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1 Introduction

It is widely recognized that the word ‘‘probability’’ has two very di¤erent

main senses. In its original meaning, which is still the popular meaning,

the word is roughly synonymous with plausibility. It has reference to

reasonableness of belief or expectation. If ‘‘logic’’ is interpreted in a

broad sense, then this kind of probability belongs to logic. In its other

meaning, which is that usually attributed to it by statisticians, the word

has reference to a type of physical phenomena, known as random or

chance phenomena. If ‘‘physics’’ is interpreted in a broad sense, then this

kind of probability belongs to physics. Physical probabilities can be

determined empirically by noting the proportion of successes in some

trials. (The determination is inexact and unsure, like all other physical

determinations.)

In order to distinguish these two main senses, physical probabilities

will be referred to as ‘‘chances,’’ whereas ‘‘probability’’ unqualified will

refer to logical probability.

Within the two main categories of logical probability (probability

proper) and physical probability (chances), especially in the former, vari-

ous lesser di¤erences of meaning can be distinguished. In this paper we

are concerned with the personal or subjective concept of probability, as

considered by Ramsey [13] and Savage [14]. Probabilities and utilities are

defined in terms of a person’s preferences, in so far as these preferences

satisfy certain consistency assumptions. The definition is constructive;

that is, the probabilities and utilities can be calculated from observed

preferences.

Some persons, especially those with scientific training, are acquainted

with the mathematical theory of chances and consider it to be an ade-

quate theory for some kinds of physical phenomena—the uncertain out-

comes of the spin of a roulette wheel, the toss of a coin, the roll of a die,

a random-number generator. They believe that equipment can be found

whose output conforms well with the theory of chances, with stochastic

independence between successive observations, and with stated values for

the chances of the simple outcomes. It su‰ces for this purpose that they

believe that some one such piece of equipment exists, for example, a fair

coin, since any system of chances can be realized by multiple use of such

equipment. (The relation of the theory of chances with chance phenom-

ena has been well illustrated by Kerrich [6]. See also Neyman [11].)
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For such a person, his utilities can be defined in terms of chances, as

shown by von Neumann and Morgenstern [10]. The purpose of this note

is to define the person’s probabilities in terms of chances, by an extension

of the von Neumann–Morgenstern theory. The addition of only two

plausible assumptions to those of utility theory permits a simple and

natural definition of probabilities having the appropriate properties.

The idea of defining subjective probability in some such way has been

‘‘in the air’’ for a decade or so; in Section 5 we discuss some of the rele-

vant literature. We believe that our presentation of subjective probability

is the simplest so far given, for anyone who accepts the physical theory of

chances.

2 Lotteries

All of the following considerations are based on the preferences of a

single individual, whom we call ‘‘you.’’

Let a be a set of prizes. A lottery on a is a device for deciding which

prize in a you will receive, on the basis of a single observation that

records which one of a set of mutually exclusive and exhaustive uncertain

events took place. It is possible that with each of these uncertain events

there is associated a known chance; for example, this would be so if we

were observing a single spin of a well-made roulette wheel. On the other

hand, it is possible that chances cannot be associated with the uncertain

events in question, or that the values of such chances are unknown;

for example, this would be so if we were observing a horse race. To dis-

tinguish between the two kinds of lotteries, we call the first a ‘‘roulette

lottery,’’ and the second a ‘‘horse lottery.’’ To fix ideas, we shall discuss

only horse lotteries that are based on a single, particular horse race. Our

object is to define the probabilities which you associate with each of the

possible outcomes of this race.

In addition to the simple lotteries just described, we consider compound

lotteries. These are constructed from simple lotteries by iteration; a lot-

tery whose prizes are other lotteries is a compound lottery. A compound

lottery may be compounded from roulette lotteries only, or from roulette

lotteries and horse lotteries. Von Neumann–Morgenstern utilities of the

basic prizes are constructed from preference comparisons between com-

pound roulette lotteries. Subjective probabilities of the outcomes of the

race will be constructed from preference comparisons between lotteries

that are compounded from horse and roulette lotteries.

Decision Theory: Utility and Subjective Probability296



3 Assumptions

Utility theory for roulette lotteries based on a becomes mathematically

easier if one assumes that among the prizes there is a most desired prize,

say A1, and a least desired prize, say A0, such that A1 is definitely pre-

ferred to A0ðA1 tA0) and for any prize A the following two ‘‘preference

or indi¤erence’’ relations hold: A1 xA, AxA0. This assumption has

been made by Luce and Rai¤a [9]—in fact, they go further and assume

that a is finite, but that is unnecessary for their proofs—and we shall

make it also.

