# Walras-Bowley Lecture 2003 

## Sergiu Hart

This version: September 2004

# ADAPTIVE HEURISTICS A Little Rationality Goes a Long Way 

## Sergiu Hart

## Center for Rationality,

Dept. of Economics, Dept. of Mathematics
The Hebrew University of Jerusalem
http://www.ma.huji.ac.il/~hart

- Most of this talk is based on joint work with Andreu Mas-Colell
(Universitat Pompeu Fabra, Barcelona)
- Most of this talk is based on joint work with Andreu Mas-Colell
(Universitat Pompeu Fabra, Barcelona)
- All papers - and this presentation - are available on my home page
http://www.ma.huji.ac.il/~hart
http://www.ma.huji.ac.il/~hart
http://www.ma.huji.ac.il/~hart
- Econometrica (2000)
- Journal of Economic Theory (2001)
- Economic Essays (2001)
- Games and Economic Behavior (2003)
- American Economic Review (2003)


## PART I

## Introduction: Dynamics

Dynamics

Dynamics

## "Learning"

"Learning"

- START: prior beliefs
- STEP:
- observe
- update (Bayes)
- optimize (best-reply)
- Repeat

Dynamics

## "Evolution"

## Dynamics

## "Evolution"

- populations
- each individual $\leftrightarrow$ fixed action ("gene")
- frequencies of each action in the population $\leftrightarrow$ mixed strategy


## Dynamics

## "Evolution"

- populations
- each individual $\leftrightarrow$ fixed action ("gene")
- frequencies of each action in the population $\leftrightarrow$ mixed strategy
- Change:
- Selection
higher payoff $\Rightarrow$ higher frequency
- Mutation
random and relatively rare


## "Adaptive Heuristics"

## Dynamics

## "Adaptive Heuristics"

- "rules of thumb"
- myopic
- simple
- stimulus response, reinforcement
- behavioral, experiments
- non-Bayesian


## Dynamics

"Adaptive Heuristics"

- "rules of thumb"
- myopic
- simple
- stimulus response, reinforcement
- behavioral, experiments
- non-Bayesian


## Example: Fictitious Play

## Dynamics

"Adaptive Heuristics"

- "rules of thumb"
- myopic
- simple
- stimulus response, reinforcement
- behavioral, experiments
- non-Bayesian


## Example: Fictitious Play

(Play optimally against the empirical distribution
of past play of the other player)


Rationality

## Rationality



Rationality

## Rationality



## Can simple adaptive heuristics lead to sophisticated rational behavior ?

## Game

## $N$-person game in strategic (normal) form

- Players

$$
i=1,2, \ldots, N
$$

## Game

## $N$-person game in strategic (normal) form

- Players

$$
i=1,2, \ldots, N
$$

- For each player $i$ : Actions

$$
s^{i} \text { in } S^{i}
$$

## Game

$N$-person game in strategic (normal) form

- Players

$$
i=1,2, \ldots, N
$$

- For each player $i$ : Actions

$$
s^{i} \text { in } S^{i}
$$

- For each player $\boldsymbol{i}$ : Payoffs (utilities)

$$
u^{i}(s) \equiv u^{i}\left(s^{1}, s^{2}, \ldots, s^{N}\right)
$$

## Dynamics

## Dynamics

- Time

$$
t=1,2, \ldots
$$

## Dynamics

## Dynamics

- Time

$$
t=1,2, \ldots
$$

- At time $t$ each player $i$ chooses an action

$$
s_{t}^{i} \text { in } S^{i}
$$

## PART II

## Regret Matching

## Advertisement

# DON'T YOU FEEL A PANG OF REGRET? <br> 47.15\% YIELD 



Don't wait! Ask your broker today

## Regret Matching

## REGRET MATCHING =

Switch next period to a different action with a probability that is proportional to the regret for that action

## REGRET MATCHING =

Switch next period to a different action with a probability that is proportional to theregret for that action

REGRET = increase in payoff had such a change always been made in the past

Regret

- $U=$ average payoff up to now


## Regret

- $U=$ average payoff up to now
- $V(k)=$ average payoff if action $k$ had been played instead of the current action $j$ every time in the past that $j$ was played


