
Int J Game Theory (2010) 39:483–502
DOI 10.1007/s00182-010-0227-9

ORIGINAL PAPER

Uncoupled automata and pure Nash equilibria

Yakov Babichenko

Accepted: 21 February 2010 / Published online: 20 March 2010
© Springer-Verlag 2010

Abstract We study the problem of reaching a pure Nash equilibrium in multi-person
games that are repeatedly played, under the assumption of uncoupledness: EVERY
player knows only his own payoff function. We consider strategies that can be imple-
mented by finite-state automata, and characterize the minimal number of states needed
in order to guarantee that a pure Nash equilibrium is reached in every game where
such an equilibrium exists.

Keywords Automaton · Nash equilibrium · Uncoupledness

1 Introduction

We study the problem of reaching Nash equilibria in multi-person games, where the
players play the same game repeatedly. The main assumption, called uncoupledness
(see Hart and Mas-Colell 2003), is that every player knows only his own utility func-
tion. The resulting play of the game yields an uncoupled dynamic.

Hart and Mas-Colell show in 2003 that if the game is played in continuous time, and
the moves of every player are deterministic, then uncoupled dynamics cannot always
lead to Nash equilibria. In Hart and Mas-Colell (2006) they show that the situation
is different when stochastic moves are allowed and the game is played in discrete
time: if the players know the history of play,1 then there are uncoupled strategies that
lead to a Nash equilibrium. The question is whether it is necessary to know the whole
history in order to reach a Nash equilibrium. The answer is no. It was proved in Hart

1 I.e., the past actions of all the players.
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and Mas-Colell (2006), Theorems 4 and 5, that under the assumption of uncoupled-
ness, convergence of the long-run empirical distribution of play to a (pure or mixed)
Nash equilibrium can be guaranteed by using only the history of the last R periods
of play, for some finite R. This is called a finite-recall strategy. Although finite-recall
uncoupled strategies can guarantee convergence of the distribution of play to a Nash
equilibrium, it is shown in Hart and Mas-Colell (2006), Theorem 6, that this cannot
hold for the period-by-period behavior probabilities. If however, instead of finite recall
one uses finite memory (e.g., finitely many periods of history but not necessarily the
last ones), then the convergence of the behavior can be guaranteed as well (Hart and
Mas-Colell 2006, Theorem 7).

This leads us to the study of uncoupled strategies with finite memory, i.e., finite-
state automata. In this paper, we deal with convergence to pure Nash equilibria in
games which have such equilibria. In Hart and Mas-Colell (2006), Theorem 3, it is
shown that in order to guarantee convergence to pure Nash equilibria one needs recall
of size R = 2. Since finite recall is a special case of finite automata, the question we
address here concerns the minimum number of states required for uncoupled finite
automata to reach a pure Nash equilibrium. There are four classes of finite-state auto-
mata: the actions in every state can be deterministic (pure) or stochastic (mixed), and
the transitions between states can be deterministic or stochastic. We will analyze each
of the four classes in turn.

Section 2 presents the model, defines the relevant concepts and present the total
results of the paper. Since the results are different for two-player games than for games
with more than two players, we consider two-player games in Sect. 3 and n-player
games for n ≥ 3 in Sect. 4. In Sects. 3 and 4, we discuss each of the four automata clas-
ses separately. Appendix A and Appendix B containing the proofs of Theorems 6 and 7.

2 The model

2.1 The game

A basic static (one-shot) game � is given in strategic (or normal) form as follows.
There are n ≥ 2 players, denoted i = 1, 2, . . . , n. Each player i has a finite set of
pure actions Ai = {ai

1, . . . , ai
mi }; let A := A1 × A2 × · · · × An be the set of action

combinations. The payoff function (or utility function) of player i is a real-valued
function ui : A → R. The set of mixed (or randomized) actions of player i is the
probability simplex over Ai , i.e., �(Ai ) = {

xi = (
xi

(
ai

j

))
j=1,...,mi : �mi

j=1xi (ai
j ) =

1 and xi (ai
j ) ≥ 0 for j = 1, . . . , mi

}
; payoff functions ui are multilinearly extended,

and so ui : �(A1) × �(A2) × · · · × �(An) → R.
We fix the set of players n and the action sets Ai , and identify a game by its n-tuple

of payoff functions U = (u1, u2, . . . , un). Let U i be the set of payoff functions of
player i , and U := U1 × · · · × Un .

Denote the actions of all the players except player i by a−i , i.e., a−i = (a1
j1
, . . . ,

ai−1
ji−1

, ai+1
ji+1

, . . . , an
jn
), and denote the set of actions of all the players except player i

by A−i = A1 ×· · ·× Ai−1 × Ai+1 ×· · ·× An . An action ai
j ∈ Ai will be called a best
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reply to a−i if ui (ai
j , a−i ) ≥ ui (ai

k, a−i ) for every ai
k ∈ Ai . A pure Nash equilibrium

is an action combination a = (a1
j1
, a2

j2
, . . . , an

jn
) ∈ A, such that ai

ji
is a best reply to

a−i for all i .
For every game U , let Ũ = (̃u1, ũ2, . . . , ũn) denote the resulting best-reply game,

which is defined by

ũi (a) =
{

1, if ai is a best reply to a−i

0, otherwise

Note that a is a pure Nash equilibrium of U if and only if it is a pure Nash equilibrium
of Ũ .

2.2 The dynamic setup

The dynamic setup consists of the repeated play, at discrete-time periods t = 1, 2, . . . ,

of the static game U . Let ai (t) ∈ Ai denote the action of player i at time t , and put
a(t) = (a1(t), a2(t), . . . , an(t)) ∈ A for the combination of actions at t . We assume
that there is standard monitoring: at the end of period t each player i observes every-
one’s action, i.e., a(t); when the choices are random, the players observe only the
realized actions a(t).

2.3 Automata

An automaton2 for player i is a 4-tuple �i := 〈� i , si
0, f i , gi 〉. � i is the set of

states; si
0 ∈ � i is the starting state; f i : � i → �(Ai ) is the action function; and

gi : A ×� i → �(� i ) is the transition function. Let Ai denote the set of all automata
of player i . An automaton �i ∈ Ai will be called a pure-action automaton if the
actions in all states are pure, i.e.,3 Im( f i ) ⊂ Ai . Otherwise it will be called a mixed-
action automaton. An automaton �i ∈ Ai will be called a deterministic-transition
automaton if all the transitions are deterministic, i.e., Im(gi ) ⊂ � i . Otherwise it will
be called a stochastic-transition automaton. An automaton �i ∈ Ai will be called a
ki - automaton if it has ki states, i.e., |� i | = ki .

Let (�1,�2, . . . , �n) be n automata, where �i is a ki -automaton for player i . The
play proceeds as follows. At time t = 1 every player i is at his starting state si

0, and
plays an action ai (1) according to the probability distribution f i (si

0). Let the realized
actions of all the players be a(1) := (a1(1), . . . , an(1)). Then every player i moves
to a new state according to the transition probabilities gi (a(1), si

0). Now assume that
at time t player i is in state si ∈ � i , and hence at time t + 1 player i plays an action
ai (t) according to the probability distribution f i (si ). The actions of all the players
are a(t + 1), and every player i then moves to a new state according to the transition
probabilities gi (a(t + 1), si ).

