
Uncoupled Dynamics Do Not Lead to Nash Equilibrium

By SERGIU HART AND ANDREU MAS-COLELL*

It is notoriously dif� cult to formulate sensi-
ble adaptive dynamics that guarantee conver-
gence to Nash equilibrium. In fact, short of
variants of exhaustive search (deterministic or
stochastic), there are no general results; of
course, there are many important, interesting
and well-studied particular cases. See the books
of Jörgen W. Weibull (1995), Fernando Vega-
Redondo (1996), Larry Samuelson (1997),
Drew Fudenberg and David K. Levine (1998),
Josef Hofbauer and Karl Sigmund (1998), H.
Peyton Young (1998), and the discussion in
Section IV below.

Here we provide a simple answer to the ques-
tion: Why is that so? Our answer is that the lack
of a general result is an intrinsic consequence of
the natural requirement that dynamics of play be
“uncoupled” among the players, that is, the ad-
justment of a player’s strategy does not depend
on the payoff functions (or utility functions) of
the other players (it may depend on the other
players’ strategies, as well as on the payoff
function of the player himself). This is a basic
informational condition for dynamics of the
“adaptive” or “behavioral” type.

It is important to emphasize that, unlike the
existing literature (see Section IV), we make no
“rationality” assumptions: our dynamics are not
best-reply dynamics, or better-reply, or payoff-
improving, or monotonic, and so on. What we
show is that the impossibility result is due only

to an “informational” requirement—that the dy-
namics be uncoupled.

I. The Model

The setting is that of games in strategic (or
normal) form. Such a game G is given by a � nite
set of players N, and, for each player i [ N, a
strategy set Si (not necessarily � nite) and a
payoff function1 ui: j[ N S j # .

We examine differential dynamical systems
de� ned on a convex domain X, which will be
either i[ N Si or2 i[ N D(Si), and are of the
form

x‚ ~t! 5 F~x~t!; G!,

or x‚ 5 F(x; G) for short. We also write this as
x‚i 5 F i(x; G) for all i, where x 5 (xi)i[ N and3

F 5 (F i)i[ N.
From now on we keep N and (Si)i[ N � xed,

and identify a game G with its N-tuple of payoff
functions (ui)i[ N, and a family of games with a
set U of such N-tuples; the dynamics are thus

(1) x‚ i 5 F i~x; ~uj! j [ N ! for all i [ N.

We consider families of games U where every
game G [ U has a single Nash equilibrium
x#(G). Such families are the most likely to allow
for well-behaved dynamics. For example, the
dynamic x‚ 5 x#(G) 2 x will guarantee conver-
gence to the Nash equilibrium starting from any
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1 denotes the real line.
2 We write D( A) for the set of probability measures

over A.
3 For a well-studied example (see for instance Hofbauer

and Sigmund, 1998), consider the class of “� ctitious play”-
like dynamics: the strategy qi(t) played by i at time t is
some sort of “good reply” to the past play of the other
players j, i.e., to the time average x j(t) of q j(t) for t # t; then
(after rescaling the time axis) x‚i 5 qi 2 xi [ Gi(x; G) 2 xi [
F i(x; G).
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initial condition.4 Note, however, that in this dy-
namic x‚i depends on x#i(G), which, in turn, depends
on all the components of the game G, in particular
on u j for j Þ i. This motivates our next de� nition.

We call a dynamical system F(x; G) (de� ned
for G in a family of games U) uncoupled if, for
every player i [ N, the function F i does not
depend on u j for j Þ i; i.e.,

(2) x‚ i 5 Fi~x; u i! for all i [ N

[compare with (1)]. Thus the change in player i’s
strategy can be a function of the current N-tuple of
strategies x and i’s payoff function ui only.5 In
other words, if the payoff function of player i is
identical in two games in the family, then at each
x his strategy xi will change in the same way.6

If, given a family U with the single-Nash-
equilibrium property, the dynamical system al-
ways converges to the unique Nash equilibrium
of the game for any game G [ U—i.e., if
F(x#(G); G) 5 0 and limt# `x(t) 5 x#(G) for any
solution x(t) (with any initial condition)—then
we will call F a Nash-convergent dynamic for
U. To facilitate the analysis, we always restrict
ourselves to C1 functions F with the additional
property that at the (unique) rest point x#(G) the
Jacobian matrix J of F( z ; G) is hyperbolic and
(asymptotically) stable—i.e., all eigenvalues of
J have negative real parts.