Our notation for roulette lotteries will be the following: ( f1B1; . . . ; fkBk)

denotes the roulette lottery that yields you B1 with chance f1, B2 with

chance f2, and so on, where the f ’s sum to 1 and the B’s stand for prizes

from a or for lottery tickets of any sort under consideration. In respect of

preferences, we shall regard B as equivalent to (1B), for any B.

Let R be the set of all (simple or compound) roulette lotteries with

prizes in a. We suppose that you have a preference ordering on R sat-

isfying the axioms of utility theory (see for example [9]). Then it is possi-

ble to define a utility function u on R with the usual properties, including

the following:

i. Associated with each prize A is a number uðAÞ, called the utility of A.

ii. If B1; . . . ;Bk are some prizes chosen from a, the simple roulette

lottery ( f1B1; . . . ; fkBk) has utility f1uðB1Þ þ � � � þ fkuðBkÞ.
iii. Your preference ordering on R is isomorphic with the numerical

ordering of the corresponding utilities. We may normalize the utility

function so that uðA1Þ ¼ 1, uðA0Þ ¼ 0. For the proofs of these statements

we refer the reader to Luce and Rai¤a.

Turning now to the horse race, let us assume that it has exactly

s mutually exclusive and exhaustive possible outcomes, denoted by

h1; . . . ; hs. For any s roulette lotteries R1; . . . ;Rs, chosen from R, the

symbol [R1; . . . ;Rs] will denote the (compound) horse lottery that yields

you R1 if the outcome of the race is h1, R2 if the outcome is h2, and so

on. The set of all such horse lotteries will be denoted by H. Let R�

denote the set of all roulette lotteries whose prizes are such horse lotteries,

i.e. members of H instead of members of a.

The essential device in our approach to subjective probability is to

apply utility theory twice over, and then connect the two systems of pref-

erences and utilities. We have just supposed that you have a preference

ordering on R, yielding the utility function u on R. Let us now suppose

that you also have a preference ordering on R�, satisfying the axioms of
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utility theory, with H taking the place of a. We shall distinguish these

preferences by starred symbols (x�;t�), and denote the resulting utility

function on R� by u�. We connect the two systems of preferences and

utilities by the following two additional assumptions:

assumption 1 (Montonicity in the prizes) If Ri xR0
i , then

½R1; . . . ;Ri; . . . ;Rs�x� ½R1; . . . ;R
0
i; . . . ;Rs�:

assumption 2 (Reversal of order in compound lotteries)

ð f1½R1
1; . . . ;R

1
s �; . . . ; fk½Rk

1 ; . . . ;R
k
s �Þ

@� ½ð f1R1
1; . . . ; fkR

k
1Þ; . . . ; ð f1R1

s ; . . . ; fkR
k
s Þ�:

Assumption 1 says that if two horse lotteries are identical except for

the prizes associated with one outcome, then your preference between the

lotteries is governed by your preference between the prizes associated

with that outcome. It is very much akin to Luce and Rai¤a’s ‘‘sub-

stitutability’’ assumption. Assumption 2 says that if the prize you receive

is to be determined by both a horse race and the spin of a roulette wheel,

then it is immaterial whether the wheel is spun before or after the race.

This is akin in spirit to Luce and Rai¤a’s ‘‘reduction of compound

lotteries’’ assumption (sometimes called the ‘‘algebra of combining’’

assumption), but is even more plausible than the latter. Here the ‘‘joy in

gambling’’ is not abstracted away, and the chances fi are not combined in

any way. Assumptions 1 and 2 reflect the intuitive idea that the outcome

of the horse race is not a¤ected by—nor does it a¤ect—any spin of the

roulette wheel.

4 Existence of Subjective Probabilities

From Assumption 1 it follows that [A1; . . . ;A1] is the most desired, and

[A0; . . . ;A0] the least desired horse lottery. Let us normalize the utility

function u� on R� so that u�½A1; . . . ;A1� ¼ 1 and u�½A0; . . . ;A0� ¼ 0.

theorem There is a unique set of s non-negative numbers p1; . . . ; ps
summing to 1, such that for all [R1; . . . ;Rs] in H,

u�½R1; . . . ;Rs� ¼ p1uðR1Þ þ � � � þ psuðRsÞ:

The number pi is called the subjective probability of the outcome hi of

the race. From the theorem it follows that u�½R; . . . ;R� ¼ uðRÞ, so that

we could identify [R; . . . ;R] with R, and think of the preferences as con-

stituting a single ordering defined on all lotteries simultaneously.
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To prove the theorem, note first that by Assumption 1 any horse lot-

tery is determined up to indi¤erence by the utilities u of its entries; so

that by abusing our symbolism slightly we can write our horse lotteries

in the form [r1; . . . ; rs], where ri ¼ uðRiÞ. In particular, u�½1; . . . ; 1� ¼
u�½A1; . . . ;A1� ¼ 1 and u�½0; . . . ; 0� ¼ u�½A0; . . . ;A0� ¼ 0. Now define pi ¼
u�½0; . . . ; 1; . . . ; 0�, where the 1 on the right side appears in spot i, and the

other spots have 0.

lemma If for some k > 0 and for i ¼ 1; . . . ; s, we have 0Y ri Y 1 and

0Y kri Y 1, then u�½kr1; . . . ; krs� ¼ ku�½r1; . . . ; rs�.

To prove this, first assume kY 1. Then by Assumption 2 and the

expected utility property for utilities on R, we have

½kr1; . . . ; krs� ¼ ½kr1 þ ð1� kÞ0; . . . ; krs þ ð1� kÞ0�

@� ðk½r1; . . . ; rs�; ð1� kÞ½0; . . . ; 0�Þ:

Hence

u�½kr1; . . . ; krs� ¼ ku�½r1; . . . ; rs� þ ð1� kÞu�½0; . . . ; 0� ¼ ku�½r1; . . . ; rs�:

Next, if k > 1, it follows from the first half that

u�½r1; . . . ; rs� ¼ u�½kr1=k; . . . ; krs=k� ¼ ð1=kÞu�½kr1; . . . ; krs�;

and multiplying through by k, we complete the proof of the lemma.

Returning to the proof of the theorem, we set c ¼ r1 þ � � � þ rs. If

c ¼ 0, then all the ri ¼ 0, and the theorem is trivial. If c > 0, then the ri=c

are nonnegative and sum to 1, and hence from Assumption 2 we con-

clude that

½r1=c; . . . ; rs=c�@� ððr1=cÞ½1; 0; . . . ; 0�; . . . ; ðrs=cÞ½0; . . . ; 0; 1�Þ:

Hence by the lemma (with k ¼ 1=c) and the expected utility property, we

have

u�½R1; . . . ;Rs� ¼ u�½r1; . . . ; rs�

¼ u�½cr1=c; . . . ; crs=c� ¼ cu�½r1=c; . . . ; rs=c�

¼ cððr1=cÞu�½1; 0; . . . ; 0� þ � � � þ ðrs=cÞu�½0; . . . ; 0; 1�Þ

¼ r1p1 þ � � � þ rsps ¼ p1uðR1Þ þ � � � þ psuðRsÞ;

and the proof of the theorem is complete.

If our construction of subjective probabilities is applied to a set of ex-

clusive and exhaustive outcomes hi of some trial, such that each outcome

has a known chance fi, the ‘‘horse lotteries’’ degenerate into ‘‘roulette
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lotteries.’’ (Formally this means that we are assuming ½R1; . . . ;Rs�@
ð f1R1; . . . ; fsRsÞ.) We now see at once from our definition of pi that

pi ¼ fi for all i. Thus in this case the subjective probability of any out-

come is equal to the chance associated with that outcome. Since the two

are equal, it does not matter much which word or symbol we use. The

chance refers to the phenomenon, the probability refers to your attitude

towards the phenomenon, and they are in perfect agreement.

Reverting now to proper horse lotteries for which there are no chances,

we can interpret our construction of probabilities thus: pi is equal to the

chance such that you would as soon opt for a dollar contingent on the ith

horse’s winning as for a dollar with that chance. A priori this chance

might change if we substituted two dollars for a dollar, but our theorem

says that it does not.

To provide an adequate basis for the study of scientific inference, the

above development of probability needs some extension. Horses must be

translated into hypotheses and lotteries into decisions, and the concept

of observation must be introduced. Though this involves no particular

mathematical di‰culty, it does raise some philosophical questions. We

do not pursue the matter here.

The above theory of horse lotteries can be extended from a finite set of

outcomes {hi} to a measurable space of outcomes. We refrain from going

into details.

5 Comparison with the Literature

Ramsey [13], de Finetti [4], Koopman [7], Good [5], Savage [14], David-

son and Suppes [3], Suppes [15], Kraft, Pratt and Seidenberg [8] and others

have given definitions of subjective probability. Most often this has been

done without reference to the physical theory of chances. Some writers, no

doubt, have felt that because physics bristles with philosophical di‰-

culties it is undesirable to base a logical concept on a physical concept;

and that once a logical concept of probability has been adequately

defined there is no need to contemplate any separate physical concept of

chance. But it is possible to hold an opposite view, that probability is

even obscurer than chance and that progress should preferably be from

the more familiar to the less familiar, rather than the other way round.