2 This is short for “a strategy implemented by an automaton.”
3 We identify Ai with the unit vectors in �(Ai ).
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2.4 Strategy mappings

Let ϕ : U → A1 × · · · × An be a mapping that associates to every game U =
(u1, . . . , un) ∈ U an n-tuple of automaton strategies ϕ(U ) = (ϕ1(U ), . . . , ϕn(U ))

(with ϕi (U ) the automaton of player i). We will call the mapping ϕ uncoupled if, for
each player i, the i th coordinate ϕi of ϕ depends only on ui , i.e., ϕi : U i → Ai (rather
than ϕi : U → Ai ). That is, ϕi associates to each payoff function ui ∈ U i of player i
an automaton ϕi (ui ) ∈ Ai , and

ϕ(U ) = ϕ(u1, u2, . . . , un) = (ϕ1(u1), ϕ2(u2), . . . , ϕn(un)).

We will refer to ϕi : U i → Ai as an uncoupled strategy mapping to automata for
player i; thus, ϕi “constructs” an automaton for player i by considering ui only.4 If
ϕi (ui ) ∈ Ai is an automaton of size (at most) ki for every payoff function ui ∈ U i ,

we will say that ϕi is an uncoupled strategy mapping to ki -automata.
Finally, we will say that the mapping ϕ is a Pure Nash mapping , or PN-mapping

for short, if the strategies ϕ(U ) yield almost sure convergence of play to a pure Nash
equilibrium in every game U ∈ U where such an equilibrium exists.

2.5 The results

Clearly, every finite-recall strategy is in particular a finite-automaton strategy. In-
deed, a strategy with recall of size R can be implemented by an automaton of size

|A|R = (∏n
i=1 mi

)R
(i.e. one state for each possible recall). Therefore, by Theorem

3 in Hart and Mas-Colell (2006), there is uncoupled PN-mapping to automata of size(∏n
i=1 mi

)2
. The question we address here is whether there is uncoupled PN-mapping

to automata with fewer states.
Our purpose is thus to characterize minimal numbers k1, . . . , kn such that there

exists uncoupled PN-mapping where, for each i, the range is ki -automata. We will
analyze each of the four cases (pure or mixed-action automata, and deterministic or
stochastic-transition automata) separately.

The results are the following:
For two-player games (n = 2):

• There exists uncoupled PN-mapping to automata of sizes:

mixed actions pure actions

stochastic
transitions

{
m1

m2 + 1
or

{
m1 + 1
m2

{
m1

m2 + 1
or

{
m1 + 1
m2

deterministic transitions

{
m1 + 2
m2 + 2

{
4m1 + O(1)

4m2 + O(1)

• There is no uncoupled PN-mapping to automata of sizes m1, m2.

4 We assume that every player i knows his index i .
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For n-player games (n ≥ 3):

• There exists uncoupled PN-mapping to automata of sizes:

mixed actions pure actions

stochastic transitions 2mi 2mi

deterministic transitions 2mi + 3 O(mi + n log n)

• Let k1, k2, . . . , kn such that ∀i = 1, . . . , n : ki < 2mi . Then there is no uncoupled
PN-mapping to automata of sizes k1, k2, . . . , kn .

3 Two-player games

3.1 Stochastic transitions and mixed actions

We will show that there exists an uncoupled PN-mapping where the range for player
1 is (m1 + 1)-automata and the range for player 2 is m2 -automata or, symmetrically,
the range for player 1 is m1-automata and the range for player 2 is (m2 +1)-automata.
On the other hand, we will show that there is no PN-mapping where the ranges of the
players are smaller.

Theorem 1 Let k1 ≥ m1 and k2 ≥ m2 +1. Then, for each player i = 1, 2, there exists
an uncoupled strategy mapping to ki -automata with stochastic transitions and mixed
actions that guarantees almost sure convergence of play to a pure Nash equilibrium
of the stage game in every game where such an equilibrium exists.

Proof We define the mapping ϕ as follows:
Given a game U = (u1, u2), the automaton ϕ1(u1) = �1 ∈ A1 is constructed as

follows :
Denote ϕ1(u1) = �1 = 〈�1, s1

0, f 1, g1〉 when �1 is a m1-automaton. We denote
the states of �1 by �1 = {s1

1 , . . . , s1
m1}.

s1
0 : = s1

1 .

f 1(s1
i ) : = a1

i ≡ (0, . . . , 0,
i
1, 0, . . . , 0).

g1(a, s1
i ) = g1((a1

i , a2), s1
i )

:=
⎧
⎨

⎩
s1

i ≡ (0, . . . , 0,
i
1, 0, . . . , 0)(

1
m1 , . . . , 1

m1

) if a1
i is a best reply to a2

otherwise

In state s1
i player 1 plays action a1

i . He stays in this state if a1
i is a best reply to

the action of player 2; otherwise he moves randomly to any one of the m1 states with
equal probability 1

m1 . Note that whether an action of player 1 is a best reply or not

depends only on his payoff function; therefore, �1 depends on u1 only.
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Now we construct the automaton ϕ2(u2) = �2 ∈ A2 as follows:
Denote �2 = 〈�2, s2

0, f 2, g2〉 when �2 is a (m2 + 1)-automaton. We denote the
states of �2 by �2 = {s2

0 , s2
1 , . . . , s2

m1}.

s2
0 : = s2

0 .

f 2(s2
j ) : =

{(
1

m2 , . . . , 1
m2

)

a2
j

j = 0
j ≥ 1

g2(a, s2
j ) = g2((a1, a2

j ), s2
j )

:=

⎧
⎪⎪⎨

⎪⎪⎩

(
1

m2+1
, . . . , 1

m2+1

)

s2
j(

1
m2+1

, . . . , 1
m2+1

)

j = 0
j ≥ 1 and a2

j is a best reply to a1

j ≥ 1 and a2
j is not a best reply to a1

In the state s2
0 , player 2 plays the mixed action

(
1

m2 , . . . , 1
m2

)
, and moves to any of

the m2 + 1 states with probability 1
m2+1

.

In the states s2
i , i ≥ 1, player 2 plays action a2

i . He stays in this state if a2
i is a best

reply to the action of player 1; otherwise he moves to the state s2
0 .

Now we will prove that (ϕ1, ϕ2) is a PN-mapping.
We partition the space �1 × �2 of the automata states into four regions:
P1 := {(s1

i , s2
j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 : ũ1(a1

i , a2
j ) = 1, ũ2(a1

i , a2
j ) = 1}; i.e.,

in this case (a1
i , a2

j ) is a pure Nash equilibrium.

P2 := {(s1
i , s2

0 ), 1 ≤ i ≤ m1}.
P3 := {(s1

i , s2
j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 : ũ2(a1

i , a2
j ) = 0}.