We will show that:

There exist no uncoupled dynamics which
guarantee Nash convergence.

Indeed, in the next two sections we present two
simple families of games (each game havinga single
Nash equilibrium), for which uncoupledness and
Nash convergence are mutually incompatible.

More precisely, in each of the two cases we
exhibit a game G0 and show that:7

THEOREM 1: Let U be a family of games
containing a neighborhood of the game G0.
Then every uncoupled dynamic for U is not
Nash-convergent.

Thus an arbitrarily small neighborhood of G0
is suf� cient for the impossibility result (of
course, nonexistence for a family U implies
nonexistence for any larger family U9 U).

II. An Example with a Continuum of Strategies

Take N 5 {1, 2} and S1 5 S2 5 D, where
D :5 { z 5 (z1, z2) [ 2 : z # 1} is the unit
disk. Let f : D # D be a continuous function
that satis� es:

f(z) 5 2z for z in a neighborhood of 0; and
f(f(z)) Þ z for all z Þ 0.

Such a function clearly exists; for instance,
let us put f(z) 5 2z for all z # 1�3 , de� ne f
on the circle z 5 1 to be a rotation by, say,
p/4, and interpolate linearly on rays between
z 5 1�3 and z 5 1.

De� ne the game G0 with payoff functions u0
1

and u0
2 given by8

u0
i ~xi, xj! :5 2 xi 2 f~xj! 2 for all xi, xj [ D.

G0 has a unique Nash equilibrium9 x# 5 (0, 0).
We embed G0 in the family U0 consisting of

all games G [ (u1, u2) where, for each i 5 1, 2,
we have ui(xi, x j) 5 2 xi 2 ji(x j) 2, with
ji : D # D a continuous function, such that the
equation ji(j j(xi)) 5 xi has a unique solution x#i.
Then x# 5 (x#1, x#2) is the unique Nash equilib-
rium of the game10 G.

We will now prove that every uncoupled
dynamic for U0 is not Nash-convergent. This
proof contains the essence of our argument, and

4 The same applies to various generalized Newton meth-
ods and � xed-point-convergent dynamics.

5 It may depend on the function ui , not just on the
current payoffs ui(x).

6 What the other players do (i.e., x2i) is much easier to
observe than why they do it (i.e., their utility functions u2 i).

7 An «-neighborhood of a game G0 5 (u0
i )i[ N consists of

all games G 5 (ui)i[ N satisfying zui(s) 2 u0
i (s)z , « for all

s [ i[ N Si and all i [ N.

8 We use j :5 3 2 i throughout this section. In the game
G0 , each player i wants to choose xi so as to match as closely
as possible a function of the other player’s choice, namely,
f(x j).

9 x# is a pure Nash equilibrium if and only if x#1 5 f(x#2)
and x#2 5 f(x#1), or x#i 5 f(f(x#i)) for i 5 1, 2. There are no
mixed-strategy equilibria since the best reply of i to any
mixed strategy of j is always unique and pure.

10 Moreover x# is a strict equilibrium.
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the technical modi� cations needed for obtaining
Theorem 1 are relegated to the Appendix. Let F
thus be, by contradiction, a dynamic for the
family U0 which is uncoupled and Nash-con-
vergent. The dynamic can thus be written: x‚i 5
F i(xi, x j; ui) for i 5 1, 2.

The following key lemma uses uncoupled-
ness repeatedly.

LEMMA 2: Assume that yi is the unique ui-
best-reply of i to a given y j, i.e., ui(yi, y j) .
ui(xi, y j) for all xi Þ yi. Then F i(yi, y j; ui) 5 0,
and the eigenvalues of the 2 3 2 Jacobian
matrix11 J i 5 (­Fk

i(yi, y j; ui)/­xl
i)k,l5 1,2 have

negative real parts.

