
12 Assigning Quantitative Values to Qualitative Factors in the Naval
Electronics Problem

with J. B. Kruskal

Introduction

The problem of procuring and allocating electronic equipment for Naval

ships is an extremely vital one, involving an annual budget of fifty to

one hundred million dollars, and, more important, the safe and e‰cient

operation of the entire Navy. Haphazard or ine‰cient allocation plans

are therefore expensive and dangerous, and the importance of a mathe-

matical systems approach is obvious. On the other hand, the problem is

complex and involved; there are hundreds of di¤erent ship classes, many

available equipments, and all kinds of complex relationships within and

between the ships and the equipments. The problem has been fully

described and discussed by J. W. Smith (see [1]). As a result of the e¤orts

of Smith and others, including the authors, a systematic analytical tech-

nique for obtaining acceptable allocation plans has been developed; a

brief description of the method is given in [1]. The technique may also be

applicable to the procurement problem.

Computationally, the technique uses the standard linear programming

model for the assignment problem; see [2]. The crux of the problem

is therefore the evaluation of the coe‰cients in the linear program; i.e.,

finding values for the assignment of a given equipment to a given ship.

We will here concentrate on this aspect of the problem. A brief descrip-

tion of the method has already been given in [3].

The technique used here has been described and discussed in [2] from

the general, theoretical viewpoint, and for a greatly simplified version of

the Naval Electronics Problem. The purpose of this paper is to present

the detailed application of that technique to the Naval Electronics Prob-

lem in all its actual, real-life complexity. This paper is intended primarily,

not for those whose main interest lies in the general, theoretical aspects of

the allocation problem, but rather for those who are concerned with

Naval Electronics, and for those who are interested in the working out of

a technique such as this in a particular case, with all the messy detail with

which particular cases tend to be burdened.

This paper discusses one aspect of the Naval Electronics Problem; the

whole problem has been worked on by many people in many places

and at many times. Among those who contributed significantly to the

research described here are J. E. I. Heller, John P. Mayberry, Norman

Shapiro, and George Suzuki. The most credit, though, must go to Jack

W. Smith, whose ideas originated the project, and whose leadership kept

it going throughout.

This chapter originally appeared in Naval Research Logistics Quarterly 6 (1959): 1–16.
Reprinted with permission of John Wiley & Sons, Inc., New York.



Description of the Problem

It is useful to view the list of possible assignments as being arranged in

tabular form. The rows of the table represent electronic equipments, the

columns represent ‘‘positions,’’ i.e., places where the equipments will be

put. Thus the individual squares of the table represent assignments of

electronic equipments to positions; we wish to fill in the table with the

values of the various assignments represented by the squares.

We will make use of the rather commonplace idea that the parts and

the positions may be grouped into equivalence classes in considering an

allocation problem. The parts—in our problem the electronic equip-

ments—will be grouped into models; two equipments are said to be of

the same model if they are built to the same specifications and have

identical performance characteristics. Thus if we are given a position and

two equipments of the same model, then we have no preference as

between assigning the one or the other equipment to the position. For

convenience, we will define the void model, 0, to consist of no equipment

at all.

Because of the complex interrelationships between positions, the

grouping of the positions is not so quickly achieved. The basic notions

are those of priority, state, and goodness. Priority refers to the intrinsic

importance of the mission which a position is to fulfill. For example, a

position on an aircraft carrier which is meant to contain an air search

radar equipment has higher priority than a similar position on a

destroyer. Similarly, a sonar position on an aircraft carrier may have

lower priority than an air search radar position on the same ship. State

refers to the model that is already installed in the position in question.

Goodness refers, roughly speaking, to the suitability of the various models

to the position in question. Thus a large model might be more suitable

to an aircraft carrier than to a destroyer, or a certain model of a radar

might be more suitable to a position requiring medium- or short-range

equipment than to one requiring long-range equipment.

If we were to go according to only one of these factors, the solution to

our problem would be simple enough. Thus if we were to decide to con-

sider priority only, then we would fill the position of highest priority first,

the next position on the priority list next, and so on. If we were to con-

sider state only, we would first fill all the positions with nothing installed,

then all the positions with the most inferior equipment installed, and

so on. But matters aren’t so simple. High-priority positions may have

fairly good equipments already installed, there may be equipments that

are especially suitable only for low priority positions, etc. All kinds of

combinations of the three basic factors can and do occur, in varying
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proportions, in real-life problems. It is precisely the interrelationships

between the factors of priority, state, and goodness that complicate the

solution to the naval electronics problem. Since this is the crux of the

problem, we must ask the reader to bear with us while we examine more

closely these concepts that we have introduced.

Priority is determined by a directive, called the MIP (Material

Improvement Plan), that is issued by CNO (the Chief of Naval Oper-

ations). Items in the MIP are pairs consisting of a ship class (e.g., CVA

aircraft carrier, DMS destroyer) and a requirement (e.g., sonar, medium-

range surface search radar). The MIP ranks these items priority-wise.

Two positions that correspond to the same item have essentially similar

missions, and so are considered to have the same priority. The relative

priority of other positions is given by the relative priority of the corre-

sponding MIP items.

