
TERMINATION OF PROBABILISTIC CONCURRENT PROGRAMS

(Extended Abstract)

Sergiu Hart, Micha Sharir

Tel Aviv University

Amir Pnueli

Weizmann Institute of Science

Abstract.

The asynchronous execution behavior of several

concurrent processes, which may use randomization,

is studied. Viewing each process as a discrete

Markov chain over the set of common execution

states, we give necessary and sufficient conditions

for the processes to converge almost surely to a

given set of goal states, under any fair, but

otherwise arbitrary schedule, provided that the

state space is finite. (These conditions can be

checked mechanically.) An interesting feature of

the proof method is that it depends only on the

topology of the transitions and not on the actual

values of the probabilities. We also show that in

our model synchronization protocols that use

randomization are in certain cases no more power-

ful than deterministic protocols. This is demon-

strated by (a) Proving lower bounds on the size of

a shared variable necessary to ensure mutual

exlusion and lockout-free behavior of the protocol;

and (b) Showinq that no fully symmetric ‘randomized’

protocol can ensure mutual exclusion and freedom

from lockout.

o. Introduction.

Randomization has proven to be a very useful

tool in the construction of certain algorithms for

parallel processes, which behave ‘better’ than

their deterministic counterparts, by using less

shared memory, having relatively simpler structure,

and in certain cases accomplishing goals that

deterministic algorithms provably can not accom–

plish. The price that one usually has to pay

in using such a probabilistic algorithm is that

certain properties that are required from the

algorithm will happen with probability 1, but

not necessarily with certainty. Recently

published algorithms of this sort include

synchronization protocols [Ral] , choice

coordination [Ra2] , a symmetric distributed

solution to the dining philosophers’ problem [LR] ,

Permksion to copy whhout fee all or part of thk material k granted
provided that the copies are not made or dktributed for dkcct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice k given that copying k by
permission of the Association for Computing Machinery. To copy
otherwise, or to republkh, requires afeeand/or specific permksion.

a probabilistic implementation of a common resource

allocation scheme [FR] , and various algorithms in

symmetric distributed systems [IRI.

The problem that one encounters in designing

such an algorithm is in showing that the algorithm

is correct in a probabilistic sense. This is quite

a tedious task, since one must consider all possible

sequences of execution steps taken by the processes

and show that none of them can prevent a certain

desired event from happening with probability 1.

TO quote Lehmann and Rabin in [LRI ,

“The realm of proofs of correctness for con-

current processes is not well known. As the reader

will realize, proofs of correctness for probabilistic

distributed systems are extremely slippery. ”

Our aim in this paper is to shed some light

on this unexplored realm. In particular, assuming

that each process has only finitely many states,

we will give necessary and sufficient conditions

for certain probabilistic properties of a parallel

algorithm to hold with probability 1. Moreover,

these conditions can be tested algorithmically,

given the “atomic” structure of each process. That

is, we present a fully mechanical decision procedure

of certain probabilistic properties, including, e.g. ,

freedom from deadlock and from lockout.

We will also be concerned with comparing the

capabilities of probabilistic synchronization

protocols with those of deterministic protocols.

We will provide in Section 2 twc instances in which

the probabilistic approach is provably not more

powerful than the deterministic approach. These

instances are: (a) Achieving mutual exclusion and

freedom from individual lockout by using a shared

variable v on which indivisible ‘test–and-set’

operations are allowed (here the size of v rm.lst

be Q(N) in both cases, where N is the number

of processes) . (b) Achieving those properties by

a fully symmetric protocol which uses a shared

@ 1982 ACM0-89791-065-6/82/001 /oOOl $00.75

1

variable on which only indivisible read and write

operations are allowed. (This is impossible to

achieve in either approach.)

