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Abstract

We consider the basic setup of one seller, one buyer, and one good,

when the agents exhibit risk aversion. We give necessary conditions that

characterize the optimal mechanism that maximizes the seller’s expected

utility. In contrast to the risk-neutral case, where a single deterministic

price is optimal, when the agents are risk averse the optimal mechanism is

continuous and consists of a continuum of lotteries. However, the alloca-

tion function remains partly unchanged: the buyer types who get the good

with probability one when the agents are risk averse are exactly those that

buy the good in the risk-neutral case. We also introduce a regularity con-

dition under which our characterization enables us to directly calculate

the optimal mechanism. Finally, we prove that “one-price” mechanisms

guarantee the seller a bounded fraction of the optimal utility and this

fraction depends only on the distribution of the buyer’s valuation for the

good.
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1 Introduction

An agent – the seller – has an object she wants to sell. Another agent – the

buyer – wants that object. What should the seller do? How should the seller

manage the interaction between them? In this scenario, the seller cannot achieve

a better expected revenue than via a “deterministic posted-price” mechanism.1

The seller offers the good for a fixed price, and trade occurs only if the buyer

is willing to pay at least this price. This famous result, first described in the

early eighties by Myerson (1981); Riley and Samuelson (1981), and Riley and

Zeckhauser (1983), hinges on several assumptions, one of them being that the

agents are risk neutral. This assumption, however, is regularly violated in real

life, where people often demonstrate risk aversion. On that account, our paper
1Sometimes called “one-price mechanism.”
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Payment Utility loss
3 3
10 20
25 75
30 120

Table 1.1: Utility loss from specific payments

aims to analyze the same basic situation – one seller, one buyer, one good –

with a small yet significant change: the agents in our setup are risk averse.

As mentioned above, when the agents are risk neutral, the deterministic

posted-price mechanism is optimal. However, the seller can exploit any other

attitude toward risk of the buyer (either risk aversion or risk loving) to screen

between different buyer types, and thus extract more revenue. The following

example demonstrates this for a risk-averse buyer.2 Consider a risk-neutral

seller facing a buyer who has two possible types: he is willing to pay for the good

either 10 or 30 with equal probabilities. The revenue-maximizing mechanism,

if the buyer is risk neutral, will set a price of 30 for the good, attaining an

expected revenue of (1/2) · 30 = 15. Assume now that the buyer is risk averse

and, specifically, that his utility loss from payments is as in Table 1.1. It is easy

to verify that with this risk-averse buyer a mechanism that offers the buyer to

either pay 3 for a 33% chance of winning the good or buy the good for 29 will

yield the seller an expected revenue of (1/2) · 3 + (1/2) · 29 = 16.

Furthermore, a risk-averse seller does not maximize her expected revenue,

but rather her expected utility from the revenue. Such a risk-averse seller will

forgo some of her expected revenue in order to be able to sell with higher prob-

ability. Thus, even if the buyer is risk neutral, the revenue-maximizing mech-

anism might not maximize the utility of the risk-averse seller. To illustrate

this, assume that u(x) = min{x, 100}; i.e., the seller has no need of more than
2See Evdokia et al. (2018) for the case of a risk-loving agent, where the optimal mechanism

is a “randomized posted-price” mechanism.
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100 units. Assume that the buyer values the object at either 100 or 300 with

equal probability. The revenue-maximizing mechanism will set a price of 300,

yielding an expected revenue of (1/2) · 300 = 150 and an expected utility of

(1/2) · 100 = 50. The utility-maximizing mechanism, however, will set a price

of 100, thus achieving a lower expected revenue of 100, but a higher expected

utility of 100.

Although the case of risk-neutral agents has been studied intensely (see,

e.g., Myerson, 1981; Riley and Samuelson, 1981; Riley and Zeckhauser, 1983;

Klemperer, 1999), there are surprisingly few results for the case of risk-averse

agents. Most of the literature on mechanism design under risk aversion either

compares known auctions (e.g., Riley and Samuelson, 1981; Matthews, 1987;

McAfee and McMillan, 1987a,b; Hu et al., 2010; Krishna, 2002), or analyzes

what happens as the agents become more and more risk averse (e.g., Klemperer,

1999; Hu et al., 2010). A very few papers attempt to characterize the optimal

mechanism, and the most notable among them is Maskin and Riley (1984).

Other papers, in trying to characterize the optimal mechanism, make use of

additional changes to the basic setup. Thus, for example, Eso and Futo (1999)

allow for monetary transfers between the buyers and their mechanisms violate

interim individual rationality. In another, more recent paper, Baisa (2017)

characterizes the optimal mechanism for a setup that assumes risk aversion and

a “good product.”3 In yet another recent paper, Kazumura et al. (2020) try to

characterize the optimal mechanism among a subset of the possible mechanisms

they deem “desirable”.

However, to the best of our knowledge, our paper is the first to characterize

the optimal mechanism in the setup described above, i.e., with a risk-averse

seller facing a risk-averse buyer.
3As a result, Baisa’s mechanism requires the buyers to submit their entire price-demand

curve.
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In light of the above, our contribution to the existing literature is threefold.

1. We prove that, given our setting, a unique optimal mechanism always

exists, and establish three properties that are all necessary conditions for

a mechanism to be optimal:

(a) The optimal mechanism is continuous and offers a continuum of lot-

teries.4

(b) The buyers who buy the good under the “revenue-maximizing” (RM)

mechanism are exactly those who get the good for certain under the

optimal mechanism. Thus, for the most eager buyers, the optimal

allocation is the same as the revenue-maximizing allocation.

(c) The optimal payment function must satisfy first-order conditions for

maxima, which are essentially a continuous version of the Kuhn–Tucker

conditions, tailored to our case.

2. In addition, when the buyer’s valuation for the good is drawn from a prob-

ability distribution F (with a probability density function f) for which

x2f (x) is a strictly increasing function, finding the optimal mechanism is

reduced to optimizing one parameter only. If, along with x2f (x) being

a strictly increasing function, the lowest buyer type has no value for the

object, then our characterization completely identifies the optimal mech-

anism and provides the tools to calculate it directly.

3. We also consider the one-price utility-maximizing (OPUM) mechanism,

which, among all one-price mechanisms, yields the seller the highest ex-
4This result, which is in contrast to the risk-neutral case, where the optimal mechanism

has a single, deterministic price, seems surprising at first. However, we want to thank an
anonymous referee for observing that following Manelli and Vincent (2007), this is to be
expected, at least in the case of a risk-neutral buyer. As per their analysis, we maximize
utility over a convex set: all incentive-compatible direct mechanisms. A linear functional, as
in the risk-neutral case, is maximized at an extreme point: a one-price mechanism. However,
a strictly concave function, as in the risk-averse case, is not maximized at an extreme point,
and thus must include randomization.
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pected utility. We provide a lower bound 5 on the fraction of the opti-

mal utility that the OPUM mechanism can guarantee for the seller (see

Proposition 26 for more details). Moreover, when the agents have CARA

utility functions, the OPUM mechanism is shown to yield up to 99.5% of

the optimal utility (see Section 5.2 for more details). Hence, the OPUM

mechanism might be a good substitute when the optimal mechanism is

hard to find.

Lastly, we represent our agents by additive separable concave utility functions.

It is worth mentioning that our utility functions can also be interpreted in

different ways, other than as risk aversion. Thus, for example, Che and Gale

(1998) use the same utility functions to represent buyers who face financial

constraints.

The paper is organized as follows. In Section 2 we define the setup and

present a reduction to the case of a risk-neutral buyer. In Section 3 we define

what are mechanisms and discuss revenue-maximizing mechanisms. In Section

4 we characterize the optimal mechanism when the buyer is risk neutral. In

Section 5 we give an improved characterization of the optimal mechanism under

a specific regularity condition. In Section 6 we attempt to determine when the

OPUM mechanism is nearly as good as the optimal mechanism. In Section 7

we finally generalize our previous results to the case of a risk-averse buyer. In

the last section we further generalize some of our results.

2 Preliminaries

As explained in the Introduction, we study the classic problem of characterizing

the optimal mechanism when there is one seller, one buyer, and one good, with
5This lower bound depends only on the distribution of the buyer’s valuation for the good,

not on the utility functions of the agents.
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a simple, yet significant, difference from the standard model: our agents are risk

averse and the seller aims to maximize her expected utility.

2.1 Basic setup

In line with the literature, we adopt the framework of expected utility, and

assume that the agents have vNM utility functions. Further, we assume that

the seller has no costs and derives no utility from having the good (other than

the revenue gained from the sale). We also assume that the buyer’s utility from

money and possession of the good is an additive separable utility function.6

Thus, we represent the seller and the buyer via the utility functions u (s) and

V (x, k, s) = k · x + v (−s), respectively, where x denotes the utility the buyer

derives from the good (his type7), k is a binary variable that has a value of 1

if the buyer receives the good and 0 otherwise, and s is the payment from the

buyer to the seller (in dollars). The functions u and v are utility functions for

money, which we assume, without loss of generality, are null at zero. We also

assume that any utility function for money satisfy the following rather standard

restrictions.

Assumption A.
A utility function for money:

1. is twice differentiable.

2. is strictly increasing.

3. has a finite right derivative at zero.
6The standard models assume quasi-linearity which is a special case of separable additive

utility.
7Assuming additive separable utility function, the buyer’s utility from the good does not

depend on his current wealth. By contrast, when the buyer is risk averse, his willingness to
pay does depend on his wealth.

That is why we choose to identify the buyer’s type with his utility from the good rather
than with his willingness to pay.
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Still in line with the literature, we assume that the buyer’s type is drawn from a

probability distribution F (with a probability density function f) that is known

to the seller, and satisfies the following assumptions.

Assumption B.

The probability distribution of the buyer types:

1. is atomless.

2. has full support on [a, c], and is zero outside this interval.

3. is twice continuously differentiable.

We diverge from the standard models by taking the agents’ utility functions for

money, u and v, to be concave. As a result, our agents exhibit risk aversion

rather than risk neutrality. Note that the analysis is far from trivial and the

results are completely different compared to the standard literature, even though

we introduced risk aversion through the minimal change possible and kept the

separable additive utility assumption. Furthermore, as the next two sections

show, it is enough that only one of the agents exhibits risk aversion, and already

the analysis changes radically. Of course, it will be interesting to generalize our

results to more general utility functions.8

2.2 Reduction to a risk-neutral buyer

Much is known about selling optimally when the agents are risk neutral. There-

fore, we will now present a reduction that will enable us to use known results

that are based on the assumption of a risk-neutral buyer, and do not take into

account the seller’s attitude toward risk. Such, for example, is the case with a

number of observations Myerson (1981) made in regard to the optimal mecha-

nism. Apparently, substituting the utility units (utils) of the buyer for money,
8For more general representations see, e.g., Maskin and Riley (1984); Matthews (1987);

Baisa (2017).
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the buyer becomes risk neutral while the seller remains risk averse. Hence, work-

ing with the buyer’s utils instead of money, we can analyze a scenario with a

risk-averse buyer as if the buyer were risk neutral. Thus, the payment function

determines for each buyer type how many utils he loses, and not how much

money he has to pay.