In practice, the MIP can be divided into a relatively small number of

classes. Within each class, CNO has determined which item has priority;

but this is always a much finer distinction than the large distinction made

between the classes. The set of all positions corresponding to MIP items

that belong to one of these large classes is called a priority group. So

much for priority.

The state of a position is determined by which model of equipment is

already installed in the position (before the contemplated allocation).

Nothing more need be said about the state at the present time. The set of

all positions of a given state is called a state group.

The concept of goodness is in reality associated with pairs consisting of

a model and a position, rather than just with positions. Thus the corre-

sponding concept for a position alone is that of a goodness vector, i.e., the

set of all goodnesses obtained when we fix the position and let the model

vary over all possible models. Two positions have the same goodness

vector if each model is equally suitable to both positions. The set of all

positions whose goodness vector is the same as that of a given position is

called a goodness group.

Goodness groups are determined in the following way: Insofar as the

position is concerned, suitability of a model to a position is determined

by the kind of ship on which the position is located, and the requirement

which it is to fulfill. When we say ‘‘kind of ship’’ we do not mean ship-

class, which is a rather specific concept, but a much broader concept such

as ‘‘space-critical ship’’ or ‘‘weight-critical ship’’ or their negatives.

Whereas there may be fifty or more ship classes involved in a problem,

there are usually no more than about four or five ‘‘kinds’’ of ships.

‘‘Requirement’’ is used here in the same way it was used before; examples

of a requirement are sonar and medium-range surface search radar. A
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goodness group may now be defined as the set of all positions fulfilling

the same requirement and located on ships of the same ‘‘kind.’’

Summing up, the positions have been grouped in three independent

ways: into priority groups, into state groups, and into goodness groups. It

is important to note that the classification of a position by one of these

methods in general has no e¤ect on its classification by another method.

We emphasize that the naval electronics problem need not be regarded

as one huge allocation problem, but can be broken up into a number of

smaller independent problems. There are usually many di¤erent models

capable of filling a given electronic requirement. Conversely, a given

model is often capable of filling more than one requirement. Thus, when

considering the allocation problem for a given requirement, it is usually

necessary to consider some models that are suitable for other require-

ments as well; these new requirements will then have to be considered

at the same time as the original requirement. These in turn may be capa-

ble of being filled by other models, which necessitates considering still

more requirements. The process eventually terminates; in fact, electronic

equipment in use by the Navy is su‰ciently specific so that usually at

most three or four requirements can be strung together in the manner

indicated above. These three or four requirements are, in fact, usually

closely related anyway, so that from the administrative point of view, it is

also convenient to consider them at once. The entire allocation problem

for all electronic requirements can be conveniently separated into a num-

ber of smaller problems, each dealing with a ‘‘string’’ of requirements of

the type described, together with all models appropriate for any of the

requirements in the string. In the rest of this paper, attention will be

focussed on a single problem dealing with only one string of requirements.

In Figure 1 we give a small example of what our structure might look

like in a specific case; but Figure 1 is only meant to indicate some of

the possible complex interrelationships, and should not be interpreted as

giving the structure of a typical problem. Although a typical problem

need not exhibit more complexity, it is usually a good deal larger. Fol-

lowing is a list giving the approximate order of magnitude for the number

of groups and elements of each kind that might appear in a typical real-

istic allocation problem:

Number of available equipments: 500

Number of models: 8

Number of positions: 800

Number of MIP items: 40

Number of priority groups: 5

Number of state groups: 5

Number of goodness groups: 5
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Our aim is to find the value—to be thought of intuitively as a ‘‘military

worth’’—of assigning a given equipment to a given position. We will

assume that this value depends only on the model of the equipment, and

on the priority (see ‘‘Priority Groups and the MIP’’), state, and goodness

groups of the position. Thus we are interested in determining all the

values v ðMi;P;G;MjÞ, where this expression stands for the value of

assigning an equipment of Model Mi to a position in priority group P

and goodness group G which has an equipment of model Mj already

installed.

Brief Review of [2]

Let us review briefly the ideas introduced in [2], and the conclusions

reached there. The central idea of [2] is that significant quantitative

information about the values we are seeking can be obtained from qual-

itative decisions made by Naval Personnel. As an example, let us con-

sider the MIP.

The MIP is provided by CNO for guidance in making up procurement

and allocation programs. On an intuitive basis, we may conclude that

‘‘all other factors being equal,’’ the assignment of an equipment to a

position higher on the MIP should have higher value than a similar

assignment to a position lower on the MIP. In accordance with the ter-

minology previously introduced, this can be formalized as follows:

If P1 and P2 are priority groups such that P1 is higher on the MIP than

P2, then for every model M and goodness group G, we have

vðM;P1;G; 0ÞX vðM;P2;G; 0Þ ð1Þ

with strict inequality holding for nonvoid M. The MIP can thus be

regarded as a set of inequalities involving the values we are seeking.

As such, it does already give us quantitative information regarding the

values. On the other hand, it is clear that much more information is

needed in order even to approximate numerical values.

