
SIA?v1 J. COMPUT.

Vol. 13, No.2, May 1984

@ 1984 Society for lndusrrial and Applied Mathematics

006

VERIFICATION OF PROBABILISTIC PROGRAMS*

MICHA SHARIKi, AMIR PNUELH AND SERGIU HART§

Abstract. A general method for proving properties of probabilistic programs is presented, This method
generalizes the intermediate assertion method in that it extends a given assertion on the output distribution
into an invariant assertion on all intermediate distributions, too. The proof method is shown to be sound
and complete for programs which terminate with probability 1. A dual approach, based on the expected
number of visits in each intermediate state, is also presented, All the methods are presented under the
uniform framework which considers a probabilistic program as a discrete Markov process.

Key words. program verification, probabilistic programs, Markov chains

CR categories. 5.24,5.5

Introduction. In this work we examine the possibility of developing verification
methodology for probabilistic programs. The need for analysis of probabilistic pro-
grams arises in two main situations. The first is when we analyze a deterministic
program whose inputs are drawn out of a space with some known probability distribu-
tion, and we wish to infer some statistical property of the program, such as its average
running time, the expected value of some output variable, the probability/of program
termination, etc. Another situation is that of a nondeterministic program where the
decision in nondeterministic forks in the program is made according to some known
distribution. We could have, of course, a combination of the two where both the input
values and nondeterministic choices within the program are chosen at random accord-
ing to known distributions.

With the recent emergence of probabilistic algorithms, such as primality testing
[RB] and synchronization between concurrent processes [LR], an.d the more conven-
tional problem of average behavior of deterministic algorithms, the need for tools for
probabilistic verification becomes increasingly urgent.

One possible approach to the probabilistic analysis of programs, which must
certainly be the first step towards any coherent theory of the subject, is the definition
of the probabilistic semantics of programs. Such an approach is taken for example in
[KO] where a probabilistic program is regarded as a distribution transformer, trans-
forming an input distribu~ion into an output distribution. The output distribution then
tells us the probability for the program to terminate in any of its terminal states. In
principle, once we know how to compute the probability of each terminal state, we
have captured the complete (input/output) behavior of the program, and each specific
question can be settled by referring to the output distribution. In practice, however,
when we are interested in a specific question, the computation of the complete
distribution transformation is often a formidable and unnecessary task. This is why,
in the non probabilistic case, the disciplines of semantic assignment and verification
are closely related but still separate. The first seeks to define the mathematical
interpretation of programs in a given language. The latter tries to offer methods by
which specific questions about a program can be vigorously settled by extracting from

* Received by the editors October 28, 1981, and in revised form January 21, 1983.
t Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. The research of this author

was supported partly by the Office of Naval Research under grant NOOO14- 75-C-O571, while the author
was visiting Courant Institute, New York University, and partly by the Bat-Sheva Fund, Israel.

:j:Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
§ Department of Statistics, Tel Aviv University, Tel Aviv, Israel.

292

l

VERIFICATION OF PROBABILISTIC PROGRAMS 293

',",

the program just the minimal amount of information which is required in order to
settle the question. In one sense the theory of verification can be regarded as the
theory of semantic approximation.

Taking as our starting point the probabilistic semantics of programs, as defined
for example in [KO], we set out to see whether the verification methods that proved
successful in the deterministic case, such as the intermediate assertion method [FL],
computational induction [PA] and subgoal induction [MW], can be generalized to the
probabilistic case.

The salient features of all these methods are:
a) They are goal oriented; i.e., the -verification conditions to be solved depend

on the property to be proved, and we only work so hard as is needed in order to
establish the particular property.

b) The verification conditions are local in the sense that they connect two
consecutive instants in the execution of the program.

c) If we insist on the minimal solution to the verification conditions we come
up with the full semantics of the program, or an equivalent characterization. These
are for example the minimal invariant predicates in Floyd's method.

.

As will be shown below, we suggest two generalizations. The first is an extension
of the intermediate assertion method with some of the flavor of subgoal induction.
Starting with an assertion on the terminal states which is supposed to hold upon
termination, we seek to extend it into an assertion on all the states which holds
continuously throughout the execution. The second method is similar to computational
induction. We form equations which express changes in the distribution due to a single
program step. The minimal solution to these equations gives exactly th,e terminal
distribution. Consequently every solution, not necessarily the minimal, provides an
upper bound to the terminal distribution.

We show that these two approaches are dual in the sense that they are both
derived from the same matrix describing the program, and both obey certain duality
relationships which allow us to combine the information yielded by each approach
separately.

The methods are presented in a uniform framework which considers programs
as global state transformations. It should not be too difficult to adapt them to more
structured representations of programs. Specifically: The basic approach treats a
probabilistic program as a Markov process that goes by a chain of transitions through
the program states. At each step, depending on the current state," there are known
probabilities for the next state, and the process chooses the next state according to
their distribution.

These probabilities depend on the nature of the program statement about to be
executed. If this statement is not a random draw, then there is a unique next state;
otherwise, there may be several succeeding states, depending on the outcome of the
draw made by the program. Thus, in such a model the state-transition probabilities
can be assumed to be given a priority.

Note that random distribution of the program's input will manifest itself in similar.
distribution of the program states, but not in the transition probabilities among them.

Since, in principle, Markov chains model infinite processes, our approach can
therefore also assign semantics to nonterminating probabilistic programs. This general-
izes other approaches based on input-output semantics, which ignores nonterminating
executions (see [KO] for example). To dealwith terminating programs, we regard the
terminal program states as absorbing states which once in them the process can never
escape.

- .

294 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

This paper is organized as follows. In § 1, we define probabilistic programs as
Markov chains and assign to them semantics defined in terms of certain well-known
quantities associated with such chains. We show that these semantics coincide with
the semantics defined by Kozen [KG] and generalize it to nonstructured programs.
In § 2, we describe our first method of probabilistic verification, which is based on
invariant functionals on the program states' distribution. In § 3, we describe a second
verification method based on the expected number of visits in the nonterminating
states. Essentially this approach had been formerly suggested by Ramshaw [RA], but
under a different framework. When cast into the framework of Markov chains, the
approach becomes greatly simplified and much of the theory developed by Ramshaw
turns out to be straightforward consequences of Markov chain theory. We also establish
some "duality" relationships between our two approaches. In § 4, we demonstrate
our verification methods in a series of examples.

When considering probabilistic programs as Markov chains, it is important to
bear in mind that this representation is faithful only if all the data that can affect
program execution is incorporated into the program's (or rather the chain's) states.
Thus, if the program execution depends largely on its input, which in turn is drawn
from some complex distribution, then incorporating the whole input data into the
program states may make its analysis as a Markov chain rather difficult. (For example,
if the program itself is fully deterministic, it may well be the case that its Markov
chain representation decomposes into many disjoint chains, one per each input value.)
The Markov chain representation is most favorable in cases where the probabilistic
nature of the program arises from random draws made by the program itself.

