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INTRODUCTION

Economists have long expressed dissatisfaction with the complex models
of strict rationality that are so pervasive in economic theory. There are
several objections to such models. First, casual empiricism or even just
simple introspection leads to the conclusion that even in quite simple
decision problems, most economic agents are not in fact maximizers, in the
sense that they do not scan the choice set and consciously pick a maximal
element from it. Second, such maximizations are often quite difficult, and

Ževen if they wanted to, most people including economists and even
.computer scientists would be unable to carry them out in practice. Third,

polls and laboratory experiments indicate that people often fail to conform
to some of the basic assumptions of rational decision theory. Fourth,
laboratory experiments indicate that the conclusions of rational analysis
Ž .as distinguished from the assumptions sometimes fail to conform to
‘‘reality.’’ And finally, the conclusions of rational analysis sometimes seem
unreasonable even on the basis of simple introspection.

* This is an updated version of the Nancy L. Schwartz Memorial Lecture presented by the
author at the J. L. Kellogg Graduate School of Management of Northwestern University in
May 1986.

Research for this lecture was supported by the National Science Foundation under Grant
IRI-8814953. Subsequent to the Schwartz lecture, versions of this lecture were presented at a
workshop on bounded rationality at the Institute for Mathematical Studies in the Social

Ž .Sciences Economics , Stanford University, July 1989; at the Fourth Conference on Theoreti-
cal Aspects of Reasoning about Knowledge, Monterey, March 1992; and at the NATO
Advanced Study Institute on Game Theoretic Approaches to Cooperation, Stony Brook, July
1994.
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From my point of view, the last two of the above objections are more
compelling than the first three. In science, it is more important that the
conclusions be right than that the assumptions sound reasonable. The
assumption of a gravitational force seems totally unreasonable on the face
of it, yet leads to correct conclusions. ‘‘By their fruits ye shall know them’’
Ž .Matthew 7, 16 .

In the following, though, we shall not hew strictly to this line; we shall
examine various models that, between them, address all the above issues.

To my knowledge, this area was first extensively investigated by Herbert
Ž .Simon 1955, 1972 . Much of Simon’s work was conceptual rather than

formal. For many years after this initial work, it was recognized that the
area was of great importance, but the lack of a formal approach impeded
its progress. Particular components of Simon’s ideas, such as satisficing,
were formalized by several workers, but never led to an extensive theory,
and indeed did not appear to have significant implications that went
beyond the formulations themselves.

There is no unified theory of bounded rationality, and probably never
will be. Here we examine several different but related approaches to the
problem. We will not survey the area, but discuss some of the underlying
ideas. For clarity, we may sometimes stake out a position in a fashion that
is more one-sided and extreme than we really feel; we have the highest
respect and admiration for all the scientists whose work we cite, and beg
them not to take offense.

From the point of view of the volume of research, the field has ‘‘took
off’’ in the eighties. An important factor in making this possible was the
development of computer science, complexity theory, and so on, areas of
inquiry that created an intellectual climate conducive to the development
of the theory of bounded rationality. A significant catalyst was the experi-

Ž .mental work of Robert Axelrod 1984 in the late seventies and early
eighties, in which experts were asked to prepare computer programs for
playing the repeated prisoner’s dilemma. The idea of a computer program
for playing repeated games presaged some of the central ideas of the later
work; and the winner of Axelrod’s tournament}tit for tat}was, because
of its simplicity, nicely illustrative of the bounded rationality idea. Also,
repeated games became the context of much of the subsequent work.

The remainder of this lecture is divided into five parts. First we discuss
the evolutionary approach to optimization}and specifically to game the-
ory}and some of its implications for the idea of bounded rationality, such
as the development of truly dynamic theories of games, and the idea of

Ž .‘‘rule rationality’’ as opposed to ‘‘act rationality’’ . Next comes the area of
‘‘trembles,’’ including equilibrium refinements, ‘‘crazy’’ perturbations, fail-
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ure of common knowledge of rationality, the limiting average payoff
in infinitely repeated games as an expression of bounded rationality,
«-equilibria, and related topics. Part 3 deals with players who are modeled

Ž .as computers finite state automata, Turing machines , which has now
become perhaps the most active area in the field. In Part 4 we discuss the
work on the foundations of decision theory that deals with various para-

Ž .doxes such as Allais, 1953, and Ellsberg, 1961 , and with results of
laboratory experiments, by relaxing various of the postulates and so
coming up with a weaker theory. Part 5 is devoted to an open problem.