P4 := {(s1
i , s2

j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 : ũ1(a1
i , a2

j ) = 0, ũ2(a1
i , a2

j ) = 1}.
These four regions clearly cover the space �1 × �2. In fact, player 2 can be in the

state s2
0 (P2) or in any other state (P1 ∪ P3 ∪ P4). If player 2 is not in the state s2

0 , then
the action of player 2 can be a best reply (P1 ∪ P4) or not (P3). If it is a best reply,
then the action of player 1 can be a best reply (P1) or not (P4)).

Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state in
P1 is absorbing. We will prove that there is a positive probability of reaching a state
from P1, in finitely many periods, from any other state s ∈ �1 × �2.

Definition 2 An action ai
j ∈ Ai of player i will be called dominant if for every

a−i ∈ A−i ai
j is a best reply to a−i .

s = (s1
i , s2

0 ) ∈ P2: The actions are
(
a1

i ,
( 1

m2 , . . . , 1
m2

)) = ( f 1(s1
i ), f 2(s2

0 )). If a1
i

is a dominant action, then denote by a2
l an action that is a best reply to a1

i . Player
2 moves to s2

l with probability 1
m2+1

. Then (s1
i , s2

l ) ∈ P1. If a1
i is not a dominant

action, then denote by a2
k an action such that a1

i is not a best reply to it, and then with
probability 1

m2 player 2 plays action a2
k . Now both players move randomly over all

their states and with positive probability they will get to P1.
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s = (s1
i , s2

j ) ∈ P3: The actions are (a1
i , a2

j ); a2
j is not a best reply. Therefore, player

2 moves to s2
0 . Denote the state to which player 1 moves by s1

k . Then (s1
k , s2

0 ) ∈ P2.
s = (s1

i , s2
j ) ∈ P4: The actions are (a1

i , a2
j ); a2

j is a best reply, and a1
i is not. There-

fore, player 2 stays in s2
j , whereas player 1 move to s1

k with probability 1
m1 , where a1

k

is a best reply of player 1 to a2
j . Now either (s1

k , s2
j ) ∈ P1 or (s1

k , s2
j ) ∈ P3, depending

on whether a2
j is a best reply to a1

k .
In each of the above cases there is positive probability of reaching an absorbing

state in P1 in at most 3 steps. �
Definition 3 A game U will be called a full game if, for every action ai

j ∈ Ai of

every player i , there exists a−i ∈ A−i such that ai
j is a best reply to a−i .

We prove a general result about n-player full games which will be useful in the
sequel.

Lemma 4 Let ϕ = (ϕ1, . . . , ϕn) be an uncoupled strategy mapping that guarantees
almost sure convergence of play to a pure Nash equilibrium of the stage game in every
game where such an equilibrium exists. Then for every full game U = (u1, . . . , un)

and for every player i , there exist mi nonempty sets of states Bi
1, . . . , Bi

mi in � i (the

set of states of the automaton ϕi (ui ) = �i ) such that in every state si
k ∈ Bi

j player

i plays ai
j (with probability 1), and stays in Bi

j (with probability 1) if his action is a
best reply to the actions of the other players.

Proof (By contradiction). Assume that there exists a full game U s.t. for player 1 the
set B1

j does not exist (or is empty). U is a full game, and so there exists a−1 ∈ A−1 such

that a1
j is a best reply to it. Consider the game U = (u1, u2, . . . , un) when u1 := u1,

and ui (a) :=
{

1 if a = (a1
j , a−1)

0 otherwise
. The only Nash equilibrium of U is (a1

j , a−1). By

uncoupledness we get �1 = ϕ1(u1) = ϕ1(u1) = �1. If (a1
j , a−1) has been played,

the next period player 1 will not play a1
k with probability 1 (otherwise the set B1

j

could not be empty), and the equilibrium in the game U will never be reached with
probability 1 (in contradiction to the assumption). �
Theorem 5 Let k1 = m1 and k2 = m2. Then there are no uncoupled strategy map-
pings to ki -automata with stochastic transitions and mixed actions, that guarantee
almost sure convergence of play to a pure Nash equilibrium of the stage game in every
game where such an equilibrium exists.

Proof (By contradiction). Let U be a full game. Consider the sets Bi
1, . . . , Bi

mi in �i

(see Lemma 3). By assumption |�i | ≤ mi . On the one hand,
∣
∣
∣Bi

j

∣
∣
∣ ≥ 1, and, on the

other hand,
∑

j
|Bi

j | ≤ |�i | = mi , and so
∣
∣
∣Bi

j

∣
∣
∣ = 1 and ∪

j
Bi

j = � i . In other words,

every Bi
j includes exactly one state in which player i plays ai

j and stay there if ai
j is a
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best reply, and there are no other states. Therefore, the strategy of player i is such that
if his action is a best reply to the action of the other player, then in the next step he
plays the same action. In Hart and Mas-Colell (2006), Proof of Theorem 1, Hart and
Mas-Colell show that such a strategy cannot always lead to a pure Nash equilibrium,
contradicting our assumption. �

3.2 Stochastic transitions and pure actions

We will show the result of Theorem 1 continues to hold when the automata are re-
stricted to be pure-actions automata. As was shown in Theorem 5, however, there is no
PN-mapping where the ranges of the players are smaller.

Theorem 6 Let k1 ≥ m1 and k2 ≥ m2+1. Then, for each player i = 1, 2 , there exists
an uncoupled strategy mapping to ki -automata with stochastic transitions and pure
actions, that guarantees almost sure convergence of play to a pure Nash equilibrium
of the stage game in every game where such an equilibrium exists.

The proof is relegated to Appendix A.

3.3 Deterministic transitions and mixed actions

We will show that there exists an uncoupled PN-mapping where the range for player i
is (mi + 2)-automata. Clearly, every deterministic-transition automaton is a particular
case of stochastic-transition automaton, and so Theorem 5 holds here as well.

Theorem 7 Let ki ≥ mi +2. Then for each player i there exists an uncoupled strategy
mapping to ki -automata with deterministic transitions and mixed actions, that guar-
antee almost sure convergence of play to a pure Nash equilibrium of the stage game
in every game where such an equilibrium exists.

The proof is relegated to Appendix B.

3.4 Deterministic transitions and pure actions

In Theorem 13, we will show for general n-player games that there exists an uncoupled
PN-mapping where the range for player i is (O(mi + n log n))-automata, where mi

is the number of actions of player i and n is the number of players. In the case of
2 players, the construction of the automata in the proof of Theorem 13 proves the
existence of uncoupled PN-mapping where the range for player i is (4mi + O(1))-
automata.

Other uncoupled PN-mapping, specifically for 2 players, has a range of (5m1 +
m2 − 5)-automata for player 1, and (5m2 + 2m1 − 9)-automata for player 2. We will
not show this construction here but the idea is to go through all the possible actions
(a1

i , a2
j ) in some “economical” way.
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Uncoupled automata and pure Nash equilibria 491

4 n-player games (n ≥ 3)

4.1 Stochastic transitions, and pure or mixed actions

We will show that there exists an uncoupled PN-mapping where the range for player
i is 2mi -automata. On the other hand, we will show that there is no uncoupled
PN-mapping whose range is smaller for all players.