Assume a risk-averse seller who has a single good and is represented by a

utility function for money, u. Assume, in addition, that this seller is facing

a risk-averse buyer whose valuation for the good is drawn from a probability

distribution F and whose utility function is V (x, k, s) = k · x + v (−s), as

explained above. Furthermore, assume that u and v satisfy Assumption A, and

F satisfies Assumption B. Finally, our agents are risk averse; therefore, we will

assume that u and v are strictly concave functions.

In order to obtain the reduction to the case of a risk-neutral buyer, we

define sv = −v (−s), and so V (x, k, s) = k · x + v (−s) = k · x − sv and9

u (s) = u
(
−v−1 (−sv)

)
, which we denote by Ṽ (x, k, sv) and uv (sv), respec-

tively. Evidently, Ṽ is linear in sv and, in addition, uv (sv) satisfies Assumption

A and is strictly concave in sv (see Claim 42 in the Appendix for the proof).

Consequently, we can denote our agents by uv (sv) and Ṽ (x, k, sv), which is

exactly the case of a risk-averse seller who faces a risk-neutral buyer. Naturally,

since uv (sv) = u (s), the expected utility the seller derives from a given mecha-

nism is the same whether we denote the seller by uv and the mechanism by sv

or whether we denote the seller by u and the mechanism by s.

Remark 1. In fact, we can weaken the concavity requirement considerably. As

long as u and v satisfy
v′′ (v (−s))
v′ (v (−s))

< −u
′′ (s)

u′ (s)
,

9The function v is strictly increasing, and hence the inverse function, v−1, always exists.
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uv (sv) = u
(
−v−1 (−sv)

)
is strictly concave in sv (see Claim 43 in the Appendix

for the proof). Evidently, we can allow for one of the agents to be risk neutral or

even risk loving, i.e., to have a linear or even convex utility function for money.

Consequently, we can account, to some extent, for a buyer who is “loss averse”

and thus incorporate elements from prospect theory. (Kahneman and Tversky,

1979; Tversky and Kahneman, 1991, 1992).

In light of the above, we can now define our basic scenario as a “general

selling problem”:

Definition 2. A general selling problem is a triple of functions SP = (u, v, F )

such that:

1. The seller’s utility function for money, u, satisfies Assumption A.

2. The buyer’s utility function for money, v, satisfies Assumption A.

3. The probability distribution of the buyer types, F , satisfies Assumption

B.

4. uv (s) = u
(
−v−1 (−s)

)
is a strictly concave function.

When the buyer is risk neutral, i.e., the buyer’s utility for money is the

identity and V (x, k, s) = k · x− s, we can omit the buyer’s utility function for

money and define a “reduced selling problem”:

Definition 3. A reduced selling problem is a pair of functions SP = (u, F ) such

that:

1. The seller’s utility function for money, u, satisfies Assumption A.

2. The probability distribution of the buyer types, F , satisfies Assumption

B.

3. u (s) is a strictly concave function.
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Our paper aims to maximize the expected utility the seller can achieve from

selling the good, given a general selling problem (u, v, F ). Given the reduction

shown above, we can analyze (u, v, F ) as the reduced selling problem (uv, F ),

where uv (s) = u
(
−v−1 (−s)

)
.

2.2.1 Example of using the reduction

Assume that we are given a general selling problem (u, v, F ) where F = x1x∈[0,1]

and u (s) = v (s) = 1−e−αs; i.e., the buyer types are distributed uniformly over

[0, 1] and both the seller and the buyer have a constant absolute risk aversion

(CARA) utility function with the same coefficient. It can be easily verified that

v−1 (y) = −α−1ln (1− y) and thus uv (sv) = u
(
−v−1 (−sv)

)
= sv/ (1 + sv),

which is clearly a strictly increasing concave function. Therefore, we can analyze(
1− e−αs, 1− e−αs, x1x∈[0,1]

)
as the reduced selling problem

(
sv/ (1 + sv) , x1x∈[0,1]

)
.

As for mechanisms, under (uv, F ), a one-price mechanism with a price of σ

will be µ̃ = (q̃, sv), where q̃ (x) = 1x≥σ and sv (x) = σ · 1x≥σ. In the original

representation, i.e., under (u, v, F ), the mechanism will be µ = (q, s), where

q (x) = 1x≥σ and s (x) = −v−1 (−σ) · 1x≥σ = α−1ln (1 + σ). Of course, by

construction, both mechanisms are identical from the seller’s point of view.

3 The Reduced Problem with a Risk-Neutral Buyer

As explained above, we will now analyze the special case of a risk-neutral buyer

as a first step toward maximizing the expected utility of a seller who faces a

risk-averse buyer. Thus, in Sections 3 through 6 we will focus on analyzing the

selling problem (u, F ).

Admittedly, this reduction is done mainly to simplify the analysis. Nonethe-

less, we think that this special case holds some interest on its own. Take for

example a small high-tech company that is looking to be sold, a small biotech
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company that is developing a new drug and wants to sell it to a big pharma-

ceutical company that has the resources to further develop it, or maybe a small

company that has a unique know how, can purify water sources, and wants to

sell her services to local governments. All these small companies might effec-

tively face only a single buyer (the last example constitutes a single-dimensional

environment, see Daskalakis, 2015 for more details). Moreover, these are small

companies, that tend to be risk averse, facing huge entities, which tend to be

risk neutral. Lastly, these small companies, by virtue of having a special and

unique product, have market power and can dictate the terms of negotiations,

at least to some degree.

Remark 4. When we switch from money to the utils of the buyer, the buyer’s

utility from having the good coincides with his willingness to pay for it. Hence,

in the special case of a risk-neutral buyer, the buyer’s type can be taken to

represent the buyer’s willingness to pay, as in the standard literature. Even

though that doesn’t change the analysis itself, it seems more plausible that the

seller may have some idea of the buyer’s willingness to pay for the good rather

than how much utility the buyer can derive from having the good.

3.1 Mechanisms

A mechanism is a selling procedure that the seller can choose in order to sell

her good. Our goal in this paper is to characterize the mechanism that max-

imizes the seller’s expected utility (henceforth “the optimal mechanism”). As

we assume that the buyer is risk neutral, we can use the celebrated “Revela-

tion Principle” (Gibbard, 1973; Green and Laffont, 1977; Dasgupta et al., 1979;

Myerson, 1981; see also the book of Krishna, 2002) and consider only “direct”

mechanisms that are incentive compatible (IC) and individually rational (IR).

A direct mechanism µ is a pair of functions µ = (q, s) : [a, c]→ [0, 1]× R. The
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allocation function, q, determines the buyer’s10 chances of winning the good,

q (x), and the payment function, s, determines how much he has to pay, s (x).

Thus, if the buyer’s valuation of the good is x, he will pay s (x) for a lottery in

which he can win the good with probability q (x). The mechanism µ satisfies

IC if the buyer is (weakly) better off reporting his true value than any other

value, i.e., x · q (x) − s (x) ≥ x · q (y) − s (y) for any x, y ∈ [a, c]. In our setup,

s must be a non-decreasing function in order to satisfy IC. The mechanism µ

satisfies IR if the buyer’s expected utility from the mechanism is never negative,

i.e., x · q (x)− s (x) ≥ 0. In our setup, when IC is satisfied, IR translates to the

requirement that a · q (a)− s (a) ≥ 0.

Note that in the optimal mechanism it must be that the utility of the small-

est buyer type is zero. Furthermore, since the buyer has a quasi-linear utility

function, we can use another result by Myerson (1981) by which the optimal

payment function s defines, and can be defined by, the optimal allocation func-

tion q,

q (x) = s(a)
a +

∫ x
a

s′+(t)

t dt

s (x) = x · q (x)−
∫ x
a
q (t) dt,

(3.1)

where s
′

+ (t) is the right derivative at t. Henceforth, whenever we refer to either

q or s as the mechanism itself, we assume that the other function is defined

using the above equations.

For every mechanism µ, we define a buyer’s utility payoff function to be

b (x) = x · q (x) − s (x). As is shown in Hart and Nisan (2013, 2017), b

must be a convex function that satisfies 0 ≤ b′+ ≤ 1. Moreover, any func-

tion b : [a, c] → [0, c] that is convex and has derivatives between zero and one

uniquely defines an IC-IR direct mechanism11 through q = b′+, s = x · b′+ − b,

as illustrated in Figure 3.1.
10The buyer here buys a lottery, rather than the good itself. This is in contrast to the

risk-neutral case where the discussion can be restricted to deterministic mechanisms.
11We restrict ourselves to seller-favorable mechanisms, as defined in Hart and Reny (2015).
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b

(0,0)
x

b(x)

−s(y)

x · q(y)− s(y)

y

b(x) = x · q(x)− s(x)

q(x) = b′+(x)

s(x) = x · b′+(x)− b(x)

Figure 3.1: Calculating s (x) and q (x) given b (x).

Finally, similarly to Hart and Nisan (2013, 2017), when we maximize the

expected utility of the seller, we can assume, w.l.o.g., that s (a) ≥ 0. Otherwise,

it is easy to verify that ŝ (x) := s (x)− s (a) is an IC-IR mechanism that yields

a higher expected utility than s, where ŝ (x) ≥ 0 .

3.1.1 Revenue-maximizing mechanisms

Myerson’s and others’ (Myerson, 1981; Riley and Zeckhauser, 1983) classic result

proves that in our setup there is a revenue-maximizing “posted-price” mecha-

nism; i.e., the good is offered for a given price in a take-it-or-leave-it offer. As

shown in the introduction, under risk aversion, maximizing the revenue may not

coincide with maximizing the utility of the seller. In particular, when the seller

is risk averse, a one-price mechanism cannot be an optimal mechanism. To see

this, consider the following simple example.

Example 5. Let F be the uniform distribution over [0, 1], and let the seller’s

utility function, u, be a strictly concave utility function. For tractability reasons,

we express mechanisms as their associated buyer’s expected utility payoff. Thus,

a one-price mechanism with a price of z (the solid green line in Figure 3.2) is
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b

(0,0)
xz

b(x)

(z + 2ε, 2ε)

bε(x)

− 1
2s(z) + ε

− 1
2s(z)

(z + 2ε, ε)

−s(z)

(z + 2ε, 0)

Figure 3.2: Under risk aversion, a one-price mechanism cannot, in general, be
an optimal mechanism.

denoted by the buyer’s utility payoff function

b (x) =


0 0 ≤ x ≤ z

x− z z ≤ x ≤ 1.

Rochet (1985) and Manelli and Vincent (2007) proved that b (z) = z ·q (z)−s (z),

b
′

+ (z) = q (z) = 1, and that at (0,−s (z)) the y-axis meets the line that goes

through z with a slope of b
′

+ (z) (the dotted green line in Figure 3.2).

Let us now analyze the mechanism bε (the dashed red line in Figure 3.2).

Note that it is parallel to the line that goes through (z, 0) and (0,−s (z) /2)

in the small interval [z − 2ε, z + 2ε], and it is equal to b outside this interval.

Under the original mechanism b, if the buyer type is in (z − 2ε, z) then the

seller is paid nothing, while if the buyer type is in (z, z + 2z), the seller receives

s (z). In other words, the seller faces a lottery on this interval: receive no pay

or s (z) with equal probability. As in Figure 3.2, bε replaces this lottery with a
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guaranteed payment of s (z) /2− ε. Since u is concave, there is a small enough

ε such that the seller prefers the constant payment over the lottery, even if this

means losing some money in expectation.

