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Values of Large Market Games')

By S. Hart, Stanford?)

Abstract: Three aspects of the application of the game theoretic concept of “‘value” to non-atomic
economies — such as markets or production — are studied: first, the relation between value and
equilibria; second, the problems of existence and non-existence of value; and third, a new way of
defining value for these games, in order to guarantee its existence, which leads to interesting econ-
omic interpretations. :

1. Introduction

The relations between game theoretic and economic concepts have been studied for
.2 long time, trying to get a better insight into the laws governing the behavior of eco-
nomic agents. '

Much interest has been devoted to “large” economies®), where the individual is
“negligible”. Such situations are called “perfectly competitive”, and the appropriate
economic concept is that of “competitive equilibrium”.

The first game theoretic solution studied in this context is the core, the main result
being:

Core Equivalence Theorem: In a perfectly competitive economy, the core and the
set of competitive allocations coincide [cf. Debreu/Scarf; Aumann [1964]; Vind, Hil-
denbrand, and others].

The next most used concept is the (Shapley) value — in particular, since it captures
traditional economic ideas of “marginal contribution” (or, “worth”). The corresponding
result is the following: ‘

Value Theorem: In a perfectly competitive economy, every value allocation is com-
petitive, and the two sets of allocations coincide 1f the economy is “‘sufficiently dif-
ferentiable”. :

There are two main ways to model perfect competition. One is a limit approach,
where sequences of finite economies, increasing in size, are considered (e.g., replicas).
The other is using a non-atomic continuum as the space of agents.

1y This work was supported by National Science Foundation Grant SOC75-21820 at the In-
stitute for Mathematical Studies in the Social Sciences, Stanford University. Presented at the Inter-
natlonal Conference on Applied Game Theory, Vienna, June 1978.
) Sergiu Hart, Stanford University, Institute for Mathematical Studies in the Socml Sciences.
Stanford, California 94305, USA.
) By “economy”’ we mean a market, or a productlon economy — as in Section 2.
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Also, the two kinds of economic models are studied: Walrasian exchange (markets
without transferable utility), and “monetary’” markets (with transferable utility). As
it will be pointed out in Section 2, the latter also represents production economies.

The following table summarizes the research done on the Value Theorem:

Limit of Finite Non-atomic

Economies Economies
Monetary (with Shapley [1964] Aumann/Shapley [1974] Differentiable
transferable
utility) Champsaur [1975] Hart [1977b] Non-differentiable
Walrasian (with- Mas-Colell [1977] Aumann [1975] Differentiable
out transferable - :
utility) , Champsaur [1975]. Hart [1977b] Non-differentiable -
Tab. 1

In this paper we deal with non-atomic economies. After presenting the basic models
and defining the generalized asymptotic values in Section 2, we divide the results in
three parts. The first one (Section 3) is devoted to the Value Theorem; the second one
(Section 4), to the existence (and non-existence) of the asymptotic value; and in the
last one (Section 5), we try to overcome these problems by defining a new measure-
based value:

2. Preliminaries

This section includes the basic models of non-atomic economies, the definitions of
(generalized) asymptotic values, and some preliminary results.

We start by describing a non-atomic economy (market) — as in Aumann/Shapley
[1974], Aumann [1975], and Hart [1977b]. ‘

The trader space is a measurable space (I, C), which we assume to be standard*). A
non-negative, o-additive and non-atomic measure u on C is given, called the population
measure. To simplify our notations, we w111 sometimes write®) [ fdu and [ fto mean

ff(t)du(t) . s~ s~

The commodzty space is §1, the non-negative orthant of the I-dimensional Euclidean
space R’, where /s the number of commodities. For x in R x/ will denote its j-th
coordmate

The initial allocation a is an integrable function from I to §2. We assume that every

commodity is actually present in the market, i.e.,

4) Le., isomorphic to the unit interval with the Borel o-field. This assumption is not too
restrictive, since any uncountable Borel subset of any Euclidean space, and indeed of any complete
separable metric space, with the corresponding Borel ¢-field, is standard — cf. Proposition (1.1) in
Aumann/Shapley [1974].

