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Comparing Risks by Acceptance and Rejection

Sergiu Hart
Hebrew University of Jerusalem

Stochastic dominance is a partial order on risky assets (“gambles”)
that is based on the uniform preference—of all decision-makers in
an appropriate class—for one gamble over another. We modify this
requirement, first, by taking into account the status quo (given by the
current wealth) and the possibility of rejecting gambles, and second,
by comparing rejections that are substantive (i.e., uniform over wealth
levels or over utilities). This yields two new stochastic orders: “wealth-
uniform dominance” and “utility-uniform dominance.” Unlike sto-
chastic dominance, these two orders are complete: any two gambles can
be compared. Moreover, they are equivalent to the orders induced
by, respectively, the Aumann–Serrano index of riskiness and the
Foster–Hart measure of riskiness.

I. Introduction

A risky asset (or gamble) yields uncertain returns according to a given
probability distribution; these returns may be positive (gains) or negative
(losses).1 How can gambles be compared to one another? Which is “less
risky”? While different decision-makers regard gambles differently—
each according to his own risk posture—we would like to capture in

Previous versions: December 2009 (Discussion Paper no. 531, Center for the Study of
Rationality), December 2010. This paper supersedes “A Simple Riskiness Order Leading
to the Aumann–Serrano Index of Riskiness,” May 2008 (draft), August 2009 (Discussion
Paper no. 517, Center for the Study of Rationality). Research was partially supported by
grants of the Israel Science Foundation and the European Research Council. The author
thanks Bob Aumann, Elchanan Ben-Porath, Dean Foster, Werner Hildenbrand, Gil Kalai,
Haim Levy, Moti Michaeli, Phil Reny, Frank Riedel, Yossi Rinott, Benjy Weiss, Shlomo
Yitzhaki, and the anonymous referees, for useful discussions and suggestions.

1 The outcomes of a gamble should be understood as net changes to the current wealth,
and not as the final wealth.
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these comparisons the gambles’ inherent riskiness. That is, we want to
find objective ways to compare gambles: independently of the specific
decision-maker, and depending only on the gambles themselves (i.e.,
on their outcomes and probabilities). Such objective comparisons do
exist, for instance, for the “return” of gambles (compare their expec-
tations) and their “spread” (compare their variances). Moreover, these
comparisons yield complete orders (i.e., any two gambles can be com-
pared). The aim of this paper is to do the same for riskiness—that is,
to provide complete and objective orders of riskiness.

Let g and h denote two gambles. There are cases where it is clear that
g is less risky than h; this is certainly so when g is obtained from h by
increasing some gain, by decreasing some loss, or by replacing a lottery
with its expectation. Combining these kinds of transformations yields
the well-known second-degree stochastic dominance order (see Hadar and
Russell 1969; Hanoch and Levy 1969; Rothschild and Stiglitz 1970, 1971;
Machina and Rothschild 2008). As it turns out, there is an equivalent
approach that leads to the same comparison: g (second-degree) sto-
chastically dominates h if and only if all risk-averse decision-makers prefer2

g to h. This is a natural approach since it is risk, after all, to which risk-
averse decision-makers are averse, and this aversion can be used to
compare the riskiness of the two gambles. However, it seldom happens
that all decision-makers agree which one of the two gambles is preferred
to the other. Indeed, in general some will prefer the first to the second,
others the second to the first—and stochastic dominance is then silent.
Formally, this means that the stochastic dominance order between gam-
bles is a partial (rather than complete) order—in fact, very partial and
far from complete.

Suppose now that decision-makers may choose whether to accept or
reject a gamble.3 But then, if both g and h are rejected, does it really
matter in this case that, say, g is preferred to h? This suggests a way to
weaken the requirement of stochastic dominance, by asking only that
g be accepted more, and thus rejected less, than h. We will say that g
acceptance dominates h if every time that g is rejected (by a risk-averse
decision-maker) then so is h.

Clearly, the acceptance dominance requirement is a weakening of the
stochastic dominance requirement: if g is preferred to h and g is rejected,
then surely h is rejected (since the status quo is preferred to g, which

2 To streamline the text, we say “greater than” rather than “greater than or equal to”:
all comparisons should thus be understood in the weak sense. For example, “prefers”
means “prefers or is indifferent to,” and “rejected less” means “rejected less often or as
often.” Also, all the orders we consider are weak orders (from which the strict part and the
indifference part are easily deduced as usual).

3 A gamble is rejected whenever staying put at the current wealth (the “status quo”) is
preferable to taking the gamble, and is accepted otherwise. See Sec. IV(c) for further
discussion.
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in turn is preferred to h). Therefore the acceptance dominance order
extends the stochastic dominance order. That it is an actual extension
can be seen, for example, by taking a gamble g with positive expectation
and doubling its outcomes (i.e., multiplying all gains and losses by 2);
the resulting gamble turns out always to be acceptance domi-h p 2g
nated by g, even though it can never be stochastically dominated by g
(see Sec. IV( j)).