Most of this lecture is set in the framework of noncooperative game
theory, because most of the work has been in that framework. Game
theory is indeed particularly appropriate for discussing fundamental ideas
in this area, because it is relatively free from special institutional features.
The basic ideas are probably applicable to economic contexts that are not

Ž .game-theoretic if there are any .

1. EVOLUTION

a. Nash Equilibria as Population Equilibria

One of the simplest, yet most fundamental ideas in bounded rationality
}indeed, in game theory as a whole}is that no rationality at all is
required to arrive at a Nash equilibrium; insects and even flowers can and
do arrive at Nash equilibria, perhaps more reliably than human beings.

Ž .The Nash equilibria of a strategic normal form game correspond pre-
cisely to population equilibria of populations that interact in accordance
with the rules}and payoffs}of the game.

A version of this idea}the evolutionarily stable strategy}was first
Ž .developed by John Maynard Smith 1982 in the early seventies, and

Žapplied by him to many biological contexts most of them animal conflicts
.within a species . But the idea applies also to Nash equilibria}not only to

interaction within a species, but also to interactions between different
species. It is worthwhile to give a more precise statement of this corre-
spondence.

Consider, then, two populations}let us first think of them as different
species}whose members interact in some way. It might be predator and
prey, or cleaner and host fish, or bees and flowers, or whatever. Each
interaction between an individual of population A and one of population B

Ž .results in an increment or decrement in the fitness of each; recall that
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the fitness of an individual is defined as the expected number of its
Žoffspring I use ‘‘its’’ on purpose, since, strictly speaking, reproduction

.must be asexual for this to work . This increment is the payoff to each of
the individuals for the encounter in question. The payoff is determined by

Žthe genetic endowment of each of the interacting individuals more or less
.aggressive or watchful or keen-sighted or cooperative, etc. . Thus one may

write a bimatrix in which the rows and columns represent the various
Žpossible genetic endowments of the two respective species or rather those

different genetic endowments that are relevant to the kind of interaction
.being examined , and the entries represent the single encounter payoffs

that we just described. If one views this bimatrix as a game, then the Nash
equilibria of this game correspond precisely to population equilibria; that
is, under asexual reproduction, the proportions of the various genetic
endowments within each population remain constant from generation to
generation if and only if these proportions constitute a Nash equilibrium.

This is subject to the following qualification: in each generation, there
must be at least a very small proportion of each kind of genetic endow-
ment; that is, each row and column must be represented by at least some
individuals. This minimal presence, whose biological interpretation is that
it represents possible mutations, is to be thought of as infinitesimal;

Žspecifically, an encounter between two such mutants in the two popula-
.tions is considered impossible.

A similar story can be told for games with more than two players, and
for evolutionary processes other than biological ones; e.g., economic evolu-
tion, like the development of the QWERTY typewriter keyboard, studied

Ž .by the economic historian Paul David 1986 . It also applies to learning
processes that are perhaps not strictly analogous to asexual reproduction.
And though it does not apply to sexual reproduction, still one may hope
that, roughly speaking, similar ideas may apply.

One may ask, who are the ‘‘players’’ in this ‘‘game?’’ The answer is that
Ž .the two ‘‘players’’ are the two populations i.e., the two species . The

individuals are definitely not the ‘‘players’’; if anything, each individual
Žcorresponds to the pure strategy representing its genetic endowment note

that there is no sense in which an individual can ‘‘choose’’ its own genetic
.endowment . More accurately, though, the pure strategies represent kinds

of genetic endowment, and not individuals. Individuals indeed play no
explicit role in the mathematical model; they are swallowed up in the
proportions of the various pure strategies.

Some biologists object to this interpretation, because they see it as
implying group or species selection rather than individual selection. The
player is not the species, they argue; the individual ‘‘acts for its own good,’’
not the good of the group, or of the population, or of the species. Some
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Ž .even argue that it is the gene or rather the allele that ‘‘acts for its own
good,’’ not the individual. The point, though, is that nothing in this model
really ‘‘acts for its own good’’; nobody ‘‘chooses’’ anything. It is the process
as a whole that selects the traits. The most we can do is ask what it is that
corresponds to the player in the mathematical model, and this is undoubt-
edly the population.