Theorem 8 Let ki ≥ 2mi . Then for each player i there exists an uncoupled strategy
mapping to ki -automata with stochastic transitions and pure actions that guarantee
almost sure convergence of play to a pure Nash equilibrium of the stage game in every
game where such an equilibrium exists.

Proof Let us introduce the mappings ϕi (ui )= �i given a payoff function U =
(u1, . . . , un).

Denote the states of �i by � i = {si
1,0, si

1,1, si
2,0, si

2,1 . . . , si
mi ,0

, si
mi ,1

}. The states

si
j,0 will be called 0-states; the states si

j,1, 1-states.

Definition 9 Given a state s = (s1, . . . , sn) ∈ �1 × · · · × �n we will say that player
i is fit at s if

– player i is at a 0-state and player i + 1(mod n) is at a state si
j,k for k ∈ {0, 1} and

j �= 1, or

– player i is at a 1-state and player i + 1(mod n) is at a state si
1,k for k ∈ {0, 1}.

In every state si
j,l player i plays action ai

j . If ai
j is a best reply to what the other

players played, and player i fits player i + 1(mod n), player i stays in si
j,l . Otherwise

he moves to any one of the 2mi states with equal probability 1
2mi .

Let the starting states be si
0 := si

1,0.
To prove that these automata reach a pure Nash equilibrium we partition the space

�1 × · · · × �n of the automata states into n + 2 regions:
P1 := {(s1

k1,l1
, . . . , sn

kn ,ln
), 1 ≤ ki ≤ mi , li = 0, 1: (a1

k1
, . . . , an

kn
) is a pure Nash

equilibrium and all the players are fit}.
Note that for every pure Nash equilibrium (a1

k1
, . . . , an

kn
) there is a state s ∈ P1

where the players play (a1
k1

, . . . , an
kn

). Take si
ki ,li

with li = 1 when ki+1 = 1 and li = 0
otherwise.

For 0 ≤ r ≤ n − 1 P2,r := {(s1
k1,l1

, . . . , sn
kn ,ln

): there exist exactly r players that
are fit}.

P3 := {((s1
k1,l1

, . . . , sn
kn ,ln

): all the players are fit, but (a1
k1

, . . . , an
kn

) is not a pure
Nash equilibrium}.

Clearly each state in P1 is absorbing. Next we claim that a state in P1 is reached with
positive probability, in finitely many periods, from any other state s ∈ �1 ×· · ·×�n .

s ∈ P2,0: all the players are not fit, and so all the players move randomly over all
their states, and there is a positive probability of reaching P1.
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For 1 ≤ r ≤ n − 1: s = (s1
k1,l1

, . . . , sn
kn ,ln

) ∈ P2,r . Assume player i is fit, but

player5 i + 1 is not. Such i exist, because we have a circle of players of which some
are fit, and some are not. There is a positive probability that all the players except i +1
will stay at their states, and player i + 1 (who moves randomly because he is not fit)
will move in the following way: if ki+1 = 1 then he moves to si+1

2,li+1
, and if ki+1 ≥ 2,

then he moves to si+1
1,li+1

. Now all the players except i and i + 1 remain fit/not fit, as
they were before, because neither they nor the next player change their state. Player
i + 1 does not change his li+1, player i + 2 does not change his state, and so player
i + 1 stays not fit, as he was before. Player i was fit but after the move of player i + 1,
he is not fit. The only player that changes his fitness is player i , and they get to P2,r−1.
By induction, with positive probability they get to P2,0 in r steps.

s = (s1
k1,l1

, . . . , sn
kn ,ln

) ∈ P3: The action is a = (a1
k1

, . . . , an
kn

) and it is not a pure

Nash equilibrium; therefore, there exists player i s.t. ai
ki

is not a best reply to a−i ,
and player i moves randomly over all the states. Hence, there is a positive proba-
bility that all the players except i will stay at their states and player i will move to
si

ki ,1−li
. Now all the players except player i stay fitted, but player i do not fit. And so

(s1
k1,l1

, . . . si
ki ,1−li

, . . . , sn
kn ,ln

) ∈ P2,n−1.
From any state s there is a positive probability of reaching an absorbing state in P1

in at most n + 2 steps. �
Theorem 10 Let n ≥ 4, and let k1, . . . , kn satisfy ki < 2mi for all i = 1, . . . , n,
(except, perhaps, for one of them). Then there is no uncoupled strategy mapping to
ki -automata with stochastic transitions and mixed actions, that guarantees almost
sure convergence of play to a pure Nash equilibrium of the stage game in every game
where such an equilibrium exists.

Proof Assume on the contrary that such a strategy mapping exists, and that ki < 2mi

for all i = 2, . . . , n. By Lemma (2) in �i there exist mi nonempty sets of states
Bi

1, . . . , Bi
m1 s.t. in every state si

j ∈ Bi
k player i plays ai

k . |�i | < 2mi , and by the

pigeon hole principle there exists k(i) s.t.
∣
∣
∣Bi

k(i)

∣
∣
∣ = 1. Therefore, every player i has

a state si
k(i) where he plays ai

k(i), and he stays there if it is a best reply. Consider a
four-players game where every player has 2 actions.

Consider the following utility function of players 2, 3, 4:

u2 :

a4
1

a3
1

︷ ︸︸ ︷⎧
⎨

⎩

a2
1 a2

2
a1

1 1 0
a1

2 1 0

a4
2︷ ︸︸ ︷

a2
1 a2

2
a1

1 1 1
a1

2 1 1

a3
2

⎧
⎨

⎩

a2
1 a2

2
a1

1 1 1
a1

2 1 1

a2
1 a2

2
a2

1 0 1
a2

2 0 1

5 From here till the end of the proof, we will write i + 1 instead of i + 1(mod n).
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u3 :

a4
1

a3
1

︷ ︸︸ ︷⎧
⎨

⎩

a2
1 a2

2
a1

1 1 1
a1

2 1 1

a4
2︷ ︸︸ ︷

a2
1 a2

2
a1

1 1 0
a1

2 1 0

a3
2

⎧
⎨

⎩

a2
1 a2

2
a1

1 0 1
a1

2 0 1

a2
1 a2

2
a2

1 1 1
a2

2 1 1

u4 :

a4
1

a3
1

︷ ︸︸ ︷⎧
⎨

⎩

a2
1 a2

2
a1

1 1 1
a1

2 1 1

a4
2︷ ︸︸ ︷

a2
1 a2

2
a1

1 0 1
a1

2 0 1

a3
2

⎧
⎨

⎩

a2
1 a2

2
a1

1 1 0
a1

2 1 0

a2
1 a2

2
a2

1 1 1
a2

2 1 1

Player i = 2, 3, 4 gets 1 if he plays the same action as one of the players 2, 3, 4
(except himself). Otherwise he gets 0.