While acceptance dominance allows one to compare more pairs of
gambles than does stochastic dominance, it is still a very partial order:
for general gambles g and h, there are instances where g is rejected and
h is accepted, and other instances where h is rejected and g is accepted.
The reason is that the requirement that “in every instance that g is
rejected h must also be rejected” is a strong requirement, and thus hard
to satisfy for general gambles g and h. After all, g and h may take very
different values, with different ranges, and it may be too much to expect
that for all utility functions and all wealth levels, the rejection of one
gamble g will always imply the rejection of another gamble h.

All this leads to the following idea: take into account rejection only
when it is “substantive,” in the sense that it occurs in a significant range
of decision problems. That is, only a stronger, “uniform” rejection—not
just a single instance, but rather a whole range of rejections—should
qualify as evidence of the riskiness of gambles: the gamble that is uni-
formly rejected less is less risky and dominates the other. Since an ac-
ceptance or rejection decision is characterized by a utility function and
a wealth level, there are two simple ways to impose uniformity: one in
which the rejection is wealth-uniform (i.e., rejection by one utility function
at all wealth levels), and the other in which it is utility-uniform (i.e.,
rejection at one wealth level by all utilities).4

We thus obtain two new orders on gambles, which we call “wealth-
uniform dominance” and “utility-uniform dominance.” Formally, g
wealth-uniformly dominates h if any risk-averse utility function that rejects
g at all wealth levels also rejects h at all wealth levels; and g utility-uniformly
dominates h if any wealth level at which all risk-averse utility functions
reject g is also a wealth level at which they all reject h. That is, in the
former case g is wealth-uniformly rejected less than h, and in the latter
g is utility-uniformly rejected less than h. Clearly, these two new orders
extend acceptance dominance and thus, a fortiori, stochastic domi-
nance: if every time that g is rejected h is also rejected, then any uniform
rejection of g implies the same uniform rejection of h.

What may come as a surprise is that each one of these two uniform

4 To ensure the soundness of these uniform requirements some standard regularity
conditions will be imposed on the class of utility functions that are considered; see Sec.
II.B and the discussion in Sec. IV(d) and (e).
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dominance orders is in fact a complete order : any two gambles can be
compared. That is, for any g and h, either g wealth-uniformly dominates
h, or h wealth-uniformly dominates g ; also, either g utility-uniformly
dominates h, or h utility-uniformly dominates g (but in general the two
orders may yield different comparisons). Thus, when one considers
strong aversion to gambles (i.e., aversion that is uniform with respect to
wealth or utility), there is no longer any ambiguity: of any two gambles,
one is always rejected more.

Recently, two numerical measures of riskiness were introduced: the
“economic” index developed by Aumann and Serrano (2008), andASR
the “operational” measure of Foster and Hart (2009). We will showFHR
a noteworthy connection between our orders and these measures of
riskiness: wealth-uniform dominance is equivalent to , and utility-ASR
dominance to . That is, g wealth-uniformly dominates h if and onlyFHR
if the AS-riskiness index of g is less than or equal to the AS-ASR (g)
riskiness index of h, i.e., ; and g utility-uniformlyAS AS ASR (h) R (g) ≤ R (h)
dominates h if and only if the FH-riskiness measure of g is lessFHR (g)
than or equal to the FH-riskiness measure of h, i.e.,FH FHR (h) R (g) ≤

.FHR (h)
One can draw a parallel between the approaches to riskiness and

standard decision and consumer theory. In the latter, there are two ways
to model rational choice: one is based on comparing alternatives, which
yields a “preference order”; the other is based on assigning a number
to each alternative, which yields a “utility function.” The connection
between the two is that a utility function represents a preference order
if and only if the preferred outcome has a higher utility. Similarly, in
the context of riskiness, the present paper provides the “order” ap-
proach, while the papers of Aumann and Serrano (2008) and Foster
and Hart (2009) provide the “numerical index” approach; the results
stated in the previous paragraph yield the connection (see also the
discussion in Sec. IV(a)).

Another interesting observation is that the two ways of getting uniform
dominance further emphasize the “duality” between the AS-index and
the FH-measure (pointed out in Foster and Hart 2009, Sec. VI.A, (iii)):
the AS-index looks for the critical utility regardless of wealth, whereas
the FH-measure looks for the critical wealth regardless of utility.