3) Letters with ‘wiggle’ underneath will denote function deflned onl.
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fal >0, forall 1<j<I | (2.1)
7~
(commodities with no initial supply can be obviously ingnored).

An allocation is an integrable function x from / to §2, such that [x = fa.
- I 1

Here we distinguish between the two kinds of economies: monetary and Walrasian.

In the transferable utility case (monetary markets), to each f in I there corresponds
a real-valued function u, defined on £2, called the utility function of t. All these func-
tions are normalized by u; (0) = 0, and they further satisfy:

(2.2) x >y implies®) u; (x) = u; (¥) (weak monotonicity),
(2.3) u, is a continuous function (continuity),

(2.4) u, (x), as a function of the pair (7, x), is ;neasurable in the product field C X Bl,
where B! denotes the Borel o-field on Q2 (measurability), and

(2.5) u; (x)=o0 (| x Il as [ x |l > o, integrably in ¢ (i.e., for every € > O there is an
integrable function n defined on 7, such that | u, (x) | <el x|] whenever

Il x 11> 7 ().

Given the above economy, we will define the corresponding market game v by

v (S) = max {é’ut (x () du(t) Iggg:gg and x () €Q forallt €S}, (2.6)

for all S € C, the maximum being attained by the main theorem in Aumann/Perles
[1965]. Then v is a non-atomic game with side payments, and further it belongs to the
space H., as defined in Hart [1977a, Section 2]; namely, it is the limit in the supremum
norm of polynomials of non-atomic measures, it is superadditive, monotone, and
homogeneous of degree one [see Proposition (3.4) in Hart, 1977b]. - ‘
_In terms of our exchange market, the interpretation of v (S) is as follows: there is

an additional commodity, called “money”, such that each trader’s utility increases
by one unit for each one unit of money. The maximum utility the coalition § can get,
by reallocating its own initial resources between its members, is then exactly v (S).

The second interpretation of this model is that of a production economy. There are
[ “inputs” (i.e., raw goods), and one ‘“‘output” (i.e., a finished good). Each participant
't can produce out of a vector x (in £2) of inputs, an amount u, (x) of the output
good”). The initial allocation of raw goods being g, v (S) is then the maximal quantity
of the finished good that S can produce, again by using its own resources alone.

A transferable utility competitive equilibrium (t.u.c.e.) is a pair (x, p), where x is
an allocation and p is a price vector in §2, such that

4 (=P =g () <u, D)~ -2 ®) 27

)Forxandymﬂ x>ymeansx]>y]foralll <j<l
7y A more Pprecise mterpreta’uon will be that a producer d# gets u, (x) u (dt) out of x u (dt) — cf.
Section 30 in Aumann/Shapley [1974].
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for all x in 2 and (almost) all ¢ in 1. The corresponding competitive payoff distribu-
tion is the measure®) v, defined by

b (S)=£[u,(z ) —p* (x O— 2 ®O)]du @), o 28)

for all.S € C.

The t.u.c.e. is actually a usual (Walrasian) competmve equilibrium, the price of
“money” being normalized to 1 — see Section 32 in Aumann/Shapley [1974] for a
more detailed discussion.

From now on, P will always denote the set of all equilibrium prices, i.e., the set of
all p in © such that (x, p) is a t.u.c.e. for some allocation x.

Proposition 2.9:

(i) Pisanon-empty, convex and ‘compact subset of £2.

(i) x isa t.u.c.e. allocation if and only if v (/) is attained”) at x. Moreover, (x, p) is
then a t.u.c.e. for all p in P, and the corresponding competitive payoff distribu--
tion does not depend on x (i.e., is the same for all such x'°).

(iii) The core of v and the set of competitive payoff distributions coincide.