The strategy mapping ϕi : ui → Ai constructs an automaton. As mentioned, there
exists a state si

k(i) where player i plays ai
k(i), and he stays there if it is a best reply.

There are 2 actions for every player, and 3 actions ai
k(i) i = 2, 3, 4. So there exist 2

players i, j who have the same action ai
k(i), a j

k( j), where k(i) = k( j). Because of the

symmetry of the functions u2, u3 , u4, assume k(i) = k( j) = 1, and assume that the
two players are players 3 and 4.

Let us now consider the following game:

�1 :

a4
1

a3
1

︷ ︸︸ ︷⎧
⎨

⎩

a2
1 a2

2
a1

1 1, 0, 1, 1 0, 1, 1, 1
a1

2 0, 1, 1, 1 1, 0, 1, 1

a4
2︷ ︸︸ ︷

a2
1 a2

2
a1

1 0, 0, 1, 0 0, 0, 0, 1
a1

2 0, 0, 1, 0 0, 0, 0, 1

a3
2

⎧
⎨

⎩

a2
1 a2

2
a1

1 0, 0, 0, 1 0, 0, 1, 0
a1

2 0, 0, 0, 1 0, 0, 1, 0

a2
1 a2

2
a2

1 1, 1, 1, 1 1, 1, 1, 1
a2

2 1, 1, 1, 1 1, 1, 1, 1

Players 3 and player 4 have the utility functions u3 and u4, respectively. Therefore,
the automaton that their strategy mapping constructs include states s3

1 , s4
1 , where they

play action a3
1, a4

1 , respectively, and stay there if it is a best reply. If players 3 and 4
get to the states s3

k(3) and s4
k(4), then the pure Nash equilibrium will never be reached.

For a larger number of actions the same proof works, if we take all the actions
ai

2, . . . , ai
mi to be identical to the action ai

2 in this proof.
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For a larger number of players we take the utility functions of players 2, 3, and 4
to be the same as in the case of 4 players and independent of the actions of the other
player (1, 5, . . . , n). And in the game �1 the utility functions of players 5, . . . , n will
be 1 if players 3 and 4 played the same action, and 0 otherwise. �

4.2 Deterministic transitions and mixed actions

We will show that there exists an uncoupled PN-mapping such that the range for
player i is (2mi + 3)-automata. Clearly, every deterministic-transition automaton is a
particular case of stochastic-transition automaton, and so Theorem 10 holds here as
well.

Theorem 11 Let ki ≥ 2mi + 3. Then for each player i there exists an uncoupled
strategy mapping to ki -automata with deterministic transitions and mixed actions,
that guarantees almost sure convergence of play to a pure Nash equilibrium of the
stage game in every game where such an equilibrium exists.

Proof We introduce the mappings ϕi (ui ) = �i given a payoff function U = (u1,

. . . , un):
As in Theorem 8, we will use the states {si

1,0, si
1,1, si

2.0, si
2,1 . . . , si

mi ,0
, si

mi ,1
}. These

are the same states, exapt that their transitions are deterministic. Denote the states of
�i by � i = {si

1, si
2, si

3} ∪ {si
1,0, si

1,1, si
2.0, si

2,1 . . . , si
mi ,0

, si
mi ,1

}.
The states si

j,l are similar to the states si
j,l in Theorem 8. In every state si

j,l player i

plays action ai
j . If ai

j is a best reply to what the other players played, and player i fits,

then player i stays on it (exactly as before). Otherwise he moves to si
1.

In the state si
1 player i plays

(
1

mi , . . . ,
1

mi

)
. If he played ai

1 he stays in si
1. If he

played ai
2 he moves to si

2. If he played ai
j j �= 1, 2 he moves to si

j,0.

In the state si
2 player i plays

(
1

mi , . . . ,
1

mi

)
. If he played ai

3 he stays in si
1. If he

played ai
4 he moves to si

3. If he played ai
j j �= 3, 4 he moves to si

j,1.

In the state si
3 player i plays

(
1

mi , . . . ,
1

mi

)
. If he played ai

1 he moves to si
1,0. If he

played ai
2 he moves to si

2,0. If he played ai
3 he moves to si

3,1. If he played ai
4 he moves

to si
4,1. If he played ai

5 he stays in si
3. If he played ai

j j ≥ 6, he moves to si
1.

Let the starting states be si
0 := si

1.
The proof of the claim that this mapping is a PN-mapping is proven similarly to

Theorem 7 with 2 players. �

4.3 Deterministic transitions and pure actions

We will show that there exists an uncoupled PN-mapping such that the range for player
i is O(mi + n log n)-automata. Clearly, every deterministic-transition automaton is a
particular case of a stochastic-transition automaton, and so Theorem 10 holds here as
well.
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Lemma 12 For every m, n ∈ N there exist n different prime numbers p1, . . . , pn,
pi ≥ m for every i , such that pi = O(m + n log n) for every i .

Proof We know that in {1, 2, . . . , m} there exist a maximum of α m
log m prime numbers

(α is a constant).

We also know that in
{

1, 2, . . . , β(n + α m
log m ) log(n + α m

log m )
}

there exist a min-

imum of n + α m
log m prime numbers (β is a constant).

Therefore, in
{

m + 1, m + 2, . . . , β(n + α m
log m ) log(n + α m

log m )
}

there exist a

minimum of n prime numbers, and we can take different prime numbers p1, . . . , pn

s.t. ∀i : m < pi < β
(

n + α m
log m

)
log

(
n + α m

log m

)
.

To complete the proof we will show that β
(

n + α m
log m

)
log

(
n + α m

log m

)
=

O(m + n log n).

– If m ≤ n then

β

(
n+α

m

log m

)
log

(
n+α

m

log m

)
= O((1+α)n log((1+α)n)) = O(n log n)

= O(m + n log n).

– If n < m ≤ n log n, then

m

log m
≤ 2n

log n

2 log m
= 2n

log n

log m2 ≤2n �⇒ β

(
n + α

m

log m

)
log

(
n + α

m

log m

)

= O((1 + 2α)n log((1 + 2α)n)) = O(n log n) = O(m + n log n).

– If n log n < m ≤ n2, then

n ≤ m

log m

log m

log n
≤ m

log m

log n2

log n

≤ 2
m

log m
�⇒ β

(
n + α

m

log m

)
log

(
n + α

m

log m

)

= O

(
(2 + α)

m

log m
log

(
(2 + α)

m

log m

))

= O

(
m

log m
(log m − log log m)

)
= O(m) = O(m + n log n).

– If n2 < m, then

β

(
n+α

m

log m

)
log

(
n+α

m

log m

)
=O

(
(1+α)

m

log m
log

(
(1+α)

m

log m

))

= O

(
m

log m
(log m − log log m)

)
= O(m) = O(m + n log n).
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In any case β
(

n + α m
log m

)
log

(
n + α m

log m

)
= O(m + n log n). �

Theorem 13 Let ki ≥ O(m + n log n), where m = max{mi }. Then for each player
i there exists an uncoupled strategy mapping to ki -automata with deterministic tran-
sitions and pure actions, that guarantees almost sure convergence of play to a pure
Nash equilibrium of the stage game in every game where such an equilibrium exists.

