
28 Mixed and Behavior Strategies in Infinite Extensive Games

1 Introduction

We are concerned with infinite extensive games—not necessarily of per-

fect information—in which there may be a continuum of alternatives at

some or all the moves; the games may also have unbounded or infinite

play length. Our object is to define the notion of mixed strategy for such

games, and to use this definition to prove the appropriate generalization

of Kuhn’s theorem on optimal behavior strategies in games of perfect

recall [K1]. Also, our methods give a solution to the conceptual problem

raised by McKinsey under the heading ‘‘games played over function

space’’ [Mc, pp. 355–357].

By-products are that our proof of Kuhn’s theorem makes no use of the

rather cumbersome ‘‘tree’’ model for extensive games, that it explicitly

uses conditional probabilities (which are implicitly used by Kuhn), and

that it explicitly proves that in a game which is of perfect recall for one

player, that player can restrict himself to behavior strategies (this also is

implicit in Kuhn’s proof ). Our proof is longer and more complicated

than Kuhn’s proof, but only because of the problems introduced by the

non-denumerably infinite character of the game; the treatment of finite

games by our methods would be considerably shorter.

2 Examples

We give four examples to motivate this study and to illustrate some of

the di‰culties.

In our first example, there are two players, the ‘‘attacker’’ and the

‘‘defender’’; for concreteness, one may think of the attacker as a bomber.

The attacker starts the play by choosing a course of action (such as a

flight course). The defender has some mechanism (such as radar) for

determining the course chosen by the attacker, and he decides on his

course of action on the basis of the information he gets from this mecha-

nism. But the mechanism is not perfect; it only gives an apparent attacker

course x, which is distributed around the true attacker course z according

to a known probability distribution (which may vary with z). Thus the

defender gets some information about the attacker’s course, but not per-

fect information.

This chapter originally appeared in Advances in Game Theory, Annals of Mathematics
Studies 52, edited by M. Dresher, L. S. Shapley, and A. W. Tucker, pp. 627–650, Princeton
University Press, Princeton, 1964. Reprinted with permission.



Denote by X the set of all possible apparent attacker courses, i.e., the

set of possible information states of the defender. Denote by Y the set of

courses of action available to the defender. Clearly a pure defender strat-

egy is a function from X into Y. What about mixed strategies? If X and Y

are finite, then there are only finitely many pure strategies, so there is no

di‰culty about defining mixed strategies. But in many cases the most

appropriate model would be one in which X and Y are, say, copies of the

unit interval. It is then still possible to define some kinds of mixed

strategies; for example, we can mix finitely or denumerably many

pure strategies, or we can adopt a fixed continuous distribution over Y

regardless of what information we have—i.e., we can mix a continuum of

pure strategies, each of which is a constant function from X into Y. But is

this the best we can do? Can’t we mix a continuum of pure strategies that

are not constants?

A mixed strategy can be thought of as a probability distribution, i.e., a

measure, on the set of all pure strategies. But before one defines a mea-

sure on a nondenumerable space, one must define a measurable structure

on the space, i.e., one must define which subsets are measurable. It is by

no means clear how this should be done in our case, or even what kind of

measurable structure on the pure strategy space should be considered

‘‘appropriate’’ for this purpose.

For our second example we can do no better than quote McKinsey

[Mc, p. 356]:

‘‘A game has four moves: in the first move P1 (player 1) chooses a real number
x1; in the second move, P2, knowing x1, chooses a real number y1; in the third
move, P1, knowing y1, but having forgotten x1, chooses a real number x2; and in
the last move, P2, knowing y1 and x2, but not knowing x1, chooses a real number
y2. (The payo¤ is then some function of the four variables x1, x2, y1, and y2.) A
pure strategy for P1 is now an ordered couple fa; f g, where a is a real number
and f is a function of one real variable (it depends on y1); and a pure strategy for
P2 is an ordered couple fg; hg, where g is a function of one real variable (it
depends on x1) and h is a function of two real variables (it depends on y1 and
x2). . . .
It is clear that the payo¤ function for a game of the type just described need

not necessarily have a saddle point, and hence it is natural to suppose that the
players will make use of mixed strategies. . . .’’

The di‰culties that McKinsey goes on to describe correspond precisely to

those we discussed in connection with the first example.

Our third example involves the notion of the supergame of a given

game G. This is a game each play of which consists of a number of

repeated plays of G; the payo¤ to the ‘‘superplay’’ usually is defined as

some kind of average of the payo¤s to the individual plays. The super-
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game and related notions1 have received considerable attention in the

literature; this is partly because supergames occur naturally in the appli-

cations, and partly because an analysis of a supergame sometimes yields

clues as to rational behavior for a single play.2

Supergames are usually analyzed on a step-by-step basis; that is, it is

assumed that each player decides on a strategy for each of the component

plays separately. These ‘‘local’’ strategies may or may not depend on the

outcomes of the previous component plays, and may be pure or mixed;

but the possibility of mixing a number of pure ‘‘grand strategies’’ for the

whole supergame is usually ignored. Of course this makes analysis of the

supergame much easier.