Quite surprisingly, very few researchers have used the Markov chain model to
represent probabilistic programs, although a completely static treatment of programs
as Markov chains (with states being program locations only) has long been suggested
by [RM]. Saheb-Djahromi [SD] uses Markov chains to define the operational semantics
of a probabilistic version of the language LCF. The works of Kozen [KG] and Ramshaw
[RA] mentioned above do not use Markov chains, although most of their results can
be easily interpreted as standard resultsjn Markov chain theory. Probabilistic analysis
of programs is also studied by Wegbreit [WE].

Recently, the authors have generalized analysis of probabilistic programs to the
case of concurrent programs [HSP], [HS]. Their program execution can be described
as a certain cooperation of several Markov chains, and its analysis requires special
techniques, unlike the classical Markov chain theory used in this paper. Another
interesting and recent direction of research is the development of probabilistic logics
for reasoning about properties of probabilistic programs (d. [RE], [LS], [HS2]).

1. Probabilistic programs and their semantics. In our framework, a program is
considered as a (probabilistic) transformation operating on a,set of states. Let S denote
the set of program states which may be infinite but countable. (See, however, § 4 for
a treatment of uncountably many states.) We a~sume that the action of a single step
of the program is represented by a given matrix of transition probabilities P ~ {Pij}.
Thus Pij is the probability of going from state i ES to state IE S in one step. Let ii 0

be the initial distribution vector which specifies for each state i E S the probability
f.L?~ a that initially the program is in this state. Based on the assumption that the
probability for a transition from state i to state j depends only on i and j (and not
on the time or any other nonlocal entity), an execution of a probabilistic program can
be regarded as a Markov process which goes through a chain of discrete S states
[CH], [R V], [KSK].

VERIFICATION OF PROBABILISTIC PROGRAMS 295

To illustrate these concepts, consider the following program:

i:= 0;
/1: while random (po 0+ qo d = 0 do i := i + 1 ;
/2: halt.

In general, the probabilistic expression "random (A)" chooses a random value accord-
ing to the distribution A. In this case Oi is a unit distribution concentrated at i,
i = 0, 1. Thus, for p + q = 1, random(poo + qOI) chooses 0 with probability p and 1
with probability q = 1- p. Ignoring the initializing step, the set of states for this program
IS:

S = {(lI, i), (l2, i) Ii > a}.

Note that states include the location in the program as well as values for all the
program variables.

The initial distribution is given by:
0

f..L (l1.i) = Oi,O,
0

f..L(l2,i) = O.

That is: with certainty the initial state is (lI, 0). The transition probabilities are given
by:

P(lI,i)(l2,i) = q,
P(l2,i)(12,iJ = 1,

P(ll,i)(lI,i+I) =p,
i >0.

All ot~er transitions have probability O.
We partition our state space S = I U T. The set T is the set of all terminal states

(absorbing states); for each t E T, Prs = Or,s;i.e., with certainty we remain at t for the
next stage and hence forever. The set! = S - T is the set of intermediate states. Thus
in the example above,

I ={(lI, nli >O}, T = {(l2, i) Ii > a}.

Let us define:

pIt) = {Probability of reaching state j from state i in exactly n steps}.

Obviously pW) = {pn}iJ where pn is the nth power of the (infinite) transition probability
matrix P. This can also be written as:

.

p(n)="p..p p .I] L.
"1 IP2 'n-I]

where the summation extends over all (n -I)-tuples 010 . . . , in-I)' Corresponding to

an initial distribution ii °, we can also define:

f..Lin) = {Probability of being in state j after n > 0 steps}.

Obviously J.Lin) = I iES J.L?pIt>' or in matrix notation Ji(n) = Jiopn. Note that, since each
jET is an absorbing state, the sequence {J.Lt)}n~O is nondecreasing for each jET.

We also define:
.

fIt) = {Probability of reaching state j from state ifor the first time in exactly n steps}.

These quantities satisfy:

j (n)
=" p. p .

I] L. III
'n-Ii

where the summation extends over all (n -I)-tuples 010 . . . , in-I) of states all of which

are different from j.

296 MICHA SHARIR, AMIR PNUELI AND SERGIO HART

Clearly f~j') or f.LtJ, given an initial distribution, fully describe the behavior of
the program, However, they are too detailed, and we would like to take out the
dependence on the step counter n, One such integrated measure is given by:

00

f :" = ~ f
(nJ

IJ L... IJ
n=1

where ft is the probability of ever getting to state j from state i.
Similarly we define f.Lj as the probability of ever getting to state j, given that the

initial distribution is Ii °, Obviously:
.

(1) I/. * = ~ I/. ?f :"r-J L...r-IIJ'
iES

If we restrict ourselves to terminal states jET, then since j is an absorbing state
it follows that:

f ~ = 11'm
p(~1)

IJ IJ
n->OO

and f.Lj = lim f.Lin)

n->oo
for jET.

The ft for jET can be considered as the input-output semantics of the program
viewed as a distribution transformer, in that given an initial distribution Ii °the terminal
distribution is given by Ii*=liop* whereP*={ft},

We will therefore regard the program as being fully specified when the matrix
P* is given, It should be noted that this is a generalization of Kozen's semantics,
provided that one restricts oneself to discrete distributions. Note that Kozen defines
the semantics of only a restricted class of structured programs, whereas our interpreta-
tion does not impose any such restriction, Let us indeed compare the two approaches
for a while loop of the form

while x EB do 0,

For simplicity, let us identify the program states with values of x. The terminating
states are then elements of Bc. Suppose that the subprogram 0 has a transition
probability matrix 6, where 6 specifies probabilities of transitions from B to S =
B UB c, Then the matrix associated with the whole program is easily seen to be

p~(o ~I)~(~' ~2)

where the states in B precede those in Bc, so that 01 is a transition (substochastic)
matrix from B to B, and O2 is a similar matrix from B to Bc, A direct calculation
shows that

pn = (~7
(07-1 + 07-2 +. . . + 01 +1)02)I

.

Hence, it follows from preceding remarks that if i EB, j EBc we have

ft = I (0~02)ij.k~O

VERIFICA TION OF PROBABILISTIC PROGRAMS 297

But, in Kozen's notation, 01 is the matrix defining the linear operator es 0 T Q 0 es
on the space of measures on 5, whereas 02 is the matrix defining the operator
escoTQoes, so that

ft =([C~l esco(TQoes)k) (8i)] ({j}) = T(8i)({j})

where T is the distribution-transforming operator associated by Kozen wIth the while
loop. This and (1) show that the two approaches indeed coincide for the above program.

Returning to the example program, it can be checked that

f * -
i-i(/j,i).(/z,j) - P q if j :> i,

and that

f..Li = piq.

Unfortunately, in the general case, the quantities f~ and f..Li may be difficult to
compute explicitly, and we may be interested only in a partial property of the program.
For example, we might only be interested in determining the expected number of
steps till a 1 is chosen. This is the same as determining the expeCted value of i upon
termination, which is

"
.

*L If..L(/z,i).
i?;O

We therefore would like to find methods for the calculation of such quantities without
having to compute explicitly ji *. This is done in the following sections.