To summarize: taking into consideration the status quo given by the
current wealth level and the possibility to reject gambles has enabled us
to go beyond the standard stochastic dominance and compare gambles
in terms of their inherent and objective riskiness. Our approach may
be summed up in the following three basic principles:

1. A gamble g is less risky than a gamble h whenever risk-averse de-
cision-makers are less averse to g than to h.
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2. Aversion to a gamble is conveyed by its rejection.
3. Rejection of different gambles should be compared whenever it is

substantive, i.e., uniform over a range of decisions.

Putting these together yields:

A gamble g is less risky than a gamble h whenever
g is uniformly rejected less than h by risk -averse decision -makers.

This principle yields two orders—wealth-uniform dominance and utility-
uniform dominance—which are complete orders, and moreover equiva-
lent to the Aumann and Serrano (2008) index of riskiness and the Foster
and Hart (2009) measure of riskiness, respectively.

The contribution of this paper is twofold: first, in showing how natural
and simple modifications allow one to complete the stochastic domi-
nance order, and thus compare any two gambles; and second, in pro-
viding a new, ordinal approach to riskiness. Moreover, all this is carried
out in one unified and standard framework, which helps provide ad-
ditional understandings and insights into these concepts and their
connections.

The paper is organized as follows. Section II includes the standard
setup and preliminaries. The orders on gambles—from stochastic dom-
inance to our two uniform dominance orders—are presented in Section
III, together with the main result. In Section IV we discuss various per-
tinent issues and possible extensions. The proofs, together with some
additional results, are relegated to the Appendix.

II. Preliminaries

A gamble g is a real-valued random variable with positive expectation and
some negative values (i.e.,5 and ); for simplicity,E[g] 1 0 P[g ! 0] 1 0
assume that g takes finitely many values (cf. Sec. IV(g)). Let denoteG
the collection of all such gambles. For each gamble g in , denote byG

the maximal gain of g, and byM :p max g L :p max (�g) p � min gg g

its maximal loss; is its overall bound. Onemax FgF p max {M , L }g g

should view a gamble as the net returns of a risky asset; that is, the values
of g represent the possible changes in wealth when g is realized (the
positive values of g are gains, and the negative ones, losses).

A (von Neumann and Morgenstern) risk-averse utility function u is a
strictly increasing and concave function6 . “Risk aversion” isu : � r ��

5 Let E and P denote expectation and probability, respectively. The probability space
on which the random variable g is defined is irrelevant; only the distribution of g will
matter. We chose to work with random variables g rather than their distributions G for
convenience, as appears simpler than .E[g] E [7]G

6 Let denote the set of real numbers, and the set of positive� p (��, �) � p (0, �)�

numbers.
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represented by the concavity assumption: the utility of a sure outcome
of a is always at least as large as the expected utility of a random variable
with expectation a; i.e., for any random variable X.u(E[X ]) ≥ E[u(X )]
Let denote the collection of all such utility functions u.U

A. Accepting and Rejecting Gambles

A decision-maker is characterized by a utility function and a wealthu � U
level . The decision-maker accepts a gamble ifw 1 0 g � G E[u(w � g)] 1

, and rejects g if ; that is, a gamble is accepted ifu(w) E[u(w � g)] ≤ u(w)
the expected utility from accepting is higher than from staying put, and
is rejected otherwise.7

Remark. Since the utility is not defined for , acceptanceu(x) x ≤ 0
of g is considered only at wealth levels w such that8 , orw � g 1 0 w 1

. Thus statements such as “g is accepted by u at all w” should beLg

understood to refer to all .w 1 Lg

B. Regular Utilities

We will use two standard assumptions on utility functions propounded
by Arrow (1965, lecture 2; 1971, p. 96); these assumptions amount to
certain monotonicity relations between decisions and wealth levels. The
first is that acceptance increases9 with wealth: if u accepts a gamble g at
wealth level w then u accepts g also at any higher wealth level .′w 1 w
The second is that acceptance decreases with relative wealth: scaling up both
the gamble and the wealth by the same factor that is greater than 1
decreases acceptance (and thus scaling down by a factor that is less than
1 increases acceptance); that is, if u rejects g at wealth level w then u
also rejects10 at wealth level for every (equivalently, if ulg lw l 1 1
accepts g at w then u accepts at for every ).lg lw 0 ! l ! 1

For another way to state these conditions, assume11 that the utility

7 The decision in the case of indifference (i.e., when ) does notE[u(w � g)] p u(w)
matter. We could have acceptance instead of rejection, or even leave this undefined; while
some of the inequalities in the proofs may change from strict to weak and vice versa, none
of the final results are affected.