The supergame may be considered a game in extensive form, a move

being a choice of a pure strategy for a component play. Obviously it is

a game of perfect recall—at each component play each player remembers

what he knew at previous component plays. What we are doing when we

limit analysis of the supergame to consideration of mixed strategies for

the component plays is that we are considering only behavior strategies in

the supergame. Now we lose no generality by this restriction if Kuhn’s

theorem on behavior strategies in games of perfect recall3 applies, which

is the case when the originally given game is finite and is only repeated

finitely often. Wolfe [W, p. 15] has pointed out that Kuhn’s theorem may

be extended to games with infinite play length, and it is easily seen that

we can also allow a denumerable infinity of alternatives at some (or all)

of the moves. The di‰culties enter when there may be a continuum of

alternatives at some of the moves; in our case this corresponds to a G

with a continuum of strategies.

What is the importance of supergames of games with a continuum of

strategies? Suppose we wish to consider the supergame of a cooperative

game. To analyze this supergame properly, we must formalize the pre-play

bargaining for each component play. Such a formalization must involve a

continuum of pure strategies for the bargaining session—for example we

already have a continuum in the set of correlated strategies that can be

o¤ered by a player for the consideration of a coalition that he wishes to

form.4 Thus a satisfactory analysis of a cooperative supergame cannot

proceed without first proving an analogue of Kuhn’s theorem for the con-

tinuous case. Indeed it was this problem that originallymotivated this study.

1. Such as that of stochastic game.

2. Cf. [Mc, the discussion at top of p. 134]; also [A1] and [A2, §10].

3. Kuhn’s theorem asserts that in a game of perfect recall each mixed strategy m has an
equivalent behavior strategy, i.e., a behavior strategy which yields the same payo¤ as m (to
all players) no matter what the other players do.

4. Cf. [A1, §6] or [A2, §10].
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For our last example, we start by recalling Ville’s theorem [V]: Every

2-person 0-sum game on the unit square with continuous payo¤ has

optimal mixed strategies, and hence a value. Now in a game on the unit

square, each player picks a point in the unit interval ½0; 1�, with no

knowledge of the point chosen by the other; the payo¤ is a function of

the two points chosen. Fox [F] asked whether Ville’s result could be

extended to multimove games of imperfect (but partial) information,

where each move consists of the choice of a point in the unit interval.

In these games, the players alternatively choose points yi A ½0; 1� for

i ¼ 1; . . . ; 2n, say. After the ith move the player who is to make the

ði þ 1Þst move is informed of the value of ciðy1; . . . ; yiÞ, where ci is a real

function. The payo¤ is f ðy1; . . . ; y2nÞ, where f is a continuous, real

function. Note that the space of pure strategies of, say, player 1 is

F ¼ ½0; 1� � F3 � � � � � F2n�1, where Fi is the set of all functions from the

range of ci�1 to ½0; 1�.
The object of [F] is to show that in general Ville’s result does not

extend to this situation, and there is no value. Of course, before this can

be done the concept of mixed strategy must be defined. When each ci has

finite range, then each Fi and therefore also F is a product of finitely

many copies of ½0; 1�; in that case, therefore, mixed strategies can be

defined as multidimensional distribution functions. When the range of ci

is a continuum, however, it is by no means clear how to define mixed

strategies. One of Fox’s examples, in which the ci as well as f are con-

tinuous, is precisely of this kind.

Fox defined mixed strategies as finite mixtures of pure strategies. But

this is not at all satisfactory, especially when one wants to show that a

game does not have a value. Indeed, there is an example of a game on the

unit square which has value 0 when distributions are admitted as mixed

strategies, but for which the supinf of the payo¤ is �1 when one is

restricted to finite mixtures of pure strategies [K2, p. 118]. A priori, it

could well be that the counterexamples of [F] vanish when a wider, more

natural class of mixed strategies is admitted. In fact, it appears that this

does not happen, since the proof apparently makes no essential use of the

restrictive nature of the mixed strategies. It is the statement, rather than

the proof, that is unsatisfactory; and the reason is that up to now there

has been no definition of mixed strategy appropriate to such games.

3 Mixed Strategies

Let us take a closer look at the first example in the previous section; take

X and Y to be copies of the unit interval. We shall need to consider

Strategic Games: Extensive506



probability distributions on X and Y, and as we remarked in the previous

section, this involves defining measurable structures on them. Any such

measurable structure should be rich enough to enable us to define the

probability of an interval; this means it would have to contain all Borel

sets. Let us denote by I the unit interval on which has been imposed a

measurable structure consisting of all the Borel sets, and let us once and

for all5 take X and Y to be copies of I.

Henceforth we will write ‘‘m-’’ for ‘‘measurable.’’

Suppose the defender has adopted a strategy f, i.e., a function from X

into Y, and that the action of chance and the strategy of the attacker

have induced a probability distribution on X. The strategy f, acting on

this X-distribution, should induce a distribution on Y. Does it? Suppose

BHY is a Borel set. The probability that a member of B is chosen by the

defender

¼ probfx : f ðxÞ A Bg

¼ probf f �1ðBÞg:

This expression is meaningless unless f �1ðBÞ is measurable in X : The

same holds for all m-subsets B of Y. In order to have an induced distri-

bution on Y, we want the inverse image under f of a measurable set in Y

to be measurable in X. In other words, we want f to be a measurable

transformation. So we redefine a pure defender strategy; it is not just any

function from X into Y, but an m-transformation.6 We denote by YX the

set of all m-transformations from X into Y.