2. Probabilistic verification by invariants. In this section we present our first
probabilistic verification method. Motivated by the concluding remarks of the preced-
ing section, we set out to find a way to compute a linear functional over ji *, having
the general form

i{J(ji*) = I {3jf..Lf.
iET

This is a probabilistic analogue of an assertion on the terminal program states.
We will assume, henceforth, that {3j:>0, jET.

Our approach is to try to extend the coefficients {{3JiET to a vector i3 = {fiJiES
such that {3i:> 0, i E S, and such that its restriction to T gives the original coeffic:ien~
of i{J.Furthermore, we require r3 to be a right-characteristic vector of P, i.e., P{3 =f3,
or, in expanded form

I Pii3j = {3i,
jES

i ES.

(We assume also that all the infinite sums involved converge.) Such a i3 is known in
Markov chain theory as a P-regular or P-harmonic function (d. [RY], [KSK]). Note
that, unless the vector {BiLET is bounded, some components {3i,for i EI, may be +00.

298 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

If such a jJexists, then define the linear functional cp(ii) = LES fLJ3i which, given
as an argument a distribution ii over the program states, computes a real number
(possibly 00).

Then if 'P(ii °) is finite, so is 'P(ii (nJ), i.e. the value of the functional after step n,
and we have the following invariance relation:

(-°) (-(nJ)'PfL =CPfL , n =0, 1,""

This invariance is a consequence of the computation:

'P(ii(nJ) = (ii (n). jJ) = fi,°pnjJ = (fi,°. 13)= 'P(iio)

since jJ is a characteristic vector of P.
Obviously this gives a method for deriving invariance relations for general pro-

grams. We may now rewrite this invariance as:

'\'
(nJ

{3 '\'
(n)

{3 (-°)L,fLi i+L,fLi i=CPfL .
iEI iET

If we let now n go to 00, the second term in the sum keeps increasing (because, for
each i E T, fL~n)increases and (3i:>0), and is bounded by cP(ii °) so that it must converge
to a limit. Consequently, so must the first term, leading to:

R + L fLi{3i = cp(fi,°)
iEL

where R = limn->coRn = limn->co LEI fLin){3i~ O. Thus in the general case, we can con-
clude that

t/J(ii *) ::; cP(ii °).

In the case where we can show that R = 0, we have an exact equality,

t/J (ii *) = cP(fi, °).

Thus, this method allows us to compute the desired "output assertion" directly
from the input distribution. Let us consider, for the simple example program above,
the functional given by:

f3
. p

(l1>i)=I+-,, q

(i.e. a nonnegative functional that extends the desired functional t/J).The invariance
verification condition P{3= jJ amounts in this case to

(3(/2,i)=i

P{3(/J,i+l) + q{3(l2,i) = {3(/l,ih or P(i+l+~)+qi=i+~,

which is easily verifia,?le, and
,

{3 (/2,i) = (3(/2,i),

which is immediate.
Accepting the easily verifiable Ii fL(t:~i) (i +pi q) ~ 0 (since fLi;:~i) = 8i,npn, Rn =

pn (n + pi q) ~ 0), we therefore conclude:

-*
co

* .
' ° (. P) P

t/J(fL) = I fLU2,i)1 = I fL(/l,i) 1+- =-.
i=O q q

VERIFICATION OF PROBABILISTIC PROGRAMS 299

This, of course, establishes that the expected value of i on termination of the program
is pi q. (Here we have explicitly checked that lim" R" = 0; in the sequel we will suggest
several simple conditions that imply the vanishing of this limit.)

Summarizing the conditions for applicability of this method we have:

(Vl) I f.L?{3i <00,
iES

(V2) {3>0, P{3 = (3.

Then, under these two conditions we are assured of

tf;(fi*) = I f.L'!'{3i< I f.L?{3i='P(fio).
'iET iES

In fact, in order to ensure this result it is sufficient to have P{3 < {3in (V2).
If in addition we also have

(V3) I f.L~"){3i ~ 0
iEI ,,---ex:>

({3- termination),

then we may conclude that

(C) tf;(fi*) = I f.L'!'{3i= I f.L?{3i= 'P(fio).
iET iES

In order to emphasize the similarity between this method and the method of
intermediate assertions [FL], we point out that (Vi) is analogous to saying that 'P is
true initially, while (V2) is analogous to the local verification conditions. Thus (Vl)
and (V2) imply (V3) =? (C), but this is the analogue of partial correctness. It states
that if the program converges then the value on convergence is equal to 'P(fi °). Only
here, we have to require an appropriate rate of convergence as well (i.e. (3-termination).

Note that if the {3i,i E T, are uniformly bounded, then (V3) will hold if the program
terminates with probability 1. Indeed, then one has

hm L f.L~"){3i<supl{3Jlim I f.L~"\

"
iEI iEI ,,---ex:>ieI

but the right-hand-side limit is precisely the probability of the program not to
terminate, which, by assumption, is O. Similar sufficient conditions for the {3-termina-
tion of the program can be given for other kinds of vectors Ii (see § 3 where such a
general condition is given). .

The main question concerning this approach is: Can we always extend a given
functional tf; to an invariant functional 'P in the manner described above (in other
Fwords, is this method complete)? To see that this is indeed the case~ we proceed as
follows: Let {{3JjETbe given, with {3j> a for each jET. For each i ET define

(2) {3i = I {3J~.
jeT

300 MICHA SHARIR, AMIR PNUELI AND SERGlU HART

Each sum exists in an extended se.nse ({3i can be +00). Let J; be the functional

Ii (fi) =LiES (3ifLi'

TJ-IEOREM 1. If 1/7satisfies (VI), then it also satisfies (V2) and (V3). On the other
hand, If 1/; does not satisfy (VI), then t{J(Ii *) = +00.

Proof. We first note that (V2) always holds. Clearly (3i> 0 for each i E I, and

I Pik{3k = I Pik I fZj(3j.
kES kES jET

Interchanging the order of summation, we obtain

= I (3j (I PiJZj).
jET kES

But by the monotone convergence theorem,

I PiJt = I Pik lim PZj= lim L PikPZj= lim P7/1 = ft.
kES kES n-,>OO n-'>OO kES n-,>OO

Hence

L Pik(3k = L (3Jt = {3i'
kES jET

For i E T, Pik = (Jib so certainly LkESPik(3k = (3i. (Equality also holds when both
sides are +00.) Hence (V2) is satisfied.

Next, suppose that (VI) holds for it. Again, by substituting the value of (3i, i E I,
'Illd interchanging the order of summation, we obtain

I fL
j){3i = I {3j (I fL 7ft)< 00.

iES jET IES

That is,

L fL;J(3i = L (3jfLf < 00.
iES jET

This already shows that (C) holds, but it also follows from this that

R = lim I fL:n)(3i =J;(fiO)-t{J(fi*)=O.
n-,>OOiEI

Hence (V3) also holds. If (VI) does not hold, we still have the above equality
it(fiO) = t{J(fi*) = +00. Q.E.D.

This, of course, establishes the completeness of our verification method theoreti-
cally. That is, given a partial vector (3j~ 0, jET, there always exists a. completion of
it to a full vector (3b i E S, which satisfies (V2) ahd satisfies either (VI), (V3) and (C),
or else the value t{J(fi*) = LjET(3jp.,i == +00. .