A question that at first seems puzzling is what happens in the case of
interactions within a species, like animal conflicts for females, etc. Who
are the players in this game? If the players are the populations, then this
must be a one-person game, since there is only one population. But that
doesn’t look right, either, and it certainly doesn’t correspond to the
biological models of animal conflicts.

The answer is that it is a two-person symmetric game, in which both
players correspond to the same population. In this case we look not for
just any Nash equilibria, but for symmetric ones only.

b. E¨olutionary Dynamics

The question of developing a ‘‘truly’’ dynamic theory of games has long
Žintrigued game theorists and economic theorists. If I am not mistaken, it

Ž .is one of the conceptual problems listed by Kuhn and Tucker 1953 in the
introduction to Volume II of ‘‘Contributions to the Theory of
Games’’}perhaps the last one in that remarkably prophetic list to be

.successfully solved. The difficulty is that ordinary rational players have
foresight, so they can contemplate all of time from the beginning of play.
Thus the situation can be seen as a one-shot game, each play of which is
actually a long sequence of ‘‘stage games,’’ and then one has lost the
dynamic character of the situation.

The evolutionary approach outlined above ‘‘solves’’ this conceptual
difficulty by eliminating the foresight. Since the process is mechanical,
there is indeed no foresight; no strategies for playing the repeated game
are available to the ‘‘players.’’

And indeed, a fascinating dynamic theory does emerge. Contributions to
Ž . Ž .this theory have been made by Young 1993 , Foster and Young 1990 ,

Ž .and Kandori et al. 1993 . A book on the subject has been written by
Ž .Hofbauer and Sigmund 1988 and there is an excellent chapter on

Ž .evolutionary dynamics in the book by van Damme 1987 on refinements of
the Nash equilibrium. Many others have also contributed to the subject.

It turns out that Nash equilibria are often unstable, and one gets various
kinds of cycling effects. Sometimes the cycles are ‘‘around’’ the equilib-
rium, like in ‘‘matching pennies,’’ but at other times one gets more
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complicated behavior. For example, the game

0 5 4
0 4 5

4 0 5
5 0 4

5 4 0
4 5 0

ŽŽ . Ž ..has 1r3, 1r3, 1r3 , 1r3, 1r3, 1r3 as its only Nash equilibrium; the
evolutionary dynamic does not cycle ‘‘around’’ this point, but rather

Ž .confines itself more or less to the strategy pairs in which the payoff is 4
or 5. This suggests a possible connection with correlated equilibria; this

Ž .possibility has recently been investigated by Foster and Vohra 1997 .
Thus evolutionary dynamics emerges as a form of rationality that is

bounded, in that foresight is eliminated.

c. ‘‘Rule Rationality’’ ¨s ‘‘ Act Rationality’’

Ž .In a famous experiment conducted by Guth et al. 1982 and later¨
Ž .repeated, with important variations, by Binmore et al. 1985 , two players

Žwere asked to divide a considerable sum of money ranging as high as DM
.100 . The procedure was that P1 made an offer, which could be either

accepted or rejected by P2; if it was rejected, nobody got anything. The
players did not know each other and never saw each other; communication
was a one-time affair via computer.

‘‘Rational’’ play would predict a 99]1 split, or 95]5 at the outside. Yet
in by far the most trials, the offered split was between 50]50 and 65]35.
This is surprising enough in itself. But even more surprising is that in most
Ž .all? cases in which P2 was offered less than 30 percent, he actually
refused. Thus, he preferred to walk away from as much as DM 25 or 30.
How can this be reconciled with ordinary notions of utility maximization,
not to speak of game theory?

It is tempting to answer that a player who is offered 5% or 10% is
‘‘insulted.’’ Therefore, his utilities change; he gets positive probability from
‘‘punishing’’ the other player.

That’s all right as far as it goes, but it doesn’t go very far; it doesn’t
explain very much. The ‘‘insult’’ is treated as exogenous. But obviously the
‘‘insult’’ arose from the situation. Shouldn’t we treat the ‘‘insult’’ itself
endogenously, somehow explain it game-theoretically?