A mixed strategy, then, should be a probability measure on YX , the

latter having been endowed with an ‘‘appropriate’’ measurable structure

R. Let us define a function j : YX � X ! Y by jð f ; xÞ ¼ f ðxÞ. Suppose
we again start out with a distribution on X, and suppose that the

5. We have adopted the smallest structure that fills our needs. An overly rich structure is
self-defeating. For example, if the structure on X consists of all subsets, then the only mea-
sures on X are purely atomic (under the continuum hypothesis [S, p. 107]); if it consists of all
Lebesgue measurable sets, then the only measures are sums of absolutely continuous and
purely atomic ones (thus excluding all those with a singular non-atomic component). We
therefore see that increasing the set of measurable sets beyond a certain point actually
reduces the set of available measures. If we want all intervals to be measurable, the largest
set of measures is obtained if we let the structure consist of the Borel sets. (In this con-
nection we remark that there is a confusing misprint in [Mc, p. 357, line 7]; here ‘‘Lebesgue
measurable’’ should read ‘‘Borel.’’)

6. This redefinition of pure strategy is a consequence of the demand that distributions on X
induce distributions on Y. Besides being intuitively desirable, this is absolutely necessary for
the formal analysis, as the reader will see later. Perhaps the most compelling intuitive argu-
ment, though, is that this is needed so that a pair of pure attacker and defender strategies
should induce a payo¤ distribution, for example so that we should be able to assign a prob-
ability to the attacker’s payo¤ being positive.
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defender has chosen a mixed strategy; we wish to calculate the induced

distribution on Y. For m-sets BHY , the probability that the defender

chooses a member of B

¼ probfð f ; xÞ : f ðxÞ A Bg

¼ probfð f ; xÞ : jð f ; xÞ A Bg

¼ probfj�1ðBÞg:

As before, we conclude that the structure R must be chosen so that j is an

m-transformation. But as we have shown elsewhere [A3], there is no

structure R for which this is so; no structure on YX is ‘‘appropriate’’!

We have attempted to define mixed strategies as distributions (i.e.,

probability measures) on YX , and have run into di‰culties. In fact these

di‰culties can be overcome, at least to a certain extent (cf. [A4]). In the

current context, though, we find that a completely di¤erent approach is

both more convenient and more natural. Let us recall the intuitive mean-

ing of a mixed strategy: It is a method for choosing a pure strategy by the

use of a random device. Physically, one tosses a coin, and according as to

which side comes up chooses a corresponding pure strategy; or, if one

wants to randomize over a continuum of pure strategies, one uses a con-

tinuous roulette wheel. Mathematically, the random device—the set of

sides of the coin or of points on the edge of the roulette wheel—constitutes

a probability measure space, sometimes called the sample space; a mixed

strategy is a function from this sample space to the set of all pure strat-

egies. In other words what we have here is precisely a random variable

whose values are pure strategies. We previously attempted to work with

something corresponding to the distribution of this random variable; now

we propose to use the random variable itself.

Let us denote by W the measure space that results when we impose

Lebesgue measure on I. All of our sample spaces will be copies of W. The

intuitive justification for this is that every ‘‘real-life’’ random device is

either ‘‘discrete,’’ ‘‘continuous,’’ or a combination of the two; that is, the

sample space involved must either be finite or denumerable, or it must be

a copy of I (with a measure that is not necessarily Lebesgue measure).7

All such random devices can be represented by random variables whose

sample space is actually a copy of W.

In our example, therefore, we should define a mixed strategy to be a

function from W to the space YX of all pure strategies. We can expect

that not all such functions will be ‘‘eligible’’ as mixed strategies, because

7. Physically, of course, all sample spaces are discrete and even finite; but it is often
convenient to use a continuous or a denumerable model.
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of the by now familiar condition that a mixed strategy and a distribution

on X must induce a distribution on Y. Fortunately, the appropriate con-

dition is not that the mixed strategy as defined above be a measurable

transformation, because this would again involve defining a measurable

structure on YX . To state the correct condition, we recall that to every

function from W to YX there is a corresponding function from W� X to

Y; to f : W ! YX there corresponds the function g : W� X ! Y defined

by gðo; xÞ ¼ f ðoÞðxÞ. The correct condition on a mixed strategy is that

this corresponding function be an m-transformation. Thus we define a

mixed strategy to be an m-transformation from W� X into Y.

As it now stands, this definition of mixed strategy applies only to the

highly simplified situation treated in the first example of the introduction.

However, it can be extended without di‰culty to more complicated,

many-move games, as we shall show in Section 5.

4 Extensive Games

In this section we present the formal structure for extensive games that

we will use in the sequel. We first give the definitions, then discuss their

intuitive meaning and their relation to other definitions in the literature.