In practice, of course, there are some difficulties. First, in order to obtain the
above completion of (3, we need to know the matrix ft, whichis generallyunavailable.
Similarly, the establishment of (V3) (for any completion of fj) requires the knowledge
of fi

(n)
for every n ~ 0 which is also unavailable.

.

A partial solution to these problems is given by the following characterization of
the specific completion of fj given by (2).

VERIFICATION OF PROBABILISTIC PROGRAMS 301

PROPOSITION 1. Let {3j:>0, jET, be given. Then the completion of tf given by (2)
is the smallest nonnegative P-regular (i.e. invariant) extension of the given {3/s.

Proof. Let 1 = h;}iEI be such that {'i::> 0 for all i E I, and such that, together with
the given ijO=WJjET, 1 is P-regular. Let us decompose P into blocks as follows:

P = (0
0

R)
} 1

I }T'.........
I T

The invariance of {' then can be written as

01 +R{3° = 1.

Since 1::> 0, we have 01 :> 0 and hence 1 :>Rtf°. Continuing inductively in this
manner, we obtain

y::> I OkRf]°.
k;;;;O

.
A computation completely analogous to the one performed in the preceding section

.
yields

(I OkR{3°) = lim (I P~7){3j)= I f~{3j = {3i'
k;;;;O in-co jET i jET

{Interchanging the limit and the sum is justified by the monotone convergence
theorem.) Hence {'i ? {3ifor each i E1. Q.E.D.

Proposition 1 therefore yields a practical method for probabilistic verification.
Starting with the given coefficients {3j::>0, jET, we. find the general solution to the
invariance equations ptf = tf, that coincides with the given partial vector on T, and
then choose the smallest nonnegative solution from which the value of ljJ(fi*) can be
readily obtained.

As an illustration, consider our example program with the coefficients {3(/2,i)= i.
Example 1. The recurrence equations implied by pij = tf are

p{3 (/1,i+1) + qi = {3(/1,i),

whose general solution is readily found to be

. p A
{3(11,i) = 1 +-+---;-.

q p

By the requirement of minimality (and nonnegativity) we must choose A =0 and
are ensured, by the above two propositions, that conditions (V1)-(V3) are satisfied,-
so that calculation of ljJ(fi*) can proceed as before.

Thus, we may summarize: In order to compute IjETJ.Lf{3j, find a completion{3i'
i E I, such that (V1) and (V2) are satisfied and either:

a) {3;,i EI, is the minimal such solution; or
-

b) The program terminates with probability 1 and the (3i, i El, are uniformly
bounded; or

c) It is possible to verify (V3) by some other means.

302 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

*(More about such means will be discussed in the next section.) The desired value is
then LiES (3if-L:). In case a), if this latter value is +00, then so is the desired value of
the "output assertion". Note that the family of nonnegative linear functionals enables
us to express a very rich variety of program properties upon termination, such as:

(i), The probability of terminating at a particular state jET (take (3k= 8kj)'

(ii) The probability of termination (take (3j=1).
(iii) The expected value of some variable (as in our running example).
(iv) The expected running time of the program. (One way of doing this is to add

a special "step-counter" variable to the program, and then find its expected
value (d, [RA]).) .

(v) Higher moments of some variables, such as variance, etc.
Remark 1. If one knows that the program terminates almost surely (i.e. with

probability 1), then one can generalize the second approach mentioned above to the
case where the {3i'Sare not bounded. This is simply done by defining a sequence of
partial vectors

{3jNJ = min ({3j,N), -JET, N=1,2,"'.

For each N, (3jN) -;2N, jET. I-Ience, the smallest completion of the (3r) 's, given by
(2), is also uniformly bounded (by N).

We can therefore consider any bounded invariant completion /3(NJ of the
coefficients {3jNJ,jE T, and obtain

,t,(N) (-*) _" *(3(NJ_" o{3(N)- (N)
(0)If' f-L - L.. f-Lj j - L.. f-Li i - cP f-L.

jET iES

By the monotone convergence theorem, limN->ooljJ(N)(fi,*) = LjETf-Lj(3j. Hence,
this sum is also equal to limN->oocP(N\fi, °).

Remark 2. The techniques used in this section are rather standard in Markov
chain theory (d. [RV], [KSK]). It is pleasing to find out that the adaptation of Markov
chain theory to the realm of program verification yields a natural and straightforward
generalization of existing verification methods for deterministic programs.

We conclude this section with two additional illustrations of our method
Example 2, Consider the program

x:=O;
ll: while (t:= random (~8o+~81+~8z)) ~ 2 do x:= x + t;
lz: halt.

We associate states with the location in the program and with the value of x. Hence,
we can write

[={(ll, n)ln ~O}, T={(lz,n)ln>O}.

The nonzero transition probabilities for this program are

P I l' 1
(11,11),(11,11) = 3, P(lI,I1),(li,I1+1) = 3, P(li,n),(l2,11) = 3, P(l2,11),(12,11)= 1.

Let us compute the terminal distribution fi,*, We thus fix n ~ 0, and put

(3 (l2,j) = 8j,I1'

We then want to extend /3over the nonterminal state as well, so that it is invariant.
The requirement p/3 = /3 then becomes

1 1 1
3(3(11,;) +3(3(11,i+l) +38;,11 =:=(3(11,1), i ~O, or (3(li,i+l)=2{3(li,iJ-8i,ru

VERlFICA TION OF PROBABILISTIC PROGRAMS 303

whose general solution is

{
K' 2i

f3(li,i) =
K. 2/- 2i-n-\

i~ n,

i> n.

To obtain the smallest nonnegative solution, we must choose K = 2-n-l. Hence, we

conclude that

n
*

,,
2 i-n-1 0

J.L(12,n) = L., J.Li .
i=O

In particular, since J.Lfll,i)= Oi,O,we obtain J.L02,n)= 1/2n+1. (Note that in this example

we have actually computed the matrix ft, in a some\yhat roundabout way.)
Example 3 (Gambler's ruin or Drunkard's walk). Consider the following program

x := n; / * n is some positive integer */
11:while x =;i:0 do x:= x + random (pO-1 + QO1);
12: halt.

This program simulates a random walk on the nonnegative integers with 0 as an
"absorbing barrier." This describes a process in which a gambler with an initial fortune
n plays indefinitely against a house with unlimited fortune. In each game the player
has a chance p of losing and a chance q = 1- p of winning. The process stops when
the gambler loses all its money.

States are defined as in the preceding example, but in this case T contains only
the state (12,0). The nonzero transition probabilities are

PUl>j),(ll>j-1) = p, PU1,j),(11,j+1) = Q for j> 0,

P ~P -1([1,0),(l2,0) - (12,0),(/2,0) - ,
and the initial distribution is J.L~1J,j)= OJ,noLet us compute the probability of the program
termination, i.e. taking f3(lz,O)= 1. Extending ff as usual, we are led to the following
recurrence equations:

(3(/1,O)= 1, {3(lJ,j) = p{3(lj,j-I) + q{3(l1,j+ 1), j>O.