Proof Let p1, . . . , pn be different prime numbers s.t. ∀i pi > mi .6 By Lemma 12 we
can take p1, . . . , pn s.t. pi = O(m + n log n).

We will show that there exists a PN-mapping (ϕ1, . . . , ϕn) such that the range of
ϕi is (4pi + 3)-automata, and in doing so we will have concluded our proof.

We introduce the mappingsϕi (ui )= �i , given a payoff function U = (u1, . . . , un):
The automaton �i consists of, starting state, a state after that and pi regions. The

first region has five states. The other regions have the same structure of four states.
Denote the pi regions of �i by Qi

1 = {si
j,1, si

j,2, . . . , si
j,5}, and Qi

j = {si
j,1, . . . , si

j,4}
for j = 2, . . . , pi . Denote the starting state by si

0 := si
1 and the state after it by si

2.
si

1: player i plays ai
1. If (a1

1, . . . , an
1 ) was played he moves to si

1,1 (the starting state

of Qi
1). Otherwise, if ai

1 is a best reply, then he stays at si
1; if ai

1 is not a best reply,
then he moves to si

2.
si

2: player i plays ai
2 and in any case moves to si

1,1 (the starting state of Qi
1).

These two starting states guarantee us two things: First, if the equilibrium is
(a1

1, . . . , an
1 ) then the players will stay there. Second: if it is not, then all the players get

to si
1,1 simultaneously. We check the actions (a1

1, . . . , an
1 ) separately, because in the

continuation of the construction of the automata we will use the fact that (a1
1, . . . , an

1 )

is not an equilibrium.
The regions Qi

1, Qi
2, . . . , Qi

pi
are arranged in a circle when the players move to

the region Qi
j+1(mod pi )

from the previous region Qi
j .

For j �= 1 the construction of Qi
j is the following:

The starting state si
j,1: player i plays ai

j . If player i +1(mod n) played7 ai+1
1 , player

i moves to si
j,2; otherwise he moves to si

j,3. If (a1
1, . . . , an

1 ) was played, he moves to8

si
j+1,1.

Si
j,2: player i plays ai

j . If it is a best reply, and also player i +1 played ai+1
1 (the same

action as before) then player i stays there. Otherwise he moves to si
j,4. If (a1

1, . . . , an
1 )

was played, he moves to si
j+1,1.

6 Every player i has to choose his number pi to construct his automaton. But he doesn’t know the numbers
of the other players: p1, . . . , pi−1, pi+1, . . . , pn . Yet we have to ensure that every player will choose a
different number. Therefore, we have to define a choice function: χ : N

n → (P RI M E)n , known to the
players. The choice function chooses for every (m1, . . . , mn) n prime numbers: χ(m1, . . . , mn), and then
every player i will choose the number pi := (χ(m1, . . . , mn))i .
As an example of choice function, let {wk }∞k=1 be the sequence of all the prime numbers in increasing order.

For every i let k(i) be the minimal number such that

{
wk(i) ≥ mi

k(i) = i(mod n)
, and define pi := wk(i).

7 From here till the end of the proof, we will write i ± 1 instead of i ± 1(mod n).
8 From here till the end of the proof, we will write j + 1 instead of j + 1(mod pi ).
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si
j,3: player i plays ai

j . If it is a best reply, and also player i+1 played ai+1
k k ≥ 2 (the

same action as before), player i stays there. Otherwise he moves to si
j,4. If (a1

1, . . . , an
1 )

was played, he moves to si
j+1,1.

si
j,4: player i plays ai

1. If (a1
1, . . . , an

1 ) was played, he moves to si
j+1,1; otherwise

he stays at si
j,4.

For j = 1 the construction of Qi
1 is quite similar. The only difference is that the

state si
j,4, changed by two si

1,4, si
1,5:

si
1,4: player i plays ai

2. In any case, he moves to si
1,5.

si
1,5: player i plays ai

1. If (a1
1, . . . , an

1 ) was played, he moves to si
j+1,1. Otherwise

he stays in si
1,5.

For mi < j ≤ pi let Qi
j := Qi

mi denoted that the act in every si
j,k mi < j ≤

pi , k = 1, . . . , 4, is identical to the act in si
mi ,k

.

In the state si
j,1 player i informs player i − 1 what he played.

If the players located at Q1
k1

, . . . , Qn
kn

, and (a1
k1

, . . . , an
kn

) is an equilibrium, then

all the players will stay at si
j,2, si

j,3.

In the state si
j,4 player i plays the “opposite” action than he played before and

informs player i − 1 that it is not an equilibrium.
In the state si

j,4 for j �= 1, and si
1,5 for j = 1 player i waits until all the are informed

that it is not an equilibrium. Then all the players can move to their the next region
simultaneously.

To summarize, if the players are located at Q1
k1

, . . . , Qn
kn

, and (a1
k1

, . . . , an
kn

) is an
equilibrium, then all the players stay at the equilibrium all the time. Otherwise they
all will move to Q1

k1+1, . . . , Qn
kn+1 simultaneously.

Since the players move from Qi
j to Qi

j+1 simultaneously, by the Chinese Remain-

der theorem it follows that they will visit every (Q1
k1

, . . . , Qn
kn

): 1 ≤ ki ≤ mi , until

they become stuck in some (Q1
k1

, . . . , Qn
kn

) for which (a1
k1

, . . . , an
kn

) is an equilibrium.
Therefore, if a pure equilibrium exists, the automata will eventually reach it. �

Appendix A. Proof of Theorem 6

Proof We define the mapping ϕ as follows:
Given a game U = (u1, u2), the automaton ϕ1(u1) = �1 ∈ A1 is constructed as

follows:
Denote ϕ1(u1) = �1 = 〈�1, s1

0, f 1, g1〉 when �1 is a m1-automaton. We denote
the states of �1 by �1 = {s1

1 , . . . , s1
m1}.

s1
0 := s1

1 .
In state s1

i player 1 plays action a1
i . He stays in this state if a1

i is a best reply to
the action of player 2; otherwise he moves randomly to any one of the m1 states with
equal probability 1

m1 .

In order to define the mapping ϕ2, we start by considering the following action b2 of
player 2: for every action a2

j of player 2, let #B R(a2
j ) be the number of 1s in the column
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a2
j in the table ũ2; i.e., #B R(a2

j ) := |{a1
i |̃u2(a1

i , a2
j ) = 1}| = |{a1

i |a2
j is a best reply to

a1
i }|. Consider an action a2

k with a maximal number of 1s in its column: #B R(a2
k ) =

max{#B R(a2
j )|a2

j ∈ A2}. Without loss of generality assume k = 1; i.e., the first

column of ũ2 has no fewer 1s than any other column. Denote this action by b2 := a2
1 .

