several large stockholders. An interesting qualitative con-

clusion is that when q ¼ 1=2, a single atom has value larger than his vote,

as might be expected; but this is often reversed when there are several

atoms. For example, when n has 2 atoms and an ocean of measure 1=3

each, then the atoms get only 1=4 of the value each.

The above are asymptotic results on the values of the atoms when the

largest ‘‘small’’ vote tends to 0. Calculating the values of the small voters

themselves, even approximately, is much more di‰cult, and even when

there are no atoms, the problem was open for many years. Only recently

did A. Neyman [28] prove, in a remarkable tour-de-force of combinato-

rial reasoning, that fq � n A ASYMP when n A NA1. Intuitively, his result

says that the value of a coalition depends only on its total vote, not on

the relative sizes of the voters. It can be used to prove that oceanic games

are in ASYMP, and also that f � n A ASYMP when f is monotonic and

continuous, and n A NA1. Also, there are close connections to renewal

theory.

More complex political structures can also often be described by using

WM games. A bicameral legislature is the product of 2 WM games, and

the electoral college when the players are the individual citizens is a

polynomial in WM games. Such games need not be in ASYMP; thus if

m; n A NA1 and m 6¼ n, then ð f2=3 � mÞð f2=3 � nÞ B ASYMP; however, it is a

member of a space with a partition value [30]. Whether there is a parti-

tion value on the algebra generated by all nonatomic WM games is an

open question.

See [31] for an application using a non-symmetric variant of the value.

A variant of the Shapley value called the Banzhaf value has achieved

some prominence in connection with political models. For finite games it

is defined by (3.1), with the sole di¤erence that now Si varies over the

set of all subsets of N n fig, each such coalition receiving probability

1=2jNj�1. In general, it is not e‰cient. An account of the theory and a

very extensive bibliography may be found in [8].
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6 Economic Applications

Games arising in economics often have a property called ‘‘homogeneity

of degree 1;’’ roughly, this means that two coalitions di¤ering from each

other in their size only, but not in their composition, have worths pro-

portional to their sizes. Examples are games f � m, where m A ðNA1Þm and

f is a function of m variables that is homogeneous of degree 1. Suppose

now that j is a partition value. A principle that is basic to many of the

economic applications asserts that

if j is defined for a superadditive5 game v that is homogeneous of

degree 1; then jv is in the core of v: ð6:1Þ

(Recall that the core of a game v is the set of outcomes n such that

nðIÞ ¼ vðIÞ and nðSÞX vðSÞ for all S.)
Let’s demonstrate this in the particular case in which v ¼ f � m, where

m A ðNA1Þm and f is a superadditive6 function defined and homogeneous

of degree 1 on the nonnegative orthant of Rm, and C1 in its interior.

Although f B C1ðRmÞ, it can be shown that nevertheless v A pNA and

the diagonal formula (4.3) holds. Moreover the homogeneity of degree 1

and the superadditivity together yield the concavity of f. Since f is

homogeneous of degree 1, @f ðt; . . . ; tÞ is a constant, so (4.3) yields

jv ¼ m;@f ð1; . . . ; 1Þh i. This means that jv is a function h of mðSÞ, i.e.
ðjvÞðSÞ ¼ hðmðSÞÞ; and in fact h is the linear function with coe‰cients

@f ð1; . . . ; 1Þ. By the e‰ciency of the value, hð1; . . . ; 1Þ ¼ ðjvÞðIÞ ¼
vðIÞ ¼ f ð1; . . . ; 1Þ, and hence it follows that the graph of h is tangent

to that of f at ð1; . . . ; 1Þ. Since f is concave and h is linear, it follows that

the graph of h always lies above that of f ; but this implies that

ðjvÞðSÞX vðSÞ for all S, which together with the e‰ciency ðjvÞðIÞ ¼ vðIÞ
means that jv is in the core.

In this case a small additional argument, which depends on the actual

tangency (i.e. the di¤erentiability of f ), yields that v is the only member

of the core. This is true whenever v A pNA; pNA expresses a kind of dif-

ferentiability property of a game. In general, though, the core will con-

tain more than just the value. For example, when v is the minimum of

two NA1 measures, then the core consists of a non-degenerate interval

(i.e. the set of all convex combinations of two di¤erent outcomes); in this

case the asymptotic value exists and is the midpoint of the core. More

generally, Hart [12] has proved that if a superadditive game v that is

5. vðSWTÞX vðSÞ þ vðTÞ whenever SXT ¼ q.

6. f ðxþ yÞX f ðxÞ þ f ðyÞ.
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homogeneous of degree 1 has an asymptotic value jv, then jv is the cen-

ter of symmetry of the core of v.