An m-space is called standard8 if it is either finite or denumerable with

the discrete structure (i.e., all subsets are measurable), or if it is iso-

morphic9 with I. Most m-spaces that one ‘‘encounters in practice’’ are

standard; for example, any Borel subset of any Euclidean space or of

Hilbert space is standard.

definition A game from an individual player’s viewpoint, or simply a

game, consists of

(i) A (finite or infinite) sequence Y1, Y2; . . . of standard m-spaces called

action spaces;

(ii) A corresponding sequence X1, X2; . . . of standard m-spaces called

information spaces;

(iii) A set Z called the set of strategies of the opponents;

(iv) A sequence of functions

gi : Z � Y1 � � � � � Yi�1 ! Xi;

called information functions, which for each fixed z A Z, are m-

transformations on Y1 � � � � � Yi�1 into Xi;

8. This use of the word is due to Mackey [M].

9. An isomorphism is a one-one correspondence that is measurable in both directions.
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(v) A standard m-space H called the payo¤ space;

(vi) A function

h : Z � Y1 � Y2 � � � � ! H

called the payo¤ function. The payo¤ function is assumed to be an m-

transformation for each fixed z A Z.

Intuitively, the game is played as follows: First the ‘‘opponents,’’

including chance, each pick a strategy; the composite of these strategies is

a member of z of Z. Next, our player is informed of the value of g1ðzÞ;
this is a member of X1, and represents our player’s state of information

for his first move. Our player then chooses a member y1 of Y1. Next, he is

informed of the value of g2ðz; y1Þ; this is a member of X2, and on the

basis of this he must choose a member y2 of Y2. Next, he is informed of

the value of g3ðz; y1; y2Þ; the game continues in this way. The payo¤ is

determined as a function of the strategy z chosen by the opponents, and

the actions y1, y2; . . . taken by our player. Usually it will be most con-

venient to take the payo¤ space H to be a Euclidean space of dimension

equal to the number of players. However this need not always be so,10

and since we do not use any particular form for H in the sequel, we have

left H as general as possible.

Note that up to the present we have not assumed that our player

remembers anything on the occasion of a given choice except what he is

told by the value of the function gi. This can be made plausible if we

think of the choices of y1, y2; . . . as being made by distinct agents of our

player, who are not allowed to communicate with each other.

The mappings g and h have been assumed to be m-transformations in

the variables yi for the familiar reason, namely to ensure that distribu-

tions on the domain spaces induce a distribution on the range space. This

has not been required for the variable z in order to avoid the necessity of

defining a measurable structure on the strategy space Z, which leads to

di‰culties, as we have seen. The results should thus be conceived as

holding for each z separately. In a particular case it might be possible to

integrate over some components of z (e.g., that belonging to chance); this

can be done without di‰culty after the results have been established for

fixed z.

The above definition is a compromise between the normal and exten-

sive forms of a game. The game has been retained in extensive form for

our player, but has been normalized for the other players. Even for finite

10. For instance, for some purposes it is convenient to consider the payo¤ to a supergame
as being simply the sequence of payo¤s to the individual plays, rather than the average (in
some sense) of these payo¤s.
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games, the theorem on games of perfect recall is best stated for one

player at a time; the process of normalizing the game for the other

players enables us to focus attention on the single player and thus sim-

plifies the proofs.

Not all finite extensive games in the sense of Kuhn [K1] (or in the more

general sense of Isbell [I]) are included in the above definition; however

all games of perfect recall are included, as are all finite extensive games in

the sense of von Neumann and Morgenstern [N–M]. The condition for a

Kuhn game to be included is that the game can be ‘‘serialized,’’ time-

wise, for the player in question. For example the game in Figure 1 does

not come under our definition if the information sets A and B belong to

the same player, but does come under our definition if they belong to

distinct players.11 Of course the possibility of serialization is not at all

equivalent with perfect recall (but the latter implies the former).

Most extensive-game models used by authors other than those men-

tioned above are similar to Kuhn’s model, and the same remarks apply.

Next, we define games of perfect recall in our model.

definition A game is said to be of perfect recall if there are sequences

of m-transformations

uij : Xi ! Yj; j < i

and

tij : Xi ! Xj; j < i

such that

uijgiðz; y1; . . . ; yi�1Þ ¼ yj

and

tijgiðz; y1; . . . ; yi�1Þ ¼ gjðz; y1; . . . ; yj�1Þ:

11. The example is taken from [K1].

Figure 1
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Intuitively, u is the function by which a player remembers what he

previously did, and t is the function by which he remembers what he

previously knew.

Note that we have given an analytic definition of games of perfect

recall which, while retaining complete generality, avoids the cumbersome

geometric tree model. This has been made possible by the device of nor-

malizing the game for all but one player.

5 Formal Definitions of Mixed and Behavior Strategies; Kuhn’s Theorem

We may assume without loss of generality that the Xi and Yi are all

copies of I;12 for if one of them is only finite or denumerable, we can

always add a continuum of identical copies. The cartesian products �iXi

and �iYi will be denoted X and Y respectively,13 and their members will

be denoted x ¼ ðx1; x2; . . .Þ and y ¼ ðy1; y2; . . .Þ. We remind the reader

that the phrase ‘‘sample space’’ means a copy of W. Sample spaces will

be denoted by W, W, W1, etc.; the measures on them by l, l, li, etc.,

respectively.