I think that a better way of explaining the phenomenon is as follows:
Ordinary people do not behave in a consciously rational way in their
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day-to-day activities. Rather, they evolve ‘‘rules of thumb’’ that work in
Ž .general, by an evolutionary process like that discussed above Section 1a ,

or a learning process with similar properties. Such ‘‘rules of thumb’’ are
Ž .like genes or rather, alleles . If they work well, they are fruitful and

multiply; if they work poorly, they become rare and eventually extinct.
One such rule of thumb is ‘‘Don’t be a sucker; don’t let people walk all

over you.’’ In general, the rule works well, so it becomes widely adopted.
As it happens, the rule doesn’t apply to Guth’s game, because in that¨
particular situation, a player who refuses DM 30 does not build up his

Ž .reputation by the refusal because of the built-in anonymity . But the rule
has not been consciously chosen, and will not be consciously abandoned.

So we see that the evolutionary paradigm yields a third form of bounded
rationality: rather than consciously maximizing in each decision situation,
players use rules of thumb that work well ‘‘on the whole.’’

2. PERTURBATIONS OF RATIONALITY

a. Equilibrium Refinements

Ž . Ž .Equilibrium refinements}Selten 1975 , Myerson 1978 , Kreps and
Ž . Ž . Ž .Wilson 1982 , Kalai and Samet 1984 , Kohlberg and Mertens 1986 ,

Ž . Ž . Ž .Basu and Weibull 1991 , van Damme 1984 , Reny 1992 , Cho and Kreps
Ž .1989 , and many others}don’t really sound like bounded rationality.
They sound more like super-rationality, since they go beyond the basic
utility maximization that is inherent in Nash equilibrium. In addition to
the Nash equilibrium, which demands rationality on the equilibrium path,
they demand rationality also off the equilibrium path. Yet all are based in
one way or another on ‘‘trembles’’}small departures from rationality.

The paradox is resolved by noting that in game situations, one player’s
irrationality requires another’s super-rationality. You must be super-ra-
tional in order to deal with my irrationalities. Since this applies to all
players, taking account of possible irrationalities leads to a kind of super-
rationality for all. To be super-rational, one must leave the equilibrium
path. Thus, a more refined concept of rationality cannot feed on itself
only; it can only be defined in the context of irrationality.

b. Crazy Perturbations

An idea related to the trembling hand is the theory of irrational or
Ž‘‘crazy’’ types, as propounded first by the ‘‘gang of four’’ Kreps, Milgrom,

.Roberts, and Wilson, 1982 , and then taken up by Fudenberg and Maskin
Ž . Ž . Ž .1986 , Aumann and Sorin 1989 , Fudenberg and Levine 1989 , and no
doubt others. In this work there is some kind of repeated or other dynamic
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game setup; it is assumed that with high probability the players are
‘‘rational’’ in the sense of being utility maximizers, but that with a small
probability, one or both play some one strategy, or one of a specified set of
strategies, that are ‘‘crazy’’}that is, have no a priori relationship to
rationality. An interesting aspect of this work, which differentiates it from
the ‘‘refinement’’ literature and makes it particularly relevant to the theory
of bounded rationality, is that it is usually the crazy type, or a crazy type,
that wins out}takes over the game, so to speak. Thus, in the original work
of the gang of four on the prisoner’s dilemma, there is only one crazy type,
who always plays tit-for-tat no matter what the other player does, and it
turns out that the rational type must imitate the crazy type}he must also
play tit-for-tat, or something quite close to it. Also, the ‘‘crazy’’ types, while
irrational in the sense that they do not maximize utility, are usually by no

Ž .means random or arbitrary as they are in refinement theory . For exam-
ple, we have already noted that tit-for-tat is computationally a very simple
object, far from random. In the work of Aumann and Sorin, the crazy types
are identified with bounded recall strategies; and in the work of Fudenberg
and Levine, the crazy types form a denumerable set, suggesting that they
might be generated in some systematic manner, e.g., by Turing machines.
There must be method to the madness; this is associated with computa-
tional simplicity, which is another one of the underlying ideas of bounded
rationality.

c. Epsilon-Equilibria

ŽRather than playing irrationally with a small probability as in Sections
.2 a and 2b , one may deviate slightly from rationality by playing so as

almost, but not quite to, maximize utility; i.e., by playing to obtain a payoff
that is within « of the optimum payoff. This idea was introduced by