To summarize, a “corner” in the function b means the seller faces a lottery.

By “cropping the corner” we replace this lottery with a constant payment, albeit

at the cost of diminishing the seller’s expected revenue. Thus, for a risk-neutral

seller, cropping would spell bad news. Our seller, however, is risk averse, and

so cropping, if done correctly, improves her expected utility.

There is nothing unique about the corner in Example 5. Whenever u′′ < 0,

any corner in b can be cropped. Hence, when u′′ is always negative, the buyer’s

utility payoff function from the optimal mechanism has no corners, making it

continuously differentiable. Put differently, when the seller’s utility function is

strictly concave, as in our setup, we expect the optimal mechanism (i.e., the

functions q and s) to be continuous (for a formal proof, see Section 4.3.1).

Note that when the smallest buyer type possible is itself a revenue-maximizing

price, i.e., the buyer types are distributed on [a, c] and the price a maximizes

the expected revenue, there is no corner. In such a case, the optimal mechanism

is a one-price mechanism.

3.1.2 Notations and conventions.

First, throughout the paper, derivatives of monotone functions (such as q, s, b)

are right derivatives, which always exist for monotone functions.

Second, we restrict the class of mechanisms to seller-favorable mechanisms.

This means that for every buyer type x, s (x) will be as high as possible without

violating IC. Formally, it means that q and s are right-continuous. Moreover,

as shown in Hart and Reny (2015), this is done without loss of generality, since

we are looking for the optimal mechanism.
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Third, we denote by M the set of IC and IR seller-favorable mechanisms

µ = (q, s) that satisfy s (a) ≥ 0. We let U (µ, F ) = EF (x) [u (s (x))] and we let

URev (F ) = supµ∈MU (µ, F ) be the supremum on the expected utility the seller

may achieve by using IC-IR mechanisms.

Fourth, RM price denotes revenue-maximizing price, i.e., a price set by a

posted-price revenue-maximizing mechanism.

Last, we define r∗ = min {z|z ∈ argmax {z · (1− F (z))}}. Thus, when the

buyer is risk neutral, r∗ is the minimal RM price.12

4 Optimal Mechanisms

In this section we characterize the unique mechanism that yields the seller the

maximal expected utility among all IC and IR mechanisms, given a selling

problem (u, F ). Thus, an optimal mechanism is a solution to the maximization

problem:

argmax(s,q)∈M

∫ c

a

u (s (t)) f (t) dt.

Remark 6. Note that if q is the optimal allocation function, it must be that

q (c) = 1. Otherwise q̂ (x) := q (x) /q (c) will be an IC-IR mechanism that yields

higher expected utility to the seller.

A useful decomposition of an optimal mechanism

In our proofs we will make use of a decomposition of the optimal mechanism µ

into one-price mechanisms. For this decomposition, let µ = (q, s) be an optimal

mechanism. Then q may be viewed as a cumulative distribution function13 and
12When the buyer is risk averse, r∗ may no longer be a revenue-maximizing price. See

Remark 30 for more details.
13Indeed, q is non-negative by definition, non-decreasing by IC, and q (c) = 1 by Remark 6

above.
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we have
q(x) =

∫ x
a
dq(t) =

∫ c
a
1x≥tdq(t)

s(x) =
∫ x
a
tdq (t) =

∫ c
a
t1x≥tdq(t)

b(x) =
∫ x
a

(x− t) dq (t) =
∫ c
a

[x− t]+dq(t).

For more on this decomposition see Hart and Reny (2017).

We will now prove that a unique optimal mechanism always exists and char-

acterize it.

4.1 Existence and uniqueness of the optimal mechanism

Proposition 7. An optimal mechanism always exists for any selling problem

(u, F ).

The proof is quite standard and is therefore relegated to Appendix 9.2.

Proposition 8. The optimal IC-IR direct (seller-favorable) mechanism for a

given selling problem (u, F ) is unique.

Due to the strict concavity of the seller’s utility function, a convex combi-

nation of any two mechanisms that differ on a non-empty interval yields higher

expected utility to the seller. Hence, any two optimal mechanisms must be equal

almost everywhere. The seller-favorable requirement ensures that our mecha-

nisms are right-continuous. Therefore, any two optimal mechanisms must be

identical. It is a standard argument, and so the formal proof is relegated to

Appendix 9.3.

4.2 Characterization of the optimal mechanism

Before we can characterize the optimal mechanism, we need the following con-

cept of monotonicity:

19



Definition 9. A non-decreasing (non-increasing) function h is said to be strictly

increasing (decreasing) around x if for any x′ < x and x′′ > x it holds that

h (x′′) > h (x′) (h (x′′) < h (x′)).

Note that the notion of the function h being strictly increasing around x

generalizes the notion of h being strictly increasing in a small neighborhood of

x. Our notion allows h to be constant either right before or right after x, or

even on both sides if h jumps at x.

We can now state our main theorem for the reduced selling problem.

Theorem 10. Given a selling problem (u, F ), a unique optimal IC-IR mecha-

nism µ = (q, s) always exists and it must satisfy the following conditions:

1. The functions q and s are continuous.

2. There is a constant λ ≥ 0 s.t. x
∫ c
x
u′ (s (t)) f (t) dt ≤ λ for every x, with

equality when q is strictly increasing around x.

3. q (x) = 1 if and only if14 x ≥ r∗.

Remark 11. Using the reduction from Section 2.2, this result immediately ex-

tends to general selling problems (u, v, F ); see Theorem 33 in Section 7.1.

Remark 12. Property 1 uses the strict concavity of the utility function. However,

the property can be somewhat generalized to weakly concave utility functions

(see Section 8.1).

Remark 13. Property 2 is essentially a continuous version of the Kuhn–Tucker

theorem, tailored to our maximization problem. Indeed, as discussed in Section

4.3.2 below, if we allowed our allocation function q to have only a finite number

of values, our λ would become the Kuhn–Tucker multiplier.
14Recall that in a reduced selling problem, r∗ is the minimal price set by a posted-price

revenue-maximizing mechanism, which always exists.
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Remark 14. Property 3 means that the buyer types that would have bought the

good in an RM mechanism are exactly those that get the good with probability

one under the optimal mechanism. It also means that s (r∗) is the maximum of

s, and hence that URev (F ) ≤ u (s (r∗)) ≤ u (r∗).

Note that, as expected, when u is linear, the optimal mechanism coincides

with the revenue-maximizing mechanism, as they both become the posted-price

mechanism with the price of r∗, for which Property 3 clearly holds. In addition,

Property 2 holds as well, since when u is linear, then x
∫ c
x
u′ (s (t)) f (t) dt be-

comes x (1− F (x)) and, of course, x (1− F (x)), being the revenue from setting

a price of x for the good, is maximized at r∗. By contrast, Property 1, which

relies heavily on the strict concavity of u, is violated.

4.3 Proof of Theorem 10

In this section we will prove Theorem 10. Throughout the section we will assume

that we are given a selling problem (u, F ).

4.3.1 Proof of Property 1: Continuity of q and s

In order to prove the continuity of q and s, we assume a discontinuity in the

payment function for some buyer type y, and show that we can improve the

mechanism. For the seller, any buyer type x where the payment function changes

is essentially a lottery between the payments made by the different buyer types

in a small neighborhood of x. However, our seller is risk averse and strictly

prefers the expectation of the lottery – which is not offered to her when there

is a discontinuity in the payment function. Thus, as in example 5, we can

improve the mechanism by replacing the lottery with a constant payment that

is close to the lottery’s expectation. In other words, if q jumps at y, we replace
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(0,0)
x

b(x)

bδ(x)

yy − δ y + δ

b

bδ

Figure 4.1: q = b′ jumps at y, and qδ (which gives rise to bδ) yields higher
expected utility to the seller.

the mechanism, in a small interval around y, with a constant payment that

approaches (q (y−) + q (y+)) /2 (see Figure 4.1).

Proof. Let µ = (q, s) be a mechanism, where b is the buyer’s utility payoff

function, and assume that q has a discontinuity in y, i.e., q(y−) < q(y+). By

eq. (3.1), s (y+)− s (y−) = y (q (y+)− q (y−)) > 0.

For every δ > 0, let µδ = (qδ, sδ) be the mechanism obtained from µ by

linearly interpolating b in the interval (y − δ, y + δ) (see Figure 4.1). Since bδ,

the buyer’s utility payoff function, is convex and has derivatives between zero

and one, it follows that µδ is an IC-IR mechanism. Since qδ and sδ are constant

on (y − δ, y + δ), we may denote those constants by q and s, respectively. We

have

q̄ =
b (y + δ)− b (y − δ)

2δ
=
b (y + δ)− b (y)

2δ
+
b (y)− b (y − δ)

2δ

−→
δ→0+

q(y+) + q(y−)

2
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and

s̄ = q̄ · (y + δ)− b(y + δ)

−→
δ→0+

q(y+) + q(y−)

2
· y − b(y) =

s(y+) + s(y−)

2
. (4.1)

Recall that U (µ, F ) = EF (x) [u (s (x))]. It follows that

∆δ := U
(
µδ, F

)
− U (µ, F ) =

∫ y+δ

y−δ
(u (s̄)− u (s (t))) f (t) dt.

Let us split the integral at y, and estimate the two parts separately:

1

δ

∫ y

y−δ
(u (s̄)− u (s (t))) f (t) dt ≥ 1

δ

∫ y

y−δ

(
u (s̄)− u

(
s
(
y−
)))

f (t) dt

−→
δ→0+

(
u

(
s (y+) + s (y−)

2

)
− u

(
s
(
y−
)))

f (y) ,

where the inequality holds because s (t) ≤ s (y−) for t < y and u is monotonic

and for the limit we use eq. (4.1) and the continuity of f (x). Similarly,

1

δ

∫ y+δ

y

(u (s̄)− u (s (t))) f (t) dt ≥ 1

δ

∫ y+δ

y

(u(s̄)− u (s (y + δ))) f (t) dt

−→
δ→0+

(
u

(
s (y+) + s (y−)

2

)
− u

(
s
(
y+
)))

f (y) ,

where the limit holds as above and for the inequality we use the monotonicity

of s and u. Therefore,

liminf
δ→0+

1

δ
∆δ ≥

(
2u

(
s (y+) + s (y−)

2

)
− u

(
s
(
y+
))
− u

(
s
(
y−
)))

f (y) > 0,

which is strictly positive by the strict concavity of u, and so ∆δ > 0 for δ > 0

small enough. Hence, µ cannot be an optimal mechanism. Naturally, this
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means that the optimal allocation function, q, must be continuous, and in turn

the optimal pricing function, s, must also be continuous.

Remark 15. Note that for our proof to hold, it is enough that u′′ (ŝ) < 0 for some

ŝ ∈ (s (y−) , s (y+)). This implies that 2u ((s (y+) + s (y−) /2)) > u (s (y+))+u (s (y−)),

which in turn implies that liminf
δ→0+

∆δ/δ is strictly positive and that µ cannot be

optimal. Therefore, even if we assume weak concavity, if ŝ ∈ (s (a) , s (c)) and

u′′ (ŝ) < 0, then there must be some x̂ ∈ (a, c) such that s (x̂) = ŝ.