## Regret

- $U=$ average payoff up to now
- $\boldsymbol{V}(\boldsymbol{k})=$ average payoff if action $\boldsymbol{k}$ had been played instead of the current action $j$ every time in the past that $j$ was played
- $\boldsymbol{R}(k)=[V(k)-U]_{+}=$regret for action $k$


## Regret

- $U=$ average payoff up to now
- $V(k)=$ average payoff if action $k$ had been played instead of the current action $j$ every time in the past that $j$ was played
- $\boldsymbol{R}(k)=[V(k)-U]_{+}=$regret for action $k$

$$
\begin{aligned}
\boldsymbol{R}(k) & \equiv \boldsymbol{R}_{T}^{i}(j \rightarrow k)= \\
& {\left[\frac{1}{T} \sum_{t \leq T: s_{t}^{i}}=j\left(\boldsymbol{u}^{i}\left(k, s_{t}^{-i}\right)-u^{i}\left(s_{t}\right)\right)\right]_{+} }
\end{aligned}
$$

## Regret

- $U=$ average payoff up to now
- $V(k)=$ average payoff if action $k$ had been played instead of the current action $j$ every time in the past that $j$ was played
- $\boldsymbol{R}(k)=[V(k)-U]_{+}=$regret for action $k$

$$
\begin{aligned}
\boldsymbol{R}(\boldsymbol{k}) & \equiv \boldsymbol{R}_{T}^{i}(j \rightarrow \boldsymbol{k})= \\
& {\left[\frac{1}{T} \sum_{t \leq T: s_{t}^{i}}=j\left(\boldsymbol{u}^{i}\left(k, s_{t}^{-i}\right)-u^{i}\left(s_{t}\right)\right)\right]_{+} }
\end{aligned}
$$

## Regret

- $U=$ average payoff up to now
- $V(k)=$ average payoff if action $k$ had been played instead of the current action $j$ every time in the past that $j$ was played
- $\boldsymbol{R}(k)=[V(k)-U]_{+}=$regret for action $k$

$$
\begin{aligned}
\boldsymbol{R}(\boldsymbol{k}) & \equiv \boldsymbol{R}_{\boldsymbol{T}}^{i}(j \rightarrow \underbrace{\boldsymbol{k})=} \\
& {\left[\frac{1}{T} \sum_{t \leq T:} s_{t}^{i}=j\left(u^{i}\left(k, s_{t}^{-i}\right)-u^{i}\left(s_{t}\right)\right)\right]_{+} }
\end{aligned}
$$

## Regret

- $U=$ average payoff up to now
- $\boldsymbol{V}(\boldsymbol{k})=$ average payoff if action $\boldsymbol{k}$ had been played instead of the current action $j$ every time in the past that $j$ was played
- $\boldsymbol{R}(k)=[V(k)-U]_{+}=$regret for action $k$

$$
\begin{aligned}
\boldsymbol{R}(\boldsymbol{k}) & \equiv \boldsymbol{R}_{\boldsymbol{T}}^{i}(j \rightarrow \boldsymbol{k})= \\
& {[\frac{1}{T} \sum_{t \leq T}: \underbrace{i}_{t}=j} \\
& \left.\left(u^{i}\left(k, s_{t}^{-i}\right)-u^{i}\left(s_{t}\right)\right)\right]_{+}
\end{aligned}
$$

## Regret

- $U=$ average payoff up to now
- $V(k)=$ average payoff if action $k$ had been played instead of the current action $j$ every time in the past that $j$ was played
- $\boldsymbol{R}(k)=[V(k)-U]_{+}=$regret for action $k$

$$
\begin{aligned}
\boldsymbol{R}(k) & \equiv \boldsymbol{R}_{T}^{i}(j \rightarrow k)= \\
& {\left[\frac{1}{T} \sum_{t \leq T: s_{t}^{i}}=j\left(\boldsymbol{u}^{i}\left(k, s_{t}^{-i}\right)-u^{i}\left(s_{t}\right)\right)\right]_{+} }
\end{aligned}
$$