Ž .Radner 1980 in the context of repeated games, in particular of the
repeated prisoners’ dilemma; he showed that in a long but finitely repeated
prisoner’s dilemma, there are «-equilibria with small « in which the

Žplayers ‘‘cooperate’’ until close to the end though, as is well-known, all
.exact equilibria lead to a constant stream of ‘‘defections’’ .

d. Infinitely Repeated Games with Limit-of-the-A¨erage Payoff

There is an interesting connection between «-equilibria in finitely re-
peated games and infinitely repeated games with limit of the average

Ž .payoff ‘‘undiscounted’’ . The limit of the average payoff has been criti-
cized as not representing any economic reality; many workers prefer to use
either the finitely repeated game or limits of payoffs in discounted games
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Ž . Ž .with small discounts. Radner et al. 1986 , Forges et al. 1986 , and perhaps
others, have demonstrated that the results of these two kinds of analysis
can indeed be quite different.

Actually, though, the infinitely repeated undiscounted game is in some
ways a simpler and more natural object than the discounted or finite game.
In calculating equilibria of a finite or discounted game, one must usually
specify the number n of repetitions or the discount rate d ; the equilibria
themselves depend crucially on these parameters. But one may want to
think of such a game simply as ‘‘long,’’ without specifying how long.
Equilibria in the undiscounted game may be thought of as ‘‘rules of
thumb,’’ which tell a player how to play in a ‘‘long repetition,’’ indepen-
dently of how long the repetition is. Whereas limits of finite or discounted
equilibrium payoffs tell the players approximately how much payoff to
expect in a long repetition, analysis of the undiscounted game tells him

Ž .approximately how to play. See Aumann and Maschler 1995 , pp. 131]134.
Thus, the undiscounted game is a framework for formulating the idea of

a duration-independent strategy in a repeated game. Indeed, it may be
shown that an equilibrium in the undiscounted game is an approximate
equilibrium simultaneously in all the n-stage truncations, the approxima-
tion getting better and better as n grows. Formally, a strategy profile
Ž .‘‘tuple’’ is an equilibrium in the undiscounted game if and only if, for
some sequence of « tending to zero, each of its n-stage truncations is ann

Ž .« -equilibrium in the sense of Radner described above in the n-stagen
truncation of the game.

e. Failure of Common Knowledge of Rationality

In their paper on the repeated prisoners’ dilemma, the Gang of Four
pointed out that the effect they were demonstrating holds not only when
one of the players believes that with some small probability, the other is a

Žtit-for-tat automaton, but also if one of them only believes with small
. Ž .probability that the other believes this about him with small probability .

More generally, it can be shown that many of the perturbation effects we
have been discussing do not require an actual departure from rationality
on the part of the players, but only a lack of common knowledge of

Ž .rationality Aumann, 1992 .

3. AUTOMATA, COMPUTERS, AND TURING MACHINES

We come now to what is probably the mainstream of the newer work in
bounded rationality, namely, the theoretical work that has been done since
the mid-eighties on automata and Turing machines playing repeated

Ž .games. The work was pioneered by A. Neyman 1985 and A. Rubinstein



RATIONALITY AND BOUNDED RATIONALITY 11

Ž .1986 , working independently and in very different directions. Subse-
Ž .quently, the theme was taken up by Ben-Porath 1993 , Kalai and Stanford

Ž . Ž . Ž .1988 , Zemel 1989 , Abreu and Rubinstein 1988 , Ben-Porath and Peleg
Ž . Ž . Ž . Ž .1987 , Lehrer 1988 , Papadimitriou 1992 , Stearns 1989 , and many
others, each of whom made significant new contributions to the subject in
various different directions. Different branches of this work have been

Ž . Ž .started by Lewis 1985 and Binmore 1987, 1988 , who have also had their
following. We do not even touch on the more recent work in this area,
which has been very active lately.