If the core has no center of symmetry,7 there will be no asymptotic

value; but not all is lost. If n is an NA1 measure, an outcome jv is called

a n-value if for all S, (4.1) holds for all S-admissible sequences of parti-

tions whose atoms have equal (or in an appropriate sense almost equal)

n-measures. Suppose now that m in (NA1)m is absolutely continuous w.r.t.

n, with Radon–Nikodym derivative dm=dn in ðL2ðnÞÞm. Let f be super-

additive and homogeneous of degree 1; then Hart [14] has shown that

v ¼ f � m has a n-value, which has an interesting expression in terms of

the core of v and the m-dimensional normal distribution whose cova-

riance matrix is the same as that of dm=dn.

We come now to the applications. An important model in economic

theory is that of the exchange economy. Like many economic models, it

cannot be expressed as a transferable utility (TU) game as in O2; a more

general concept—the nontransferable utility (NTU) game—is required.

The most commonly used adaptation of the value to NTU games is that

introduced8 in [37], which culminated a long development to which many

contributed; see in particular [24], [9]. We will not define the NTU value

here; a brief treatment is in [1, O4]. It is enough for our purposes to note

that the analysis involves the values of certain TU games auxiliary to the

given NTU game.

In an exchange economy, the law of supply and demand defines com-

petitive prices and, correspondingly, competitive allocations of goods and

services. The TU games to which we are led from exchange economies

are precisely the superadditive homogeneous games, and their cores are

closely related to the cores of the ‘‘parent’’ NTU economies. The rela-

tionship between the value and the core expressed by (6.1), and the sub-

sequent discussion, thus imply a close relationship between values and

competitive allocations. More precisely, it can be proved that all allo-

cations associated with an NTU value of a non-atomic exchange

economy—i.e. all value allocations—are competitive. When the utility

functions of the agents in the economy are su‰ciently di¤erentiable, we

can assert the converse as well; in that case, therefore, the value alloca-

tions are the same as the competitive allocations.

Again, many people contributed to this development; see in particular

[39], [5], [2], [4], [12], [13], [19], [14]. An excellent survey up to 1976 is in

[13].

7. For example, the core of the minimum of 3 linearly independent measures is a triangle.

8. For an alternative approach, see Owen [32].

Recent Developments in the Theory of the Shapley Value557



Models containing both political and economic elements, including in

particular problems of taxation and redistribution, have been considered

recently [1]. The TU games to which these models lead are products of

pNA games with nonatomic WM games; the methods of Neyman [28]

show that they have asymptotic values, and they are also amenable to the

diagonal methods of Mertens [20].

Conceptually, these models di¤er from exchange economies in that

threats play an important role. Games of this kind were treated by Nash

[25], and much more generally by Harsanyi [9]. The worth vðSÞ of a coa-

lition S in an auxiliary TU game is now based as much on the harm that

S could do to the players outside it as the good that it could do for itself.

The value is of course e‰cient, so that it assumes that destructive threats

are not actually carried out; this fits well our interpretation of the value

as a reasonable compromise.9 None of the pie gets thrown out, but how

it gets cut up may depend on threats.

7 Cost Sharing

An interesting practical application of the Shapley value is to problems of

cost sharing. For example, Littlechild and Owen [17] have considered the

problem of airport landing fees. Runways (and other airport com-

ponents) must be built large enough to accommodate the largest aircraft

that will use them; but obviously it makes no sense to share the cost

equally among all users, i.e. to charge the same landing fees to a jumbo

jet and a private 4-seater. Here one defines a game v by considering the

players to be individual aircraft landings, with vðSÞ the hypothetical cost

of building a facility that will accommodate the set S of landings. Each

landing is then charged a fee precisely equal to its Shapley value. The

e‰ciency condition assures that the fees will exactly cover the cost, the

symmetry condition assures that similar users are charged the same fee,

and the linearity condition assures that the cost of using two di¤erent and

independent facilities is the sum of the costs of using each one separately.

Monotonicity, of course, only says that you don’t get paid for landing at

an airport.

A spectacular recent application of this type is to telephone billing

at large institutions. See Billera, Heath, and Raanan [3]; the system pro-

posed by them has been adopted for internal telephone billing at Cornell

University.

9. Value models in which threats do sometimes get carried out involve incomplete informa-
tion; see [10], [23].
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8 Other Contributions

A complete review of recent developments in the theory of the Shapley

value is impossible in the space allotted to this paper. The quantifier

‘‘some’’, not ‘‘all’’, should be understood in the title; there have been

many important contributions not covered here. We close by mentioning

two conceptually innovative recent works: In [34], A. Roth formalized

the idea that the value measures a game’s utility to its players; and in

[22], R. Myerson characterized the value in terms of communication net-

works connecting the players.

9 Conclusion

Much of the analysis in political and economic science has traditionally

proceeded on an ad hoc basis, often using di¤erent methods and princi-

ples for each model under consideration. A unified approach to these

disciplines is provided by game theory. Among the tools it provides, the

Shapley value is particularly broadly and systematically applicable, and

appears able to account for theoretical principles in widely diverse areas.
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