8 The inequality means that for all values x of g. It may be convenientw � g 1 0 w � x 1 0
to put for (which makes u concave over all ), and then for everyu(x) :p �� x ≤ 0 �

we have and g is indeed rejected at such w.w ≤ L E[u(w � g)] p �� ≤ u(w)g
9 Recall that “increasing” and “decreasing” should always be understood in the weak

sense (i.e, they mean “nondecreasing” and “nonincreasing,” respectively); when needed,
we will use “strictly” explicitly.

10 The gamble is obtained by multiplying all outcomes of g by the factor l (andlg
leaving the probabilities unchanged).

11 The differentiability assumptions do not matter, as our concepts and constructs are
continuous with respect to pointwise convergence of the utility functions (and the gambles
are bounded).
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functions are twice continuously differentiable (i.e., of class )2u � U C
and for every . The Arrow–Pratt coefficient of Absolute Risk′u (x) 1 0 x 1 0
Aversion (“ARA”) of u at x is , and the coefficient′′ ′r (x) :p �u (x)/u (x)u

of Relative Risk Aversion (“RRA”) is ′′ ′r̃ (x) :p �xu (x)/u (x) p r (x)/(1/x)u u

(see Arrow 1965, 1971; Pratt 1964). The first condition of “acceptance
increasing with wealth” corresponds to Decreasing Absolute Risk Aversion
(“DARA”): is a decreasing function of wealth, i.e., for′r r (x ) ≤ r (x)u u u

all (see Pratt 1964; Yaari 1969; Dybvig and Lippman 1983). Sim-′x 1 x
ilarly, the second condition of “acceptance decreasing with relative
wealth” corresponds to Increasing Relative Risk Aversion (“IRRA”): isr̃u

an increasing function of wealth, i.e., for all . Let′ ′˜ ˜r (x ) ≥ r (x) x 1 xu u

and ˜U :p {u � U : r (x) decreases in x} U :p {u � U : r (x) increasesDA u IR u

denote these two collections of utilities.in x}
Two special families of utilities (that belong to both and ) areU UDA IR

the Constant Absolute Risk Aversion (“CARA”) utilities for , wherev̄ a 1 0a

(and thus for all x), and the Constantv̄ (x) :p � exp (�ax) r (x) p aa v̄a

Relative Risk Aversion (“CRRA”) utilities for , where˜ ˜v g ≥ 0 v (x) :pg g

for and (and thus for all1�g ˜ ˜x /(1 � g) g ( 1 v (x) p log (x) r (x) p g˜1 vg

); let and .˜¯x 1 0 U :p {v : a 1 0} U :p {v : g ≥ 0}CA a CR g

A final requirement imposed on a utility function u will be that no
gamble should always be accepted by u: for every there isg � G w 1

such that u rejects g at w. A utility function u that does not satisfyLg

this condition accepts certain gambles no matter how low the wealth is
(which may suggest that u is “less qualified” to attest to the riskiness of
gambles, as it is willing to accept too many risks).12 Let denote thisUsr

collection of utility functions (“sr” stands for “some rejection”).
Altogether, we will denote by the resulting classU* :p U ∩ U ∩ UDA IR sr

of utilities; as we will see in Section C in the Appendix, if andu � U*
only if decreases, increases, and (the last con-˜r r lim u(x) p ���u u xr0

dition is equivalent to ). In particular,˜ ˜inf r (x) p lim r (x) ≥ 1 U*�1x 0 u xr0 u

contains all CRRA utilities with RRA coefficient , utilities thatṽ g ≥ 1g

appear consistent with observed behavior;13 it also contains utilities that
are CARA from some wealth on.14

We emphasize that we chose to work throughout with one collection
of utilities, , for convenience only; see the discussion in Section IV(d)U*
and (e).

12 For example, does not belong to (for instance, it always accepts the half-�u(x) p x Usr

half gamble on $4 and �$1), whereas both and do belong to ; see thelog (x) �1/x Usr

next paragraph.
13 See, e.g., Meyer and Meyer (2005, 2006) and Palacios-Huerta and Serrano (2006).
14 Take for example for and forˆ ˆv (x) :p (log (ax) � 1)/e x ≤ 1/a v (x) :p � exp (�ax)a a

; then for and for and so forˆx ≥ 1/a r (x) p 1/x x ≤ 1/a r (x) p a x ≥ 1/a v � U*ˆ ˆv v aa a

each .a 1 0
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C. Numerical Measures of Riskiness

How can one quantify the intrinsic riskiness of gambles—that is, assign
to each gamble a real number that measures its riskiness? Again, we
want to do this in an objective way, independent of any specific decision-
maker. Just as the “return” of the gamble (its expectation) and the
“spread” of the gamble (its standard deviation) depend only on the
gamble itself (i.e., its distribution: outcomes and probabilities) and are
thus objective measures, so the riskiness of the gamble should be.