## Regret Matching

## Next period play:

- Switch to action $k$ with a probability that is proportional to the regret $\boldsymbol{R}(\boldsymbol{k})$ (for $k \neq j$ )


## Regret Matching

## Next period play:

- Switch to action $k$ with a probability that is proportional to the regret $\boldsymbol{R}(\boldsymbol{k})$ (for $k \neq j$ )
- Play the same action $j$ of last period with the remaining probability


## Regret Matching

## Next period play:

- Switch to action $k$ with a probability that is proportional to the regret $\boldsymbol{R}(\boldsymbol{k})$ (for $\boldsymbol{k} \neq j$ )
- Play the same action $j$ of last period with the remaining probability

$$
\begin{array}{ll}
\sigma(k) \equiv \sigma_{T+1}^{i}(k)=c R(k), & \text { for } k \neq j \\
\sigma(j) \equiv \sigma_{T+1}^{i}(j)=1-\sum_{k \neq j} c R(k)
\end{array}
$$

## Regret Matching

## Next period play:

- Switch to action $k$ with a probability that is proportional to the regret $R(k)$ (for $k \neq j$ )
- Play the same action $j$ of last period with the remaining probability

$$
\begin{aligned}
& \sigma(k) \equiv \sigma_{T+1}^{i}(k)=c R(k), \quad \text { for } k \neq j \\
& \sigma(j) \equiv \sigma_{T+1}^{i}(j)=1-\sum_{k \neq j} c R(k)
\end{aligned}
$$

- $c=$ a fixed positive constant (so that the probability of not switching is $>0$ )

Regret Matching Theorem

## Theorem

If all players play Regret Matching
then the joint distribution of play converges to the set of
CORRELATED EQUILIBRIA of the game

## Joint Distribution of Play

Joint distribution of play $z_{T}=$
The relative frequencies that the $N$-tuples of actions have been played up to time $\boldsymbol{T}$

## Joint Distribution of Play

Joint distribution of play $z_{T}=$
The relative frequencies that the $N$-tuples of actions have been played up to time $\boldsymbol{T}$


## Joint Distribution of Play

Joint distribution of play $z_{T}=$
The relative frequencies that the $N$-tuples of actions have been played up to time $\boldsymbol{T}$


$$
T=1
$$

## Joint Distribution of Play

Joint distribution of play $z_{T}=$
The relative frequencies that the $N$-tuples of actions have been played up to time $\boldsymbol{T}$


$$
T=1
$$

| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |

## Joint Distribution of Play

Joint distribution of play $z_{T}=$
The relative frequencies that the $N$-tuples of actions have been played up to time $\boldsymbol{T}$


$$
T=2
$$

| 0 | 0 | $1 / 2$ |
| :---: | :---: | :---: |
| $1 / 2$ | 0 | 0 |

## Joint Distribution of Play

Joint distribution of play $z_{T}=$
The relative frequencies that the $N$-tuples of actions have been played up to time $\boldsymbol{T}$


$$
T=3
$$

| 0 | 0 | $2 / 3$ |
| :---: | :---: | :---: |
| $1 / 3$ | 0 | 0 |

## Joint Distribution of Play

Joint distribution of play $z_{T}=$
The relative frequencies that the $N$-tuples of actions have been played up to time $\boldsymbol{T}$


| $3 / 10$ | 0 | $2 / 10$ |
| :---: | :---: | :---: |
| $1 / 10$ | $3 / 10$ | $1 / 10$ |

## Joint Distribution of Play

Note 1: The fact that the players randomize independently at each period does not imply that the joint distribution is independent!


## Joint Distribution of Play

Note 1: The fact that the players randomize independently at each period does not imply that the joint distribution is independent!

Note 2: Players observe the joint distribution (the history of play)

## Joint Distribution of Play

Note 1: The fact that the players randomize independently at each period does not imply that the joint distribution is independent!

Note 2: Players observe the joint distribution (the history of play)

Note 3: Players react to the joint distribution (patterns, "coincidences", communication, signals, ...)

## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Examples:


## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Examples:
- Independent signals


## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Examples:
- Independent signals $\Leftrightarrow$ Nash equilibrium


## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Examples:
- Independent signals $\Leftrightarrow$ Nash equilibrium
- Public signals ("sunspots")


## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Examples:
- Independent signals $\Leftrightarrow$ Nash equilibrium
- Public signals ("sunspots") $\Leftrightarrow$ convex combinations of Nash equilibria


## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Examples:
- Independent signals $\Leftrightarrow$ Nash equilibrium
- Public signals ("sunspots") $\Leftrightarrow$ convex combinations of Nash equilibria
- Butterflies play the Chicken Game ("Speckled Wood" Pararge aegeria)


## Correlated Equilibria

## "Chicken" game

|  | LEAVE | STAY |
| :---: | :---: | :---: |
| LEAVE | $\mathbf{5 , 5}$ | $\mathbf{3 , 6}$ |
| STAY | $\mathbf{6 , 3}$ | $\mathbf{0 , 0}$ |
|  |  |  |

## Correlated Equilibria

## "Chicken" game

|  | LEAVE | STAY |
| :---: | :---: | :---: |
| LEAVE | 5, 5 | 3, 6 |
| STAY | 6, 3 | 0, 0 |

## Correlated Equilibria

## "Chicken" game


another Nash equilibrium

## Correlated Equilibria

## "Chicken" game

|  | LEAVE Stay |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| LEAVE | 5, 5 | 3, 6 | 0 | 1/2 |
| STAY | 6, 3 | 0, 0 | 1/2 | 0 |

a (publicly) correlated equilibrium

## Correlated Equilibria

## "Chicken" game


another correlated equilibrium

- after signal L play LEAVE
- after signal s play STAY


## Correlated Equilibrium

A Correlated Equilibrium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)

- Examples:
- Independent signals $\Leftrightarrow$ Nash equilibrium
- Public signals ("sunspots") $\Leftrightarrow$ convex combinations of Nash equilibria
- Butterflies play the Chicken Game ("Speckled Wood" Pararge aegeria)


## Correlated Equilibrium

## A Correlated Equilibrium is a Nash equilibrium

 when the players receive payoff-irrelevant signals before playing the game (Aumann 1974)- Examples:
- Independent signals $\Leftrightarrow$ Nash equilibrium
- Public signals ("sunspots") $\Leftrightarrow$ convex combinations of Nash equilibria
- Butterflies play the Chicken Game ("Speckled Wood" Pararge aegeria)
- Boston Celtics' front line


## Correlated Equilibrium

- Signals (public, correlated) are unavoidable


## Correlated Equilibrium

- Signals (public, correlated) are unavoidable
- Bayesian Rationality $\Leftrightarrow$ Correlated Equilibrium (Aumann 1987)


## Correlated Equilibrium

- Signals (public, correlated) are unavoidable
- Bayesian Rationality $\Leftrightarrow$ Correlated Equilibrium (Aumann 1987)

A joint distribution $z$ is a correlated equilibrium

$$
\Leftrightarrow
$$

$$
\sum_{s^{-i}} \boldsymbol{u}\left(j, s^{-i}\right) z\left(j, s^{-i}\right) \geq \sum_{s^{-i}} u\left(k, s^{-i}\right) z\left(j, s^{-i}\right)
$$ for all $i \in N$ and all $j, k \in S^{i}$

Regret Matching Theorem [recall]

## Theorem

If all players play Regret Matching
then the joint distribution of play converges to the set of
CORRELATED EQUILIBRIA of the game

## Regret Matching Theorem

- $\mathrm{CE}=$ set of correlated equilibria
- $z_{T}=$ joint distribution of play up to time $T$
$\operatorname{distance}\left(z_{T}, \mathrm{CE}\right) \rightarrow 0 \quad$ as $T \rightarrow \infty \quad$ (a.s.)