4.3.2 Proof of Property 2: There is a constant λ such that x
∫ c
x
u′ (s (t)) f (t) dt ≤ λ

with equality whenever q is strictly increasing around x

Before we delve into the proof of this property, it would be helpful to have

some insight regarding this formula x
∫ c
x
u′ (s (t)) f (t) dt. To this end, we limit

our mechanism to be a step function with a finite number of steps. Assume

that µ = (q, s) is an optimal mechanism and that the allocation function q can

only change at a = x1, x2, ..., xn = c. Define15 si = s (xi), ∆s
i = si − si−1,

∆q
i = q (xi) − q (xi−1) and ∆F

i = F (xi+1) − F (xi) for i = 1, 2, ..., n. Eq. 3.1

tells us that ∆s
i = xi∆

q
i and so si =

∑i
j=1 ∆s

j =
∑i
j=1 xj∆

q
j . Therefore, our

problem is to find the {∆q
i }
n
i=1 that maximize

U =

n∑
i=1

u (si) ∆F
i =

n∑
i=1

u

 i∑
j=1

xj∆
q
j

∆F
i ,

s.t. ∆q
i ≥ 0 and

∑n
i=1 ∆q

i ≤ 1.

Since
∂si
∂∆q

k

= xk1i≥k,

15We let s0 = q0 = 0.

24



the Kuhn–Tucker conditions here are
∑n
i=1 ∆q

i = 1 and, for k = 1, 2, ..., n,

λ ≥ xk
n∑
i=k

u
′
(si) ∆F

i

with equality when ∆q
k > 0, which is exactly our formula for this finite-step

function.

We will now prove Property 2. Note that the Kuhn–Tucker theorem cannot

be used in our proof, as our problem has an infinite number of constraints.

Proof. Let λ =
∫ c
a
s (t)u′ (s (t)) f (t) dt. Then, by Claim 16 below, x

∫ c
x
u′ (s (t)) f (t) dt ≤ λ

and, by Claim 17, there is an equality whenever q is strictly increasing around

x.

Claim 16. y
∫ c
y
u′ (s (t)) f (t) dt ≤

∫ c
a
s (t)u′ (s (t)) f (t) dt for any y ∈ [a, c].

Proof. Let µ be an optimal mechanism with a buyer’s utility payoff function b,

and let y ∈ [a, c]. We define

by (x) = (x− y)+ =


0 0 ≤ x < y

x− y y ≤ x ≤ c
,

i.e., by is the one-price mechanism with a price of y. We also define by,ε = (1− ε) b+εby

(see Figure 4.2). Recall that we restrict ourselves to mechanisms in which

s (x) ≥ 0 and thus it’s easy to see that by,ε defines an IC-IR mechanism µy,ε

with the payment function

sy,ε (x) =


(1− ε) s (x) a ≤ x < y

(1− ε) s (x) + εy y ≤ x ≤ c.

25



b

(0,0)
xy

b(x)

by(x)

by,0.5(x)

by,0.2(x)

Figure 4.2: Defining by,ε

The optimality of µ means that its expected utility cannot be lower than

that of µy,ε, and hence

∫ c

a

[u (sy,ε (t))− u (s (t))] f (t) dt ≤ 0.

We next split the integral at y,

∫ y

a

[u (sy,ε (t))− u (s (t))] f (t) dt+

∫ c

y

[u (sy,ε (t))− u (s (t))] f (t) dt ≤ 0,

and using the definition of sy,ε, we have

∫ y

a

[u ((1− ε) s (t))− u (s (t))] f (t) dt+

∫ c

y

[u ((1− ε) s (t) + εy)− u (s (t))] f (t) dt ≤ 0.

(4.2)
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Since u is concave, we know that u (s+ h)− u (s) ≥ h · u′ (s+ h) for any h,

and hence

u ((1− ε) s (t))− u (s (t)) ≥ −εs (t) · u′ ((1− ε) s (t))

u ((1− ε) s (t) + εy)− u (s (t)) ≥ ε (y − s (t)) · u′ ((1− ε) s (t) + εy).

Applying these two inequalities to eq. (4.2), we get

−ε
∫ y

a

s (t)·u′ ((1− ε) s (t)) f (t) dt+ε

∫ c

y

(y − s (t))·u′ ((1− ε) s (t) + εy) f (t) dt ≤ 0.

Dividing by ε and rearranging, we have

y

∫ c

y

u′ ((1− ε) s (t) + εy) f (t) dt ≤
∫ y

a

s (t)·u′ ((1− ε) s (t)) f (t) dt+

∫ c

y

s (t)·u′ ((1− ε) s (t) + εy) f (t) dt.

We can then take ε to zero to get

y

∫ c

y

u′ (s (t)) f (t) dt ≤
∫ c

a

s (t)u′ (s (t)) f (t) dt.

Note that the right-hand side of the last equation is a constant.

Claim 17. If µ = (q, s) is an optimal mechanism and q is strictly increasing

around y, then y
∫ c
y
u′ (s (t)) f (t) dt =

∫ c
a
s (t)u′ (s (t)) f (t) dt.

To prove this claim, we assume that q is an optimal mechanism that is

strictly increasing around y. Using the decomposition introduced in Section

4, we build a slightly perturbed version of the allocation function. We take

a small ε, keep the perturbed allocation function constant on (y − ε, y + ε),

and uniformly distribute q (y + ε) − q (y − ε), namely, the increase in q inside
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this interval, over [a, c]. Note that q is strictly increasing around y, and hence

q (y + ε)−q (y − ε). Comparing the perturbed mechanism to the optimal mech-

anism proves our claim.

Proof. Let µ = (q, s) be an optimal mechanism, and let y be such that q is

strictly increasing around y. Then for every δ > 0 we have ρ := q (y + δ)−q (y − δ) > 0.

Define a new mechanism µ̃ = (q̃, s̃) by

q̃(x) :=



1
1−ρq (x) a ≤ x ≤ y − δ

1
1−ρq (y − δ) y − δ ≤ x ≤ y + δ

1
1−ρ (q (x)− ρ) y + δ ≤ x ≤ c.

(4.3)

Using the decomposition introduced in Section 4, we get

s̃(x) =

∫ c

a

t1x≥tdq̃ (t) =
1

1− ρ

(∫ c

a

t1x≥tdq (t)−
∫ y+δ

y−δ
t1x≥tdq (t)

)

=
1

1− ρ
s (x)− 1

1− ρ

∫ y+δ

y−δ
t1x≥tdq (t) .

When x ≤ y−δ, the last integral equals 0, and when x ≥ y−δ it is non-negative

and at most
∫ y+δ
y−δ (y + δ) dq (t) = (y + δ) ρ. Therefore,

1

1− ρ
s (x) ≥ s̃ (x) ≥ 1

1− ρ
s (x)− 1x≥y−δ

ρ

1− ρ
(y + δ) ,

or, after rearranging,

ρ

1− ρ
(s (x)− 1x≥y−δ (y + δ)) ≤ s̃ (x)− s (x) ≤ ρ

1− ρ
s (x) . (4.4)
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Remember that q, being optimal, is continuous16 (see proof in Section 4.3.1

above). Therefore, as δ → 0 we have that ρ −→ 0, which implies that s̃→ s by

eq. 4.4.

By the concavity of u, we have

u (s̃ (x))− u (s (x)) ≥ u′ (s̃ (x)) · (s̃ (x)− s (x))

≥ ρ

1− ρ
u′ (s̃ (x)) · (s (x)− 1x≥y−δ (y + δ)) . (4.5)

By the optimality of µ, it follows that U (µ̃, F ) ≤ U (µ, F ), i.e.,

0 ≥
∫ c

a

[u (s̃ (t))− u (s (t))] f (t) dt.

By eq. (4.5), we have

0 ≥ ρ

1− ρ

∫ c

a

u′ (s̃ (t)) s (t) f (t) dt

− ρ

1− ρ
(y + δ)

∫ c

y−δ
u′ (s̃ (t)) f (t) dt.

Multiplying by (1− ρ)/ρ and letting δ → 0 yields, by the bounded convergence

theorem,17

0 ≥
∫ c

a

u′ (s (t)) s (t) f (t) dt− y
∫ c

y

u′ (s (t)) f (t) dt,

which, together with Claim 16, concludes the proof.
16We need the continuity of q here, and hence this proof only holds when u is strictly

concave.
17We use the requirement that u′ be bounded. Hence, this result does not necessarily hold

for utility functions with an unbounded derivative, such as CRRA utility functions.
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Figure 4.3: Building sε from s under the assumption that y < r

4.3.3 Proof of Property 3: q (x) = 1 if and only if x ≥ r∗

Let y = inf {x|q (x) = 1}; then, Property 3 can be rewritten as r∗ = y. Re-

call that the optimal mechanism is continuous (see Section 4.3.1), and hence

q (y) = 1 and y = min {x|q (x) = 1}. The proof proceeds in two steps. We first

prove by way of contradiction that r∗ ≤ y and then use Property 2 of Theorem

10 to prove that r∗ ≥ y, thus completing the proof.

Claim 18. r∗ ≤ y.

In order to prove this claim, we show how the optimal mechanism can be im-

proved in the case where y < r∗. Briefly, if y < r∗, we can improve the optimal

mechanism by lowering the price paid by buyers whose type is in (y − ε, r∗),

while raising the price paid by buyers whose type is in (r∗, c) (see Figure 4.3).

Since r∗ is the minimal RM price, we have strictly increased the expected rev-

enue. It turns out that when this change is small enough, the increase in ex-

pected revenue also guarantees higher expected utility to the seller, despite the

concavity of the seller’s utility function.
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Proof. Assume that µ is optimal and that y < r∗. Using the decomposition

introduced in Section 4, we define18

qε (x) =


q (x) a ≤ x ≤ y − ε

q (y − ε) y − ε ≤ x < r∗

1 r∗ ≤ x ≤ c,

sε (x) =

∫ c

a

t1x≥tdq
ε (t) =


s (x) a ≤ x ≤ y − ε

s (y − ε) y − ε ≤ x ≤ r∗

s (y − ε) + r∗ (1− q (y − ε)) r∗ ≤ x ≤ c,

and so

U (sε, F )− U (s, F ) =

∫ r∗

y−ε
[u (s (y − ε))− u (s (t))] f (t) dt

+

∫ c

r∗
[u (sε (r∗))− u (s (y))] f (t) dt.

By the concavity and monotonicity of u, we have

U (sε, F )− U (s, F ) ≥ u′ (s (y − ε)) [s (y − ε)− s (y)] (F (r∗)− F (y − ε))

+u′ (sε (r∗)) [s (y − ε) + r∗ (1− q (y − ε))− s (y)] (1− F (r∗))

≥ u′ (s (y − ε)) [s (y − ε)− s (y)] (1− F (y − ε))

+u′ (sε (r∗)) r∗ (1− q (y − ε)) (1− F (r∗)) .

Recall that s (y)− s (y − ε) =
∫ y
y−ε tdq (t) ≤ y (1− q (y − ε)). Thus, we can

divide the last equation by (1− q (y − ε)), which is greater than zero by the
18By definition of y, q (y − ε) < 1 = q (y).
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definition of y, to get

U (sε, F )− U (s, F )

1− q (y − ε)
≥ −u′ (s (y − ε)) y (1− F (y − ε))+u′ (sε (r∗)) r∗ (1− F (r∗)) .