In this and the following three sections, the word ‘‘subset,’’ when

applied to an m-space, will always mean ‘‘measurable subset,’’ and

BHY , when Y is an m-space, will mean ‘‘B is an m-subset of Y.’’

definition A mixed strategy is a sequence m ¼ ðm1;m2; . . .Þ of m-

transformations mi : W� Xi ! Yi, where W is a fixed sample space. A

behavior strategy is a mixed strategy b, such that for i0 j, bið�; xiÞ and

bjð�; xjÞ are mutually independent random variables (xi A Xi and xj A Xj

being arbitrary).14

Every triple ðo;m; zÞ consisting of a member of the sample space, a

mixed strategy, and a strategy of the opponents uniquely determines a

member vðo;m; zÞ of Y; v ¼ ðv1; v2; . . .Þ is defined recursively by

vi ¼ miðo; giðz; v1; . . . ; vi�1ÞÞ:

Intuitively, v is the sequence of choices that actually occur when the game

is played. Furthermore every pair ðm; zÞ uniquely determines a distribu-

tion (i.e., measure) m on Y; this is defined for BHY by

mðBÞ ¼ mðB;m; zÞ ¼ lfo : vðo;m; zÞ A Bg:

12. For the definitions of I and W see Section 3.

13. The reader should be careful to distinguish between boldface letters X, W, l, etc., and
ordinary letters X, W, l, etc.

14. See Section 9 for a discussion of this definition.
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Intuitively, m is the distribution of the random variable vð�;m; zÞ. Two
mixed strategies are said to be equivalent if for each z A Z, they determine

the same distribution on Y.

We are now ready to state

kuhn’s theorem In a game of perfect recall, every mixed strategy has

an equivalent behavior strategy.

6 Lemmas for the Proof of Kuhn’s Theorem

Since we will make extensive use of conditional probabilities where the

probability of the condition vanishes, we briefly review the properties of

such conditional probabilities. Let W be a sample space with measure l,

let Y be a copy of I, and let v : W ! Y be an m-transformation. For

arbitrary GHW and y A Y , we are interested in the conditional proba-

bility of G given that vðoÞ ¼ y. Note that the condition vðoÞ ¼ y may

well have probability zero, that is, we may have lfo : vðoÞ ¼ yg ¼ 0,

possibly even for all y. However, it can be proved [H, pp. 206–209] that

for each y there is an essentially unique15 probability measure on W,

denoted16 by cond lð� j vðoÞ ¼ yÞ, such that for each BHY and GHW,

we have
ð
B

cond lðG j vðoÞ ¼ yÞ dlv�1ðyÞ ¼ lðv�1ðBÞXGÞ: ðA0Þ

Formula (A0) is the analogue of the familiar ‘‘partition formula’’ in ele-

mentary probability theory. That cond lð� j vðoÞ ¼ yÞ is a probability

measure follows from the fact that W is standard [H, p. 210, example 5];

this is the only place where we use standardness.

Let W, l, Y, and v be as above, Y 0 a copy of I, g : W� Y ! Y 0 an m-

transformation, B 0 HY 0 and BHY .

lemma A Under the above conditions
ð
B

cond lðfo : gðo; yÞ A B 0gjvðoÞ ¼ yÞ dlv�1ðyÞ

¼ lfo : gðo; vðoÞÞ A B 0 and vðoÞ A Bg:

15. Actually cond l is defined uniquely only up to a set of y which is of ðlv�1Þ-measure 0.
But all our statements will hold for any particular version of cond l, so the particular choice
can be made arbitrarily.

16. We trust that our notation for conditional probabilities, though not standard, is su‰-
ciently transparent as to cause no confusion. There are good reasons for using it rather than
one of the standard notations.
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Remark The unusual feature of the integral on the left-hand side is that

the subset of W of which the conditional probability is being taken—the

set fo : gðo; yÞ A B 0g—varies with the condition y. If it were not that

cond l is defined essentially uniquely as a probability measure (for

example if W were not standard), the integral would have no meaning,

because cond l could be assigned an arbitrary value for each y. What the

lemma says is that since the condition asserts vðoÞ ¼ y, we may substitute

vðoÞ for y on the left side of the j sign, and then obtain the correct answer

by using (A0).

Proof Let CHW� Y be defined by C ¼ g�1ðB 0Þ. Denoting by Cy the

section fo : ðo; yÞ A Cg, we obtain that Lemma A is equivalent to
ð
B

cond lðCy j vðoÞ ¼ yÞ dlv�1ðyÞ

¼ lfo : ðo; vðoÞÞ A C and vðoÞ A Bg: ðA1Þ

Both sides of (A1), as functions of C, are measures on W� Y (since

cond l is a measure on W for each y). Hence it is su‰cient to prove (A1)

when C is a rectangle G� A in W� Y . In this case the left side of (A1)

becomes
ð
AXB

cond lðG j vðoÞ ¼ yÞ dlv�1ðyÞ

¼ lfGX v�1ðAXBÞg

¼ lðo : o A G and vðoÞ A A and vðoÞ A Bg

¼ lfo : ðo; vðoÞÞ A G� A and vðoÞ A Bg

¼ lfo : ðo; vðoÞÞ A C and vðoÞ A Bg:

This demonstrates (A1) when C is a rectangle, and (A1) and therefore

also Lemma A follows in the general case.

Now let us return to our game. First we introduce some further nota-

tion. We write Yi ¼ Y1 � � � � � Yi. Similarly, for y A Y, we write yi ¼
ðy1; . . . ; yiÞ. If B1 HY1, B2 HY2; . . . ; then we write Bi ¼ B1 � � � � � Bi,

and B ¼ B1 � B2 � � � �. The symbol B will always be reserved for a rect-

angle of this kind.