## Regret Matching Theorem

- $\mathrm{CE}=$ set of correlated equilibria
- $z_{T}=$ joint distribution of play up to time $T$

$$
\operatorname{distance}\left(z_{T}, \mathrm{CE}\right) \rightarrow 0 \quad \text { as } T \rightarrow \infty \quad \text { (a.s.) }
$$

$\Leftrightarrow$
$z_{T}$ is approximately a correlated equilibrium
(or $z_{T}$ is a correlated approximate equilibrium)
from some time on (for all large enough $T$ )

## Regret Matching Theorem

## Proof

- $z_{T}$ is a correlated equilibrium $\Leftrightarrow$ there is no regret: $\boldsymbol{R}_{\boldsymbol{T}}^{i}(\boldsymbol{j} \rightarrow \boldsymbol{k})=0$ for all players and all actions


## Regret Matching Theorem

## Proof

- $z_{T}$ is a correlated equilibrium $\Leftrightarrow$ there is no regret:
$\boldsymbol{R}_{\boldsymbol{T}}^{i}(\boldsymbol{j} \rightarrow \boldsymbol{k})=0$ for all players and all actions
- Regret Matching
$\Rightarrow$ all regrets converge to 0
(Proof: Blackwell Approachability for the vector of regrets + approximate eigenvector probabilities by transition probabilities)


## Regret Matching Theorem

## Proof

- $z_{T}$ is a correlated equilibrium $\Leftrightarrow$ there is no regret:
$R_{T}^{i}(j \rightarrow k)=0$ for all players and all actions
- Regret Matching
$\Rightarrow$ all regrets converge to 0 (Proof: Blackwell Approachability for the vector of regrets + approximate eigenvector probabilities by transition probabilities)
Note: $z_{T}$ converges to the set CE, not to a point


## Remarks

- Correlating device: the history of play


## Remarks

- Correlating device: the history of play
- Other procedures leading to correlated equilibria:
- Foster-Vohra 1997

Calibrated Learning: best-reply to calibrated forecasts

- Fudenberg-Levine 1999

Conditional Smooth Fictitious Play
Eigenvector strategy

## Remarks

- Correlating device: the history of play
- Other procedures leading to correlated equilibria:
- Foster-Vohra 1997

Calibrated Learning: best-reply to calibrated forecasts

- Fudenberg-Levine 1999

Conditional Smooth Fictitious Play
Eigenvector strategy
Not heuristics!

Behavioral Aspects

## Behavioral aspects of Regret Matching:

Behavioral Aspects

## Behavioral aspects of Regret Matching:

- Commonly used rules of behavior

Behavioral Aspects

Behavioral aspects of Regret Matching:

- Commonly used rules of behavior
- Never change a winning team


## Behavioral Aspects

Behavioral aspects of Regret Matching:

- Commonly used rules of behavior
- Never change a winning team
- The higher would have been the payoff from another action - the higher the tendency to switch to it


## Behavioral Aspects

Behavioral aspects of Regret Matching:

- Commonly used rules of behavior
- Never change a winning team
- The higher would have been the payoff from another action - the higher the tendency to switch to it
- Small probability of switching (the "status quo bias")


## Behavioral Aspects

Behavioral aspects of Regret Matching:

- Commonly used rules of behavior
- Never change a winning team
- The higher would have been the payoff from another action - the higher the tendency to switch to it
- Small probability of switching (the "status quo bias")
- Stimulus-response, reinforcement


## Behavioral Aspects

Behavioral aspects of Regret Matching:

- Commonly used rules of behavior
- Never change a winning team
- The higher would have been the payoff from another action - the higher the tendency to switch to it
- Small probability of switching (the "status quo bias")
- Stimulus-response, reinforcement
- No beliefs (defined directly on actions)

No best-reply (better-reply ?)

Behavioral Aspects

- Similar to models of learning, experimental and behavioral economics:


## Behavioral Aspects

- Similar to models of learning, experimental and behavioral economics:
- Bush-Mosteller 1955
- Erev-Roth 1995, 1998
- Camerer-Ho 1997, 1998, 1999
- ...

Behavioral Aspects

- Similar to models of learning, experimental and behavioral economics:
- Bush-Mosteller 1955
- Erev-Roth 1995, 1998
- Camerer-Ho 1997, 1998, 1999
- ...