At the least, this route deserves to be explored. Blackwell and Girshick

[1], Cherno¤ [2], Rai¤a and Schlaifer [12] and others have explored it and

obtained results closely related to those given here. The novelty of our

presentation, if any, lies in the double use of utility theory, permitting the

very simple and plausible assumptions and the simple construction and

proof.
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A comparison of our terminology and approach with Savage’s [14]

may be helpful. Our ‘‘horse lottery’’ corresponds to his ‘‘act’’; our ‘‘out-

come of the race’’ to his ‘‘state of the world’’; our ‘‘prize’’ to his ‘‘con-

sequence.’’ Of Savage’s six postulates, which he numbers P1 through P6,

we share with him explicitly P1 (ordering of the horse lotteries—it

is among the assumptions of utility theory). We also share P5, which

Suppes [15] terms a structure axiom rather than a rationality axiom; it is

our assumption that A1 tA0. P2 and P3 (the ‘‘sure-thing’’ principle) are

represented by our Assumption 1, which is close to P3. P4 can be trans-

lated to our context by saying that your guess about which horse will win

is not a¤ected by the size of the prize o¤ered for each horse. Inherent in

the intuitive background of P4 is the assumption that you explicitly guess

which horse will win, and that you are able and willing to judge which

of two horses has a higher probability of winning. Thus P4 implicitly

assumes the existence of comparative probabilities; rather than con-

structing subjective probabilities from preferences, Savage has con-

structed numerical subjective probabilities from comparative subjective

probabilities. There is nothing corresponding to P4 in our approach. P6 is

a continuity postulate which plays a role in defining subjective proba-

bility similar to that of the continuity (or ‘‘Archimedean’’) assumption of

utility theory in defining the utility function. Here again there is implicit

use of the probability notion; but now we have not only comparative

probabilities, but also the existence of probabilities that are ‘‘small.’’

Although there is nothing directly corresponding to P6 in our approach,

we may say, very roughly, that there is no need for such an assumption

in our approach because we start out with chances, which have a con-

tinuous range.

It would seem that a postulate asserting the existence of comparative

probabilities, like Savage’s P4, occurs in many presentations of subjective

probability. For example, the requirement L3 of Blackwell and Girshick

[1], which is rather sophisticated and includes Savage’s P2 as a special

case, includes also as a special case something similar in spirit to Savage’s

P4, though not identical with it. We feel that the preference relation is a

step closer to experience than the comparative probability relation, and

that it is desirable to base subjective probabilities on the preference rela-

tion only, without any a priori reference—implicit or explicit—to com-

parative probabilities.

In this respect our treatment resembles that of Rai¤a and Schlaifer

[12]. They, however, claim only that their treatment is ‘‘very informal.’’ It

appears to us that they make use of what we call Assumption 2 without

mentioning it. In this paper, Assumption 2 is certainly not a tautology, as

can easily be shown by counterexample. However, in a di¤erent context,
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with di¤erent basic assumptions, our Assumption 2 could be a tautology.

It is indeed very obvious, intuitively.

To conclude, we remark that anyone who wishes to avoid a concept of

physical chance distinct from probability may reinterpret our construc-

tion as a method of defining more di‰cult probabilities in terms of easier

ones. Such a person may consider that probabilities can be assigned

directly to the outcomes of spins of a roulette wheel, flips of a coin, and

suchlike, from considerations of symmetry. The probabilities may be so

widely agreed on as to be termed impersonal or objective probabilities.

Then, with some assumptions concerning independence, our construction

can be used to define subjective probabilities for other sorts of outcomes

in terms of these objective probabilities.

In fact, apropos of the above remark and of the preceding comments

on comparative probabilities, Professor Savage has pointed out in private

correspondence that the incidence of P4 in the axiom system of [14] can

be weakened, so that P4 is asserted only for a subset of acts, correspond-

ing (roughly) to our roulette lotteries. He has then deduced the original

P4. Thus an unrestricted postulate of comparative probabilities is not

essential to the derivation of numerical probabilities from Savage’s

viewpoint.
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Note added in proof Professor T. S. Ferguson has pointed out that our application of util-
ity theory to horse lotteries in Section 4 depends on the assumption of strict preference,

½A1; . . . ;A1�t� ½A0; . . . ;A0�:
This would follow at once from our previous assumption that A1 tA0 if we made the
identification of [R; . . . ;R] with R.
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