Basically, the MIP consists of a set of decisions made by CNO in

‘‘small’’ or ‘‘token’’ allocation problems. The inequality (1) is tantamount

to a decision by CNO that he would rather assign an equipment of M to

a position in P1 and G that has nothing installed than to a position in P2

and G that has nothing installed (unless M is void). The ‘‘token’’ alloca-

tion decisions that constitute the MIP are of a very special kind—the

positions involved in a given decision are always contained in the same

goodness group and state group, and the equipments involved are of the

same model. The inequalities that these decisions yield are not su‰cient
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to determine our values numerically, even approximately. It is natural

to try to extend the scope of the ‘‘token’’ decisions. Additional decisions

will yield additional inequalities, and by means of these we will be able

numerically to approximate the assignment values.

Of course, it does not necessarily have to be CNO that reaches the

decisions on these ‘‘token’’ problems. We will postulate the existence of a

Naval Authority (called ‘‘the Board’’) authorized to exercise judgment

and arrive at decisions on allocation problems. In practice, the Board

might consist of either one or several members.

Let us now turn to the conclusions reached in [2]. Starting out from a

situation in which positions were distinguished only by their Priority and

their State, we reached the conclusion that there are functions q and g

such that

vðMi;P;MjÞ ¼ qðPÞðgðMiÞ � gðMjÞÞ; ð2Þ

where vðMi, P, Mj) is the value of assigning an equipment of model Mi

to a position in priority group P which has an equipment of model Mj

already installed; qðPÞ is the priority rating of P, and gðMÞ is the good-

ness rating of M. We also showed that the goodness and priority ratings

could be fairly closely determined numerically using only the qualitative

decisions of the Board in token allocation problems. Finally, the good-

ness rating g is such that if M1, . . . , Mn ranges over all models, then

max
i

gðMiÞ ¼ 1: ð3Þ

Priority Groups and the MIP

The value vector associated with a given position b is the set of values

obtained by assigning equipments of di¤erent models to b. A similar def-

inition can be made for any function that associates a number with each

pair consisting of a model and a position. A value group is the set of

positions having a given value vector. A value group is the intersection of

a priority group, a state group, and a goodness group. The priority group

of a position depends only on the priority ‘‘class’’ of the MIP item to

which the position corresponds, not on the MIP item itself. The formula

for value introduced previously involves the tacit assumption that the

distinction in priority between MIP items in the same priority group is

small as compared to the distinction between priority groups. In the typ-

ical case presented, it cuts the number of values that must be ascertained

from 1000 to 400; actually, as will be seen later, the saving is much

greater than this.
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Somehow, though, the distinction between members of the same prior-

ity class should be taken into account. This will be done as follows:

Define a subvalue group to be the set of positions in a value group that

correspond to a given MIP item. If we solve the linear program under the

above assumption (i.e., that the value vector is constant throughout a

value group rather than just throughout a subvalue group), we will in

general obtain some ‘‘split’’ value groups,1 i.e., value groups whose posi-

tions are assigned equipments of various models (including possibly

voids), instead of equipments of just one model. Since for a given model,

all positions of a given value group V have the same value, the question

then arises, which positions should be assigned which models. This ques-

tion is answered by reference to the distinctions between activities within

the priority group of which V is a subset: We simply assign the better

models to the positions that are higher in the MIP list. If any subvalue

group is then still split by the allocation, then the choice of assignments

within the subvalue group is arbitrary. The process is entirely in accord

with the intuitive meaning of the MIP list: the more important activities

get the better equipments. (If we could, we would apply the method

throughout the whole problem: the only trouble is that to define ‘‘better

equipments’’ uniquely, we must have the value of a model constant

throughout the positions under consideration, and of course that is not so

unless we restrict ourselves to a single value group.)

The Value Function

The di¤erence between the mathematical structure of the problem pre-

sented in [2] and that presented here is that here the positions are dis-

tinguished by their goodness group as well as by their priority and state

groups. However, we can apply the results obtained in [2] if we restrict

our attention to one goodness group. Put di¤erently, in using (2), we

must take the goodness group G of a position into account, and allow the

priority and goodness ratings to vary with goodness group as well as with

priority group and model. We thus obtain

vðMi;P;G;MjÞ ¼ qðP;GÞðgðMi;GÞ � gðMj;GÞÞ ð4Þ

and

max
i

gðMi;GÞ ¼ 1; ð5Þ

1. The number of split value groups never exceeds the number of models.
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where Mi, P, and Mj are as before and G is the goodness group of the

position to which the assignment is being made.

For reasons that will become apparent later, let us henceforth call

the gðMi;GÞ relative goodnesses rather than just goodnesses. The relative

goodness vector gðGÞ ¼ ðgðM1;GÞ; . . . ; gðMn;GÞÞ can be determined by

the method given in section 5 of [2]. The qðP;GÞ may also be determined

as in [2]. However, the evaluation of the qðP;GÞ, unlike that of the rela-

tive goodness ratings, can be considerably simplified.

To determine the qðP;GÞ in accordance with the methods of section 6

of [2], we would ask the Board the following type of question: Given two

positions, one in priority group Pi with an equipment of model Mi

already installed, the other in priority group Pj with an equipment of

model Mj already installed, both in the same goodness group G, and an

available model M better2 in G than either Mi or Mj, to which position

would you assign M ?

In our situation, we are presented with the possibility of an alternative

type of question: Given two positions, one in goodness group Gi with

an equipment of model Mi already installed, the other in goodness group

Gj with an equipment of model Mj already installed, both in the same

priority group P, and an available model M better in Gi than Mi and

better in Gj than Mj , to which position would you assign M?