Proof: Propositions 32.2-and 32.5 in Aumann/Shapley [1974], Propositions (2.10) and
(2.20) in Hart [1977b], and Theorem 23.4 in Rockafellar [ 1970].

The second model is that of a Walrasian non-atomic market. Unlike the previous
case, no (cardinal) utility functions are given. Instead, for each ¢ in J there is an (ordinal)
preference relation >, on §1, satisfying:

(2.10) x>y and x # y imply x >, y (desirability),

(2.11) for each x in £2, the sets {y | y >, x} and {y | x >, y} are open relative to
(continuity), and

(2.12) fof any two measurable functions x and y from I to 1, the set
H{tlx ()>, y (1)} belongs to C (measurability).

A competitive equilibrium is a pair (x, p), where x is an allocation and p # O is a
price vector in {2, such that x (¢) is maximal w1th respect to >, in the budget set of
trader ¢

B, O=x€e|p-x<p-a()},
for (almost) all ¢ in 7.

We come now to the definition of value — first in the transferable utility case — using
the asymptotic approach, due to Kannai [1966]. .

) Because of Proposition 2.9, we can use the notatlon Vp (instead of v

).
%) Le., v(I)—-fu (x(t))andfx-—fa (xP)

10y But it does depend on p.
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Let v be a non-atomic game on the measurable space (7, C) (i.e., visa real function
~on C with v () = 0).

A partition 11 of (I, C) is a finite family of subsets of 7, which are measurable (1 e.,
belong to C) and disjoint, and whose union is /. A sequence P= {II_ }~_, of parti-
tions is called admissible if it satisfies

(2.13) it is decreasing, i.e. for all m, each member of I1,, is a union of members of
il and

m+1’

(2.14) it is separating, i.e. for each s, ¢ in 7, s # t, there is m such that s and ¢ are in
different members of Hm

Fora given partition II, let vy denote the finite game derived from v, whose players
are the members of II, namely

vg (D =EV (B’gAB)

forall ACIIL
Let T € C and let P = {II,, } be an admissible sequence of partitions whose first
term is [T, = {7, I\ T}. Foreachm,let T, = T, be the coalition corresponding to

T in vnm ,namely T, ={B€ll, |BCT} Let q>vnm denote the Shapley value of the
finite game v, . If the numbers (¢v;; ) (7,,) approach a limit as m — o, and this limit
m m .

is independent of the sequence P, then it will be denoted by (¢v) (T) It (¢v) (T) exists
for all 7 € .C, then the function ¢v will be called the asymptotic value of v.

In view of the non-existence of the asymptotic value in some cases of interest (see
Section 4), we will also consider generalized asymptotic values, where the limit of
(¢v )(T,) should exist and be the same for all P in a given class of admissible

sequences Examples of such values are the measure based values, to be defined in Sec-
tion 5. The reason for this definition is that the Value Theorem holds for any generali-
zed asymptotic value (and not only for the usual one), as shown in Section 3. A last
immediate remark is that the asymptotic value exists if and only if all generalized
asymptotic values are identical. ‘

In what regards the non-transferable utlhty case, we will use the following Nash-
Harsanyi-Shapley procedure [cf. Harsanyi; Shapley 1969; Aumann, 1975].

Let U= {u,};cybea family of utility functlons representmg the given preferences
> e namely,

u, (x)>u, (v) if and only if x >, y, - (2.19)
for all ¢ in I, x and y in §2. If U also satisfies (2.5), a transferable utility market v= =y U

can be defined by (2.6) (note that (2 2), (2.3) and (2.4) are 1mp11ed by (2 10), (2. 11)
and (2.12), respectively).
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An allocation x is called a (generalized) asymptotic value allocation if there exists a
family U of utlhtles satisfying (2. 5) and (2.15), such that v{; has a (generalized)
asymptotic value ¢v,, and

(Ovy) (5) =£ u, (x (8)) du (1),

/

forall §'in C.
For discussions of this approach, the reader is referred to the above noted papers of

Shapley [1969] and Aumann [1975].