It is impossible to do justice to all this work in a reasonable amount of
time, and we content ourselves with brief descriptions of some of the
major strands. In one strand, pioneered by Neyman, the players of a
repeated game are limited to using mixtures of pure strategies, each of
which can be programmed on a finite automaton with an exogenously fixed
number of states. This is reminiscent of the work of Axelrod, who required
the entrants in his experiment to write the strategies in a Fortran program
not exceeding a stated limit in length. In another strand, pioneered by
Rubinstein, the size of the automaton is endogenous; computer capacity is
considered costly, and any capacity that is not actually used in equilibrium
play is discarded. The two approaches lead to very different results. The
reason is that Rubinstein’s approach precludes the use of ‘‘punishment’’ or
‘‘trigger’’ strategies, which swing into action only when a player departs
from equilibrium, and whose sole function is precisely to prevent such
departures. In the evolutionary interpretation of repeated games, Rubin-
stein’s approach may be more appropriate when the stages of the repeated
game represent successive generations, whereas Neyman’s may be more

Žappropriate when each generation plays the entire repeated game which
would lead to the evolution of traits having to do with reputation, like

.‘‘Don’t be a sucker’’ .
The complexity of computing an optimal strategy in a repeated game, or

even just a best response to a given strategy, has been the subject of works
Ž . Ž .by several authors, including Gilboa 1988 , Ben-Porath 1990 , and Pa-

Ž . Ž .padimitriou 1992 . Related work has been done by Lewis 1992 , though
Žin the framework of recursive function theory which is related to infinite

. ŽTuring machines rather than complexity theory which has to do with
.finite computing devices . Roughly speaking, the results are qualitatively

similar: finding maxima is hard. Needless to say, in the evolutionary
approach to games, nobody has to find the maxima; they are picked out by
evolution. Thus, the results of complexity theory again underscore the
importance of the evolutionary approach.

Ž . ŽBinmore 1987, 1988 and his followers have modeled games as pairs or
.n-tuples of Turing machines in which each machine carries in it some kind

Ž .of idea of what the other ‘‘player’’ machine might look like.
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Other important strands include work by computer scientists who have
Žmade the connection between distributed computing and games ‘‘com-

.puters as players,’’ rather than ‘‘players as computers’’ . For a survey, see
Ž .Linial 1994 .

4. RELAXATION OF RATIONALITY POSTULATES

A not uncommon activity of decision, game, and economic theorists
since the fifties has been to call attention to the strength of various
postulates of rationality, and to investigate the consequences of relaxing
them. Many workers in the field}including the writer of these lines}have
at one time or another done this kind of thing. People have constructed
theories of choice without transitivity, without completeness, violating the
sure-thing principle, and so on. Even general equilibrium theorists have
engaged in this activity, which may be considered a form of limited

Ž .rationality on the part of the agents in the model . This kind of work is
most interesting when it leads to outcomes that are qualitatively different
}not just weaker}from those obtained with the stronger assumptions,
but I don’t recall many such cases. It can also be very interesting and
worthwhile when one gets roughly similar results with significantly weaker
assumptions.

5. AN OPEN PROBLEM

We content ourselves with one open problem, which is perhaps the most
challenging conceptual problem in the area today: to develop a meaningful
formal definition of rationality in a situation in which calculation and
analysis themselves are costly andror limited. In the models we have
discussed up to now, the problem has always been well defined, in the
sense that an absolute maximum is chosen from among the set of feasible
alternatives, no matter how complex a process that maximization may be.
The alternatives themselves involve bounded rationality, but the process of
choosing them does not.

Here, too, an evolutionary approach may eventually turn out to be the
key to a general solution.

REFERENCES

Ž .Abreu, D., and Rubinstein, A. 1988 . ‘‘The Structure of Nash Equilibrium in Repeated
Games with Finite Automata,’’ Econometrica 56, 1259]1281.

Ž .Allais, M. 1953 . ‘‘Le Comportement de l’Homme Rationnel devant le Risque: Critiques des
Postulats et Axioms de l’Ecole Americaine,’’ Econometrica 21, 503]546.



RATIONALITY AND BOUNDED RATIONALITY 13

Ž .Aumann, R. J. 1992 . ‘‘Irrationality in Game Theory,’’ in Economic Analysis of Markets and
ŽGames, Essays in Honor of Frank Hahn P. Dasgupta, D. Gale, O. Hart, and E. Maskin,

.Eds. , pp. 214]227. CambridgerLondon: MIT Press.
Ž .Aumann, R. J., and Maschler, M. 1995 . Repeated Games with Incomplete Information.

CambridgerLondon: MIT Press.
Ž .Aumann, R. J., and Sorin, S. 1989 . ‘‘Cooperation and Bounded Recall,’’ Games Econ. Beha¨.