To distinguish these two types of questions, we will call the former

a priority question, and the latter a top anchor question, for reasons

which will soon be clear. According as to how a top anchor question is

answered, we can decide which of

qðP;GiÞ
qðP;GjÞ

>
A
<

8<
:

9=
;

gðM;GjÞ � gðMj ;GjÞ
gðM;GiÞ � gðMi;GiÞ

ð6Þ

holds. Let us fix P, Gi, and Gj. For each M, Mi, and Mj, the right side

of (6) can be numerically evaluated (approximately) by the methods of

section 5 of [2]. Thus by varying M, Mi, and Mj, we will obtain a number

of numerical estimates for the (fixed) right side of (6), both from above

and from below. Taken together, these estimates approximately deter-

mine the ratio qðP;GiÞ=qðP;GjÞ. The process is similar to that used for

priority questions in section 6 of [2].

Let pðPÞ be the maximum of the qðP;GÞ over all goodness groups G.

Define

tðP;GÞ ¼ qðP;GÞ=pðPÞ: ð7Þ

2. Formally, ‘‘having higher relative goodness.’’

Assigning Quantitative Values to Qualitative Factors217



If the maximum of the qðP;GÞ is taken on for G ¼ GðPÞ then we deduce

from (7) that

tðP;GðPÞÞ ¼ 1: ð8Þ

Clearly

qðP;GiÞ=qðP;GjÞ ¼ tðP;GiÞ=tðP;GjÞ: ð9Þ

We have already seen how the left side of (9) may be determined. Hence

we can also determine the right side of (9). (8) gives us the value of one of

the tðP;GÞ. Since we now know the ratios, we can determine the values of

all the tðP;GÞ from the single value given by (8).

Our determination of the values of the tðP;GÞ was based entirely on

the answers to top-anchor questions, and on their interpretation in the

form (6). Since the right side of (6) does not involve P in any way, the

only way in which the values of the tðP;GÞ could depend on P is if

the answers to the top anchor questions depended on P. As a matter of

actual3 fact, though, the answers to the top-anchor questions are inde-

pendent of P. We conclude that tðP;GÞ is independent of P, so that we

may write

tðP;GÞ ¼ tðGÞ: ð10Þ

Combining (7) with (10) we obtain

qðP;GÞ ¼ pðPÞtðGÞ; ð11Þ

pðPÞ is called the priority rating of P; tðGÞ is called the top anchor of G.

From (11) and (4) we deduce

vðMi;P;G;MjÞ ¼ pðPÞtðGÞðgðMi;GÞ � gðMj;GÞÞ: ð12Þ

The saving e¤ected by (11) is considerable. In our typical example,

(11) allows us to determine five tðGÞ and five pðPÞ—a total of ten

parameters—instead of about twenty-five qðP;GÞ we might have had to

determine in the absence of such a formula.

Intuitively, (11) and (12) have the following meaning: The gðM;GÞ are
supposed to be a measure of goodness, i.e., a measure of the suitability of

a piece of equipment to its position. We have arbitrarily set the highest

gðM;GÞ in a given G to be equal to 1. If this were to be a measure of

absolute goodness, such a measure would be manifestly unrealistic. The

reader can convince himself of this by considering what would happen if

a new model were to be developed suitable for only one of the goodness

3. I.e., experimental.
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groups, say G. The new model would have the highest possible goodness

in G, namely 1; the old models would have goodnesses in G correspond-

ingly smaller than 1; whereas in goodness groups other than G, the old

models would retain their former goodnesses. Obviously either all good-

nesses should be depressed with the introduction of the new model, or

else the old goodnesses should be left undisturbed and the new model be

given a goodness higher than 1; both are contrary to the stipulation that

the highest goodness in a given goodness group be equal to 1. Obviously,

therefore, the gðM;GÞ should be considered only as relative goodnesses,

i.e., they should be considered as giving valid comparisons within a

goodness group only. To obtain comparisons valid between the goodness

groups, each of the relative goodness vectors should be multiplied by a

scalar factor, which compares the state of development in one goodness

group with that in the others. Since this factor anchors the top

goodness in any goodness group, it is called the top anchor. The absolute

goodness in G of a model M is given by the product tðGÞgðM;GÞ. An

absolute improvement is the di¤erence between two absolute goodnesses;

and as in [2], to obtain the value of an assignment, we must multiply the

absolute improvement it accomplishes by the priority rating of the posi-

tion which it fills. This is formula (12).

We remark that (12) is not only a ‘‘reasonable’’ formula, but is actually

the unique correct formula, assuming that linear programming is at all

applicable and that there is a formula for value in terms of the priority,

relative goodness, and top anchor ratings. More precisely, we are making

the following assumptions:

1. The problem may be set up as a linear program.

2. The value of assigning an equipment to a position depends only on the

model of the equipment and the priority, state, and goodness groups4 of

the position.

