Pursuing to the Limit*

Sergiu Hart ${ }^{\dagger}$

July 2018

QUESTION. At time $t=0$, particle A is at the origin $(0,0)$ and particle B is at $(0,1)$. A moves to the right (on the horizontal axis) with velocity 1 and B moves towards A with velocity 1. What will be the distance between A and B when t goes to infinity?

ANSWER. 1/2.
PROOF. Let θ_{t} denote the angle that the line through the positions of A and B at time t makes with the horizontal axis.

1. The distance d_{t} between A and B increases with velocity $\cos \theta_{t}$ (due to A) and decreases with velocity 1 (due to B).
2. The horizontal distance x_{t} between A and B increases with velocity 1 (due to A) and decreases with velocity $\cos \theta_{t}$ (due to B).
3. From $\# 1$ and $\# 2$ it follows that $d_{t}+x_{t}$ stays constant, and so it always equals $d_{0}+x_{0}=1+0=1$.
4. The vertical distance y_{t} between A and B decreases with velocity $\sin \theta_{t}$ (due to B); since y_{t} has a limit it follows that $\sin \theta_{t} \rightarrow 0$, and so $\theta_{t} \rightarrow 0$, which implies that $y_{t} \rightarrow 0$, and thus $d_{t}-x_{t} \rightarrow 0$.
5. From $\# 3$ and $\# 4$ it follows that both d_{t} and x_{t} converge to $1 / 2$.
[^0]
[^0]: *This solves a question asked by Benjy Weiss, who got it as a conjecture from ...
 ${ }^{\dagger}$ The Hebrew University of Jerusalem. email: hart@huji.ac.il home page: www.ma.huji.ac.il/hart