PROOF:
Let G1 be the game (ui , u j) with u j(xi, x j) :5

2 x j 2 y j 2 (i.e., j j is the constant function
j j(z) [ y j); then (yi, y j) is its unique Nash
equilibrium, and thus F i(yi, y j; ui) 5 0. Apply
this to player j, to get F j(xi, y j; u j) 5 0 for all xi

(since y j is the unique u j-best-reply to any xi).
Hence ­Fk

j(xi, y j; u j)/­xl
i 5 0 for k, l 5 1, 2. The

4 3 4 Jacobian matrix J of F( z , z ; G1) at (yi ,
y j) is therefore of the form

J 5
J i K
0 L .

The eigenvalues of J—which all have negative
real parts by assumption—consist of the eigen-
values of J i together with the eigenvalues of L,
and the result follows.

Put f i(x) :5 F i(x; u0
i ); Lemma 2 implies that

the eigenvalues of the 2 3 2 Jacobian matrix
J i :5 (­f k

i(0, 0)/­xl
i)k,l5 1,2 have negative real

parts. Again by Lemma 2, f i(f(x j), x j) 5 0 for
all x j, and therefore in particular f i(2x j, x j) 5 0
for all x j in a neighborhood of 0. Differentiating
and then evaluating at x# 5 (0, 0) gives

2­f k
i ~0, 0!/­x l

i 1 ­f k
i ~0, 0!/­x l

j 5 0

for all k, l 5 1, 2.

Therefore the 4 3 4 Jacobian matrix J of the
system ( f1, f2) at x# 5 (0, 0) is

J 5
J1 22J1

22J2 J2 .

LEMMA 3: If the eigenvalues of J1 and J2

have negative real parts, then J has at least one
eigenvalue with positive real part.

PROOF:
The coef� cient a3 of l in the characteristic

polynomial det(J 2 lI) of J equals the negative
of the sum of the four 3 3 3 principal minors;
a straightforward computation shows that

a3 5 3 det~J1!trace~J2! 1 3 det~J2!trace~J1!.

But det(J i) . 0 and trace(J i) , 0 (since the
eigenvalues of J i have negative real parts), so
that a3 , 0.

Let l1, l2 , l3, l4 be the eigenvalues of J.
Then

l1l2l3 1 l1l2l4 1 l1l3l4 1 l2l3l4

5 2a3 . 0

from which it follows that at least one lr must
have positive real part.

This shows that the unique Nash equilibrium
x# 5 (0, 0) is unstable for F( z ; G0)—a contra-
diction which establishes our claim.

For a suggestive illustration,12 see Figure
1, which is drawn for x in a neighborhoodof (0, 0)
where f(xi) 5 2xi. In the region x2 /2 , x1 ,
2 x2 the dynamic leads “away” from (0, 0) (the
arrows show that, for xj � xed, the dynamic on xi

must converge to xi 5 2xj—see Lemma 2).

III. An Example with Finitely Many Strategies

If the games have a � nite number of strate-
gies (i.e., if the Si are � nite), then the state space
for the dynamics is the space of N-tuples of
mixed strategies i[ N D(Si).

11 Subscripts denote coordinates: xi 5 (x1
i , x2

i ) and F i 5
(F1

i , F2
i ).

12 The actual dynamic is 4-dimensional and may be quite
complex.
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Consider a family U0 of three-player games
where each player has two strategies, and the
payoffs are:

where all the ai are close to 1 (say, 1 2 « , ai ,
1 1 « for some small « . 0), and, as usual,
player 1 chooses the row, player 2 the column
and player 3 the matrix.13 Let G0 be the game
with ai 5 1 for all i; this game has been intro-
duced by James Jordan (1993).

Denote by x1, x2, x3 [ [0, 1] the probability
of the top row, left column, and left matrix,
respectively. For every game in the family U0
there is a unique Nash equilibrium:14 x#i(G) 5
ai2 1/(ai2 1 1 1). In particular, for Jordan’s
game x#0 [ x#(G0) 5 (1/2, 1/2, 1/2).