3. Absolute goodness is independent of Priority Group.

Precise mathematical statements and justification of all but one of

these assumptions may be found in [2]. The additional assumption is

4. Although we have used the vague idea of ‘‘suitability’’ to give an intuitive meaning for
goodness, the formal definition of goodness group involves only the well-defined (in any
particular problem) notions of ‘‘kind’’ of ship and requirement. Therefore any consideration
a¤ecting assignment value that depends only on these two notions can be formally incorpo-
rated into the goodness concept. An example is the ‘‘Utilizaton Factor’’ mentioned in [1].
Even if it is assumed that this is relevant, it should not appear explicitly in our formulae,
because it depends only on the goodness group, and is therefore incorporated in the good-
ness ratings. Other examples might be such factors as repairability and obsolescence. Like
goodness, they depend only on the requirement and ‘‘kind’’ of ship with which the position
is associated (and of course on the model of the equipment to be installed).
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embodied in (10), and is justified by the experimental conclusion that the

answers to the top-anchor questions do not depend on P.

Numerical Determination of Top Anchors and Priority Ratings

To start with, we wish to assure the reader that neither the priority ques-

tions nor the top anchor questions will in practice look as forbidding as

does the general form given in the previous section. The questions with

which the board is confronted will each involve two specific ship-classes,

with specific models installed and a specific model available for installa-

tion. These models and ship classes will be chosen by the questioner to

conform with the specified form, but the board need not and should not

concern itself with priority groups, goodness groups, and so on; it should

concentrate on answering the specific questions put to it.

Next, we should point out that there are some di‰culties and pitfalls

involved in the determination of the top anchors and priority ratings.

As an example, let us consider the case of the top anchor. The process

described in the previous section for obtaining the ratios between top

anchors is in practice at best a rather rough one. Even if we were working

with precise relative goodness ratings, it would be impossible to obtain

precise top anchors. That is because within a certain area, usually some-

thing like 5%–10% of the top anchor in question, the decisions are

di‰cult to make, come out as toss-ups, or even involve numerical

contradictions of a minor sort. Thus we might get answers implying that

a certain ratio is at the same time >.75 and <.73. This means that it is

impossible to determine these ratios with greater precision. It is not only

impossible, it is meaningless; to the extent that these parameters ‘‘exist’’

at all, they exist only in this loose, imprecise way. The imprecision in the

top anchors is compounded by the imprecision in the relative goodness

ratings, on which the determination of the top anchors is based. We may

say, though, that given a set of relative goodness ratings, it is possible to

determine top anchors with something between one and two significant

figures.

One precaution we can take in order to minimize, to the extent possi-

ble, the damage caused by imprecise relative goodness ratings is to stay

away from ratios on the right side of (6) with small denominators. That is

because imprecisions in a small denominator are tremendously blown up

in the quotient. In general, some components of the relative goodness

vector are more ‘‘reliable’’ than others, as we shall see later; in asking

top anchor questions, some attempt should be made to rely more on the

more reliable ratios. To facilitate this, an ‘‘imprecision interval’’ should
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be calculated for each ratio and placed on the list of ratios that we are

using to determine the ratio of our two top anchors. The questioner

should then try to stick to questions with as small an interval of impreci-

sion as possible.

Theoretically, to obtain the top anchors, we pick an arbitrary priority

group P and then determine all ratios of the form qðP;GiÞ=qðP;GjÞ, i.e.,
all ratios of the form tðGiÞ=tðGjÞ. From this listing it will be apparent

which top anchor is the largest; we set this top anchor ¼ 1, and deduce

values for the other top anchors. Unfortunately, it turns out that this can

usually not be done, since not all the priority groups intersect all the

goodness groups. In fact, very few, if any, do. For the determination of

any one ratio, say tðGiÞ=tðGjÞ, we must find a priority group P inter-

secting both Gi and Gj, so that we can select activities in Gi and Gj

respectively that can be compared by means of top anchor questions.

Sometimes there is no such priority group. We must then find a

‘‘bridging’’ chain of priority groups Pi1 ; . . . ;Pim and goodness groups

Gi0 ;Gi1 ; . . . ;Gim , where i0 ¼ i and im ¼ j, such that each Pik intersects

both Gik�1
and Gik . Thus we will be able to determine each of the ratios

tðGik�1
Þ=tðGik Þ, and by multiplying them obtain the ratio we seek.

In practice, we choose one goodness group G and try to determine

all the ratios tðGiÞ=tðGÞ. To the extent possible, no bridging should

be used, and all ratios determined independently. That is because the

‘‘snowballing’’ of imprecisions that occurs when bridging is used becomes

rapidly disastrous. Care should be taken in the choice of G to minimize

the error that will be incurred due to bridging; if possible, G should be

chosen so that bridging is entirely avoided.

Everything we have said here about top anchors applies with equal

force to priority ratings, which have an almost exactly symmetrical rela-

tion with top anchors.

Time Phasing

In discussing the mathematical structure of the problem earlier, we com-

pletely ignored its time aspect. In point of fact, equipment is becoming

available more or less continuously, and ships are coming in for overhaul

more or less continuously. This imposes several additional tasks on our

technique for arriving at allocation plans. We will discuss these under the

headings of primary, secondary, and tertiary time phasing.