Now we construct the automaton ϕ2(u2) = �2 ∈ A2 as follows:
Denote �2 =< �2, s2

0, f 2, g2 > when �2 is a (m2 + 1)-automaton. We denote
the states of �2 by �2 = {s2

0 , s2
1 , . . . , s2

m1}.
s2

0 := s2
0 .

In the state s2
0 , player 2 plays the action b2, and moves to any of the m2 + 1 states

with probability 1
m2+1

.

In the states s2
i , i ≥ 1, player 2 plays action a2

i . He stays in this state if a2
i is a best

reply to the action of player 1; otherwise he moves randomly to any one of the m2 + 1
states with equal probability 1

m2+1
.

Now we will prove that (ϕ1, ϕ2) is PN-mapping. Let us consider two cases:

Case 1 For every i = 1, . . . , m1 : ũ2(a1
i , b2) = 1; i.e., b2 is a dominant action.

We partition the space �1 × �2 of the automata states into four regions:

P1 := {(s1
i , s2

j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 : ũ1(a1
i , a2

j ) = 1, ũ2(a1
i , a2

j ) = 1}; i.e.,

in this case (a1
i , a2

j ) is a pure Nash equilibrium.

P2 := {(s1
i , s2

0 ), 1 ≤ i ≤ m1}
P3 := {(s1

i , s2
j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 : ũ2(a1

i , a2
j ) = 0}

P4 := {(s1
i , s2

j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 : ũ1(a1
i , a2

j ) = 0, ũ2(a1
i , a2

j ) = 1}
These four regions clearly cover the space �1 × �2 (because player 2 can be in

the state s2
0 (P2) or in any other state (P1 ∪ P3 ∪ P4). The action of player 2 can be a

best reply (P1 ∪ P4) or not (P3). If it is a best reply, then the action of player 1 can be
a best reply (P1) or not (P4).)

Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state in
P1 is absorbing. We will prove that there is a positive probability of reaching a state
from P1, in finitely many periods, from any other state s ∈ �1 × �2.

s = (s1
i , s2

0 ) ∈ P2: The actions are (a1
i , b2) = ( f 1(s1

i ), f 2(s2
0 )). Wether a1

i is a best
reply or not, player 1 has a positive probability (1 or 1

m1 correspondingly) to move to

s1
k , where a1

k is a best reply of player 1 to b2. Player 2 will move to the state s2
1 with

probability 1
m2+1

, where b2 is a best reply to every action of player 1, in particular to

a1
k . Now (s1

k , s2
1 ) ∈ P1.

s = (s1
i , s2

j ) ∈ P3: The actions are (a1
i , a2

j ); a2
j is not a best reply. Therefore, player

2 moves to s2
0 with probability 1

m2+1
. Denote the state to which player 1 moves by s1

k .

Then (s1
k , s2

0 ) ∈ P2.
s = (s1

i , s2
j ) ∈ P4: The actions are (a1

i , a2
j ); a2

j is a best reply, a1
i is not. Therefore,

player 2 stays in s2
j , and player 1 move to s1

k with probability 1
m1 , where a1

k is a best

reply of player 1 to a2
j . Now either (s1

k , s2
j ) ∈ P1 or (s1

k , s2
j ) ∈ P3, depending on

whether a2
j is a best reply to a1

k .
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In all the cases there is a positive probability of reaching an absorbing state in P1
in at most 3 steps.

Case 2 There exists an action of player 1, say a1
l , such that b2 is not a best reply to

it; i.e., there exists l = 1, . . . , m1 such that ũ2(a1
l , b2) = 0.

Before proving the Theorem, we will prove the following simple claim about the
configuration of 0s and 1s in ũ2. This claim will be useful later.

Claim 1 If there exists l = 1, . . . , m1, such that ũ2(a1
l , b2) = 0, then:

(a) Let a2
j ∈ A2. Then there exists a1

i ∈ A1 such that ũ2(a1
i , a2

j ) = 0.

(b) Let a1
i ∈ A1. Then there exists a2

j ∈ A2 such that ũ2(a1
i , a2

j ) = 1.

(c) Let a1
i ∈ A1, a2

j ∈ A2, such that

{
ũ2(a1

i , a2
j ) = 1

ũ2(a1
i , b2) = 0

. Then there exists a1
k ∈ A1

such that

{
ũ2(a1

k , a2
j ) = 0

ũ2(a1
k , b2) = 1

.

Proof (a) Otherwise there would be a column in ũ2 that includes 1s only. By the
assumption in this case there exist i = 1, . . . , m1, such that ũ2(a1

i , b2) = 0,
which contradicts the fact that b2 is the column with the maximal number of 1s.

(b) There is some action a2
j ∈ A2 that is a best reply to the action a1

i ∈ A1. This

action satisfies ũ2(a1
i , a2

j ) = 1.
(c) Otherwise the number of 1s in the j-th column would be bigger than in the first

column. �
We partition the space �1 × �2 of the automata states into regions:

For every x, y, z ∈ {0, 1} put:

Pxyz := {(s1
i , s2

j ), 1≤i≤m1, 1≤ j≤m2 : ũ1(a1
i , a2

j ) = x, ũ2(a1
i , a2

j ) = y,

ũ2(a1
i , b2) = z}

and

Qxy := {(s1
i , s2

0 ), 1 ≤ i ≤ m1 : ũ1(a1
i , b2) = x, ũ2(a1

i , b2) = y}.

In words Q for a region we mean that player 2 is in the state s2
0 , and by P we mean

that he is not. There are three indices for region P , and two Boolean indices for region
Q. The first index in P, Q corresponds to player 1 and indicates whether his action is
a best reply (1) or not (0). The second index in P, Q corresponds similarly to player
2. The third index in P indicates whether action b2 is a best reply to the action that
player 1 played (1) or not (0).

Clearly ( ∪
x,y,z∈{0,1}Pxyz) = �1 × (�2\{s2

0 }) and ( ∪
x,y∈{0,1}Qxy) = �1 ×{s2

0 }, since

we are considering all the possibilities. Therefore, ( ∪
x,y,z∈{0,1}Pxyz)∪ ( ∪

x,y∈{0,1}Qxy) =
�1 × �2.
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Consider the region P11•. By the defn of Pxyz we can see that P11• = {(s1
i , s2

j ), 1 ≤
i ≤ m1, 1 ≤ j ≤ m2 : ũ1(a1

i , a2
j ) = ũ2(a1

i , a2
j ) = 1} = {(s1

i , s2
j ), 1 ≤ i ≤ m1, 1 ≤

j ≤ m2: (a1
i , a2

j ) is a pure Nash equilibrium}.
Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state

in P11• is absorbing. If we can show that a state from P11• is reached with positive
probability, in finitely many periods, from all the other regions that we have already
defined, then we will have concluded our proof.

P00•: This is the region of all the states where the actions of both players are not
a best reply, and so both players move randomly over all their states, therefore, they
reach a pure Nash equilibrium with probability 1

m1 · 1
m2+1

; i.e., they reach P11•.