It turns out that a major conceptual problem

in the analysis of a probabilistic parallel program

is the choice of the right model for the possible

execution sequences of the processes. It is gene-

rally accepted paradicyn that the processes can be

viewed as executing in sequence (with no two

processes ever executing simultaneously). At

each step some process is chosen to perform the

next ‘atomic’ action. The decisions which process

will be chosen to operate next are thought of as

being taken by some imaginary scheduler, and the

main problem is: what rules can the scheduler use

in its decisions. For example, the admissible

schedules considered by Rabin in [Ral] are more

restricted than those considered by Lehmann and

Rabin in [LRI . We will show, as a consequence of

our general theorems, that Rabin’s algorithm for

synchronization given in [Ral] does not have the

required properties if one allows also schedules

of the sort considered in [LRI .

1. Characterization of Probabilistic Concurrent

Termination.

The model that we use for representation of a

probabilistic parallel program is the following:

States in the program are identified by the location

in each process and by the values of shared vari-

ables and local variables. With each process k

we associate a transition probability matrix Pk

describing the possible state transitions that

can occur as a result of a single atomic action

of k , i. e., P! is the probability of reaching
11

state j from state i under one step of

process k . Let I denote the set of all

possible states. Let P1,PS be the transition

matrices of the processes 1, . . . s participating

in such an asynchronous parallel program. An

execution tree, also referred to as a schedule u ,

is a tree constructed as follows: Nodes in the

tree are pairs (i, k) where i C I is a program

state and k C {l,... ,s} is the process scheduled

tO operate on that node. The root is labeled by

(iO,k) where i. is the initial state. The

edges going out of a node labeled by (i,k)

correspond to nonzero entries in the i-th row

of pk , and designate transitions having positive

probabilities from state i to other states under

execution of process k . Thus an edge from

(il,kl) to (i2, k2) means that if process kl

is scheduled to operate on the state 11 , there

is a positive probability to reach state i2 .

Th& appearance of these nodes in the schedule o

implies that kl is indeed scheduled at il

and k at
2 ‘2

if the execution actually gets

there Note that the scheduler’s decisions may

depend on the whole path in the tree leading to a

node, and so different processes may be scheduled

on the same state in different nodes of the tree.

To ensure proper functioning of the parallel

program, we will require that u possesses certain

“fairness” properties.

Definition. A schedule 5 is called strictly fair

if each path II in the associated transition tree

is a fair path, i.e. each process k E K labels

infinitely many nodes of H .

That is, in each execution of the program each

process is scheduled infinitely often. This is a

standard requirement (see [LR] for example, where

this is called “proper”) in analysis of parallel

programs.

We will also consider a weaker notion of fair–

ness. For this, note that a schedule o induces

a probability measure ~=~ on the sequence
0

space whose elements are paths in the transition

tree associated with o . This measure is defined

on the Borel field generated by all the finite

cylinders (i.e. sets of paths having the same

initial segment) such that the measure of such a

cylinder i~ the product of probabilities of the

edges of the common initial path.

Definition. A schedule u is called fair if

po-almost every path in the associated transition

tree is fair.

As will be shown below, fair schedules are in

some sense limit points of strictly fair schedules,

so that with no loss of generality, we could deal

with either class of schedules, and obtain essen-

tially the same results.

The main problem that we shall be concerned is

the probability of reachability of certain states

from other states. For example, if i is a state

in which a process k is trying to enter its

critical section, and X is the set of all states

in which k is at its critical section, then

the probability of reaching X from i is the

probability that k will not be locked out of the

set X at state i . Similarly, if
‘1

is the

set of states in which some process is at its

critical section, then the probability of reaching

from i
‘1

is the probability that the system

will not be deadlocked at state i .

Let therefore X c I be a given set of ‘goal’

states, and let i C I be an ‘initial’ state.

Our aim is to compute

f; x (u) s probability of ever reaching

in x from i under u ,

where u is some fair schedule. Note that

can also be expressed as

a state

this

where

f(n)
= x(u) = probability of reaching a state in

x from i for the first time

after exactly n steps under 5 .

Since we will be interested in showing that

~,x(u) = 1f: for every fair schedule u , we define

h* =,x(o) : 0 a fair schedule}= in f{f~
1,X

and we seek conditions under which h; x =1.
J

2

Let us first explain our reasoning intuitively.