1, 5]39.
Ž .Axelrod, R. 1984 . The E¨olution of Cooperation. New York: Basic Books.

Ž .Basu, K., and Weibull, J. W. 1991 . ‘‘Strategy Subsets Closed under Rational Behavior,’’
Econ. Lett. 36, 141]146.

Ž .Ben-Porath, E. 1990 . ‘‘The Complexity of Computing Best Response Automata in Repeated
Games with Mixed Strategies,’’ Games Econ. Beha¨. 2, 2]12.

Ž .Ben-Porath, E. 1993 . ‘‘Repeated Games with Finite Automata,’’ J. Econ. Theory 59, 17]32.
Ž .Ben-Porath, E. and Peleg, B. 1987 . ‘‘On the Folk Theorem and Finite Automata,’’ Center

for Research in Mathematical Economics and Game Theory, Hebrew University, Res.
Mem. 77.

Ž .Binmore, K. G. 1987 . ‘‘Modelling Rational Players, I,’’ Econ. and Philos. 3, 179]214.
Ž .Binmore, K. G. 1988 . ‘‘Modelling Rational Players, II,’’ Econ. and Philos. 4, 9]55.

Ž .Binmore, K., Shaked, A. and Sutton, J. 1985 . ‘‘Testing Noncooperative Bargaining Theory:
A Preliminary Study,’’ Amer. Econ. Re¨. 75, 1178]1180.

Ž .Cho, I.-K., and Kreps, D. 1987 . ‘‘Signaling Games and Stable Equilibria,’’ Quart. J. Econ.
102, 179]221.

Ž .David, P. A. 1986 . ‘‘Understanding the Economics of QWERTY: The Necessity of History,’’
Ž .in Economic History and the Modern Economist W. N. Parker, Ed. , Chap. 4. New York:

Blackwell.
Ž .Ellsberg, D. 1961 . ‘‘Risk, Ambiguity and the Savage Axioms,’’ Quart. J. Econ. 75, 643]669.

Ž .Forges, F., Mertens, J.-F. and Neyman, A. 1986 . ‘‘A Counter Example to the Folk Theorem
with Discounting,’’ Econ. Lett. 20, 7.

Ž .Foster, D., and Young, H. P. 1990 . ‘‘Stochastic Evolutionary Game Dynamics,’’ Theoret.
Popul. Biol. 38, 219]232.

Ž .Foster, D., and Vohra, R. 1997 . ‘‘Calibrated Learning and Correlated Equilibrium,’’ Games
Econ. Beha¨. 21, 40]55.

Ž .Fudenberg, D., and Levine, D. K. 1989 . ‘‘Reputation and Equilibrium Selection in Games
with a Patient Player,’’ Econometrica 57, 759]779.

Ž .Fudenberg, D. and Maskin, E. 1986 . ‘‘The Folk Theorem in Repeated Games with
Discounting and Incomplete Information,’’ Econometrica 54, 533]554.

Ž .Gilboa, I. 1988 . ‘‘The Complexity of Computing Best Response Automatan in Repeated
Games,’’ J. Econ. Theory 45, 342]352.

Ž .Guth, W., Schmittberger, R. and Schwarze, B. 1982 . ‘‘An Experimental Analysis of Ultima-¨
tum Bargaining,’’ J. Econ. Beha¨. Organization 3, 367]388.

Ž .Hofbauer, J. and Sigmund, K. 1988 . Theory of E¨olution and Dynamical Systems, Cambridge:
Cambridge University Press.

Ž .Kalai, E. and Samet, D. 1984 . ‘‘Persistent Equilibria,’’ Int. J. Game Theory 13, 129]144.
Ž .Kalai, E., and Stanford, W. 1988 . ‘‘Finite Rationality and Interpersonal Complexity in

Repeated Games,’’ Econometrica 56, 397]410.
Ž .Kandori, M., Mailath, G. and Rob, R. 1993 . ‘‘Learning, Mutation, and Long Run Equilibria

in Games,’’ Econometrica 61, 29]56.



ROBERT AUMANN14

Ž .Kohlberg, E., and Mertens, J.-F. 1986 . ‘‘On the Strategic Stability of Equilibria,’’ Economet-
rica 54, 1003]37.