## Behavioral Aspects

- Similar to models of learning, experimental and behavioral economics:
- Bush-Mosteller 1955
- Erev-Roth 1995, 1998
- Camerer-Ho 1997, 1998, 1999
- ...
- N. Camille et al,
"The Involvement of the Orbitofrontal Cortex in the Experience of Regret" Science May 2004 (304: 1167-1170)


## PART III

## Generalized <br> Regret Matching

- How special is Regret Matching?


## Questions

- How special is Regret Matching?
- Why does conditional smooth fictitious play work?


## Questions

- How special is Regret Matching?
- Why does conditional smooth fictitious play work?
- Any connections?


## Generalized Regret Matching

Regret Matching = Switching probabilities are proportional to the regrets: $\quad \sigma(k)=c R(k)$

## Generalized Regret Matching

Regret Matching = Switching probabilities are proportional to the regrets: $\sigma(k)=c R(k)$

Generalized Regret Matching = Switching probabilities are a function of the regrets:

$$
\sigma(k)=f(\boldsymbol{R}(k))
$$

## Generalized Regret Matching

Regret Matching = Switching probabilities are
proportional to the regrets: $\sigma(k)=c R(k)$
Generalized Regret Matching = Switching probabilities are a function of the regrets:

$$
\sigma(k)=f(\boldsymbol{R}(k))
$$

- $f$ is a sign-preserving function:

$$
f(0)=0, \text { and } x>0 \Rightarrow f(x)>0
$$

- $f$ is a Lipschitz continuous function
(in fact, much more general: $f_{k, j}$, potential)


## Generalized Regret Matching

## Theorem

## If all players play

Generalized Regret Matching then the joint distribution of play
converges to the set of correlated equilibria of the game

## Generalized Regret Matching

## Theorem

## If all players play

Generalized Regret Matching then the joint distribution of play
converges to the set of correlated equilibria of the game

Proof: "Universal" approachability strategies + Amotz Cahn, M.Sc. thesis, 2000

## Special Cases

Play probabilities proportional to the $m$-th power of the regrets $\left(f(x)=c x^{m}\right.$, for $\left.m \geq 1\right)$

## Special Cases

Play probabilities proportional to the $m$-th power of the regrets $\left(f(x)=c x^{m}\right.$, for $m \geq 1$ )

- $m=1$ : Regret Matching


## Special Cases

Play probabilities proportional to the $m$-th power of the regrets ( $f(x)=c x^{m}$, for $m \geq 1$ )

- $m=1$ : Regret Matching
- $m=\infty$ : Positive probability only to actions with maximal regret


## Special Cases

Play probabilities proportional to the $m$-th power of the regrets ( $f(x)=c x^{m}$, for $m \geq 1$ )

- $m=1$ : Regret Matching
- $m=\infty$ : Positive probability only to actions with maximal regret Conditional Fictitious Play


## Special Cases

Play probabilities proportional to the $m$-th power of the regrets $\left(f(x)=c x^{m}\right.$, for $\left.m \geq 1\right)$

- $m=1$ : Regret Matching
- $m=\infty$ : Positive probability only to actions with maximal regret Conditional Fictitious Play
- But: Not continuous


## Special Cases

Play probabilities proportional to the $m$-th power of the regrets

$$
\left(f(x)=c x^{m}, \text { for } m \geq 1\right)
$$

- $m=1$ : Regret Matching
- $m=\infty$ : Positive probability only to actions with maximal regret


Conditional Fictitious Play

- But: Not continuous
- Therefore: Smooth Conditional Fictitious Play

PART IV

## Unknown Game

## Unknown Game

The case of the "Unknown game":

- The player knows only
- Its own set of actions
- Its own past actions and payoffs


## Unknown Game

The case of the "Unknown game":

- The player knows only
- Its own set of actions
- Its own past actions and payoffs
- The player does not know the game (other players, actions, payoff functions, history of other players' actions and payoffs)


## Proxy Regret

- Unknown game $\Rightarrow$ Unknown regret (The player does not know what the payoff would have been if he had played a different action $k$ )