The way in which an adversary scheduler can prevent

the system from ever entering x is to iterate

forever through a set of states E disjoint from

x, scheduling at each iEE some process k

which transfers i Only to StdteS in E , and

using all processes in this manner. We will show

that the nonexistence of such a set E is a neces-

sary and sufficient condition for h: to be I
1,X

We begin by a precise definition of the

above notion:

Definition. A set EcI is called K-ergodic if

the following holds: For each iCE~

&hisis the set of processes that cannot lead from

i to a state outside E) . Then we require that

(i) U KE(i) = K , ,i. e. for every process k E K

iEE there is a state i~E such

that all k transitions out of

i are still in E .

(ii) For every i#j6E there exists a chain

irir...,i ~~EwithiO=i, i= j,and
01 r

a chain ‘o ‘
kl,kl-l ~ K of processes

such that for each S=o ,’ 1,. ... r-l

ks E KE(iS)

and

k

P,s, >011
s S+l

(a set E satisfying (ii) will be called

communicating) .
,.

Let i ~ I be the initial state, qnd X c I

be the goal set with ; ~ X . Define I as the

set of all states that can be reached (with

positive probability) from $ before a state in

X is reache: using any finite sequence of

processes. I includes ~ and is disjoint from

x. Our main result is

. A

Theorem 1: L~t i , X , I be as above, and

assume that I is finite. Then the followinq

conditions are equivalent:

(1) h;.. ==l

(2)

(3)

(4)

(a)

(b)

1,X
,.

h~, x = 1 , for each i ~ I .

I does not contain any K-ergodic set

,.
There exists a decomposition of I

into disjoint sets 11,In , with

10 = Xm’such that if we put

Jm= U Ir, m = 0,1,n , then for each

r=o
m=l,2,n we have

For each iCI m,kEK,

P? .O*P: =1
l,J 1,1

m-1 m

There exists k ❑ k(m) C K such that for

each i~IPk >0.
m l,J

m-1

(Condition (4a) says that if process k can

transfer the system from a state in I to a state

outs ide Im , then some k-transitions ~with non-

zero probabilities) move the system ‘down’ the chain

I towards the goal
r’

. Condition (4. b) ensures10 ‘
the existence of at least one process that would do

this for all states in I .)
m

The proof is technical and involved, and is

therefore omitted in this version. Part of the

proof, namely that (3) is equivalent to (4) , is

implied by the algorithm below.

Remarks.

(1) We can regard the partition of I into

as the assignment of an element of the
:l.;;”;;;ded set {l

,..., n} to each state i~I.

That is, each i~Im, l$m Sn is assigned the

value m . Denote this assignment by P:I + {1,n}.

Condition (4a) then states that for every i

and k , if there is no k transition leading to

i’ such that P(i) > p(i’) , then all k transi-

tions must lead to i’s such that p(i) = p(i’) .

Condition (4.b) states that for every m ,
~mn there exists a k = k(m) such that for

every i~I , there is a k transition from i

to i’
m

with p(i’) <p(i) =m.

This view shows our method to be an extension

of the proof method given in [LPS] for the fair

termination of deterministic concurrent programs.

Indeed, if we restrict ourselves to deterministic

processes (i. e., assume that for any i E I , k ~ K

P:j = 1 for exactly one j C I) , then our condi-

tion 4 reduces to the proof method given in [LPS].

m open question is whether our results can be

extended to processes with infinite state sets.

(2) .ln immediate corollary of the preceding

theorem is that the convergence is independent of

the particular values of nonzero transition proba-

bilities.

(3) It is also easy to show that, under the

assumptions of the preceding theorem, ~min h?1,X
is either O or 1 . We also show tha#E1the

preceding theorem remains true if one admits only

strictly fair schedules.

Next we present an algorithm that, given the

set I of intermediate states, the set X of

goal states, and the transition probability

matrices of the pro~esses, either constructs a

K–ergodic set EcIr thereby showing that

h: <1, or else builds up the decomposition {Im}
I,x

as in t&s statement of the theorem, thereby showing

that h. =1.
1,X

The algorithm proceeds as follows:

(a) COnStrUCt a transition graph G , which is a

;irected labeled graph whose nodes are elements of

I, with one additional ~ode designa~ing X ; for

each k ~ K , each iCI andj61 (orj=X)

such that ~k>o, we draw an edge e from i
l,j

3

and the transition matrices areto j and label a byk.