Let us consider a mixed strategy m with sample space W, a strategy z of

the opponents, and a sequence y A Y. Then for each i ¼ 1; 2; . . . we may

define a sequence vi ¼ ðvi1; vi2; . . .Þ ¼ viðo; y;m; zÞ inductively as follows:

vij ¼
yj; for j < i

mjðo; gjðz; vij�1ÞÞ; for jX i.

�
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We have v1 ¼ v, and vii ¼ miðo; giðz; yi�1ÞÞ, which is the decision on the

ith play if yi�1 has been chosen on the previous plays. Denote ðvii ; . . . ; vikÞ
by v̂vik (for kX i). Note that vij depends only on yi�1 rather than on all of

y, so we may write vijðo; yi�1;m; zÞ rather than vij ðo; y;m; zÞ. As m and z

will be fixed throughout most of this discussion, we will usually write

vijðo; yi�1Þ, and omit explicit mention of m and z. The expression

vijð�; yi�1Þ
�1ðBjÞ means fo : vijðo; yi�1Þ A Bjg. For future reference note

that

viþ1
j ðo; ðyi�1; v

i
i ðo; yi�1ÞÞÞ ¼ vij ðo; yi�1Þ: ðB1Þ

Next, remembering that y is fixed, define a sequence l, ly1 , ly2 ; . . . of

measures on W as follows:

lyiðGÞ ¼ cond lyi�1
ðG j viiðo; yi�1Þ ¼ yiÞ

(where of course ly0 stands for l).

lemma B Let Bi HYi; . . . ;Bk HYk. Thenð
Bi

� � �
ð
Bk

dlyk�1
vkkð�; yk�1Þ

�1ðykÞ � � � dlyi�1
vii ð�; yi�1Þ

�1ðyiÞ

¼ lyi�1
v̂vikð�; yi�1Þ

�1ðB̂Bi
kÞ;

where B̂Bi
k ¼ Bi � � � � � Bk.

Proof We use reverse induction on i. The start, at i ¼ k, is immediate.

For the inductive step (i þ 1 implies i) we have
ð
Bi

ð
Biþ1

� � �
ð
Bk

¼
ð
Bi

lyi v̂v
iþ1
k ð�; yiÞ

�1ðB̂Biþ1
k Þ dlyi�1

viið�; yi�1Þ
�1ðyiÞ

¼
ð
Bi

cond lyi�1
ðfo : v̂viþ1

k ðo; ðyi�1; yiÞÞ A B̂Biþ1
k g j

viiðo; yi�1Þ ¼ yiÞ dlyi�1
vii ð�; yi�1Þ

�1ðyiÞ:

Applying Lemma A with lyi�1
instead of l, Bi instead of B, Yi instead

of Y, B̂Biþ1
k instead of B 0, v̂viþ1

k ð�; ðyi�1; �ÞÞ instead of g, ŶY iþ1
k instead of Y 0,

and vii ð�; yi�1Þ instead of v, we obtain that the last expression above is

equal to

lyi�1
fo : v̂viþ1

k ðo; ðyi�1; v
i
iðo; yi�1ÞÞÞ A B̂Biþ1

k and vii ðo; yi�1Þ A Big;

and from (B1) we deduce that this is equal to

lyi�1
fo : v̂vikðo; yi�1Þ A B̂Bi

kg:

This completes the induction.
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corollary C Let B1 HY1; . . . ;Bk HYk. Thenð
B1

� � �
ð
Bk

dlyk�1
vkkð�; yk�1Þ

�1ðykÞ � � � dlv�1
1 ðy1Þ ¼ lv�1

k ðBkÞ:

corollary D Let f be an m-transformation from Yk to the real num-

bers. Then
ð
B1

� � �
ð
Bk

f ðykÞ dlyk�1
vkkð�; yk�1Þ

�1ðykÞ � � � dlv�1
1 ðy1Þ

¼
ð
Bk

f ðykÞ dlv�1
k ðykÞ:

Proof If f is the characteristic function of a rectangular parallelepiped

in Yk, this follows from Corollary C. The general case follows by the

usual methods.

7 Further Lemmas

The object of this section is to prove that a family of distributions can be

‘‘inverted’’ to yield a family of random variables; the precise statement is

Lemma F below. We shall need the following lemma, which says that a

single distribution can be inverted to yield a single random variable.

lemma E Let f be a non-decreasing upper semi-continuous function17

on I such that f ð0ÞX 0 and f ð1Þ ¼ 1. For 0W yW 1 define

f �1ðyÞ ¼ supfx : f ðxÞW yg; if fx : f ðxÞW yg is non-empty

0 if it is empty.

�

Then

(1) f �1 is non-decreasing,

(2) f �1 is upper-semi-continuous,

(3) f �1ð0ÞX 0, f �1ð1Þ ¼ 1, and

(4) ð f �1Þ�1 ¼ f .

The proof is straightforward, and will be omitted.

Now let X and Y be copies of I, and let B be the s-ring of m-sets in Y.

Let b : B� X ! W be a function which is measurable in X for each fixed

B A B and a probability in B for each fixed x A X .

17. I.e., f ðxÞ ¼ lim supy!x f ðyÞ ¼ limy!xþ f ðyÞ.
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lemma F Under the above conditions, there is a family of random

variables whose distributions are given by b; more precisely, there is an

m-transformation b : W� X ! Y such that

lfo : bðo; xÞ A Bg ¼ bðB; xÞ

for each x A X and B A B.