Primary time phasing is simply the job of scheduling, i.e., fixing things

so that equipment is available by the time the ship to which it is assigned

comes into port for overhaul.
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Secondary time phasing is the problem of taking into account idle

warehouse time of available equipment waiting to be installed, and to the

extend possible minimizing such time. For instance, it may happen that

assignment of equipment a to position 1 has a slightly higher value than

assignment to position 2. As a result, equipment a is allocated to position

1, while a considerably inferior model is allocated to position 2. Now it

happens that equipment a is available in January, the ship on which

position 2 is located is coming in for overhaul in February, and the ship

on which position 1 is located is not coming in until the following

December. Since the value of assigning equipment a to position 1 is only

slightly higher than assigning it to position 2, it seems clear that we

shouldn’t let the equipment lie around for almost a year just to wait for

the ship on which position 1 is located. The example is admittedly rather

extreme, as usually ships of all kinds are coming in fairly often. However,

it does serve to illustrate the concept of secondary time phasing.

Tertiary time phasing is the long-range problem. It involves taking into

account allocations that will be made at a time in the future which is not

being taken care of in the present allocation plan. For example, let us say

that we are making up a one-year allocation plan. We may have reason

to believe that a new, superior model of equipment will become available

for allocation next year. That means that we might want to assign more

of the currently good models to the less important positions, so as to

leave room on the more important positions for the superior model that

may be available in the future.

One way to handle the primary and secondary time-phasing problems

is first to use the method described in the foregoing section to obtain an

un-time-phased allocation plan, then to do the best one can ‘‘by hand’’ to

time-phase the resulting plan. In practice, such a scheme works fairly

well, because both ships and models of all kinds are coming in fairly fre-

quently. Also, the ships stay in the yards for a period ranging from six

weeks to several months, thus giving the time-phaser fairly wide latitude.

In some instances, it may be necessary to make comparatively small

changes in the allocation plan in order to make it conform to the

requirements of primary time-phasing. Actually, in the method now in

use in the Bureau of Ships, an un-time-phased allocation plan is first

made up ‘‘by hand,’’ and it is only afterwards time-phased, also ‘‘by

hand.’’ The method described in the foregoing sections may then be said

to replace the first, but not the second of these processes.

As of now, secondary time-phasing is considered of secondary impor-

tance. A blanket rule is made that all equipment becoming available

during any given fiscal year will be assigned during that year, but within

that restriction not much emphasis is placed on the problem. On the
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average, things work out satisfactorily. Of course, the great di‰culty in

this field is the lack of criteria, the di‰culty in comparing the relative

importance of assigning an equipment at once and assigning it to an im-

portant position.

An alternative method has been developed for handling the primary

and secondary time phasing problems—a systematic method that

employs the principles of [2] and of the foregoing sections. However, this

method does not enjoy the status of the un-time-phased method described

in the foregoing sections in the sense that it has been developed only

recently and has yet to be applied to and tested on real-life allocation

problems. It will be described in detail in a subsequent paper.

Tertiary time-phasing does not really constitute a problem at all. Allo-

cation plans are currently made as far into the future as it is possible to

say, even approximately, what will be available and what will be needed.

Current practice in the Bureau of Ships is to prepare an allocation plan

five years into the future! (This allocation plan is revised every year.)

Beyond that, availability of equipment and other factors a¤ecting alloca-

tion can only be taken into account in a generalized way. These factors

will therefore automatically be considered in the token allocation deci-

sions arrived at by the Board. Thus in a token allocation decision, the

Board might very well decide to assign an equipment to the otherwise less

important position, because of the tertiary time-phasing kind of reason-

ing. It might even reverse some pairs in what would otherwise be the

‘‘expected’’ goodness order for a given category. In any case, to the

extent that the Board feels that the ‘‘tertiary’’ kind of consideration is

significant, its feeling will be reflected in its decision and hence in the

values.

Multiple Allowances

A ship S is said to have a multiple allowance in a certain requirement5 if

the number of positions on S that fill that requirement is greater than 1.

Allowances for major electronic equipment on large ships sometimes run

as high as 7. Since all the positions filling a given requirement on board a

given ship are associated with the same MIP item, they all have the same

priority. This may lead to the anomalous situation in which a large ship

gets its seventh equipment of a certain kind before a slightly less impor-

tant ship gets its first.

5. For the meaning of ‘‘requirement,’’ see page 211.

Assigning Quantitative Values to Qualitative Factors223



One way to deal with this problem is formally to consider each of the

positions in a given multiple allowance as filling a di¤erent requirement.

(This is actually intuitively justifiable; the first surface search radar on a

ship obviously serves a di¤erent function from the second, which can

only supplement the first.) Each of the positions would then occupy a

di¤erent position on the MIP. In this ranking, the position with the best

equipment already installed should rank highest, with the next best

installed second highest, and so on.

Procurement

Up to now, we have been assuming that the number of equipments of

each model available at any one time is given us. Actually, of course, in

the long run it is only the money that is given us; the problem of how

many equipments of each model to buy with the available money must

also be solved by the Bureau of Ships. This is the procurement problem.

As might be expected, procurement and allocation are in fact inti-

mately related. Procurement e¤ectiveness can only be measured in terms

of the allocation doctrine that will be applied following the procure-

ment; conversely, ine‰cient procurement will greatly hamper any e¤ort

to obtain an allocation plan of high value. It would seem that the

two problems are inseparable, and should be treated as a combined

procurement-allocation problem, optimizing procurement and allocation

simultaneously.