3. The Value Theorem

The results in this section are, the same as those in Hart [1977b], extended here to
the generalized asymptotic values (using essentially the same proofs)
We start with the monetary markets.

Theorem 3.1: Let v be a market game arising from a non-atomic economy with; trans-
ferable utility, satisfying (2.1) — (2.5). Let ¢v be a generalized asymptotic value. Then
¢v is a competitive payoff distribution.

Proof: By Proposition (3.4) in Hart [1977b], v belongs to H , . Applying now Propo-
sition (7.1) and (5.4) in Hart [1977a], we get

@) (D)= lim_ (v ) (T,)> 0" G xp) > v (D),

from which it follows that ¢v belongs to the core of v, hence by Proposrtron 29 (m)

it is a competitive payoff distribution.

. The second part of the Value Theorem assumes drfferentlabrhty The following
theorem is actually stronger than the asymptotic part of the results of Aumann/Shapley
[1974] (see Table 1).

Theorem 3.2: Let v be a market game arising from a non-atomic economy with trans-
ferable utility, satisfying (2.2) — (2.5) and

(3.3) forevery tin/ and 1 <j <l, du, (x) / ax/ exists at every x in {2 with xI>o0.

Then the set of competitive payoff distributions and the set of (generalized)tasymptotic
values of v concide, and consist of one element only.

Proof: Theorem D in Hart [1977b].
We come now to the non-transferable utility case.

Theorem 3.4: In a non-atomic Wairasian market satisfying (2.1) and (2.10) — (2.12),
every generalized asymptotic value allocation is competitive.
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Proof: The same proof as that of Theorem E in Harr [1977b], using Theorem 3.1
above instead of Theorem A there.

4. Existence of Asymptotic Value

Since the value for the Walrasian markets, by its definition, depends on the exist-
ence of value in the transferable utility case, we will deal in the next two sections with
the latter only.

We start with some “‘positive” results.

Theorem 4.1: Let v be a market game arising from a non-atomic economy with trans-
ferable utility, satisfying (2.1) — (2.5). If there is a unique compet1t1ve payoff distri-
bution, then v has an asymptotic value.

Proof: Theorem C in Hart [1977a], Proposition (3 4) in Hart [1977b], and Proposition
2.9 (iii).
The next theorem is a “generic existence theorern .

Theorem 4.2: Given utility functions U = {u;},;<; satisfying (22)-(25),letA=A4y

be the set of all vectors a in 2 such that there is a transferable utility non-atomic mar-

ket (a, U) with [a = a, for which the asymptotic value does not exist. Then A4 is a set
I

of Lebesgue measure zero in 2.

Proof: See the proof of Theorem C in Hart [1977b].

Remark 4.3: Actually, a stronger result is proved as Theorem C in Hart [1977b], namely,
that the set of competitive payoff distributions coincides with the asymptotic value
“almost everywhere” (which is defined in the same way as in the above Theorem 4.2).

However, in general, the asymptotic value need not exist. A necessary condition is
given in the next theorem. For a subset X of a linear space, x, is a center of symmetry
of X if, for every x in X, its symmetric image w1th respect to xo, 2xo — X, belongs also
to X.

To avoid inessential comphcatlons we will assume that the excess demand in equi-
librium has full d1rnen51on namely, that given a t.u.c.e. allocation X, the linear (affine)
subspace [ (x — a) of R’ spanned by all vectors f (x —a)du, for all S € C, has full

dimension (1 e., dimension /). In case this is not satlsﬁed P (the set of equlhbnum
prices) should be replaced by its projection on L (x — a).

-Theorem 4. 4 Let v be a market game arising from a non-atomic economy with trans-
ferable utility satlsfymg (2.1) — (2.5).'If v has an asymptotic value, then the set of
competitive payoff distributions and the set P of equilibrium prices each have a center
of symmetry.-
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Proof: Theorem B in Hart [1977b] (see also Added in Proof (2) 'there).