## Proxy Regret

- Unknown game $\Rightarrow$ Unknown regret (The player does not know what the payoff would have been if he had played a different action $k$ )
- "Proxy Regret" for $k$ : Use the payoffs received when $k$ has been actually played in the past


## Proxy Regret

- Unknown game $\Rightarrow$ Unknown regret (The player does not know what the payoff would have been if he had played a different action $k$ )
- "Proxy Regret" for $k$ : Use the payoffs received when $k$ has been actually played in the past

Theorem. If all players play strategies based on proxy regret, then the joint distribution of play converges to the set of correlated equilibria of the game

PART V

## Uncoupled Dynamics

## Question:

Adaptive heuristics $\longrightarrow$ Nash equilibria?

## Nash Equilibrium

## Question:

Adaptive heuristics $\longrightarrow$ Nash equilibria?

- In SPECIAL classes of games: YES


## Nash Equilibrium

## Question:

Adaptive heuristics $\longrightarrow$ Nash equilibria?

- In SPECIAL classes of games: YES

Fictitious play, Regret-based, ...

- Two-person zero-sum games
- Two-person potential games
- Supermodular games
- ...


## Nash Equilibrium

## Question:

Adaptive heuristics $\longrightarrow$ Nash equilibria?

- In SPECIAL classes of games: YES

Fictitious play, Regret-based, ...

- Two-person zero-sum games
- Two-person potential games
- Supermodular games
- ...
- In GENERAL games: NO


## Nash Equilibrium

## Question:

Adaptive heuristics $\longrightarrow$ Nash equilibria?

- In SPECIAL classes of games: YES

Fictitious play, Regret-based, ...

- Two-person zero-sum games
- Two-person potential games
- Supermodular games
- ...
- In GENERAL games: NO


## Uncoupled Dynamics

General dynamic for 2-person games:

$$
\begin{aligned}
& \dot{x}(t)=F\left(x(t), y(t) ; u^{1}, u^{2}\right) \\
& \dot{y}(t)=G\left(x(t), y(t) ; u^{1}, u^{2}\right)
\end{aligned}
$$

$x(t) \in \Delta\left(S^{1}\right), \quad y(t) \in \Delta\left(S^{2}\right)$

## Uncoupled Dynamics

General dynamic for 2-person games:

$$
\begin{aligned}
& \dot{x}(t)=F\left(x(t), y(t) ; u^{1}, u^{2}\right) \\
& \dot{y}(t)=G\left(x(t), y(t) ; u^{1}, u^{2}\right)
\end{aligned}
$$

Uncoupled dynamic:

$$
\begin{aligned}
& \dot{x}(t)=F\left(x(t), y(t) ; u^{1}\right) \\
& \dot{y}(t)=G\left(x(t), y(t) ; \quad u^{2}\right)
\end{aligned}
$$

$x(t) \in \Delta\left(S^{1}\right), \quad y(t) \in \Delta\left(S^{2}\right)$

## Uncoupled Dynamics

- "Adaptive" ("rational") dynamics
(best-reply, better-reply, payoff-improving, monotonic, fictitious play, regret-based, replicator dynamics, ...)
- are uncoupled


## Uncoupled Dynamics

- "Adaptive" ("rational") dynamics
(best-reply, better-reply, payoff-improving, monotonic, fictitious play, regret-based, replicator dynamics, ...)
- are uncoupled
- Uncoupledness is a natural informational condition


## Nash-Convergent Dynamics

- Consider a family of games, each having a unique Nash equilibrium (no "coordination problems")


## Nash-Convergent Dynamics

- Consider a family of games, each having a unique Nash equilibrium
(no "coordination problems")
- A dynamic is Nash-convergent if it always converges to the unique Nash equilibrium
- Regularity conditions: The unique Nash equilibrium is a stable rest-point of the dynamic


## Impossibility

## There exist no uncoupled dynamics which guarantee Nash convergence

## Impossibility

## There exist no uncoupled dynamics which guarantee Nash convergence

There are simple families of games whose unique Nash equilibrium is unstable for every uncoupled dynamic