Two such recent approaches are the “economic” index of riskiness de-
veloped by Aumann and Serrano (2008),15 and the “operational” measure
of riskiness of Foster and Hart (2009).16 Although based on quite different
considerations, they turn out to be similar in many ways, and to share
several useful properties (besides being objective measures), such as
monotonicity with respect to (first- and second-degree) stochastic dom-
inance; see Aumann and Serrano (2008), Foster and Hart (2009; Sec.
VI.A compares the two approaches), and Foster and Hart (2011).

Formally, for every gamble :g � G

• , the Aumann–Serrano index of riskiness of g, is given byASR (g)

1
E exp � g p 1.( )AS[ ]R (g)

That is, consider the equation ; it has a unique positiveE[exp (�ag)] p 1
solution , i.e.,17a p a*(g) 1 0

E[exp (�a*(g)g)] p 1, (1)

and then

1ASR (g) :p (2)
a*(g)

(see Aumann and Serrano 2008, theorems A and B).
This means that among the CARA utilities , the one withv̄ � Ua CA

coefficient is always indifferent between accepting and re-a p a*(g)
jecting g, whereas all those with a higher absolute risk-aversion coeffi-
cient always reject g, and all those with a lower onea 1 a*(g) a !

always accept g ; here “always” stands for “at all wealth levels w.”a*(g)

15 This index was used in the technical report of Palacios-Huerta, Serrano, and Volij
(2004); see the footnote on page 810 of Aumann and Serrano (2008).

16 For a discussion of some of the earlier work, see Sec. VIII in Aumann and Serrano
(2008) and Sec. VI.D in Foster and Hart (2009). The reason one is called an “index” and
the other a “measure” is explained in Foster and Hart (2009, Sec. VI.A); see also Sec.
IV(a) below.

17 In the insurance risk literature, is called the “adjustment coefficient”; see Meilijsona*
(2009).
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We can informally say that is the critical risk aversion level forAS1/R (g)
g.

• , the Foster–Hart measure of riskiness of g, is given byFHR (g)

1
E log 1 � g p 0.( )FH[ ]R (g)

That is, consider the equation ; it has a uniqueE[log (r � g)] p log (r)
positive solution , i.e.,FHr p R (g) 1 Lg

FH FHE[log (R (g) � g)] p log (R (g)) (3)

(see Foster and Hart 2009, theorem 1).
That is, is the wealth level where the CRRA utilityFH ˜R (g) v � U1 CR

with RRA coefficient 1 (i.e., ) is indifferent between ac-ṽ (x) p log (x)1

cepting and rejecting the gamble g ; at any higher wealth level w 1

the utility accepts g, and at any lower wealth levelFH ˜R (g) v w !1

it rejects g. Informally, is the critical wealth level for g: asFH FHR (g) R (g)
shown in Foster and Hart (2009), to avoid decreasing wealth and bank-
ruptcy, g is rejected at any wealth level w below the measure of riskiness

of g.FHR (g)

III. Comparing Gambles

We start from the well-known stochastic dominance order and proceed
to our two new uniform dominance orders, defined in Sections III.C
and III.D; the main result is stated in Section III.E.

Let g and h be gambles in ; the objective is to find out when gG
“dominates” h, in the sense that g is less risky than h and thus risk-averse
decision-makers are less averse to g than to h.

A. Stochastic Dominance

The first approach is based on “desirability”: if every risk-averse decision-
maker prefers g to h, this is a clear indication that g is less risky than
h. This yields the classical comparison known as “second-degree sto-
chastic dominance”18 (see Hadar and Russell 1969; Hanoch and Levy

18 “Second degree” refers to risk-averse utility functions (i.e., in : strictly increasing,U
and concave), whereas “first degree” refers to utility functions that are just strictly in-
creasing (and not necessarily concave). The second-degree order is thus an extension of
the first-degree order: if g first-degree stochastically dominates h, then g second-degree
stochastically dominates h (nevertheless, many authors restrict “second-degree” only to
the additional comparisons that go beyond the first-degree order, and then deal only with
pairs of gambles with identical expectations).

Since risk and risk aversion are of the essence in this paper, the second-degree order
is the relevant one, and so “stochastic dominance” will always be of the second degree.
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1969; Rothschild and Stiglitz 1970, 1971; Machina and Rothschild 2008):
g stochastically dominates h, which we denote19 (“S” stands for “Sto-g ≥ hS

chastic”), if the expected utility that g yields is always at least as large
as that of h; i.e., for every and every20 w,u � U

E[u(w � g)] ≥ E[u(w � h)]. (4)

Thus, given the choice between g and h, every risk-averse decision-maker
always prefers g to h.