Let F be, by way of contradiction,an uncoupled

Nash-convergent dynamic U0. For the game G0 [
(u0

i )i5 1,2,3 we denote f i(x1, x2, x3) :5 F i(x1, x2, x3;
u0

i ); let J be the 3 3 3 Jacobian matrix of f at x#0.
For any y1 (close to 1/2), the unique equilib-

rium of the game G1 5 (u0
1, u0

2, u3) in U0 with u3

given by a3 5 y1/(1 2 y1) is (y1, 1/2, 1/2), and
so F1(y1, 1/2, 1/2; G1) 5 0. This holds therefore
also for G0 since the dynamic is uncoupled:
f1(y1, 1/2, 1/2) 5 0 for all y1 close to 1/2.
Hence ­f1(x#0)/­x1 5 0. The same applies to the
other two players, and we conclude that the
diagonal—and thus the trace—of the Jacobian
matrix J vanishes. Together with hyperbolicity
[in fact, det(J) Þ 0 suf� ces here], this implies
the existence of an eigenvalue with positive real
part,15 thus establishing our contradiction—
which proves Theorem 1 in this case.

We put on record that the uncoupledness of
the dynamic implies additional structure on J.
Indeed, we have f1(x1, 1/2, x3) 5 0 for all x1

and x3 close to 1/2 [since (x1, 1/2, x3) is the
unique Nash equilibrium when a1 5 1—as in
G0—and a2 5 x3/(1 2 x3), a3 5 x1/(1 2 x1)].
Therefore ­f1(x#0)/­x3 5 0 too, and so J is of the
form

J 5

0 c 0
0 0 d
e 0 0

for some real16 c, d, e.
We conclude by observing that the speci� c-

ities of the example have played very little role
in the discussion. In particular, the property that
the trace of the Jacobian matrix is null, or that f i

vanishes over a linear subspace of co-dimension
1, which is determined from the payoff function
of player i only, will be true for any uncoupled
dynamics at the equilibrium of a game with a
completely mixed Nash equilibrium—provided,
of course, that the game is embedded in an
appropriate family of games.

13 Each player i wants to mismatch the next player i 1 1,
regardless of what player i 2 1 does. (Of course, i 1 is
always taken modulo 3.)

14 In equilibrium: if i plays pure, then i 2 1 plays pure,
so all players play pure—but there is no pure equilibrium;
if i plays completely mixed, then ai(1 2 xi1 1) 5 xi1 1.

15 Indeed: otherwise the real parts of all eigenvalues are
0. The dimension being odd implies that there must be a real
eigenvalue. Therefore 0 is an eigenvalue—and the determi-
nant vanishes.

16 If cde Þ 0 there is an eigenvalue with positive part,
and if cde 5 0 then 0 is the only eigenvalue.

FIGURE 1. THE DYNAMIC FOR THE GAME G0 OF SECTION II
AROUND (0, 0)

0, 0, 0 a1, 1, 0

1, 0, a3 0, 1, a3

0, a2, 1 a1, 0, 1

1, a2, 0 0, 0, 0
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IV. Discussion

(a) There exist uncoupled dynamics converg-
ing to correlated equilibria17—see Dean
Foster and Rakesh V. Vohra (1997), Fuden-
berg and Levine (1999), Hart and Mas-
Colell (2000),18 and Hart and Mas-Colell
(2003). It is thus interesting that Nash equi-
librium, a notion that does not predicate
coordinated behavior, cannot be guaranteed
to be reached in an uncoupled way, while
correlated equilibrium, a notion based on
coordination, can.19

(b) In a general economic equilibrium frame-
work, the parallel of Nash equilibrium is
Walrasian (competitive) equilibrium. It is
again well known that there are no dynam-
ics that guarantee the general convergence
of prices to equilibrium prices if the dynamic
has to satisfy natural uncoupledness-like
conditions, for example, the nondepen-
dence of the adjustment of the price of one
commodity on the conditions of the markets
for other commodities (see Donald G. Saari
and Carl P. Simon, 1978).

(c) In a mechanism-design framework, the
counterpart of the uncoupledness condition
is Leonid Hurwicz’s “privacy-preserving”
or “decentralized” condition—see Hurwicz
(1986).