## Impossibility

- "Adaptive" ("rational") dynamics
(best-reply, better-reply, payoff-improving, monotonic, fictitious play, regret-based, replicator dynamics, ...)
- are uncoupled


## Impossibility

- "Adaptive" ("rational") dynamics
(best-reply, better-reply, payoff-improving, monotonic, fictitious play, regret-based, replicator dynamics, ...)
- are uncoupled
- $\Rightarrow$ cannot always converge to Nash equilibria


## Nash vs Correlated

## Correlated equilibria $\longleftrightarrow$ Uncoupled dynamics

## Nash vs Correlated

Correlated equilibria $\longleftrightarrow$ Uncoupled dynamics Nash equilibria $\longleftrightarrow$ Coupled dynamics

## Nash vs Correlated

## Correlated equilibria $\longleftrightarrow$ Uncoupled dynamics

 Nash equilibria $\longleftrightarrow$ Coupled dynamics"Law of Conservation of Coordination"
There must be coordination either in the equilibrium concept or in the dynamic

## Summary

Where Do We Go From Here?

# Where Do We Go From Here? 

- Dynamics and equilibria
- Which equilibria?
- Which dynamics?


## Where Do We Go From Here?

- Dynamics and equilibria
- Which equilibria?
- Which dynamics?
- Correlated equilibria: theory and practice
- Coordination
- Communication
- Bounded complexity


## Where Do We Go From Here?

- Dynamics and equilibria
- Which equilibria?
- Which dynamics?
- Correlated equilibria: theory and practice
- Coordination
- Communication
- Bounded complexity
- Experiments, empirics $\leftrightarrow$ Theory


## Where Do We Go From Here?

- Dynamics and equilibria
- Which equilibria?
- Which dynamics?
- Correlated equilibria: theory and practice
- Coordination
- Communication
- Bounded complexity
- Experiments, empirics $\leftrightarrow$ Theory
- Joint distribution of play
(instead of just the marginals)


## Summary

## Summary

- There is a simple adaptive heuristic always leading to correlated equilibria


## Summary

- There is a simple adaptive heuristic always leading to correlated equilibria
(Regret Matching)


## Summary

- There is a simple adaptive heuristic always leading to correlated equilibria
(Regret Matching)
- There are many adaptive heuristics always leading to correlated equilibria


## Summary

- There is a simple adaptive heuristic always leading to correlated equilibria
(Regret Matching)
- There are many adaptive heuristics always leading to correlated equilibria
(Generalized Regret Matching)


## Summary

- There is a simple adaptive heuristic always leading to correlated equilibria
(Regret Matching)
- There are many adaptive heuristics always leading to correlated equilibria
(Generalized Regret Matching)
- There can be no adaptive heuristics always leading to Nash equilibria


## Summary

- There is a simple adaptive heuristic always leading to correlated equilibria
(Regret Matching)
- There are many adaptive heuristics always leading to correlated equilibria
(Generalized Regret Matching)
- There can be no adaptive heuristics always leading to Nash equilibria
(Uncoupledness)


## Summary

## ADAPTIVE

 HEURISTICS
## Summary



## Summary



# CORRELATED EQUILIBRIA 

## Summary



Regret Matching

## Summary



## Generalized Regret Matching

## Summary



## Can simple adaptive heuristics <br> lead to sophisticated rational behavior ?

## Can simple adaptive heuristics <br> lead to sophisticated rational behavior ?

## YES !

## Can simple adaptive heuristics <br> lead to sophisticated rational behavior ?

## YES!

## in time ...

## Summary - Macro

BEHAVIORAL

## RATIONAL

## Summary - Macro



## Title

## ADAPTIVE HEURISTICS A Little Rationality Goes a Long Way

## Title

# ADAPTIVE HEURISTICS (A Little Rationality Goes a Long Way) Rationality Takes Time 

## Title

# ADAPTIVE HEURISTICS (A Little Rationality Goes a Long Way) Rationality Takes Time 

## Regret?

## Title

# ADAPTIVE HEURISTICS (A Little Rationality Goes a Long Way) Rationality Takes Time 

Regret ? ... No Regret !