Proof For y A Y , define

pðx; yÞ ¼ bð½0; y�; xÞ:

Write px ¼ pðx; �Þ; px is a non-decreasing upper-semi-continuous function

of y, so by Lemma E it has a well-defined inverse, which we denote bx;

set bðo; xÞ ¼ bxðoÞ.

lemma F1 bðo; �Þ is Borel measurable in x for each fixed o.

Proof For B A B we must show that fx : bðo; xÞ A Bg is measurable in

X. It is su‰cient to show this when B is of the form ½0; y0Þ. Now

fx : bðo; xÞ A ½0; y0Þg ¼ fx : supfy : pðx; yÞWog < y0g

¼ fx : b rational r < y0 such that pðx; rÞ > og

¼ 6
r<y0

fx : pðx; rÞ > og

¼ 6
r<y0

fx : bð½0; r�; xÞ > og

¼ union of Borel sets ¼ a Borel set:

This completes the proof of Lemma F1.

Next we show that b is measurable in the two variables simultaneously.

It is su‰cient to prove that sets of the form ½y0; 1� have measurable

inverse images. Indeed,

b�1½ y0; 1� ¼ fðo; xÞ : bðo; xÞX y0g

¼ fðo; xÞ : ðE rational sÞ; ðs > o ) bðs; xÞX y0Þg

ðbecause of upper semi-continuity of bÞ

¼ 7
s

fðo; xÞ : ðbðs; xÞX y0Þ or ðsWoÞg

¼ 7
s

ðfðo; xÞ : bðs; xÞX y0ÞgW fðo; xÞ : ðsWoÞgÞ

¼ 7
s

ððW� fx : bðs; xÞX y0gÞW ð½s; 1� � X ÞÞ;

and this is Borel measurable in W� X (by Lemma F1).
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Finally, we show that

lfo : bðo; xÞ A Bg ¼ bðB; xÞ:

It is su‰cient to demonstrate this when B is of the form ½0; y�. Then

lfo : bðo; xÞ A ½0; y�g ¼ lfo : bðo; xÞW yg

¼ supfo : bxðoÞW yg ¼ b�1
x ðyÞ:

But bx ¼ p�1
x ; so b�1

x ¼ px (by Lemma E). Hence

lfo : bðo; xÞ A ½0; y�g ¼ b�1
x ðyÞ ¼ pxðyÞ ¼ pðx; yÞ ¼ bð½0; y�; xÞ;

and the proof of Lemma F is complete.

8 Proof of Kuhn’s Theorem

Fix m; we wish to find an equivalent behavior strategy, which we will call

b. We first define the distributions bi of the random variables bið�; xÞ, and
then only the random variables themselves. For BHYi and x A Xi, define

biðB; xÞ ¼ cond lðfo : miðo; xÞ A Bg jmi�1ðo; tii�1ðxÞÞ ¼ uii�1ðxÞ j � � �

jm1ðo; ti1ðxÞÞ ¼ ui1ðxÞÞ:

The expression on the right is to be interpreted as an iterated conditional

probability, similar to the definition of lyi . To underscore the similarity,

note that

biðB; giðz; yi�1ÞÞ ¼ lyi�1
viið�; yi�1;m; zÞ�1ðBÞ: ðK1Þ

Let W1, W2; . . . be a sequence of copies of W. According to Lemma F

we can find b0i : Wi � Xi ! Yi so that the bið�; xÞ are the distributions of

the b0ið�; xÞ, i.e., so that

lifoi : b
0
iðo; xÞ A Bg ¼ biðB; xÞ: ðK2Þ

Let W ¼ W1 �W2 � � � � , and note that W is a copy of W; define a

behavior strategy bi : W� Xi ! Yi by biðw;XiÞ ¼ b0iðoi;XiÞ, where w ¼
ðo1;o2; . . .Þ. Let B1 HY1, B2 HY2; . . . ; for each n write B�

n ¼
Bn � Ynþ1 � � � � . To show that m and b are equivalent, it is only neces-

sary to show that

mðB�
n;m; zÞ ¼ mðB�

n; b; zÞ ðK3Þ

for every z A Z and every n and arbitrary choice of the Bi.
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Let us write wn for ðo1; . . . ;onÞ. We first note that vnðw; b; zÞ depends
only on on rather than on all of o. In fact, if we define wnðwnÞ recursively
by

wnðonÞ ¼ b0nðon; gnðz;wn�1ðon�1ÞÞÞ;

and wn ¼ ðw1; . . . ;wnÞ, then

wnðwnÞ ¼ vnðw; b; zÞ: ðK4Þ

Henceforth we will use v for m exclusively (unless we explicitly indicate

otherwise); thus vðoÞ will mean vðo;m; zÞ, and similarly for vij , etc.