Ž .Kreps, D., and Wilson, R. 1982 . ‘‘Sequential Equilibria,’’ Econometrica 50, 863]894.
Ž .Kreps, D., Milgrom, P., Roberts, J., and Wilson, R. 1982 . ‘‘Rational Cooperation in the

Finitely Repeated Prisoners’ Dilemma,’’ J. Econ. Theory 27, 245]252.
Ž . Ž .Kuhn, H. W., and Tucker, A. W. Eds. 1953 . Contributions to the Theory of Games, Vol. II,

Annals of Mathematics Studies, Vol. 28. Princeton: Princeton University Press.
Ž .Lehrer, E. 1988 . ‘‘Repeated Games with Stationary Bounded Recall Strategies,’’ J. Econ.

Theory 46, 130]144.
Ž .Lewis, A. 1985 . ‘‘On Effectively Computable Realizations of Choice Functions,’’ Math.

Social Sci. 10, 43]80.
Ž .Lewis, A. 1992 . ‘‘Some Aspects of Effectively Constructive Mathematics that are Relevant

to the Foundations of Neoclassical Mathematical Economics and the Theory of Games,’’
Math. Social Sci. 24, 209]236.

Ž .Linial, N. 1994 . ‘‘Game Theoretic Aspects of Computing,’’ in Handbook of Game Theory
Ž .with Economic Applications, Vol. 2, R. J. Aumann and S. Hart, Eds. , Chap. 38. Amster-

dam: North-Holland.
Ž .Maynard Smith, J. 1982 . E¨olution and the Theory of Games. Cambridge: Cambridge

University Press.
Ž .Myerson, R. B. 1978 . ‘‘Refinements of the Nash Equilibrium Concept,’’ Int. J. Game Theory

7, 73]80.
Ž .Neyman, A. 1985 . ‘‘Bounded Complexity Justifies Cooperation in the Finitely Repeated

Prisoners’ Dilemma,’’ Econ. Lett. 19, 227]229.
Ž .Papadimitriou, C. H. 1992 . ‘‘On Players with a Bounded Number of States,’’ Games Econ.

Beha¨. 4, 122]131.
Ž .Radner, R. 1980 . ‘‘Collusive Behavior in Noncooperative Epsilon-Equilibria of Oligopolies

with Long but Finite Lives,’’ J. Econ. Theory, 22, 136]154.
Ž .Radner, R., Myerson, R., and Maskin, E. 1986 . ‘‘An Example of a Repeated Partnership

Game with Discounting and with Uniformly Inefficient Equilibria,’’ Re¨. Econ. Studies 53,
59]69.

Ž .Reny, P. J. 1992 . ‘‘Backwards Induction, Normal Form Perfection and Explicable Equilibria,’’
Econometrica 60, 627]649.

Ž .Rubinstein, A. 1986 . ‘‘Finite Automata Play the Repeated Prisoners’ Dilemma,’’ J. Econ.
Theory 39, 83]96.

Ž .Selten, R. 1975 . ‘‘Reexamination of the Perfectness Concept for Equilibrium Points in
Extensive Games,’’ Int. J. Game Theory 4, 25]55.

Ž .Simon, H. 1955 . ‘‘A Behavioral Model of Rational Choice,’’ Quart. J. Econ. 64, 99]118.
Ž . ŽSimon, H. 1972 . ‘‘Theories of Bounded Rationality,’’ in Decision and Organization C.

.McGuire and R. Radner, Eds. . Amsterdam: North Holland.
Ž .Stearns, R. E. 1989 . ‘‘Memory-Bounded Game Playing Computing Devices,’’ Tech. Rep.

547, IMSSS, Stanford University.
Ž .van Damme, E. 1984 . ‘‘A Relation between Perfect Equilibria in Extensive Form Games

and Proper Equilibria in Normal Form Games,’’ Int. J. Game Theory 13, 1]13.
Ž .van Damme, E. 1987 . Stability and Perfection of Nash Equilibria. Berlin: Springer-Verlag.

Ž .Young, H. P. 1993 . ‘‘The Evolution of Conventions,’’ Econometrica 61, 57]84.
Ž .Zemel, E. 1989 . ‘‘Small Talk and Cooperation: A Note on Bounded Rationality,’’ J. Econ.

Theory 49, 1]9.