As ε goes to zero, both u′ (s (y − ε)) and u′ (sε (r∗)) go to19 u′ (s (y)), and so

the right-hand side of the last inequality becomes

u′ (s (y)) [r∗ (1− F (r∗))− y (1− F (y))] .

Note that x (1− F (x)) is the expected revenue one gets when the good is

assigned a price of x. Since r∗ is the minimal price that maximizes the expected

revenue, it must be that r∗ (1− F (r∗)) − y (1− F (y)) > 0. Thus, when ε is

small enough, U (sε, F ) − U (s, F ) > 0, in contradiction to the optimality of s,

which, in turn, refutes the assumption that y < r∗.

Claim 19. y ≤ r∗

Proof. First, let G (x) = x
∫ c
x
u′ (s (t)) f (t) dt = x (1− F (x))h (x), where

h (x) :=

∫ c

x

f (t)

1− F (x)
u′ (s (t)) dt = Ef(x) [u′ (s (t)) |t ≥ x] .

By the definition of y, q is strictly increasing around y. Thus, by Property 2

of Theorem20 (10), G is maximal at y and, in particular, G (y) ≥ G (r∗). Hence,

y (1− F (y))h (y) ≥ r∗ (1− F (r∗))h (r∗) .

Recall that r∗, being an RM price, is a maximum point of x (1− F (x)).

Hence, y (1− F (y)) ≤ r∗ (1− F (r∗)) , which implies that h (y) ≥ h (r∗).
19We rely here on the continuity of s. Hence our proof of Claim (18) does not hold when u

is weakly concave.
20Property 2 relies on the continuity of s and the boundedness of u

′
. Hence, our proof that

y ≤ r holds only when u is strictly concave and u
′
is bounded.
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Finally, note that u
′
(s) is a non-increasing function and that, by the def-

inition of y, if x < y then q (x) < q (y), and so s (x) < s (y) and hence

u
′
(s (x)) > u

′
(s (y)). Therefore, h, being the expectation of u

′
(s) taken on

[x, c], is strictly decreasing on [a, y]. Consequently, h (y) ≥ h (r∗) implies that

y ≤ r∗.

5 The Regularity Condition

Theorem 10 gives us a characterization of the optimal mechanism. This char-

acterization, however, only gives necessary conditions for a mechanism to be

optimal, and there may be mechanisms that satisfy this property that are not

optimal. In this chapter we show that when x2f (x) is strictly increasing, our

characterization enables us to find the optimal mechanism by optimizing one

parameter only. Moreover, if, in addition to x2f (x) being strictly increasing,

the smallest buyer type has no value for the good, i.e., a = 0, then there is

only one mechanism that satisfies Theorem 10. Furthermore, Theorem 10 also

gives us tools to calculate this mechanism directly. Since an optimal mechanism

always exists, this mechanism must be the optimal mechanism.

5.1 Refining the characterization by assuming that x2f (x)

is strictly increasing

Let us look at Property 2 of Theorem 10:

x

∫ c

x

u′ (s (t)) f (t) dt ≤ λ.

Note that since u′ is strictly decreasing, the higher s (t) is, the lower u′ (s (t)) is.

This suggests that in the optimal mechanism we want λ to be as low as possible.

Property 2, however, only holds on the integral level. The following corollary will
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enable us to make pointwise arguments by switching from an integral equation

to a differential equation.

Corollary 20. If s is strictly increasing around y, then y2u′ (s (y)) f (y) = λ,

where λ is the constant from Property 2 of Theorem 10.

Proof. First, let us recall that G (x) := x
∫ c
x
u′ (s (t)) f (t) dt and is differentiable

with

G
′
(x) =

G (x)

x
− xu′ (s (x)) f (x) . (5.1)

If s is strictly increasing around y, then IC requires that q be strictly increasing

around y. By Theorem 10, G (y) = λ and λ is the maximum of G, which

together imply that G
′
(y) = 0. Plugging both G (y) = λ and G

′
(y) = 0 into

eq. (5.1), we get

λ = u′ (s (y)) y2f (y) . (5.2)

Remark 21. Note that eq. (5.2) is the Euler–Lagrange equation. Indeed, our

goal is to maximize the functional U (s (t)) =
∫ c
a
u (s (t)) f (t) dt. Thus, using the

buyer’s utility payoff function b, we can denote L (t, b (t) , b′ (t)) = u (t · b′ (t)− b (t)) f (t).

The Euler–Lagrange equation states that21 L′2 = d/dtL′3 or, in our case, 2w (t)+tw′ (t) = 0,

where w (t) = u′ (s (t)) f (t). The solution to this differential equation is w (t) = λ/t2,

which gives us λ = u′ (s (t)) t2f (t). Note, however, that we maximize over

convex functions only, which is probably why in our case the Euler–Lagrange

equation holds only when q is strictly increasing around y.

Note that when y2u′ (s (y)) f (y) = λ, or u
′
(s (y)) = λ/y2f (y), it follows

that the lower λ is, the higher s (y) is.22 Unfortunately, this equation holds

only when s is strictly increasing around y. Thus, in general, higher λ might
21We let L′n denote the derivative of L with respect to its n-th argument.
22Since u′ (s) is a non-increasing function.
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yield higher expected utility to the seller, by shifting the places where s changes.

This is why we need to introduce our regularity condition, and for the rest of

this section we will assume that x2f (x) is an increasing function.

Next, recall that in our setup, u is a strictly concave function, and so we

can define φ = u
′−1 to be the inverse function of the derivative of u. Define

z = min {r∗, inf {x|s (x) > s (a)}}, and by continuity s (z) = s (a). We are now

ready to prove that in order to find the optimal mechanism, we only need to

optimize two parameters: s (a) and z.

Corollary 22. Given a selling problem (u, F ), if g (x) := x2f (x) is an increas-

ing function, then the optimal mechanism has the following structure:

s (x) =


s (a) a ≤ x ≤ z

φ
(
u′(s(a))g(z)

g(x)

)
z ≤ x ≤ r∗

φ
(
u′(s(a))g(z)

g(r∗)

)
r∗ ≤ x ≤ c,

for some z ∈ [a, r∗] and s (a) ∈ [0, a].

Remark. Clearly, if x ∈ [a, z] then s (x) = s (a) (by the definition of z) and

x ∈ [r∗, c] implies that s (x) = s (r∗) (Property 3 of Theorem 10). Thus, we

only need to prove what happens when x ∈ [z, r∗].

Proof. We start by proving that if g is a strictly increasing function, then on

[z, r∗] s is strictly increasing and, by Corollary 20, u′ (s (x)) g (x) = λ.

First, assume that s (x̂1) = s (x̂2), x̂1 < x̂2 and (x̂1, x̂2) ⊂ [z, r∗] and let

x1 = inf {x|s (x) = s (x̂1)} and x2 = sup {x|s (x) = s (x̂1)}. From the defini-

tions of x1 and x2, it follows that s is strictly increasing around x1 and around x2.

By Corollary 20, we have that u′ (s (x1)) g (x1) = λ = u′ (s (x2)) g (x2). Hence,

as s (x1) = s (x2) due to the continuity of s, we have that g (x1) = g (x2). This,

of course, is in contradiction to g being strictly increasing.
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Thus, on [z, r∗], s is a strictly increasing function, and, by Corollary 20,

u′ (s (x)) g (x) = λ or, alternatively, s (x) = φ (λ/g (x)). Evaluating λ at z im-

plies that λ = u′ (s (a)) g (z), which implies that s (x) = φ (u′ (s (a)) g (z) /g (x)).

Thus, the optimal mechanism must have the following form:

s (x) =


s (a) x ≤ z

φ
(
u′(s(a))g(z)

g(x)

)
z ≤ x ≤ r∗

φ
(
u′(s(a))g(z)

g(r∗)

)
r∗ ≤ x.

Thus, if x2f (x) is an increasing function, finding the optimal mechanism

reduces to optimizing over two variables: s (a) and z. We can, however, do

better than that. Theorem 10 gives us another equation: q (r∗) = 1. Combining

this equation with s′ (x) = xq′ (x) (which holds for the optimal mechanism23),

we have

1 = q (r∗) = q (a) +

∫ r∗

z

q′ (t) dt =
s (a)

a
1a>0 +

∫ r∗

z

s′ (t)

t
dt.

Next, s (x) = φ (u′ (s (a)) g (z) /g (x)) on [z, r∗] and hence24

s′ (x) = −φ′
(
u′ (s (a)) g (z)

g (x)

)
u′ (s (a)) g (z) g′ (x)

g (x)
2 .

Combining the last two equations, we get

1 =
s (a)

a
1a>0 − u′ (s (a)) g (z)

∫ r∗

z

φ′
(
u′ (s (a)) g (z)

g (t)

)
g′ (t)

tg (t)
2 dt,

23It can easily be derived from eq. (3.1).
24φ is a decreasing function and hence s′ (x) > 0, as expected.
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which gives us a connection between s (a) and z, thus decreasing the level of

freedom of our optimization problem.

We can do still better, however. It turns out that fixing one parameter de-

termines the optimal mechanism completely, as our next theorem demonstrates.

Theorem 23. Given a selling problem (u, F ), where g (x) = x2f (x) is an in-

creasing function, denote m (σ) = min
{
z|σ/a1a>0 +

∫ r∗
z

s′σ(t)
t dt ≤ 1

}
, where

sσ (t) = φ (u′ (σ) g (z) /g (t)). In this case, the optimal mechanism has the fol-

lowing structure:

s (x) =


σ a ≤ x ≤ m (σ)

φ
(
u′(σ)g(m(σ))

g(x)

)
m (σ) ≤ x ≤ r∗

φ
(
u′(σ)g(m(σ))

g(r∗)

)
r∗ ≤ x ≤ c,

where σ ∈ [0, a].

Proof. We already know that if z = inf {x|s (x) > s (a)}, and x ∈ [z, r∗], then

s (x) = φ (u′ (σ) g (z) /g (x)). We also know that the lower z is, the lower g (z)

is, and so the higher s (x) is (since φ is a decreasing function). Consequently,

the optimal mechanism will have the smallest possible25 z.

Remark 24. Similarly, we can show that if g is an increasing function, and s is the

optimal mechanism, then given z, we have s (a) = max
{
σ|σ/a1a>0 +

∫ r∗
z

(s′ (t) /t) dt ≤ 1
}
,

where s (x) = φ (u′ (σ) g (z) /g (x)).

Thus, given s (a), the optimal mechanism is completely determined. It can

be seen that we reduced the optimization problem to optimizing one parameter

only. We next show that in the special case where a = 0, we don’t need to

optimize at all.
25z is bounded from below by the requirement that q (c) ≤ 1.
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Corollary 25. Given a selling problem (u, F ), such that g (x) := x2f (x) is an

increasing function and a = 0, the optimal mechanism is

s (x) =


0 0 ≤ x ≤ m

φ
(
u′(0)g(m)
g(x)

)
m ≤ x ≤ r∗

φ
(
u′(0)g(m)
g(r∗)

)
r∗ ≤ x ≤ c,

where m = min
{
z|
∫ r∗
z

(s′ (t) /t) dt ≤ 1
}

and s (t) = φ (u′ (0) g (z) /g (t)) on

[z, r∗].