(b) We begin to construct a

by putting 10 = X .

(c) Suppose that
10’” ””’lr

constructed. Lelete from G

to the union J =
r

; Ik of

k=O

each i~I~J delete from

that either e ‘leads from i

or there exists another edge

decomposition {Im}

have already been

all nodes belonging

these sets; also for

G all edges e such

to some j~J,

e’ leading fro; i

to some node in J , and e and e’ are labeled

by the same proce~s k C K . (In other words, we

ignore states that have already been assigned a

rank, and transitions from a state i by processes

that can, in a possibly alternative transition from

state 1 t move the system into J .) Let G

denote the resulting graph.
r r

(d) Partition Gr into strongly connected compo–

nents, and let E be such a component having no

successors (terminal component) . If each process

k C K labels some internal edge of E , then E

is a K–ergodic set, in which case the algorithm

halts, having found such a set; otherwise, put

I =E, define k(r+l) to be a process k which

d~~~ not label any internal edge of E , and

rePeat steps (c) and (d) .

(e) If finally G empties out, then we have found

the desired decomposition of I .

An example. Consider the following two-process

synchronization, where a shared variable c is

used (we assume indivisible ‘test and set’ opera-

tions on c) . c has 3 values: O - designating a

neutral state, 1 – a state in which process
‘1

will enter its critical section, and 2 - where

k2 will enter. The code for
‘1

(resp. k2)

is as follows:

Try: If c = 1 [resp. 2] then go to Ex

else

if ~=o then c:=Random (1,2)

fi; /* draw I or z with

equal prOb~ilities */

go to Try

fi

Ex:– critical region -
c ;= o

go to TKY

Here we have 5 states, each represented as

(C,Q1,!2) , where c is the value of the shared

variable, and where
%

(resp. t2) is the

location in process kl (resp. k2) , which can

assume tke values T (for being at the trying

section) and X (fo~ being in the critical section).

We assume that both processes remain live indefinitely.

The states are

‘o
= (O, T,T)

‘1
= (I,T,T)

12
= (2,T,T)

13
= (2,T,X)

X=i
4

= (l, X,T)

r,.,10 ‘1 ‘2 ‘3 x

11

10 TT

11
1

‘-2
1

13
1

We will show that

10 ‘1
,.

‘2 13 x

1

T

1

I = {io, i ~,i2,i3} does not

conta”in a K-ergodic set by applying the algorithm

described above. Begin by putting 10 = X = [i4} .

The other sets are found as follows:

We first construct G :

k, k,

k2

kl

kl

(each edge is labeled by the process that induces it).

To find , delete the k – edge from
11 1 11

to x

to obtain
‘o “

A terminal strongly connected

component in
‘o

is {il} , and only k2 labels

internal edges of this component. Hennce, we put

‘1
= {ill , k(1) = kl . TO find

‘2
, delete from

the node
‘o ‘1 ‘

and all the edges going out of
10

(some of these edges lead to
11 ‘.

while the other

edges are siblinqs of such edges, zn the sense

defined above.)
‘1

thus has the following form

k,

k2 k2

4

from which one easily obtains 12 = {iO} , k(2) = kl,

13
= {i3}, k(3) = k2 and 14 = {i4} , k(4) = k2 .

we emphasize again that this construction and

its consequences do not depend on the particular

values of nonzero transition probabilities used in

the randomization statements in the processes

involved.