As is well known (see for instance the above references), g second-
degree stochastically dominates h if and only if there are , , that′ ′ ′′g h h
are all defined on the same probability space, such that the following
holds: (i.e., in each state the realization of is no less than the′ ′ ′g ≥ h g
realization of ); is obtained from by a sequence of mean-′ ′′ ′h h h
preserving spreads (which replace an outcome x of with a lottery′h
whose expectation equals x); has the same distribution as g ; and′ ′′g h
has the same distribution as h. That is, g has higher gains, or lower
losses, or fewer lotteries than h (more precisely, this statement applies
to and ).′ ′′g h

Stochastic dominance yields a clear and uncontroversial order on
gambles; however, it is a very partial order,21 with most pairs of gambles
g and h being incomparable: neither stochastically dominates the other.

B. Extending Stochastic Dominance

As discussed in the Introduction, we first weaken the requirement in
(4) by considering decision-makers who are allowed to choose whether
to accept or reject gambles. Thus we say that g acceptance dominates22 h,
denoted (“A” stands for “Acceptance”), if g is accepted more thang ≥ hA

h (and so is rejected less than h) by all risk-averse decision-makers; i.e.,
for every and every ,u � U w 1 0

if g is rejected by u at w (5)

then h is rejected by u at w;

19 Recall that we deal throughout with the weak versions of the orders.
20 At this point the reader may ask why is the wealth w used at all, as (4) is equivalent

to for all strictly increasing and concave u (take ).˜E[u(g)] ≥ E[u(h)] u(x) :p u(w � x)
Although this is indeed irrelevant for stochastic dominance, it will become significant for
our uniform dominance orders.

21 An order (sometimes called “preorder” or “partial order”) is a binary relation that≥∗
is reflexive (i.e., for any g) and transitive (i.e., and imply , forg ≥ g g ≥ h h ≥ k g ≥ k∗ ∗ ∗ ∗
any g, h, k). It is a complete (sometimes called “linear”) order if every pair g, h can be
compared (i.e., either or for any g, h).g ≥ h h ≥ g∗ ∗

22 A more apt, if cumbersome, name would be “acceptance stochastic dominance” (the
term “stochastic” refers to the fact that only the distributions of the gambles—i.e., values
and probabilities—matter). Since all the orders in this paper are “stochastic,” we will drop
this word for simplicity (except in the case of the original stochastic dominance of Sec.
III.A).
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equivalently,

E[u(w � g)] ≤ u(w) implies E[u(w � h)] ≤ u(w). (6)

While acceptance dominance extends stochastic dominance (i.e.,
implies , since (4) implies (6)), it is still only a partial order,g ≥ h g ≥ hS A

and for general gambles g and h neither one will acceptance dominate
the other.23 As argued in the Introduction, the reason is that the re-
quirement (5) for each and every instance, i.e., for every u and w, is
too strong a condition. The values of g and h may be very different,
and then it would be hard to deduce from the fact that a certain utility
function u rejects g at a certain wealth level w that exactly the same
occurs for h.

This suggests that one may seek stronger evidence of “aversion” to g
before requiring that the same hold for h. Thus, rather than a single
instance of rejection, one should consider a whole range of rejections:
“uniform rejection.” Since an acceptance/rejection decision is charac-
terized by a utility function u and a wealth level w, there are two natural
ways of doing so: uniformly over the wealth levels, and uniformly over
the utility functions. These two “uniform dominance” orders will be the
subject of the next two sections. For simplicity we will from now on
restrict ourselves to regular utility functions , which guaranteesu � U*
that the uniform conditions do not become vacuous (see however Sec.
IV(d) and (e)).

C. Wealth-Uniform Dominance

We start with “wealth-uniformity”: say that a gamble g is wealth-uniformly
rejected by u if g is rejected by u at all wealth levels w.

Our first uniform order is defined as follows: a gamble wealth-g � G
uniformly dominates a gamble , denoted (“WU” stands forh � G g ≥ hWU

“Wealth-Uniform”), if h is wealth-uniformly rejected more than g ; i.e.,
for every utility ,u � U*

if g is rejected by u at all w 1 0 [WU]

then h is rejected by u at all w 1 0.

That is, if g is wealth-uniformly rejected, then so is h.
Formally, if for everyg ≥ h u � U*WU

(E[u(w � g)] ≤ u(w) for all w 1 0)

implies (E[u(w � h)] ≤ u(w) for all w 1 0).

23 For example, let be the gamble where one gains 20 or loses 10 with equalg � G
probabilities of , , and the gamble where one gains 50 with probability1/2 1/2 h � G

and loses 20 with probability ; then at accepts g and rejects2/3 1/3 u (x) p log (x) w p 211 1

h, whereas at rejects g and accepts h.u (x) p �1/x w p 392 2
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This captures the idea that a less risky gamble is rejected less often;
however, only when the rejection of g occurs at all wealth levels—a strong
premise—do we require that the same hold for h.