Proof. Plug a = 0 into Theorem 23.

5.2 Finding the optimal mechanism: An example using a

CARA seller

In this example we demonstrate the use of Corollary (25) and calculate the op-

timal mechanism when the seller has a constant absolute risk aversion (CARA)

utility function, i.e., u (s) = 1− e−αs, and the buyer types are distributed uni-

formly over [0, 1]. We conclude by comparing the optimal mechanism to the

RM mechanism.

We start by noting that since F is uniform over [0, 1], it follows that f (x) = 1,

g (x) = x2 (which is an increasing function), and that the minimal RM price is

r = 1/2. We also note that u′ (s) = αe−αs, and hence φ (y) = u
′−1

(y) = α−1·ln (α/y)

and φ′ (y) = −1/αy. Lastly, u′ (0) = α, and hence

φ

(
u′ (0) g (m)

g (x)

)
= φ

(
αm2

x2

)
=

2

α
ln
( x
m

)
.
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Plugging r∗ = 1/2 and the last equation into Corollary 25, we get that the

optimal mechanism is

s (x) =


0 x ≤ m

2
α ln

(
x
m

)
m ≤ x ≤ 0.5

2
α ln

(
1

2m

)
0.5 ≤ x,

where26 m = min
{
z|
∫ 0.5

z

[
2/αt2

]
dt ≤ 1

}
.

Solving
∫ 0.5

m

[
2/αt2

]
dt = 1 gives us

1 =

∫ 0.5

m

2

αt2
dt = − 2

α

1

t

∣∣∣∣0.5
m

=
2

α

(
1

m
− 2

)
,

which implies that m = 2/ (α+ 4). Hence, the optimal mechanism is

s (x) =


0 0 ≤ x ≤ 2

α+4

2
α ln

(
α+4
2 x

)
2

α+4 ≤ x ≤
1
2

2
α ln

(
α+4
4

)
1
2 ≤ x ≤ 1.

5.2.1 Comparative statics

Let us now compare the seller’s expected utility from the optimal mechanism

vs. the RM mechanism in the above example; i.e., the seller has a CARA utility

function and the buyer type x is distributed uniformly over [0, 1]. Let us also

compare the two mechanisms when the risk aversion coefficient α changes.

We first compute the seller’s expected utility from the optimal mechanism:

U (s) =
∫ c
a
u (s (t)) dt.

26On the interval [z, r∗], s (t) = 2α−1ln (t/z) and so s′ (t) = 2/αt.
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Expected utility α=1 α=5 α=10 α=50 α=100
Optimal mechanism 0.2 0.56 0.71 0.93 0.96
RM mechanism 0.197 0.46 0.5 0.5 0.5

RM/optimal ratio 0.985 0.82 0.7 0.54 0.52

Table 5.1: Comparison of the optimal mechanism to the RM mechanism

u (s (x)) = 1− e−αs(x) =


0 0 ≤ x ≤ 2/ (α+ 4)

1− 4
(α+4)2x2 2/ (α+ 4) ≤ x ≤ 0.5

1− 16
(α+4)2

0.5 ≤ x ≤ 1

and

U (s) =

∫ 0.5

2/(α+4)

[
1− 4

(α+ 4)
2
x2

]
dx+

1

2

(
1− 16

(α+ 4)
2

)
=

=
1

2
+

8

(α+ 4)
2 −

2

α+ 4
− 2

α+ 4
+

1

2
− 8

(α+ 4)
2 = 1− 4

α+ 4
,

or U (s) = α/ (α+ 4). As for the RM mechanism, if the seller sells the good for

a price of 0.5, the seller’s expected utility is 0.5 · u (1/2) =
(
1− e−α/2

)
/2.

Table (5.1) evaluates the optimal mechanism for different values of α. Note

that the larger α is, the more risk averse the seller is. As expected, the optimal

mechanism can yield the seller significantly more expected utility than the RM

mechanism can. It also appears that the gap between the two mechanisms

becomes more significant as the risk aversion of the seller increases.

6 Posted-Price Mechanisms

In the last section we calculated the optimal mechanism in a specific example. As

expected, the optimal mechanism guaranteed the seller a much higher expected

utility than the RM mechanism. On the other hand, the RM mechanism is much

easier to calculate, especially if the regularity condition doesn’t hold. In light of
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Expected utility α=1 α=5 α=10 α=50 α=100
Optimal mechanism 0.2 0.56 0.71 0.93 0.96
OPUM mechanism 0.199 0.54 0.69 0.9 0.94

OPUM/optimal ratio 0.995 0.964 0.972 0.968 0.98

Table 6.1: Comparison of the optimal mechanism to the one-price utility maxi-
mizing (OPUM) mechanism

the above, we are interested in finding a mechanism that is easy to calculate, but

one that is also not too bad when compared to the optimal mechanism. Let us

than look at “posted-price” mechanisms, i.e., mechanisms that have only a single

price. For example, in the classic setup, when the agents are risk neutral, there

is always an RM mechanism that is a posted-price mechanism. The one-price

utility maximizing (OPUM) mechanism, which guarantees the seller the highest

expected utility achievable by posted-price mechanisms, is another example of

a posted-price mechanism.

Table 6.1 compares the utility of the OPUMmechanism to the optimal utility

in the example presented in Section 5.2, i.e., when the seller has a CARA utility

function, and the buyer types are distributed uniformly over [0, 1]. As seen in

this table, in terms of the expected utility for the seller, the OPUM mechanism

may sometimes be almost as good as the optimal mechanism. Furthermore,

unlike the RM to optimal ratio, the OPUM to optimal ratio doesn’t necessarily

decrease as α grows large.

In this section we show that we can bound the OPUM to optimal ratio

from below. Moreover, we show that this bound does not depend on the utility

function of the seller, but solely on the probability distribution of the buyers.

We cannot, however, provide a universal lower bound on the OPUM to optimal

ratio. This is contrary to the multi-good scenario, where simple mechanisms

can guarantee a constant fraction of the maximal revenue (see for example Hart

and Reny, 2017; Hart and Nisan, 2017; Babaioff et al., 2014).
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Before we proceed, let us note that in this section s is an optimal mechanism,

and ρ is the price of the OPUMmechanism, i.e., u (ρ) (1− F (ρ)) ≥ u (p) (1− F (p))

for any other price p. Recall that URev (F ) is the expected utility of the seller

from the optimal mechanism, and define SURev (F ) = u (ρ) (1− F (ρ)) to be

the expected utility from the OPUM mechanism.

Let us also note that in this section we assume that the OPUM mecha-

nism exists, which is not necessarily true outside our specified domain. Take

for example the case where u (s) = ln (s) and x ∼ U [0, 1], which lies out-

side our domain. In this case, the expected utility from setting a price of p is

p · ln (0) + (1− p) · ln (p), which, of course, has no maximal point.

We can now prove the following proposition.

Proposition 26. Given a selling problem (u, F ), the OPUM mechanism attains

at least (1− F (r∗)) of the optimal expected utility, i.e., SURev (F ) /URev (F ) ≥ 1−F (r∗).

Proof. Let s be an optimal mechanism. As stated in Remark 14, URev (F ) ≤ u (r∗).

The posted-price mechanism with a price of r∗ yields the seller an expected

utility of u (r∗) (1− F (r∗)), and hence

SURev (F ) ≥ u (r∗) (1− F (r∗)) .

Combining the last two inequalities gives us SURev (F ) ≥ u (r∗) (1− F (r∗)) ≥ URev (F ) (1− F (r∗))

or
SURev (F )

URev (F )
≥ 1− F (r∗) .

Remark 27. This proof holds in a much broader domain than our setup, and so

the OPUM mechanism may guarantee at least 1−F (r∗) of the optimal expected

utility even when F and u don’t meet our requirements.
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When our Assumption Are violated, there may not be an optimal mecha-

nism, and even if one exists, it may be hard to calculate. Thus, depending on

our needs and on F (r∗), and in light of the last remark, the OPUM mechanism

may sometimes provide a good enough approximation to the optimal mecha-

nism. Moreover, the OPUM mechanism can yield much higher expected utility

than is suggested by the bound we attained on the OPUM to optimal ratio,

namely, 1 − F (r∗). See for example Table 6.2, where this bound is equal to

1/2 while the OPUM mechanism yields around 99.5% of the optimal expected

utility. Indeed, when a = 0, i.e., when x ∼ F [0, c], we can improve our bound,

even if it still seems far from tight. The following two propositions give us two

more bounds.

Proposition 28. Given a selling problem (u, F ), when x ∼ [0, c], the SURev (F ) /URev (F )

ratio is at least
(1− F (r∗))(

1− F
(
r∗
√
u′ (r∗) /u′ (0)

)) .
Proof. Let x ∼ F [0, c] and s be the optimal mechanism. Let

M (x) =


0 x < s (r∗)

s (r∗) x ≥ s (r∗) .

Since M (x) is a posted-price mechanism, it follows that

SURev (F ) ≥ E [u (M (x))] = (1− F (s (r∗)))u (s (r∗)) .

Now, letting z = inf {x|s (x) > 0}, and noting that s (x) = 0 on [a, z], we

get

URev (F ) =

∫ c

z

u (s (t)) f (t) dt ≤ (1− F (z))u (s (r∗)) .
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Thus, we have

SURev (F )

URev (F )
≥ 1− F (s (r∗))

1− F (z)
≥ 1− F (r∗)

1− F (z)
. (6.1)

Lastly, by Corollary 20,

λ = z2u′ (0) = r∗2u′ (s (r∗))⇒

z2 = r∗2u′ (s (r∗)) /u′ (0) ≥ r∗2u′ (r∗) /u′ (0)

and z ≥ r∗
√
u′ (r∗) /u′ (0). Hence,

SURev (F )

URev (F )
≥ 1− F (r∗)

1− F
(
r∗
√

u′(r∗)
u′(0)

) .

Our next bound is even more specific, and only holds when x ∼ U [0, c],

i.e., F (x) = x/c. Also, even when it holds, it might be worse than our second

bound, as is seen in Table 6.2.

Proposition 29. Given a selling problem (u, F ) where x ∼ U [0, c], the OPUM

mechanism attains at least (c− r∗) / (c− (c− r∗)u′ (r∗) /u′ (0)) of the optimal

expected utility.

Proof. Substituting F (x) = x/c into eq. (6.1), we have

SURev (F )

URev (F )
≥ 1− F (r∗)

1− F (z)
=
c− r∗

c− z
.

Now, Theorem 10 implies that

z

∫ c

z

u′ (s (t)) f (t) dt = λ ≥ r∗
∫ c

r∗
u′ (s (t)) f (t) dt
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and, since s (x) = s (r∗) on [r∗, c], we have

z

∫ r∗

z

u′ (s (t)) f (t) dt+ zu′ (s (r∗)) (1− F (r∗))

≥ r∗ · u′ (s (r∗)) (1− F (r∗))

and, using the concavity of u (s) and rearranging, it becomes

zu′ (s (z)) (F (r∗)− F (z)) ≥ (r∗ − z)u′ (s (r∗)) (1− F (r∗)) .