Solution of these recurrence equations amounts to solving the equation
2qA - A + P = 0

whose roots are 1 and p/q. If p =;i:t, the roots are distinct and the general solution is

{3(ll,j) = 1 + K
[(~Y -1].

If p >~, then p/q > 1 and the minimality requirement forces us to choose K = O.
Hence, (3(lj,j)= 1 for all j > 0 so that the termination probability is (3(lj,n)= 1 (the
gambler will almost surely be ruined).

Up <t then p/q < 1, and we choose

K = inf
1 / / j = 1.

- p q)

Hence, {3(lj,j) = (p / q)j, so that the termination probability is (p / qt.
Finally, if p = t, the A-equation has two identical roots, and the general solution

for the {3'sis
{3(l1,j)= 1 + Kj.

304 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

The minimality condition implies K = 0 so that (3UI,n)= 1 and the program terminates
almost surely in this case.

As a related example~ consider the case p = ~ in the above program. Although
the program terminates alm~st surely in this case, it is well known [CHl that it is 110t
expected to terminate. We will establish this fact using our method. To do so, we
need to introduce an additional step-counter variable c, and modify the' program as
follows:

[x, c]:= en, 0];

II: while x ~ 0 do [x, c] :=[x + random (~8_I +~8I), c+ 1J;
12:halt.

The program states are now

I={(fI,c,n)lc::::O,n::::O}, T = {(f2, c, 0)1c ~ O}.

The nonzero transition probabilities are
I

PUl,C,j),(ll,C+I,i+I) = PUl,C,j),(ll,C+l,i-I) = 2, j>O

P =P =1(lI,C,0),U2,C,0) (l2,C,0),(l2,C,0) .

The initial distribution is fL?il,O,n)= 1, and zero elsewhere. We wish to compute the
expected value of c upon termination, so that we begin with the partial vector
(3(12,C,0)= c, c ~ 0, and we wish to e~tend it to an invariant vector Ii. Instead of doing
so directly, we use the limiting approach suggested in Remark 1 above. That is, let
M:::: 0 be an integer, and define

M
{

C, c~M,
(3U2,C,0)=

0, c >M.

Since (3M is uniformly bounded on T, and the program is already known to terminate
almost, surely, any invariant completion 13M can be used to compute the desired
functional. We claim that the following is such an invariant completion:

M -
l(M-c-j)/2J c+j+2k

[(
j+2k-1)_(j+2k-1

)](3(11,C,j)-
k~O

2i+2k k k-1'
j:2:1,

(note that the sum vanishes if c + j > M), and

M
{

C, c <M,
{3(l1,C,0)=

0, C > M.
To verify that 13M has the desired properties, one has
equations hold:

to check that the following

(3~,C'O)= (3~,C,O) and (3~,c,j) = ~(3~,C+l,i+I) + ~(3~,c+I,i-l)' j:2: 1.
The first equation is immediate, and the second can easily be checked. Since {3M is
uniformly bounded on I (it is zero on all but a finite number of components), we
conclude that

.

M
M

*
M

UM-n)i2rn+2k

[(
n+2k-1) (n+2k-1

)]E (c)=c~()CfL(l2'C,O)={3ul,O,n)=
k~O 2n+2k k

-
k-1

.

Hence, if we let M ~ 00, we find that the expected value of c is the sum of the infinite
series appearing above. Using Stirling's formula, we find that the kth term of this
series is of the order of k-I/2, so that the series diverges and the expected value of c
is infinite. (This method can be used to show that the ath moment of c is finite for
a < ~ and infinite for a > t)

VERIFICATION OF PROBABILISTIC PROGRAMS 305

3. A dual approach-expected number of visits. A recent work of Ramshaw
[RA] suggests an alternative approach to probabilistic program verification. Although
he does not use Markov chains in his approach, it turns out that his approach can be
easily and naturally described in terms of the Markov chain model that we have been
using. This leads to a much more compact description of his method, helps to explain
the problems that it faces and the (partial) solutions to these problems suggested by
Ramshaw, and also makes it easier to generalize this approach and to connect it with
our first approach as given in the preceding section. All this will be done in this section.

Intuitively, the approach that we have taken in the first section was to record the
program behavior by taking "snapshots" of the distribution of all program states, at
different times during execution. An invariant functional is thus a linear "assertion"
about this distribution that does not change from one snapshot to another. The
approach that Ramshaw takes is orthogonal to ours, in the sense that he takes an
"infinite-exposure" picture, of each program state separately, throughout the program
execution. His approach can be formally explained in terms of the Markov chain
model as follows:

Let P be the transition probability of the program. Decomposing it into blocks
as we did in the previous section, we obtain

P=(~ '~)i~-I T
(i.e., Oij is the probability of going from i E I to j E I, and Rij is the probability of
going from i EI to jET). Consider a modified transition matrix defined as

i

p = (~ ~) .

This matrix corresponds to a (substochastic) process in which, once the process reaches
a terminal state, it stops right there.

Let ii(n) be the distribution of program states after n steps of the revised process,
i.e. (i

(n)
= Ii °pn, Define a ve~tor v over S as follows:

(3)
00

- ,,- (n)v=L..~ .
n=O

For each i E S, Vi is the expected number of visits at state i in an execution, given the
initial distribution lio. Following Markov chain terminology, v is a pure potential
measure induced by the charge Ii °, Note that v is always defined in an extended sense,
but need not be finite. However, if i E T, Vi is always finite and in fact we have Vi= J.L1.
This follows from the fact that terminal states are visited at most once in the revised
process.

From the definition of v we have immediately the following
CLAIM. v is the smallest nonnegative solution of the equation

(4) v = vP+lio.

Ramshaw's approach is to consider the quantities Vi, and to introduce assertions
about them having the following restricted form:

I Vi =e
ieA

306 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

where A <;; S is a subset of states all having the same program location (he refers to
these assertions as "vanilla" assertions). His method is to verify that these, assertions
are consistent with (4), i.e., to show that any vector v satisfying (4) also satisfies the
assertions. This is done by a generalization of the standard inductive assertions method,
but may not always work.)n fact, the assertions must be of a special structure to
allow his inference rules to be applicable.

Ramshaw shows that under certain conditions (roughly amounting to requiring
that u be finite) this proof method is sound and yields some information about iL*,
given by those assertions that are planted at the program termination point. Ramshaw
does not bother to actually solve (4), and so the main problem that he faces is to
show that his assertions, even when consistent with (4), do actually describe the
smallest solution of (4). This creates the possibility of obtaining nonminimal solutions,
such as his so-called "time bombs", which may not yield the desired iL*.

'

Having stated the basic nature of Ramshaw's approach, we will not follow his
method of estimating u. Rather, we view the solution of (4) as the main goal of this
approach. In this regard, there are several additional possibilities for estimating u. For
example,

A) Let u be any nonnegative solution of

u = uP + iL
0

or even of

-:> _pN

+ -0U =U JL.

Then for every i, Vi~ Ui, so that u is an approximation from above to the desired v.
B) Define the sequence of vectors

-0 -0V = JL , -n+1 -n pN

+ -OV =v JL, n 2::O.