2. Probabilistic vs. Deterministic Protocols.

In this section we compare the capabilities of

probabilistic protocols with those of deterministic

protocols. h example motivating this study is an

algorithm, given in [Ral] , for synchronization of

N processes, which uses only O(log N)-valued shared

variable on which indivisible test-and-set operations

are allowed. On the other hand, it is shown in

[BFJLP] that in any deterministic synchronization

algorithm for N processes using test-and-set

operations on a shared variable, and providing both

mutual exclusion and freedom from lockout, the

shared variable must have about % values, and

this lower bound increases to about N/2 values

if certain natural constraints are imposed on the

structure of the processes involved. The algorithm

given in [Ral] is shown to provide mutual exclusion

and to be lockout–free. However, the schedules

under which this algorithm is assumed to operate

form a restricted subset of the general fair

schedules that we consider. It is helpful in this

regard to ignore the ‘demonic’ nature of a schedule,

and simply interpret it as an integral part of the

execution tree. Thus the schedule does not really

‘use ‘ the past history of an execution to determine

the next process to be scheduled, but simply records

at each execution step which process is next ready

to perform an atomic action. Other families of

schedules considered in the literature impose

certain constraints on the scheduling, e.g. bounded

speed ratios between processes [RsI, Or, as is the

case in [Ral] , allowing the schedule to ‘base its

decisions’ only upon partial information concerning

past execution history, so that it must make the

same scheduling choice for all sequences having the

same partial structure. Such a restriction on the

behavior of the schedule can improve the performance

of a synchronization algorithm, but may make it

less robust, in the sense that it may fail to meet

some of its requirements if more general (fair)

schedules are allowed.

We show in this section that Rabin’s algorithm

is not lockout-free if general fair schedules are

allowed. As it turns out, this fact does not

depend on the particular fOrm Of the algorithm,

but follows from a general lower bound on the size

of a shared variable necessary to ensure both

mutual exclusion and freedom from lockout.

Specifically, we show that the lower bounds given

in [BFJLP] are also required for probabilistic

synchronization algorithms of the same kind. This

will follow from a generalization of the proofs

given in [BFJLP] to the probabilistic case. Thus

any algorithm attempting to use fewer values for

such a shared variable is doomed to faikure against

general fair schedules, although it may still be

successful against ‘weaker’ schedules, as is indeed

the case in [Ral].

These results can be summarized as follows:

Proposition 1: The algorithm in [Ral] is almost sure-

ly lockout-free against the restricted family of (fair)

schedules introduced there, but fails to have this

property if general fair schedules are allowed.

Indeed, an “adversary” scheduler may base its

decisions on values obtained by random assignments.

Thus a program based on the assumption that if a

variable in a process is repeatedly assigned a ran-

dom value, and a certain value of this choice will

ensure admittance into a critical section, if sche-

duled immediately then eventually the process will be

admitted - such a program may fail under a generally

“adversary” scheduler. This is so since the sche-

duler may observe the randomly chosen value and sche-

dule the process only when such scheduling will not

enable the process to access its critical section.

Such scheduling is still fair with probability 1.

This is not the case with Rabin’s scheduler

whose decisions may not depend on randomly assigned

values. Consequently a program correct under

Rabin’s scheduler may still fail under generally

fair scheduler as defined here.

Theorem 2: Suppose that N processes participate

in a synchronization protocol using a shared variable

v on which indivisible test-and-set operations are

allowed. Then at least fi values of v are

required to ensure both mutual exclusion and free-

dom from lockout. Furthermore, if each process

has only a single state while being in its idle

section (i.e. if it cannot remmeber any past

experience) , then at least (N+l)/2 values for v

are required.

Proof: A generalization of the proofs given in

[BFJLPI.

The results stated so far in this section raise

the general question: Under what circumstances

does randomization really help us to obtain ‘better’

algorithms? The above negative result shows that

we cannot hope to save space by incorporating

randomization into synchronization protocols of

the kind discussed in [B FJLp] and [Ral] (if we

admit general fair schedules). We will next give

another negative results. Consider a synchronization

process involving N ? 2 identical processes, all

of which use a common variable v which they may

read from, or write into, in one indivisible step

(all processes access v in exactly the same

manner) . It is well known that no deterministic

solution to this problem, that provides mutual

exclusion, can exist. Surprisingly enough, an

analogous proof shows that a similar result holds

in the probabilitisticcase as well:

Theorem 3: There does not exist a probabilistic

fully symmetric protocol that solves the above

synchronization problem, and ensures both mutual

exclusion and freedom from lockout with probability

1.

Proof: Suppose that there exists such a protocol.