It is immediate to see that wealth-uniform dominance is a partial order
(reflexive and transitive), and that it extends stochastic dominance:

implies (recall (4)).g ≥ h g ≥ hS WU

D. Utility-Uniform Dominance

We come now to “utility-uniformity”: say that a gamble g is utility-uniformly
rejected at wealth level w if g is rejected by all utility functions atu � U*
w.

Our second uniform dominance order is defined as follows: a gamble
utility-uniformly dominates a gamble , denoted (“UU”g � G h � G g ≥ hUU

stands for “Utility-Uniform”), if h is utility-uniformly rejected more than
g ; i.e., for every wealth level ,w 1 0

if g is rejected by all u � U* at w [UU]

then h is rejected by all u � U* at w.

That is, if g is utility-uniformly rejected, then so is h.
Formally, if for everyg ≥ h w 1 0UU

(E[u(w � g)] ≤ u(w) for all u � U*)

implies (E[u(w � h)] ≤ u(w) for all u � U*).

This is another way to capture the idea that a less risky gamble is rejected
less often; but now, only when the rejection of g at a certain wealth level
is by all decision-makers do we require the same for h. The fact that
this is a strong premise makes the requirement reasonable.

It is immediate to see that utility-uniform dominance is also a partial
order (reflexive and transitive), and that it extends stochastic domi-
nance: implies (recall (4)).g ≥ h g ≥ hS UU

E. The Result

We now state our main result.
Theorem 1.
(i) Wealth-uniform dominance is a complete order on that ex-≥ GWU

tends stochastic dominance. Moreover, for any two gambles g and
h in ,G

AS ASg ≥ h if and only if R (g) ≤ R (h), (7)WU

where denotes the Aumann–Serrano index of riskiness.ASR
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(ii) Utility-uniform dominance is a complete order on that extends≥ GUU

stochastic dominance. Moreover, for any two gambles g and h in
,G

FH FHg ≥ h if and only if R (g) ≤ R (h), (8)UU

where denotes the Foster–Hart measure of riskiness.FHR

Thus, while it may appear from their definition that the uniform
dominance orders, just like stochastic and acceptance dominance, are
only partial orders (i.e., not every pair of gambles may be compared),
they both turn out to be complete: for any g, , either orh � G g ≥ hWU

; and, either or .h ≥ g g ≥ h h ≥ gWU UU UU

Moreover, (7) says that is equivalent to the order induced by the≥WU

Aumann–Serrano index ; in other words, represents the wealth-AS ASR R
uniform dominance order.24 Thus is uniquely determined by wealth-ASR
uniform dominance up to monotonic transformations.25 Similarly,≥WU

(8) says represents the utility-uniform dominance order , andFHR ≥UU

so determines uniquely up to monotonic transformations.FH≥ RUU

In summary, we started by defining two simple “riskiness” orders on
gambles—wealth-uniform dominance and utility-uniform dominance—
and then established that these orders are uniquely (up to monotonic
transformations) represented by the Aumann–Serrano index and the
Foster–Hart measure, respectively. This parallels the standard route of
decision theory and consumer theory, which starts with an order on
outcomes (a “preference” order) and then represents it by a numerical
index (a “utility function”). In our approach the two uniform dominance
orders yield the AS-index and the FH-measure directly, without any
further postulates or constructions (see Sec. IV(a) and (l)).

The proof of theorem 1 is relegated to Sections B and C in the
Appendix.

IV. Discussion

This section discusses a number of issues and presents some possible
extensions.

(a) Ordinal approach to riskiness.—The approach to riskiness in this
paper is ordinal, in the sense that we compare gambles (and the end

24 Just as a consumer’s utility function represents his preference order on commodity
bundles (in our case the order and the riskiness function go in opposite directions:AS≥ RWU

WU-dominance corresponds to lower riskiness).
25 That is, a real-valued function Q on represents the order if and only if Q isG ≥WU

ordinally equivalent to : there exists a strictly increasing function f such thatASR
for all . If we require in addition that Q be positively homogeneousASQ(g) p f(R (g)) g � G

of degree one, then Q is a constant multiple of : there exists a constant such thatASR c 1 0
for all . Compare this to the main results of Aumann and SerranoASQ(g) p cR (g) g � G

(2008, theorems D and A).
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results are complete orders), whereas the numerical measures of Au-
mann and Serrano (2008) and Foster and Hart (2009) may be viewed
as cardinal, as they associate a numerical value to each gamble;26 theorem
1 provides the connections.