Then for every i and n :>0, v 7<Vi, so that un is an approximation from below for v.
To illustrate this approach, let us return to our running example of the program

that searches for a first appearance of 1 in an infinite sequence of independent draws
of 0 and 1. Equation (4) then has the following form:

0
V(lI,i) = JL (l1.i) + PV(lI,i-1),

0
V(lI,O) = JL(lI,Oj,

i:> 1,

V(l2,i) = qV(lI,ij, i :::0,

and the (unique) solution is easily found to be
i

V(lI,i) = P , V
_

p iq - *(l2,i) - - JL(l2,i), i >0.

Drawing an analogy to the standard verification techniques, we can compare this
second approach to the computational induction method CPA], where information
about intermediate program states is derivep inductively from information about its
input states. Comparing the two methods presented in this paper, we may view the
first one as being goal-directed, in that it draws from the program output requirements
conditions that should hold at the intermediate and input program states, and only
then checks them against the, input information about the program. On the other
hand, the second method is input-directed, in that it draws information about intermedi-
ate and terminal program states from the input information and then computes the
output data from this information.

VERIFICATION OF PROBABILISTIC PROGRAMS 307

There are two main disadvantages of the second approach. The first is that it is,
as just pointed out, input-dependent. Hence, if the program input distribution is not
fixed then we may have to recompute the vector v afresh for each new distribution
jio. By contrast, it is more natural to assume that the questions about the program
terminal states are fixed, and we can process each of them using our first method
independently of any input distribution. Then for each input distribution, we can
compute the required output quantities immediately.

A second disadvantage is that the expected number of visits at an intermediate
state need not be finite even if, say, the program terminates almost surely. Hence in
solving (4), we may find that certain Vi'S are +00. This is not a. major obstacle, since
(4) holds even in such a case. This means that each finite component Vi, i E I, cannot
depend on any infinite components, so that these infinite components correspond to
states from which the program almost surely diverges and cannot reach a terminal
state with a positive probability.

- Aside from independent computation of the v or approximations thereof, we can
connect solutions to (4) to linear. invariant functionals. Let u be any solution to
u:> uP + jio and {3 any solution to P{3 = {3. By partitioning u = (U1, U2) and
{3= (f3b (32) according to the partitioning of S into I, T, we obtain the following
equations satisfied by each:

Ul~U10+ji~, U2:>ulR + jig, {31= a{31 + R{32'

Ob ' 1
-(n) -D

O
n Th - '\'co -(n)

VIOUSYJLl =JLl . USV1=L..n=OJL1.
- - co () -- co

Consequently (Ul'{31):>(V1'{31)=In=o(jit '{31)=Ln=oRn where Rn is the
remainder such that limn-+ooRn = 0 is the required (V3) condition. Hence, we have

PROPOSITION 2. If for some U1 satisfying

Ul:> U10 +ji~

and some /3= (ii1, fi2) satisfying

/31 = a/31 + R!32

the product (u1' fil)<oo, then (C) holds; i.e.,

- 0 - 0-
ji2 . {32 = ji 1

. {31 + ii 2
. {32.

Note, however, that this is only a sufficient condition which implies the {3-

termination of the program (i.e. condition (V3)), but is not necessarily equivalent to
it. To illustrate this point, suppose that {3=1. This is an invariant vector whose
restriction to T yields a functional that computes the probability of termination. If t3
satisfies (Vl)-(V3), and therefore also (C), then it follows that the program almost
surely terminates. On the other hand, the above condition, even for u = v, reads

I Vi < CO.
ieI

However, we have
LEMMA 1. LeI Vi < 00 if and only if the program has a finite expectation of

termination (i.e., the expected length of stay in I is finite), which is then equ.al to that sum.

308 .MICHA SHARIR, AMIR PNUELI AND SERGIU HART

Proof. The expectation of program termination is

Ln' Frob (the program terminates in exactly n steps)
ftE;;O

= L Frob (the program terminates only after n or more steps)
ftE;;1

.

:S; L Frob (the program is not yet in T after n steps)
ftE;;O .

"
,,~(ft)

"= L- L- fJ.i = L- Vi.
ftE;;O iEI iEI

Hence LEI Vi < 00 implies a finite expectation of termination.
-

Conversely, if the program has a finite expectation to terminate, then it terminates
almost surely, which makes the inequality in the above formulae into an equality.
hence LiEI Vi is equal to the expectation to terminate, which is finite. Q.E.D.

Hence the above condition requires that the program have a finite expected
execution length, which in general is stronger than the requirement that it terminate
almost surely.

.

Nevertheless, we have the following alternative approach to verification:
(i) Find any nonnegative solution a of (4) (even with an inequality).

(ii) Find an invariant nonnegative completion Ii of the coefficients of the given

functional on T.
(Hi) Check that (a1 . li1) < 00, where li1 = lil[, a1 = all,
If so, Ii-termination, and hence also (C), are assured.
An example of this procedure will be given in the following section. We will

conclude this section with an example of a straightforward calculation of 6. Consider
the Gambler's Ruin program given in Example 3, with p = q = l Following the notation
of § 2, equations (4) have the form

1
VUj,O) = 2:VUj,1h

1
VUj,1) = 2:VUj,2),

1 1
VUj,j) = 2:VUj,j-l) + 2:VUj,j+lj,

1 1.
1VUj,ft) = 2:VU1>/1-1) + 2:VUI,ft+1)+ ,

Ii'n, 1>1,

V(lz,O)= VUj,O)'

Putting V(lt,O) = a, we have the following general solution:

f

a,
V(lt,j) = 2aj,

2al - 2(1 - n),

1=0,

1= 1,' . ., n,

I>n.

Since we want the smallesLnonnegative solution of (4), we must take a = 1, and we
obtain the solution

{

I,

v(lj,j) = 21,

2n,.

j =0,

j = 1,' . ., n,

j>n.
.~

VERIFICATION OF PROBABILISTIC PROGRAMS 309

Hence f.L02,O)= V~l2'O) = V(ll,O) = 1. This means that the program terminates almost
surely. However, LiEf Vi = +00, so that the program is not expected to terminate, in
accordance with the results obtained, in a much more complicated manner, in the
preceding section.

4. Additional examples. In this section we will illustrate the verification methods
developed in the two preceding sections, as applied to two nontrivial example pro-
grams.

Example 4. Consider the following program (0 < a < 1 is fixed):

y:= 0; n:= 1;
while y< a do

y:= y+1/2n random(~80+~81);
n := n + 1;

od.

For simplicity, we identify states only by the values of yand n. Thus, S = {(y, n): n:> 1,
y EDn-1}' where Dj is the set of all dyadic fractions having j binary digits. The
terminating states are

T={(y, n): n~l, YEDn-1, y> a and the (n-1)st digit of y is I},
\

and the transition probabilities are

P _1

}

(y,n),(y,n+1) - 2

P(y,n),(y+1/2",n+1) =~
Y E Dn-b y<a (i.e. (y, n) E I),

P -1(y,n),(y,n)- Y E Dn-b y>a (i.e. (y,n)ET).