(d) There are various results in the literature,
starting with Lloyd S. Shapley (1964, Sec.
5), showing that certain classes of dynamics
cannot be Nash-convergent. These dynam-
ics assume that the players adjust to the
current state x(t) in a way that is, roughly
speaking, payoff-improving; this includes
� ctitious play, best-reply dynamics, better-
reply dynamics, monotonic dynamics, ad-
justment dynamics, replicator dynamics,
and so on; see Vincent P. Crawford (1985),
Jordan (1993), Andrea Gaunesdorfer and

Hofbauer (1995), Foster and Young (1998,
2001), and Hofbauer and Sigmund (1998,
Theorem 8.6.1). All these dynamics are
necessarily uncoupled (since a player’s
“good reply” to x(t) depends only on his
own payoff function). Our result shows that
what underlies such impossibility results is
not necessarily the rationality-type assump-
tions on the behavior of the players—but
rather the informational requirement of
uncoupledness.

(e) In a two-population evolutionary context,
Alexander Vasin (1999) shows that dynam-
ics that depend only on the vector of pay-
offs of each pure strategy against the
current state—a special class of uncoupled
dynamics—cannot be Nash-convergent.

(f) There exist uncoupled dynamics that are
guaranteed to converge to (the set of) Nash
equilibria for special families of games, like
two-person zero-sum games, two-person
potential games, dominance-solvable games,
and others;20 for some recent work see
Hofbauer and William H. Sandholm (2002)
and Hart and Mas-Colell (2003).

(g) There exist uncoupled dynamics that are
most of the time close to Nash equilibria,
but are not Nash-convergent (they exit in-
� nitely often any neighborhood of Nash
equilibria); see Foster and Young (2002).

(h) Suf� cient epistemic conditions for Nash
equilibrium—see Robert J. Aumann and
Adam Brandenburger (1995, Preliminary
Observation, p. 1161)—are for each player
i to know the N-tuple of strategies x and his
own payoff function ui. But that is precisely
the information a player uses in an uncou-
pled dynamic—which we have shown not
to yield Nash equilibrium. This points out
the difference between the static and the
dynamic frameworks: converging to equi-
librium is a more stringent requirement than
being in equilibrium.

(i) By their nature, differential equations allow
strategies to be conditioned only on the
limited information of the past captured by

17 Of course, these dynamics are de� ned on the appro-
priate state space of joint distributions D( i[ N Si), i.e.,
probability vectors on N-tuples of (pure) strategies.

18 In fact, the notion of “decoupling” appears in Section
4 (i) there.

19 Cum grano salis this may be called the “Coordination
Conservation Law”: there must be some coordination either
in the equilibrium concept or in the dynamic.

20 A special family of games may be thought of as giving
information on the other players’ payoff function (e.g., in
two-person zero-sum games and potential games, ui of one
player determines u j of the other player).
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the state variable. It may thus be of interest
to investigate the topic of this paper in more
general settings.

APPENDIX

We show here how to modify the argument of
Section II in order to prove Theorem 1. Con-
sider a family of games U that is a neighbor-
hood of G0, and thus is certain to contain only
those games in U0 that are close to G0. The
proof of Lemma 2 uses payoff functions of the
form u j(xi, x j) 5 2 x j 2 y j 2 that do not depend
on the other player’s strategy xi (i.e., jj is the
constant function jj(z) [ y j). Since the proof in
Section II needs the result of Lemma 2 only for
y j in a neighborhood of 0, we will replace the
above constant function jj with a function that is
constant in a neighborhood of the origin and is
close to f.

We will thus construct for each a [ D with
a , « a function ca : D # D such that: (1)
ca 2 f # C« for some constant C . 0; (2)

ca( z) 5 a for all z # 2«; (3) f(ca(z)) 5 z if
and only if z 5 f(a) 5 2a; and (4) cb(ca(z)) 5
z if and only if z 5 cb(a) 5 b. The games
corresponding to (f, cyj) and to (cxi, cyj), for
y j , «/2 and xi close to 2y j, are therefore in

U0 [by (3) and (4)], are close to G0 [by (1)], and
we can use them to obtain the result of Lemma
2 [by (2)].

The c functions may be constructed as fol-
lows: (i) ca(z) :5 a for z # 2«; (ii) ca(z) :5
0 for z 5 3«; (iii) ca(z) is a rotation of f(z) by
the angle « for z $ 4«; and (iv) interpolate
linearly on rays in each one of the two regions
2« , z , 3« and 3« , z , 4«.

It can be checked that conditions (1)–(4)
above are indeed satis� ed.21
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