Next, using F (x) = x/c, we get

zu′ (s (z))
r∗ − z
c
≥ (r∗ − z)u′ (s (r∗))

c− r∗

c
,

which can be rewritten as

z ≥ u′ (s (r∗))

u′ (s (z))
(c− r∗) .

Lastly, s (z) ≥ 0 and s (r∗) ≤ r∗, and hence z ≥ (c− r∗)u′ (r∗) /u′ (0), and we

have our bound, namely,

SURev (F )

URev (F )
≥ c− r∗

c− (c− r∗) u
′(r∗)
u′(0)

.

Note that when u′ (0)� u′ (r∗), the latter two bounds converge to our first

bound, namely, 1− F (r∗).

Table 6.2 shows the three bounds we derived for the OPUM/optimal ra-

tio. The bounds are calculated for the example given in Section 5.2, where

x ∼ U [0, 1] and u (s) = 1 − e−αs, and hence r∗ = 0.5 and u′ (s) = αe−αs.
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Expected utility α=1 α=5 α=10 α=50 α=100
OPUM/optimal ratio 0.995 0.964 0.972 0.968 0.98

First bound 0.5 0.5 0.5 0.5 0.5
Second bound 0.819 0.584 0.521 0.5 0.5
Third bound 0.718 0.521 0.502 0.5 0.5

Table 6.2: Comparing the three bounds to the actual OPT/OPUM ratio when
x ∼ U [0, 1] and u (s) = 1− e−αs

Clearly, in that example the real ratio is much higher than the bounds sug-

gest, and the question remains open: how well does the OPUM mechanism fare

compared to the optimal mechanism, in terms of expected utility to the seller?

7 The General Problem with a Risk-Averse Buyer

In this section we use the reduction shown in Section 2.2 to generalize our

previous results to the case of a risk-averse buyer. Recall that this reduction,

i.e., from a selling problem with a risk-averse buyer to a selling problem with a

risk-neutral buyer, is done merely by changing the payment units from money to

utils of the buyer. Consequently, the optimal allocation function for the reduced

problem is also the optimal allocation function for the original selling problem

and our procedure is as follows.

1. Given a selling problem (u, v, F ), use the reduction described in Section

2.2 to present it as (uv, F ).

2. Analyze (uv, F ) and characterize, or even find, the optimal mechanism

µ̃ = (q̃, sv).

3. The optimal mechanism for (u, v, F ) is µ =
(
q̃,−v−1 (−sv)

)
.

Remark 30. Before we continue, note that r∗ appears in the optimal allocation

function for (uv, F ), which, as mentioned above, remains the same for (u, v, F ).

Recall, however, that in our analysis the buyer’s type represents his valuation
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for the good, rather than his willingness to pay for the good. These are equal

when the buyer is risk neutral, but not when he is risk averse. Consequently,

r∗, which is defined asmin {z|z ∈ argmax {z · (1− F (z))}}, need not maximize

the revenue under (u, v, F ).

We can now prove our main result, which is a generalized version of Theorem

10 to the case of a risk-averse buyer.

7.1 The optimal mechanism when the buyer is risk averse

We start by proving that an optimal mechanism always exists.

Proposition 31. Given a selling problem (u, v, F ), define uv (s) = u
(
−v−1 (−s)

)
and let µ̃ = (q̃, sv) be the optimal mechanism for (uv, F ). Then µ =

(
q̃,−v−1 (−sv)

)
is the unique optimal IC-IR direct mechanism for (u, v, F ).

Proof. It is easy to see that µ is an IC-IR direct mechanism.27 In order to see

that µ is optimal for (u, v, F ), let s be any IC-IR direct mechanism for (u, v, F ).

Then we have

∫ c

a

u (s (t)) f (t) dt =

∫ c

a

u
(
−v−1 (v (−s (t)))

)
f (t) dt =

∫ c

a

uv (−v (−s (t))) f (t) dt

≤
∫ c

a

uv (sv (t)) f (t) dt =

∫ c

a

u
(
−v−1 (−sv (t))

)
f (t) dt,

where the inequality holds due to the optimality of sv under (uv, F ), and the

last two equalities follow from the definition of uv. Hence, µ is an optimal

mechanism for (u, v, F ).

Remark 32. Note that when the buyer is risk averse, eq. 3.1 no longer holds,

and the relation between s and q changes.
27See Claim 35 below for a formal proof
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To see that the optimal mechanism for (u, v, F ) is unique, recall the unique-

ness proof in Section 9.3. That proof did not make Assumption About the buyer

preferences toward risk, and for this reason holds when the buyer is risk-averse.

To summarize, µ is a unique, optimal, IC-IR direct mechanism that always

exists for (u, v, F ).

Theorem 33. Given a selling problem (u, v, F ), there always exists a unique

optimal IC-IR direct mechanism µ = (q, s). This optimal mechanism satisfies

the following conditions:

1. The functions q and s are continuous.

2. There is a constant λ ≥ 0 s.t.

x

∫ c

x

u′ (s (t))

v′ (v (−s (t)))
f (t) dt ≤ λ

for every x, with equality when q is strictly increasing around x.

3. q (x) = 1 if and only if x ≥ r∗

Proof. As per Proposition 31, let µ = (q, s) =
(
q,−v−1 (−sv)

)
be the unique

optimal mechanism for (u, v, F ), where (q̃, sv) is the optimal mechanism for

(uv, F ) and uv (sv) = u
(
−v−1 (−sv)

)
. It is easy to see that the functions q and

s satisfy Properties 1 and 3 of Theorem 33. As for Property 2, since sv satisfies

Property 2 of Theorem 10, there is a λ such that x
∫ c
x
u′v (sv (t)) f (t) dt ≤ λ

with equality when q̃ is strictly increasing around x. Given the definition of uv,

it follows that u′v (sv) = u′
(
−v−1 (−sv)

)
/v′ (−sv) = u′ (s) /v′ (v (−s)). We can

now substitute for u′v (sv) and get

x

∫ c

x

u′ (s (t))

v′ (v (−s (t)))
f (t) dt ≤ λ

with equality when q is strictly increasing around x.
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Remark 34. Note that if we assume that the buyer is risk neutral, i.e., that v

is linear, then Theorem 33 becomes Theorem 10.

Claim 35. The mechanism µ =
(
q̃,−v−1 (−sv)

)
is an IC-IR direct mechanism

under (u, v, F ) if and only if µ̃ = (q̃, sv) is an IC-IR mechanism under (uv, F ),

where uv (sv) = u
(
−v−1 (−sv)

)
.

Proof. First, µ and µ̃ are both direct mechanisms. Second, under (u, v, F ), a

buyer with type x who faces the mechanism µ and reports y has a utility payoff

of28 q̃ (y) · x + v (−s (y)) = q̃ (y) · x − sv (y), which is exactly the utility payoff

the same buyer will have after reporting y when facing the mechanism µ̃ under

(uv, F ). Consequently, µ is IR if and only if µ̃ is IR, and µ is IC if and only if

µ̃ is IC.

7.2 The regular case when the buyer is risk averse

As we saw in Section 5, when the buyer is risk neutral and g (x) = x2f (x)

is a strictly increasing function, then finding the optimal mechanism is easier,

since it involves optimizing one parameter only. Moreover, when a = 0 and

g (x) = x2f (x) is a strictly increasing function, we don’t even need to optimize:

Theorem 10 provides us with the means to calculate it directly. When the buyer

is risk averse and the regularity condition is met, we can combine Proposition

31 and Theorem 23 to prove the following.

Proposition 36. Let (u, v, F ) be a selling problem such that g (x) = x2f (x)

is an increasing function. We denote uv (s) = u
(
−v−1 (−s)

)
, φuv = u

′−1
v , and

m (σ) = min
{
z|σ/a1a>0 +

∫ r∗
z

s′σ(t)
t dt ≤ 1

}
, where sσ (t) = φuv (u′ (σ) g (z) /g (t)).

Then the optimal mechanism has the following structure:
28Recall that sv (y) = −v (−s (y)).
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s (x) =


−v−1 (−σ) a ≤ x ≤ m (σ)

−v−1
(
−φuv

(
u′v(σ)g(m(σ))

g(x)

))
m (σ) ≤ x ≤ r∗

−v−1
(
−φuv

(
u′v(σ)g(m(σ))

g(r∗)

))
r∗ ≤ x ≤ c,

q (x) =


σ/a1a>0 a ≤ x ≤ m (σ)

σ/a1a>0 +
∫ x
m(σ)

s′σ(t)
t dt m (σ) ≤ x ≤ r∗

1 r∗ ≤ x ≤ c,

for some σ ∈ [0, a].

Proof. Let uv (sv) = u
(
−v−1 (−sv)

)
and let sv be the optimal mechanism for

(uv, F ). By Proposition 31, µ = (q, s) =
(
q̃,−v−1 (−sv)

)
is the optimal mecha-

nism for (u, v, F ). Plugging in sv as defined by Theorem 23, we get s as defined

above.

Corollary 37. Let (u, v, F ) be a selling problem such that g (x) = x2f (x) is an

increasing function and a = 0. Then the optimal mechanism is

s (x) =


0 0 ≤ x ≤ m

−v−1
(
−φuv

(
u′v(0)g(m)

g(x)

))
m ≤ x ≤ r∗

−v−1
(
−φuv

(
u′v(0)g(m)
g(r∗)

))
r∗ ≤ x ≤ c,

q (x) =


0 a ≤ x ≤ m∫ x
m
s′0(t)
t dt m ≤ x ≤ r∗

1 r∗ ≤ x ≤ c,

where uv (sv) = u
(
−v−1 (−sv)

)
, φuv = u

′−1
v , m = min

{
z|
∫ r∗
z

(s′0 (t) /t) dt ≤ 1
}

and s0 (t) = φuv (u′v (0) g (z) /g (t)) on [z, r∗].
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Proof. Plug a = 0 into Proposition 36.

7.3 Posted-price mechanisms when the buyer is risk averse

In Section 6 we proved that when the buyer is risk neutral, posted-price mech-

anisms can guarantee the seller at least a (1− F (r∗)) fraction of the optimal

utility. As mentioned in Remark 27, the proof of Proposition 26 is quite general,

and it holds even when the buyer is risk averse.

7.4 Finding the optimal mechanism: An example using

CARA agents

Let (u, v, F ) be such that u (s) = v (s) = 1 − e−αs and F (x) = x1x∈[0,1];

i.e., our agents have the same CARA utility functions and the buyer types are

distributed uniformly over [0, 1].

Since g (x) = x2f (x) = x2 and a = 0, we can use Corollary 37. Hence, the

optimal mechanism is

s (x) =


0 0 ≤ x ≤ m

−v−1
(
−φuv

(
u′v(0)g(m)

g(x)

))
m ≤ x ≤ r∗

−v−1
(
−φuv

(
u′v(0)g(m)
g(r∗)

))
r∗ ≤ x ≤ c,

where uv (sv) = u
(
−v−1 (−sv)

)
, φuv = u

′−1
v ,m = min

{
z|
∫ r∗
z

(s′0 (t) /t) dt ≤ 1
}
,

and s0 (t) = φuv (u′v (0) g (z) /g (t)) on [z, r∗].