As an example where this condition is not satisfied (hence, there is no asymptotic
value) — one can consider the “‘three-handed glove market” [cf. Aumann/Shapley,
p. 203]. It should be also noted that the above condition is necessary but not suffi-
_cient [cf. example 8.1 in Hart, 1977a].

5. Measure-Based Values

In order to get a value for all market games, we will define-in this section a specific
generalized asymptotic value {see Hart, 1978].

First, let us consider the reasons for the non-existence of the asymptotic value The
definition requires that for all admissible sequences, the limit of the Shapley values of
the corresponding finite games should exist, and be independent of the particular
sequence chosen. In all the cases studied in this context, admissible sequences with dif-
ferent limits have been constructed. A deeper look reveals that all those partitions v
consisted of one (small) set which was “much bigger” than all the othiers. For example,
consider the partition of [0, 1] into one interval of length 1/n and n (n — 1) intervals .
of length 1/n*, and let n = oo(to ensure that the partitions get “finer”, one can take
n=2"Mand m— ),

In case the only ‘“‘data’ is a game v, there is nothing that can make the above se-
quence of partitions “‘inadmissible”’. However, when one is considering an economy, :
and v is the derived “market game”, additional data is given — namely, an underlying
“population measure” u. E.g., assume [0, 1] to be the set of traders, and u the
Lebesque measure. Then the sequence of partitions described above does not seem to
be a good approximation of the traders’ space (some of them being always given much
more weight than others!).

This indicates the way to proceed in order to guarantee the existence of the value.
It was first used in Aumann/Kurz [1977], by restricting the admissible partitions'to
have all their elements equal in y-measure. Here we adopt a slightly more “liberal”
approach, requiring the measure of the elements of the partitions to get “close” one '
to another as m = oo, o

Formally, given a measure u on (I C) a sequence P = {Hm }m=1 of partitions is-
called u-admissible if it is admissible (i.e., satisfies (2.13) and (2.14)), and furthermore

rﬁax M (B). , ‘ v C
Bern,, L o ;

n}linm ——————mm o« B) =1, * (5.1)
BEH

The generalized asymptotic value corresponding to the class of all u-admissible se-
quences is called p-based value, or u-value. )

In order to guarantee existence of the u-value for a market game, we need one -
further assumption, which can be interpreted as an added “competitiveness” require-
ment: that the variance of the excess demand, in equilibrium, should be finite. In-

f
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tuitively, this implies that no arbitrarily “small” group of traders can have an arbitrarily
“large” excess demand (recall that the total — hence, average — excess demand in
equilibrium is zero). Usually, all allocations will be bounded, therefore this assumptlon
will be surely satisfied. .

We can now state our main result. As in Section 4, we will make the simplifying
assumption that L (x — a) has full dimension (see Theorem 4.4; in-the degenerate case,
replace P by proj | (x— a)P and R by L (x — a)).

Theorem 5.2: Let v be a market game arising from a non-atomic econofny with trans-
ferable utility, satisfying (2.1) — (2.5). Let P be the set of all equ111br1um prices, and
let x be a t.u.c.e. allocation, such that ~

{(57)2 du <o, forall 1 <j<I, - (5.3)

and L (2) has full dimension, where z = x—a.
Then v has a p-value ¢v, which coincides with a competitive payoff distribution
Vps- The price vector p* in P is given by

p*= [ p(z)dN(2), (5.4)
R/ _

where

(5.5) p (z) maximizesp * z over all p €P, forall z m R,
and /V is the normal probability measure on R’ with the same first and second
moments as z,namely, with expectation vector O = [ zdu, and covariance matrix

= (II z kdu) . (5.6) ,

Proof: Hart [1978]. _

For a more detailed discussion of this theorem and its conditions, the reader is
referred to Hart [1978, Section 3]; it also includes a set of assumptions on g and
{us}sey implying (5.3).