Q0•: Player 1’s action is not a best reply, and player 2 is in state s2
0 . Therefore,

as before both players move randomly over all their states, and they reach P11• with
probability 1

m1 · 1
m2+1

, as before.
Q11: Player 1’s action is a best reply and so he stays in the same state. Player 2 is

in state s2
0 and so he moves randomly over all his states. Player 2 will move to s2

1 with
probability 1

m2+1
, and they get to P11•.

P101: Player 1 stays, and player 2 randomizes. Since ũ2(a1
i , b2) = 1 player 2 will

move to s2
0 with probability 1

m2+1
, and they get to Q01 or Q11.

P010: Player 1 randomizes and player 2 stays. By claim 1(c) there exists a1
k ∈ A1

such that

{
ũ2(a1

k , a2
j ) = 0

ũ2(a1
k , b2) = 1

. Player 1 will move to s1
k with probability 1

m1 , and they

get to P001 or P101.
P100: Player 1 stays and player 2 randomizes. By claim 1(b) there exists a2

j ∈ A2

such that ũ2(a1
i , a2

j ) = 1. Player 2 will move to s2
j with probability 1

m2+1
. Note that a1

i

does not change and so still ũ2(a1
i , b2) = 0 and they get to P0,1,0 or P110 (i.e., P•10).

P011: Player 1 randomizes and player 2 stays. By claim 1(a) there exists a1
k ∈ A1

such that ũ2(a1
k , a2

j ) = 0. Player 1 will move to s1
k with probability 1

m1 , and they get
to P00• ∪ P100 ∪ P101 = P•0•.

Q10: Player 1 stays and player 2 randomizes. Player 2 moves to s2
1 with probability

1
m2+1

, and they get to P100.
Thus, we have covered all the regions and shown that in at most 5 periods there is

a positive probability of reaching the absorbing state P11•. The regions cover all the
space �1 × �2, and so the automata will reach a pure Nash equilibrium when such
an equilibrium exists with probability 1. �

Appendix B. Proof of Theorem 7

Proof We define the mapping ϕ as follows:
Given a game U = (u1, u2), the automaton ϕ1(u1) = �1 ∈ A1 is constructed as

follows:
Denote the states of �i by � i = {si

00, si
01, si

1, . . . , si
m1}.

In the state si
j player i plays action ai

j . He stays in this state if ai
j is the best reply

to the action of player 2; otherwise he moves to si
00.
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In the state si
00 player i plays

(
1

mi , . . . ,
1

mi

)
. If he played ai

1, he stays in si
00. If he

played ai
2, he moves to si

01. If he played ai
j , j ≥ 3, he moves to si

j .

In the state si
01 player i plays

(
1

mi , . . . ,
1

mi

)
. If he played ai

1, he moves to si
1. If he

played ai
2, he moves to si

2. If he played ai
3, he stays in si

01. If he played ai
j j ≥ 4, he

moves to si
00.

Let the starting state be si
0 := si

00.
The proof that these mapping is PN-mapping requires consideration of four cases

separate: if a pure Nash equilibrium is (a1
k , a2

l ) then we will consider the cases {k ≤
2, l ≤ 2}, {k ≤ 2, l > 2}, {k > 2, l ≤ 2}, and {k > 2, l > 2}. We will prove only ona
case, says {k ≤ 2, l > 2}, since the proofs for the other cases is similar.

We partition the space �1 × �2 of the automata states into regions:
P1 := {(s1

i , s2
j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2: (a1

i , a2
j ) is a pure Nash equilibrium}

P2 := {(s1
01, s2

00)}
P3 := {(s1

00, s2
00) ∪ (s1

00, s2
01) ∪ (s1

01, s2
01)}

For every x ∈ {00, 01}, y ∈ {≤,>} put:

Qx,y := {(s1
x , s2

j ), 1 ≤ j ≤ m2: there exist

{
i ≤ 2 if y is ≤
i > 2 if y is >

such that a2
j is not a

best reply to a1
i }

For every x ∈ {≤,>}, y ∈ {00, 01} put:

Qx,y := {(s1
i , s2

y), 1 ≤ i ≤ m1: there exist

{
j ≤ 2 if x is ≤
j > 2 if x is >

such that a1
i is not a

best reply to a2
j }

P4 := {(s1
i , s2

j ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2: (a1
i , a2

j ) is not a pure Nash equilibrium}
Clearly, P2 ∪ P3 = {s1

00, s1
01}×{s2

00, s2
01}, P1 ∪ P4 = {s1

1 , . . . , s1
m1}×{s2

1 , . . . , s2
m2},

∪
x∈{00,01},y∈{≤,>}Qx,y = {s1

00, s1
01} × {s2

1 , . . . , s2
m2}, ∪

x∈{≤,>},y∈{00,01}Qx,y = {s1
1 , . . . ,

s1
m1} × {s2

00, s2
01}. Therefore, the union of all the regions is �1 × �2.

Players 1 and 2 stay at the same state if their action is a best reply; i.e., each state in
P1 is absorbing. If we can show that a state from P1 is reached with positive probabil-
ity, in finitely many periods, from all the other regions that we have already defined,
then we will have concluded our proof.

P2: Both players randomize. They play (a1
k , a2

l ) with positive probability, and then
they get to P1.

P3: Both players randomize. From every one of the states there is a positive prob-
ability to get to P2. For example, if they are in the states (s1

00, s2
00), then if they play

(a1
2, a2

1) they move to (s1
01, s2

00) ∈ P2.
Q00,≤: Player 1 randomizes. With positive probability the actions are (a1

i , a2
j ) such

that a2
j is not a best reply to a1

i , so player 1 stays at {s1
00, s1

01} and the action of player

2 is not a best reply. Therefore, player 2 moves to s2
00, and so (s1

00, s2
00), (s

1
01, s2

00) ∈
P2 ∪ P3.

Q01,≤: Player 1 randomizes. With positive probability the actions are (a1
4, a2

j ). If

a2
j is a best reply to a1

4 , they move to (s1
00, s2

j ) ∈ Q00,≤. Otherwise they move to

(s1
00, s2

00).
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Q01,>, Q00,>: Similar to Q00,≤, Q01,≤
Q≤,00,Q≤,01,Q>,01,Q>,00: Symmetric to Q00,≤,Q01,≤,Q01,>,Q00,>

P4: The action of one of the players is not a best reply to the action of the other,
and so one of them will move to the state s00 (i.e., s1

00 or s2
00). Hence, they get to one

of the previous regions.
We have covered all the regions and shown that in at most 5 periods there is posi-

tive probability of reaching the absorbing state P11•. The regions cover all the space
�1 × �2; therefore, the mapping is PN-mapping.

In the other cases where the pure Nash equilibrium (a1
k , a2

l ) satisfies {k ≤ 2, l ≤ 2},
{k > 2, l ≤ 2}, or {k > 2, l > 2} the only difference is in how the regions P2 and P3
are defined. For example, for the case {k ≤ 2, l ≤ 2}, P2 and P3 will be defined by
P2 := {(s1

01, s2
01)} and P3 := {(s1

00, s2
00) ∪ (s1

00, s2
01) ∪ (s1

01, s2
00)}. �
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