We assume that no lockout can occur with positive

probability. Hence, if we start from a symmetric

configuration i in which all processes are idle,

and we let only one process (say kl) execute by

itself and leave the other processes in their idle

‘tat:’ ‘1
must eventually enter its critical

section with probability 1. This implies that

5

there exists at least one finite execution path II

in which
‘1

executes alone, and all other processes

remain idle, such that all transitions on II have

positive probabilities and such that k

II from its idle section to its critics i Sfl::o:a

Let the product of the transition probabilities

along II be p > 0 .

Let us now execute the protocol as follows.

Start at the symmetric configuration i , and

assume that all processes become active (i.e. get

out of the idle section) together. Schedule pro-

cesses in a round robin fashion, letting each of

them perform one atomic action at its turn. We

will construct a path (having positive probability)

such that at the end of each rou.ud,the configuration

is again symmetric. Assume that this were the case

at the beginning of some round r . Then each

process is at the same internal state and so

performs the same action in its turn. If this

action does not involve randomization, then either

all the processes in this round manipulate their

internal variables in the same way, or they all

read the (same value of the) shared variable, or

they all write the same value into the shared

variable. Hence, in either case, their final con-

figuration is again symmetric. Note that in this

mode of scheduling, each process is not aware that

other processes are also executing, so that each

process will follow a sequence of states identical

to those that kl passed by itself along the

sequence II (as long as there is not randomization)

Now suppose that the common action of the processes

in round r did involve randomization. Then with

some positive probability Pr > 0 , kl will make

the choice that will keep it in the sequence II ,

and with the same probability each other process

will make an identical choice. Consequentlyr

with probability PN (where N is the number of

processes) all pr~cesses would make this common

choice, and will again reach a symmetric configura-

tion; moreover, in this new configuration each

process is unaware of the existence of the other

processes, and its state is the symmetric image of

the r-th state of kl on II .

continuing in this manner, with probability

PN>O all processes would enter their critical

sections together after II steps, since kl

does so and the behavior of the other processes

remains symmetric to that of
‘1

under this

particular execution sequence. This contradicts

our assumptions, and so proves the theorem.

REFERENCES

[BFJLP] J. E. Burns, M. J. Fischer, P. Jacksonr

N. A. Lynch and G. L. Peterson, “Shared

Data Requirements for Implementation of

Mutual Exclusion Using a Test-and-set

Primitive”, Proc. 1978 International

Conference on Parallel Processing, 79-87.

[FR] N. Francez and FL ROdeh, “’A Distributed

Data Type Implemented by a Probabilistic

Communication Scheme”, Proc. 21st Symposium

on the Foundations of Computer Science

(1980), 373-379.

[LPS] D. Lehmann, A. Pnueli and J. Stavi,

“Impartiality, Justice, Fairness : The

Ethics of Concurrent Termination”, Proc.

8th International Colloquium on Automata,

Languages and Programming, Haifa, Israel

(1981) .

[LR] D. Lehmann and M. O. Rabin, “On the

Advantages of Free Choice: A Symmetric and

Fully Distributed Solution to the Dining

Philosophers’ Problem”, Proc. 8th Symposium

on the Principles of Programming Languages,

Williamsburg (1981), 133-138.

[Ral] M. O. Rabinr “N Process Synchronization by

a 4 log N - Valued Shared Variable”, Proc.

21st Symposium on the Foundation of Computex

Science (1980) , 407-410.

[Ra2] M. O. Rabin, “The Choice Coordination Problem”,

Mere. No. UCB/ERL M80/38, Electronics Research

Lab. University of California at Berkeley,

August 1981.

[Rsl

[IR]

J. Reif and P. Spirakis, “Distributed

Algorithms for Synchronizing Interprocess

Communication within Real Time”, Proc.

13th ACM Symposium on Theory of Computing

(1981), 133-145.

A. Itai and M. Rodeh, “The Lord of the Ring,

or Probabilistic Methods for Breaking

Symmetry in Distributive Networks”,

Tech. Rep. RJ 3110, IBM, San Jose 1981.

Q.E.D.

6