As a matter of fact, the unified procurement allocation problem can be

set up as a linear program, using the same objective function as the one

that the allocation problem uses, but replacing the restraints governing

model availability by money restraints. See [3]. The problem of finding

the coe‰cients of the objective function is of course the same in this

problem as in the problem we have treated.

There has been a certain amount of opposition to the use of the linear

programming technique for determining procurement. Basically, this

opposition is probably due to the fact that one of the fundamental rea-

sons for introducing the technique into the field of allocation planning is

missing in the case of procurement. This is the combinatorial complexity

of allocation plans. Procurement plans are combinatorially relatively

simple; they only involve the determination of how many of each of a

fairly limited number of models to buy. It may be felt, with some degree

of justification, that the whole procurement problem is combinatorially

su‰ciently simple as almost to be considered a ‘‘token’’ problem in itself.
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There is little point in then replacing one ‘‘token’’ problem by a set of

di¤erent ‘‘token’’ problems. Of course, the di¤erence between the pro-

curement problem and a true ‘‘token’’ problem is that in the latter, we

have a clear understanding of the precise implication of our decision

insofar as the final allocation is concerned, whereas in the former we do

not; nevertheless, it remains true that the procurement problem in itself

does not ‘‘combinatorially overwhelm’’ the deciding o‰cer, as does the

allocation problem.

Another reason for di¤erentiating between procurement and allocation

is that these two events do not really occur simultaneously. Electronic

equipment must be ordered an average of two years before it is delivered;

thus procurement decisions must be made two years in advance of allo-

cation decisions. A lot can happen in two years. It might not be wise to

make procurement depend solely on our estimate of what optimal allo-

cation will be in two years. Some flexibility should be built into a pro-

curement plan that looks that far into the future, as insurance against a

change in conditions. On the other hand, how do we measure flexibility?

Do current methods arrive at procurement plans that are more flexible?

At any rate, it can be seen that the extension of the technique into the

field of procurement planning involves conceptual problems that are

absent in the case of allocation planning and that have not yet been

completely settled.

The procurement-allocation problem we have been considering is only

that involving a single string of requirements. Congress makes a single

appropriation for the entire navel electronics field, so even if we make the

procurements within a string by ‘‘machine,’’ we will still have to decide

on the distribution of money between the strings by ‘‘hand.’’ One way to

get around this is to consider the entire Naval Electronics procurement-

allocation problem at the same time, comparing the values as between

di¤erent strings of requirements by the use of ‘‘token’’ procurement-

allocation questions, e.g.: If you had $100,000 available with which you

could either buy two surface-search radar equipments of model so-and-so

or three radio transmitters of model such-and-such, and if you had these

and those positions to fill, which equipments would you buy and how

would you allocate them?

We don’t know whether the use of such questions is feasible, or

whether we can hope to obtain meaningful answers to them; exper-

imental work has been performed only on the procurement-allocation

problem confined to one string of requirements, not on the over-all Naval

Electronics procurement-allocation problem. As a final remark, we may

say that the unified procurement-allocation problem for all of Naval
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Electronics would involve a very large matrix indeed, probably too large

to go into the internal memory of any existing computer.6

A Brief Account of Experimental Work

At the time the authors began work on this project, they were presented

with a specific allocation problem. Involved were some 8 models of radar

repeaters to be distributed among some 800 positions divided into 80

MIP items, 6 state groups, and 4 goodness groups. The system of bunch-

ing MIP items had not yet been invented, so that each MIP item con-

stituted a separate priority group.

Priority ratings were assigned purely arbitrarily (the lowest item on the

MIP was assigned a priority rating of 60, and each succeeding item had a

rating that exceeded the previous rating by 1; somewhere along in the

middle a gap of about 4 or 5 was left) and the wrong formula for com-

bining priority and goodness ratings was used. Even under such con-

ditions, though, the allocation plan obtained was deemed superior to the

one that had been obtained by hand! This would seem to indicate that a

systematic method using the available information in even the most cur-

sory fashion yields results that are superior to those obtained by the use

of haphazard methods. Another advantage of the new method was also

noted at that time: several ‘‘bloopers’’ or absurdities in the hand solution

had been eliminated in the systematic linear programming solution,

despite the use of arbitrary input and incorrect formulae. When the for-

mula that later turned out to be the unique7 correct one was adopted, still

more acceptable solutions were obtained and absurdities eliminated.

Another problem that was studied, this time from the point of view of

procurement as well as allocation, involved 6 models of surface-search

radar available for distribution among 700 positions divided into 52 MIP

items, 4 state groups, and 5 goodness groups. Work on this problem led

to the system of grouping MIP items into priority classes and to the sys-

tematic determination of priority ratings, top anchors, and relative good-

nesses as described above.

6. A simplified computational technique for dealing with procurement problems involving
several distinct allocation problems has recently come to our attention. By making use of
Lagrangian multipliers, it allows us to consider each one of the distinct allocation problems
separately, so that the whole large procurement problem need not be put on the computer at
one time. An application of the technique is given in [4]. In our case, the ‘‘procurement
problem’’ is the unified procurement problem for all of Naval Electronics, whereas the
‘‘distinct allocation problems’’ are those determined by the various strings.