The theorem also raises the following mterestlng question: what is the equilibrium
pnce p* that correspondsto the p-value (p* is called: value price)?

The first observation is that in this model, the set P of all competitive prices is
determined by macro-economic considerations only. Indeed, one needs to know only
the aggregated utility function'!) u; and the aggregated (initial) supply [ g, the

I

competitive prices being then exactly the set of super-gradients (i.e., supporting hyper-
planes) of u; at [ a [see Hart, 1978, Corollary 6.19]. All this data is not only “agent
] ° -

11) Forain, uy (@) = max {jut (x ) du ()| [x=a and x (‘t) € Q‘f(;r allt €7} [cf. Au-.
: I I o

mann /Shapley, p. 213].
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free”, but also “distribution free” — i.e., the utility function and the income (initial -
endowment) of any one trader are unspecified; furthermore, not even the distribu-
tion of those characteristics in the population need be given. In-the case the competi-
tive price is uniquely determined, no problem arises. But which price should be
chosen when P is a “large” set? The value considerations point out one such price p* —
as the customary interpretation of this concept indicates, on grounds of “fairness” and
“equity”. Obviously, additional data — at the microeconomic level — will be needed for
this purpose.

As in the statement of the theorem, let P be the set of all equ111br1um prices, x a -
(fixed) competitive allocation, and z =x — a.

Let S be a large random sample (coalition), drawn from the set of traders /. If the
total supply of S, [ a, equals its total demandg x, then every price vector p in P is

3 A

also an “‘S-price”, namely an equilibrium price for the economy formed by §. In general,
however, [ (x — a) = [ z will be small (by the Law of Large Numbers, since [ z = 0),
S S ‘ I

but will not vanish. Therefore, the S-prices will be close.to P; in fact, they will be close
to those p in P maximizing p - [ z, i.e., following our notation (5.5), to p (J z). Mathe-
S S

matically, this is an easy consequence of the properties of super-gradients [cf. Rockafel-
lar, Theorem 24.6]. Economically, it corresponds to a high price for commodities with
a high excess demand, and a low price for those with a lovz excess demand. It can be
also thought of as some kind of an auctioneer’s rule in a tatonnement process [cf.
Arrow/Hahn, Chapter 11].

Let Z be the distribution of the excess demand z in the population (i.e., Z'is the
probability measure on R/ defined byZ=uoz 1) Then, if we choose traders at
random, the distribution of their excess demand will be Z. However, if we choose
samples (coalitions) at random, their aggregated excess demand will no longer be Z-
distributed. By the Central Limit Theorem, we will get instead (with the adequate nor-
malization) the normal distribution with the same first and second moments as those
of Z — namely, V.

Combining these two results, and noting that the normalization does not matter,
since p (z) = p (az) for all « > 0, we finally get: p*, as defined by (5.4), is the ex-
pected equilibrium price vector of the economy formed by a random subset (or,
random sample) of the agents. ' :

A close look reveals that this interpretation actually follows from the value consi-
derations. Indeed, let df be a small trader, then his-value, (¢v) (dt), is the expected
incremental worth (‘“‘contribution”) of df to a large sample (coalition), picked at ran-
dom from the population. Let S be such a sample, then the contribution of dr equals
the utility of his allocation, minus its net cost, namely ,

u, (5 () —pS - (5 (t)—'a(t))]u(dr) o G

where (pS S) isa competltlve equﬂlbrlum in the economy formed by S. By the Law
of Large Numbers, S is a *‘good representation” of the traders space I, hence x* S will -
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be close to x (our fixed cofnpetitive allocation for the whole economy!?). Taking ex-
pectation in (5.7) we get (in the limit)

(@) (@) = [u, (x () —E @°) - z (O] 1 @D, (5.8)

therefore the value payoff distribution is competitive, and the corresponding price p*
is precisely £ (pS ), i.e., the expected equilibrium price for a random sample (coalition).
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