It is straightforward to calculate that−v−1 (−y) = α−1ln (1 + y), uv (sv) = sv/ (1 + sv)

and φuv (y) = u
′−1
v (y) =

(
1−√y

)
/
√
y. Hence, −v−1 (−φuv (y)) = −ln (y) /2α.

We can also compute and substitute for u′v (0) = 1, r∗ = 0.5, and g (x) = x2,

and hence the optimal mechanism becomes
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s (x) =


0 0 ≤ x ≤ m

1
α ln

(
x
m

)
m ≤ x ≤ 0.5

1
α ln

(
1

2m

)
0.5 ≤ x ≤ 1,

where m = min
{
z|
∫ 0.5

z
(s′0 (t) /t) dt ≤ 1

}
and s0 (t) = t−z

z on [z, 0.5].

When we solve
∫ 0.5

m
(s′0 (t) /t) dt = 1 for m, using s′0 (t) = 1/m, we get that

e−m = 2m or m ≈ 0.352. Hence, the optimal mechanism for (u, v, F ) is

s (x) =


0 0 ≤ x ≤ 0.352

1
α ln (x (α+ 2)) 0.352 ≤ x ≤ 0.5

1
α ln

(
α+2
2

)
0.5 ≤ x ≤ 1,

q (x) =


0 0 ≤ x ≤ 0.352

1
m ln

(
x
m

)
0.352 ≤ x ≤ 0.5

1 0.5 ≤ x ≤ 1.

Remark 38. Note thatm here is independent of α, which is to be expected, since

uv (s) = s/ (1 + s) is independent of α. If, however, the buyer and the seller had

different CARA coefficients, say u (s) = 1− e−βs and v (s) = 1− e−αs, then we

would have had uv (s) = 1− 1/ (1 + s)
−β/α and m would have been dependent

on α and β.
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8 Extending Our Setup

8.1 Weakly concave utility functions

If we are facing a selling problem (u, F ) where u is only weakly concave, then

the optimal mechanism may not be unique, and Theorem 10 is transformed as

follows.

Proposition 39. Given a selling problem (u, F ), such that u is a weakly con-

cave utility function, an optimal IC-IR mechanism s must satisfy the following

conditions:

1. Let ŝ ∈ (s (a) , s (c)). If u′ is strictly decreasing around ŝ, then there exists

an x̂ ∈ (a, c) s.t. s (x̂) = ŝ.

2. There is a constant λ ≥ 0 s.t. x
∫ c
x
u′ (s (t)) f (t) dt ≤ λ for every29 x.

3. If x < r∗ then q (x) < 1.

The proofs are basically the same as in the strictly concave case, and so they

are omitted here. For the difference between the three properties here and in

Theorem 10, see Remark 15, footnote 16, and footnote 19, respectively.

Next, we want to generalize Proposition 39 to the case of a risk-averse buyer.

First, as explained in Remark 1, as long as v′′ (v (−s)) /v′ (v (−s)) < −u′′ (s) /u′ (s),

our results hold since uv (sv) = u
(
−v−1 (−sv)

)
is strictly concave. If, however,

v′′ (v (−s)) /v′ (v (−s)) ≥ −u′′ (s) /u′ (s), Theorem 33 is no longer true, and

instead we have the following proposition.

Proposition 40. Given a selling problem (u, v, F ) where uv (sv) = u
(
−v−1 (−sv)

)
is weakly concave, an optimal IC-IR mechanism s must satisfy the following con-

ditions:
29This property has no bite, as it is always true, regardless of whether s is optimal or not.

Take for example λ = c · u′ (0). We only state it here for the purpose of comparison with
Theorem 10.
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1. Let ŝ ∈ (s (a) , s (c)). If u′v is strictly decreasing around −v (−ŝ), then

there exists an x̂ ∈ (a, c) s.t. s (x̂) = ŝ.

2. There is a constant λ ≥ 0 s.t. x
∫ c
x
u′ (s (t)) f (t) dt ≤ λ for every x.

3. If x < r∗ then q (x) < 1.

As above, Property 2 is always true and was stated for the purpose of comparison

with Theorem 33. Furthermore, since the reduction from Section 2.2 doesn’t

affect the allocation function, Property 3 is clearly the same as in Proposition

39. Let us now prove Property 1.

Proof. Assume that ŝ ∈ (s (a) , s (b)). Using the reduction from Section 2.2, let

sv (x) = −v (−s (x)) and it follows that −v (−ŝ) ∈ (sv (a) , sv (b)). Hence, if u′v

is strictly decreasing around −v (−ŝ), there is an x̂ ∈ (a, c) s.t. sv (x̂) = −v (−ŝ)

or −v (−s (x̂)) = −v (−ŝ), and hence s (x̂) = ŝ.

8.2 Unbounded u′ (or u′ (x) −→
x→0
∞)

If u
′
is unbounded, Theorem 10 is no longer true, and instead we have the

following proposition.

Proposition 41. Given a selling problem (u, v, F ) where u′ is unbounded, the

optimal IC-IR mechanism µ = (q, s) satisfies the following conditions:

1. The functions q, s are continuous.

2. There is a constant λ ≥ 0 s.t. x
∫ c
x
u′ (s (t)) f (t) dt ≤ λ for every30 x.

3. If x < r∗ then q (x) < 1.

The proof of Proposition 41 follows the proof of Theorem 33, and is therefore

omitted here. Note, however, that similar to the weakly concave case, the proof
30As mentioned, this property is always true, regardless of whether s is optimal or not, and

we only state it here for the purpose of comparison with Theorem 33.
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of Claim 17 is no longer valid (see footnote 17). This is why Properties 2 and 3

of Proposition 41 are the same as in Proposition 39 and differ from Properties

2 and 3 of Theorem 33.
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9 Appendix

9.1 Proof of claims from Section 2

Claim 42. Assume that the buyer’s and the seller’s utility functions, V (x, k, s) = xk+v (−s)

and u, respectively, satisfy Assumption A, are null at zero, and are concave.31

Then uv (sv) = u
(
−v−1 (−sv)

)
is strictly concave in sv, satisfy Assumption A,

and uv (0) = 0.

Proof. Denote the buyer by V (x, k, s) = xk+v (−s), as above. Let sv = −v (−s);

i.e., the payment the buyer has to make “costs” him sv utility units. Define

now uv (sv) = u
(
−v−1 (−sv)

)
= u (s). Since v is strictly increasing, v−1 exists.

Moreover, since v is a strictly concave function, v−1 is strictly convex, v−1 (−sv)

is strictly convex, and −v−1 (−sv) is strictly concave. Finally, since u is con-

cave, u
(
−v−1 (−sv)

)
is strictly concave. Similarly, we can show that uv is also

strictly increasing, twice differentiable, and has a finite derivative. We also have

that uv (0) = u
(
−v−1 (0)

)
= u (0) = 0.

Claim 43. Assume that u and v satisfy Assumption A. Then uv (sv) = u
(
−v−1 (−sv)

)
is strictly concave if and only if

v′′ (v (−s))
v′ (v (−s))

< −u
′′ (s)

u′ (s)
.

31We assume that v is strictly concave, but we allow u to be weakly concave or even linear.
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Proof. First, we take the derivative of uv with regard to sv,

u′v (sv) =
u′
(
−v−1 (−sv)

)
v′ (−sv)

=
u′ (s)

v′ (v (−s))
.

Since u and v are both strictly increasing functions, then u′ (s) , v′ (s) > 0, and

hence u′v > 0. Consequently, uv is a strictly increasing function.

Second, let’s take the second derivative of uv with regard to sv,

u′′v (sv) =
u′′ (s) v′ (v (−s)) + u′ (s) v′′ (v (−s))

v′ (v (−s))2
.

Since uv is strictly increasing, the last equation shows us that uv is strictly

concave if and only if

u′′ (s) v′ (v (−s)) + u′ (s) v′′ (v (−s)) < 0.

Again, u′ (s) , v′ (s) > 0, and so we can rearrange the last inequality in order to

have that uv is strictly concave if and only if

v′′ (v (−s))
v′ (v (−s))

< −u
′′ (s)

u′ (s)
.

9.2 Proof of existence of the optimal mechanism

Proposition 44. An optimal mechanism always exists for any selling problem

(u, F ).

Proof. In order to prove that there exists an optimal mechanism, we will show

that there exists a mechanism µ̂ = (q̂, ŝ) ∈M s.t.32 URev (F ) =
∫ c
a
u (ŝ (t)) f (t) dt.

32Recall that URev (F ) is the highest possible expected utility, given F .
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We begin by noting that if µ = (q, s) ∈M, then s (x) ≤ c, hence URev (F ) ≤ (c− a)·u (c),

and hence URev (F ) must be finite. Thus, if we take R = {r|∃µ ∈M s.t. r = U (µ, F )},

there is a sequence ri ∈ R that converges to URev (F ). Let si be the corre-

sponding payment functions, i.e., ri =
∫ c
a
u (si (t)) f (t) dt, and let bi = x · qi−si

be the corresponding buyer’s utility payoff functions. These bi are continuous,

uniformly bounded (as 0 ≤ bi (x) ≤ c), and uniformly equicontinuous (as they

are Lipschitz functions with Lipschitz constant 1), and hence there is a subse-

quence that converges uniformly (by the Arzelà–Ascoli theorem). We denote

this limit by b̂ and define µ̂ = (q̂, ŝ), where q̂ = b̂′ and ŝ = xb̂′ − b̂. It’s easy

to show that b̂ is convex, non-decreasing, and has derivatives between zero and

one, and that ŝ (a) ≥ 0, and hence µ̂ ∈M.

Next, we note that u (si (x)) ≤ u′ (0) (si (x)) ≤ u′ (0) · x, where the first

inequality is due to the concavity of u together with the monotonicity of si,

and the second inequality is due to IR. By Lebesgue’s dominated convergence

theorem,33 we have that

URev (F ) = limi→∞

∫ c

a

u (si (t)) f (t) dt =

∫ c

a

u (ŝ (t)) f (t) dt.

Therefore, given a selling problem (u, F ), an optimal mechanism always

exists.

9.3 Proof of the uniqueness of the optimal mechanism

Proposition 45. The optimal IC-IR direct mechanism is unique.

Proof. Assume that µ1, µ2 ∈M are both optimal mechanisms and letA = {x|s1 (x) 6= s2 (x)}.

If we define µ = (µ1 + µ2) /2, then it is clearly an IC-IR mechanism, with

the payment function s = (s1 + s2) /2. Consequently, if we let I = [a, c] then
33The proof also holds when u′ is unbounded, since in that case we can use

u (si (x)) ≤ u (ε) + u
′
(ε) · x− ε · u′ (ε) to the same effect.
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U (µ, F ) =
∫
A
u (s (t)) f (t) dt+

∫
I\A u (s (t)) f (t) dt. Now, of course µ = µ1 = µ2

on I\A, and by the strict concavity of u it must be that u (s (x)) > (u (s1 (x)) + u (s2 (x))) /2

on A. We know, however, that µ1 and µ2 are optimal mechanisms, and hence

A must be of zero measure, or else U (µ, F ) > U (µ1, F ). Furthermore, since

s1 = s2 a.e. and they are both right-continuous (remember that w.l.o.g. we

only consider seller-favorable mechanisms), it must be that s1 = s2. Thus, the

optimal IC-IR direct mechanism must be unique.
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