The proof of (K3) is by induction on n; the induction is easily started

(at n ¼ 1). For the inductive step (n implies nþ 1) note that

lnw
�1
n ðBnÞ ¼ mðB�

n; b; zÞ

because of (K4), where ln ¼ l1 � � � � � ln; furthermore

lv�1
n ðBnÞ ¼ mðB�

n;m; zÞ:

Since by induction hypothesis the two right sides are equal, it follows that

the left sides also are; but since this holds for all Bn HYn, it follows that

lnw
�1
n ¼ lv�1

n ðK5Þ

as measures on Yn. Next, we have

mðB�
nþ1; b; zÞ¼ lfw : wnþ1ðwnþ1Þ A Bnþ1g

¼ lnþ1fwnþ1 : wnþ1ðwnþ1Þ A Bnþ1 and wnðwnÞ A Bng

¼ lnþ1fwnþ1 : b
0
nþ1ðonþ1; gnþ1ðz;wnðwnÞÞÞ A Bnþ1 and wnðwnÞ A Bng

¼
ð
w�1
n ðBnÞ

lnþ1fonþ1 : b
0
nþ1ðonþ1; gnþ1ðz;wnðwnÞÞÞ A Bnþ1g dlnðwnÞ

¼
ð
Bn

bnþ1ðBnþ1; gnþ1ðz; ynÞÞ dlnw�1
n ðynÞ;

ðbecause of ðK2Þ and the change of variables yn ¼ wnðwnÞÞ

¼
ð
Bn

lynv
nþ1
nþ1ð�; ynÞ

�1ðBnþ1Þ dlv�1
n ðynÞ

ðbecause of ðK1Þ and ðK5ÞÞ
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¼
ð
B1

� � �
ð
Bn

lynv
nþ1
nþ1ð�; ynÞ

�1ðBnþ1Þ dlyn�1
vnnð�; yn�1Þ

�1ðynÞ

� � � dlv�1
1 ðy1Þ ðbecause of Corollary DÞ

¼
ð
B1

� � �
ð
Bn

ð
Bnþ1

dlynv
nþ1
nþ1ð�; ynÞ

�1ðynþ1Þ � � � dlv�1
1 ðy1Þ

¼ lv�1
nþ1ðBnþ1Þ

¼ mðB�
nþ1;m; zÞ: ðbecause of Corollary CÞ

This completes the proof of Kuhn’s theorem.

9 Remarks on the Definition of Behavior Strategy

Intuitively, a player using a behavior strategy ‘‘postpones crossing his

bridges until he gets to them;’’ that is, he randomizes independently on

each occasion of a choice, rather than letting his choices be governed by a

single randomization performed before the start of play. Thus a behavior

strategy is a family of independent random procedures for choosing an

action, one for each possible information state. The direct translation of

this intuitive concept into technical language yields a sequence of func-

tions bi : W� Xi ! Yi, where the functions bið�; xÞ are mutually indepen-

dent random variables for distinct x, even when we are dealing with a

single i. This is a little di¤erent from the definition of Section 5, in which

it was demanded only that the bið�; xÞ be independent for distinct i; that

is, the player randomizes independently at each stage, but before the

information for that stage is received, rather than afterwards.

To demand that the bið�; xÞ be independent for distinct x—even for a

fixed i—would mean that we must have a nondenumerable number of

mutually independent bounded random variables on the same sample

space; and except for the degenerate case in which almost all of these are

constants, this is in fact impossible (when the phrase ‘‘sample space’’ is

used in our restricted sense, which corresponds to the intuitive idea of

random device). Indeed, suppose fbxg is a nondenumerable family of

bounded nonconstant mutually independent random variables on the

sample space W, and let cx ¼ bx � mean (bx). Then from independence it

follows that the cx are mutually orthogonal in the Hilbert space L2ðWÞ,
and from the fact that the bx are nonconstant it follows that the cx do not

vanish identically. So we have a nondenumerable number of nonzero

mutually orthogonal members of L2ðWÞ, and hence L2ðWÞ has non-

denumerable dimension. But its dimension is known to be denumerable,

so our contention is proved.
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It may seem that this makes any genuine analogue of Kuhn’s theorem

in the continuous case impossible. The di¤erence, however, is illusory,

and there is no real loss of strength in our theorem. We have seen that the

bið�; xÞ must necessarily be correlated as x ranges over Xi, simply because

of the cardinality of Xi. However, this correlation is entirely irrelevant to

the game, and cannot a¤ect the payo¤ in any way. In fact, the payo¤

distribution depends only on the distributions of the individual bið�; xÞ, and
not on any of the joint distributions (this follows from Section 8). In other

words, the bið�; xÞ are correlated (for fixed i and varying x) not because

this correlation is necessary to mimic the e¤ect of the given mixed strat-

egy m; in fact, if this were necessary (as it may be when the game is not of

perfect recall), this kind of in-stage correlation could not accomplish it,18

and we would have to resort to interstage correlation. The correlation is

rather in the way of being an irrelevant mathematical accident.

Yet another way of saying this is that as long as they have the proper

distributions, the bið�; xÞ can be chosen in any way we please, without any

regard to each other, except that in the end bi must be simultaneously

measurable in both o and x. Though the bið�; xÞ must be correlated, what

form the correlation takes is of no concern to us.

Finally, we remark that it would have been possible to define behavior

strategies as functions that take members of Xi into distributions over Yi,

in a manner directly analogous to that of [K1]. With that approach, the

independence assumptions would have been implicit in the formula for

the payo¤ to a behavior strategy, and the question under discussion

would not have arisen at all. We prefer our approach because it under-

scores the natural relation between mixed and behavior strategies.
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