Let us compute the termination probability of this program; that is, we wish to compute

1/1(ji, *) = L 1J.G,n)'
(y,n)eT

Let us extend 1/1to an invariant nonnegative functional cP:

cp(ji,) = L (3(y,n)f.L(y,n),
(y,n)eS

where (3(y,n) = 1 for (y, n) E T.

The invariance of cPimplies that for each (y, n) E I we must have
1 1

(3(y,n) = 'i{3(y,n+1) +'i{3 (y+(1/2n),n+1).

Of course, these equations have the solution {3(y,nJ= 1, but this is too large. (Note in
general that such an extension implies that cP(ji,°) = 1 for any initial distribution ji,°,
Hence, this extension is the smallest nonnegative invariant extension of 1/1 if and only
if the program terminates almost surely, regardless of the initial distribution,) In our
case, we have a smaller solution:

-~~

{

O'
(3(y,n)= 1,

,

1- 2n--1(a - y),

2n-1(a -y» 1,

2n-1(a -y)<O,

otherwise,

Indeed, let us verify that these coefficients satisfy the above recurrence equation.
Suppose first that (3(y,n) = 1. This happens when y:> a, and then both {3(y,n+1J =
(3(y+1/2",n+1) = 1, so the equation is satisfied. Next suppose (3(y,nJ= 0, This happens
when y ~ a -1/2n-1. Then obviously y:$ a -1/2n so that f3(y.n+l)= 0, and also

~"

310 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

y + 1/2" ~ a -1/2'\ so that (3(y+l/2"",+1)= O.Hence the equation is satisfied in this case,
too. (Note that this corresponds to the case where the program never terminates if it
reaches the state (y, n).) Finally, assume that

0<2"-I(a-y)<1, 1.e.,
. 1

a - 2,,-1 <y <a.

Two subcases are possible. If a -1/2" < y < a then y + 1/2" :>a

(3 (y+1/2",n+1) = 1, whereas (3 (y,n+1) = r - 2" (a - y). Hence

~(3(y+l/2",It+l) + ~(3(y",+I) = ~ + ~- 2"-I(a - y) = 1- 2n-1(a - y) = (3(y,';Y.

If a -1/2"-1 <y <a -1/2,i: then a -1/2n <y + 1/2" <a, so that

(3(y+1/2","+1)= 1-2" (a - y - 21,,),

and so

whereas (3(y,n+1) = O. Hence

1 1 1 ,,-1 (1) "-1 ()
r

2(3(y",+I)+2(3(Y+1/2"",+I) =0+2-2 a-y-2" =1-2 a_-y = (3(y",).

Note that we have not shown that these (3(y,n)'syield the smallest invariant extension
of I/f (although this is indeed the case). However, we can apply the duality principle
stated in § 3 by computing the vector vIand checking that (VI' /fd < 00. As it turns
out, computation of VI in this case is simpler, because each nonterminating state (y, n)
can be reached from only one preceding state. Specifically, we have

V(O,l) = 1,. 1
V(y",) = ZV(y'",-lh n >1, Y E D,,-l, y <a,

where y' ED"-2 consists of the first n - 2 digits of y. Thus, for each (y, n) EI, we have

1
V(y",) = 2"-1'

Now we have

I V(y",)(3(y",)<OO
(y,")EI

because for each n there are at most two y E Dn-1 for which (y, n) E I and (3(y",)::j:.O.
It therefore follows that

!f;(fi,*) = cP(fi, °) = cP(8(0,1» = (3(0,1) = 1- a.

Expectation of y upon termination. Here we consider the following functional:

,1,(-*) -" -*'f' f.L - L..- Yf.L(y",)
(y",)ET

which is extended to

cp(!i)= I (3(y",)!i(y",)+ I y!i(y,nh
(y,n)EI (y,n)ET

which has to satisfy the same invariance equations

1 1
Z(3(y,n+l) +z(3 (y+1/2"",+I) = (3(y",J, (y, n) E I.

VERIFICATION OF PROBABILISTIC PROGRAMS

Let us guess the following solution:

0,
1

y <a -
2"-1'

{3(Y,"J= A",
1

/V --< y </Vu.
2"-1 =

u.,

y, a <y,

311

(Note that {3(y,") = A" for exactly one y E D"-d Let us check the recurrence equations:
If {3(y,nl= 0, Y< a -1/Y-\ then both y and y + 1/2" are less than a -1/2", so that
the left-hand side is also O. Suppose then that a -1/2"-1 < Y< a. Two cases are
possible.

Case I. a -1/2" < y < a, which happens if the nth digit of a is 0 (assume an
infinite binary representation of a). Then {3(y,n+1)=An+1 and {3(y+1/2",n+l) = Y+ I/Y.
Hence we have

1 1 (1)2:An+1+2: Y+2n =An

Case II. a -1/y-1 ~ Y< a -1/2n, which happens if an = 1. Then {3(y,n+1)= 0 and
{3(y+1/2",n+1) = An+1' Hence -I

Combining both cases, we can write

if an =0.

1
2:An+1 = An ifan=1.

An+1 = 2An - ~1- an) (Yn + 21n).

where Yn is the binary fraction represented by the first (n - 1) digits of a, i.e.

The solution of the general equation

n-1 a.

Yn = I 2
;.

j= 1

An+1 = 2An - Cn,

is given by

n >1,

A = 2"-1
[

A -
"~1 Ck

J
n 1 L.

2 k .
k=1

Hence, as usual, we have to choose

co Ck
A1= I

2 k'
k=1

Hence, the expectation of Y is {3(O,lJ= A 1 (note that (V1.l3d < co in this case too)

co 1 (1)
co 1-ak co l-akk-1aj

= I
2k (l-ak) Yk+

2 k = I -22k + L - 2k I 2j'
k=1 k=1 k=1 j=1

~' ~ '

Q S

)

312 MICHA SHARIR, AMIR PNUELI AND SERGIU HART

To compute this sum, we use the following equality:

(1 -)2= ~ (1-aj)(1-ak)=
2

,,(1-ak)(1-aj) ~ 1-ak
a ~ j k ~ k j + ~ 2k

k,j=1 2 2 j<k 2 2 k=1 2

00-1-ak

(
k-l1

)
= -25+ Q+2 L ---;z- ,L j

k=1 ,2 }=1 2

= -25+ Q+2(1- a)-4Q = -25-3Q+2(1-a).

Hence

r2(1-a)-(1-a)2-Q 1-a2 Q
13(0,1)=5+Q=

2
-

2 -2'

Thus the derived expectation of y is less than the expectation of y under uniform
distribution of y in (a, 1J by Q /2, where

00 1 - ak
Q = L -

22k .
k=1

Example 5. Maximum component in a random sequence. Finally we give an
example of an average-case analysis of a nonprobabilistic program, using our methods.
This example will require that we deal with continuous distributions; however, our
methods can be easily extended to the continuous case, as will be demonstrated below,
although we will not justify this extension formally. This example is considered by
Knuth [KNJ and is analyzed by Ramshaw [RAJ by his system of "frequentistic"
assertions. Consider the following program, which finds the maximum among 11random
elements, all drawn independently from a uniform distribution on [0, 1J (A denotes
the Lebesgue measure on [0, 1]; note that here we allow draws out of a continuous
distribution) :

M:= random (A); C:= 0;
for J := 2 to 11do

if (t := random (A)) > M then C := C + 1; M:= t; fi
od.