7. See the discussion on page 219.
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Numerical Methods for Obtaining Relative Goodness Ratings

An example of the calculation of a relative goodness vector involving

three models is given in [3]. Often there are more models to work with,

and this gives us a more precise determination of the relative goodness

vector. It is also true that an improvement order containing toss-up deci-

sions seems not only to yield a relative goodness rating polyhedron of

correspondingly smaller dimensionality, but also to reduce the diameter

of the polyhedron. Thus a toss-up decision becomes doubly valuable.

We make three additional remarks. First of all, it sometimes happens

that where there are n models, more than n independent inequalities arise

from the improvement order. In this case, we will obtain a polyhedron of

possible relative goodness vectors that is not a simplex. To obtain the

center of gravity of such a polyhedron, we break it up into simplexes. The

center of gravity of the whole polyhedron is then the average of the cen-

ters of gravity of the component simplexes, weighted by their volumes.

The center of gravity of a component simplex is found as illustrated

in [3], while the volume is easily determined from the determinant of

the vertices. In the instances that we have run across, the accompanying

calculations have been remarkably quick and painless, largely because of

the high incidence of zeros in the determinants involved. In more com-

plicated cases, a high-speed computing machine could profitably be used.

Next, we note that for every polyhedron P of possible relative good-

ness vectors, there is a smallest8 rectangular parallelopiped with sides

parallel to the axes that contains P. From the fact that this rectangular

parallelopiped is not in general a cube, we may deduce that the precision

with which our method determines the components of the relative good-

ness vector usually varies from component to component. This is why

some components of the relative goodness vector are more ‘‘reliable’’

than others, as we noted earlier in this paper.

Our third remark is that occasionally the Board is only willing to give

the beginning of an improvement order, but is unwilling to commit itself

as to, say, its last third. We then obtain a ‘‘truncated’’ improvement

order. This truncated improvement order leads to a polyhedron of possi-

ble goodness vectors, and thence to a center of gravity, in exactly the

same way that the full improvement order does. However, such a poly-

hedron will in general be somewhat larger than that obtained with a full

improvement order, so that the resulting relative goodness vectors will be

less ‘‘reliable.’’

8. Under inclusion.
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Concluding Remarks

1. Everything that was said in section 7 of [2] about the advantages and

limitations of the type of method described there applies with equal force

to this application. In particular, once it is established that the linear

programming model is applicable, any set of questions may be used that

determine the values su‰ciently closely. Thus we may with a clear con-

science pick out those questions that are most e‰cient from the compu-

tational viewpoint.

2. There are two kinds of consistency problems associated with the work

described here. One is the self-consistency problem. Will the token deci-

sions made by any one Board yield consistent numerical answers? As

stated above and in section 7 of [2], the applicability of the mathematical

model may stand or fall on this question. The available experimental data

seems to point to self-consistency; the only inconsistencies encountered

were of a very minor nature (see page 220). We concede, though, that this

question has not yet received su‰cient attention and should be inves-

tigated on a more systematic basis.

The second consistency problem is that of consistency as between the

numerical implications of decisions made by di¤erent naval o‰cers or

di¤erent Boards. We have stated before, and we state now that this is

not a requirement that our system need satisfy. An allocation plan and

the token decisions leading to it actually constitute military command

decisions. Military decisions are always made by the o‰cers appointed

for the purpose of making them; they are not less valid because other

o‰cers, in the same position, might have made somewhat di¤erent deci-

sions. The purpose of the method described here is not to replace the

system of military command by a mathematical system; it is to transform

a command decision which because of its enormous complexity must

needs be made on a largely haphazard basis into a set of less complicated

command decisions, each of which can be decided intelligently on the

basis of the military judgment and experience of the deciding o‰cers.

In point of fact, Naval Personnel with widely di¤ering backgrounds

often exhibit surprising unanimity regarding their decisions. On most of

the priority and top-anchor questions that were asked of several o‰cers,

there was complete agreement. Some borderline cases might occasionally

be called a toss-up by one o‰cer while they would be definitely decided

by another one; much more rarely, one o‰cer would decide a problem

one way while another one would decide it the other way. The priority

ratings and top anchors determined according to the decisions of di¤erent

Naval Personnel generally di¤ered by no more than about .1 or .15. This
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unanimity should actually not be too surprising. The o‰cers draw on

their naval experience to answer questions that they consider trivial, but

that go a long way toward determining the values we are after. It seems

that the naval knowledge on which most o‰cers can agree is su‰cient to

determine the values quite closely.

3. We might mention that certain of the special assumptions we have

made should be checked before each time that the technique is applied to

a new string of requirements. As an example, the assumption that the

MIP items can be bunched into a small number of priority classes whose

members have approximately equal priority ratings should be checked.

This can easily be done by asking a complete set of priority questions

(i.e., a set of priority questions su‰cient to determine the priority rating)

for each of a number of activities within a certain priority class. Although

the Board itself decided on the grouping involved, it might turn out in

some cases that such a grouping is artificial, and that the priority ratings

are more adequately represented, for instance, if a few of the ratings are

determined individually and some kind of curve fitting or piecewise linear

method is used for the others.
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