C is a counter variable added to the program in order to measure the number of
assignments to M. This number, the number of "left-to-right" maxima occurring in
the sequence, is the performance parameter that we wish to estimate. The program
states can be compactly represented by the values c, m, j of C, M, J respectively at
entrance to the loop. (We will use the convention that J = 11 + 1 designates terminal
states.) Furthermore, since m varies over a continuous distribution, we will regard Ii 0

and Ii * as density functions in m, and as distributions in c and j. (This is the first
example of a continuous distribution; the results obtained so far can be easily general-
ized to this case, by simply replacing sums by the appropriate integrals.)

We thus wish to compute

f
1 ,,-1

t{t(fj, *) =
0 c~o

C/-L~11+dm) dA (m).

We extend t{t to an invariant functional
'P over S, so that

11 It-I

f
1

11-1

f
1

'P(Ii)=j~2C~0
0

Yc,j(m)f.Lc.J(m)dA(m)+c~oc
0

f.Lc,I1+1(m)dA(m).

VERIFICATION OF PROBABILISTIC PROGRAMS 313

In a continuous model, the transition probability matrix has to be written as a kernel
representing "transition density" in the continuous parameter m (see Revuz [RVJ for
details), Thus, we have the following nonzero entries:

p(c,j,m),(c,j+l,u)= m8m(u),

}PCc,j,m),Cc+l,j+l,u) = XCm,l] . A(U),
'<] =n,

P(c,n+l,mJ,(c,n+l.u) = 8m(u).

The first line describes an iteration step of the loop at which C has not been
incremented, so that m does not change; the total weight of this transition is m. The
second line describes an iteration step at which C isincremented, and the new value
(u) of m is greater than the old value. The third line describes terminating "transitions",

The invariance of
'P

requires the following recurrence equations to hold:
1

Yc,j(m) = mYc,j+l (m) +
fm

Yc+l,j+l (u) dA (u),

where Yc,n+l(m) = e. We will prove that

'<] =n,

, 1-mi
Yc,n+l-,(m) = e + L

i=1

by induction on r, The equality holds for r = O. Assume it holds for some r. Then
1

Yc,n-r(m) = mYc,n+l-,(m) + f Yc+l,n+l-'(U) dA (u)
m

[

r 1 i

J f
1

[

,~ 1 i

]=m e+,L -,m + e+1+,L ~ du
1=1 1 m 1=1 1

, 1-mi , (1-m)-(1-mi+l)jU+1)'
= me + m L . + (1 - m)e + (1 - m) + L .

i=1 I i=1 1

, 1- mi+l ,+1 1- mi
=C+L. +1-m=c+L . .

i=1 1+1 i=1 I

Note that here 'P is uniquely determined, and so must sati~fy (Vl)-(V3), Hence

'P
(fi 0) = 1/J(fi*) where fi

0 is the initial distribution on entry to the loop. This initial
distribution, however, is concentrated on c = 0 and j = 2 and is uniformly distributed
in m. Hence we have

f

l

f

In-II i

1/J(fi*) = Yo,2(m)dA(m)= L -,m dA(m)
0 0 i=1 1

n-l1-1j(i+1) n 1
= " . - " -=H -1L..

'
L... n ,

i=1 1 i=21

-'
which is the result in [KN, § 1.2.10J.

REFERENCES

[CH]

[FL]

K. L. CHUNG, Markov Chains with Stationary Transition Probabilities, Springer-Verlag, New York,
1967,

R. W, FLOYD, Assigning meaning to programs, in Proc. Mathematical Aspects of Computer Science,
J. T, Schwartz, ed., American Mathematical Society, New York, 1967, pp, 19-32.

314

[HS]

[HS2]

[HSP]

[KSK]

[KN]
[KO]

[LR]

[LS]

[MW]
[PA]

[RA]

[RB]

[RE]

[RM]

[RV]
[SD]

[WE]

MICHA SHARIR,AMIR PNUELI AND SERGIU HART

S. HART AND M. SHARIR, Concurrent probabilistic programs, or how to schedule if you must,
Technical Report, School of Mathematical Sciences, Tel Aviv Univ., Tel Aviv, Israel, 1982.

-, Propositional probabilistic temporal logics, Technical Report, School of Mathematical
Sciences, Tel Aviv Univ., Tel Aviv, Israel, 1983.

S. HART, M. SHARIR AND A. PNEULI, Termination of probabilistic concurrent programs, Proc. 9th
ACM Symposium on Principles of Programming Languages, Association for Computing
Machinery, New York, 1982, pp. 1-7; ACM Trans. Prog. Languages and Systems, 5 (1983).

J. G. KEMENY, J. L. SNELL AND A. W. KNAPP, Denumerable Markov Chains, 2nd ed., Springer-
Verlag, New York, 1976. ,

D. E. KNUTH, The Art of Computer Programming, Vol. I, Addison-Wesley, Reading, MA, 1968.
D. KOZEN, Semantics of probabilistic programs, in 20th IEEE Symposium on the Foundations of

Computer Science, Institute of Electronics and Electrical Engineers, New York, 1979, pp.
101-114.

D. LEHMANN AND M. O. RABIN, On the advantages of free choice, in Proc. 8th ACM Symposium
on Principles of Programming Languages, Association for Computing Machinery, New York,
1981, pp. 133-138.

D. LEHMANN AND S. SHELACH, Reasoning with time and chance, Technical Report, The Hebrew
Univ., Jerusalem, Israel, 1982.

1. MORRIS AND B. WEGBREIT, Subgoal induction, Comm. ACM, 20 (1977), pp. 209-222.
D. PARK, Fixpoint induction and proofs of program properties, in Machine Intelligence, B. Meltzer

and D. Michie, eds., Vol. 5, Edinburgh Univ. Press, Edinburgh, 1969, pp. 59-78.
L. H. RAMSHAw, Formalizing the analysis of algorithms, Ph.D. thesis, Report STAN-CS- 79- 742,

Department of Computer Science, Stanford Univ., Stanford, CA, June, 1979.
M. O. RABIN, Probabilistic algorithms, in Algorithms and Complexity-New Directions and Recent

Results, J. F. Traub, ed., Academic Press, New York, 1976, pp. 21-40.
J. H. RElF, Logics for probabilistic programs, in Proc. 12th ACM Symposium on the Theory of

Computi/1g, Association for Computing Machinery, New York, 1980, pp. 8-13.
C. V. RAMAMOORTHY, Discrete Markov analysis of computer programs, in Association for Comput-

ing Machinery, 20th National Conference, Cleveland, Association for Computing Machinery,
New York, pp. 386-392.

D. REvuz, Markov Chains, North-Holland, Amsterdam, 1975.
N. SAHEB-DJAHROMI, Probabilistic LCF'; in Proc. Conference on the Mathematical Foundations

of Computer Science, Springer-Verlag, New York, 1978, pp. 442-451.
B. WEGBRElT, Verifying program performance, J. Assoc. Comput. Mach., 23 (1976), pp. 691-

699.