The Foster–Hart measure of riskiness has a clear (and “operational”)
interpretation: the critical wealth levels below which accepting gambles
may lead in the long run to decreasing wealth and bankruptcy; there-
fore, applying a monotonic transformation to it may not make much
sense. In contrast, the derivation and interpretation of the Aumann–
Serrano index of riskiness—which have to do with the critical risk-aver-
sion coefficient—are less conclusive in pinning down this index within
the class of all its monotonic, or linear, transformations (cf. theorems
D and A in Aumann and Serrano 2008; see also Sec. IV.C there). In a
sense, the Aumann–Serrano index seems to be more of an ordinal con-
cept, whereas the Foster–Hart measure is more cardinal.

Finally, note that the Foster and Hart (2009) approach applies to
general setups that go beyond utility and expected utility.

(b) Duality between wealth and utility.—As noted already in Foster and
Hart (2009, Sec. VI.A), the constructions of the Aumann–Serrano index
and the Foster–Hart measure exhibit an interesting duality between
wealth and utility. The approach of the present paper further under-
scores this duality: wealth-uniformity yields the critical utility (and the
AS-index), and utility-uniformity yields the critical wealth (and the FH-
measure).

(c) Status quo.—A basic ingredient that enabled us to go beyond the
classical stochastic dominance is the status quo, i.e., the current wealth
level (indeed, stochastic dominance looks only at the final outcomes).
Allowing the decision-makers to reject gambles—rather than just choose
which one they prefer—yields additional comparisons between gambles
(even before going to the uniform dominance orders). For example,
we will show in ( j) below that all risk-averse decision-makers reject lg
more often than g, for any gamble and any factor ; this is ag � G l 1 1
“universal” property that lies below the radar of stochastic dominance
(because the status quo and rejection are not seen there).

The idea of status quo together with acceptance and rejection is of
course not new (see, e.g., Yaari 1969), and it is already embodied in the
Aumann and Serrano (2008) and Foster and Hart (2009) approaches.
More generally, the relevance and significance of the status quo have
been pointed out in many setups, theoretical and behavioral (e.g., Kahn-
eman and Tversky 1979, Rabin 2000, and many others).

(d) Regular utilities.—We have chosen to use one class of utilities,

26 In parallel to decision theory: preference orders (ordinal) vs. utility functions (car-
dinal).
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, for both wealth-uniform and utility-uniform dominance; this is moreU*
elegant and makes the comparisons clearer. However, as some of the
restrictions in may appear at times controversial,27 we will show inU*
the Appendix (see the remarks at the end of Secs. B and C) that we
can replace by other classes of utilities; for instance, by for wealth-U* UDA

uniform dominance, and by or for utility-uniform′ ′U ∩ U U ∩ UIR sr CR sr

dominance. Note here yet another “duality”: of Arrow’s two conditions
(recall Sec. III.B), the one that acceptance increases with wealth is used
for and , whereas the other one that acceptance decreases withAS≥ RWU

relative wealth is used for and .FH≥ RUU

(e) General utilities.—Without some regularity assumptions on the ac-
ceptance/rejection decisions, the uniformity requirements used in our
orders become vacuous (and so one does not go beyond acceptance
dominance). Indeed, a utility function whose risk-aversion coefficient
oscillates up and down28 will lead to nonmonotonic decisions that os-
cillate between rejection and acceptance as the wealth changes—see
proposition 4 in the Appendix (for an explicit example, see Sec. 5.3 in
Hart 2009); but how reasonable are decision-makers that, say, accept a
gamble g at wealth $1,000 and at wealth $1,002, but reject it at wealth
$1,001?

(f ) Comparing the two uniform orders.—An interesting issue is under-
standing the similarities and the differences between the two uniform
dominance orders. Since the two orders extend stochastic dominance
(and acceptance dominance), they agree on these comparisons. Also,
they become more and more similar as the riskiness of the gambles
increases; this follows from proposition 4 in Section VI.A of Foster and
Hart (2009). Beyond that, are there other interesting cases where the
two orders agree?

A related question is which measure of riskiness to use, the Aumann–
Serrano index or the Foster–Hart measure? What we learn from the
present paper is, on the one hand, that the two measures stand on
parallel foundations, which suggests that neither is always preferable to
the other. On the other hand, we also learn that the Aumann–Serrano
index may be better suited when the utility and the risk aversion matter
while the wealth is unknown or less significant, and that the Foster–
Hart measure may be better suited when the wealth matters while the
utility and the risk aversion are unknown or less significant. But since,
after all, summarizing a whole distribution of a gamble into one single

27 Increasing relative risk-aversion ( ) is perhaps the most disputed assumption; de-UIR

creasing absolute risk-aversion ( ) and constant relative risk-aversion ( ) are less soU UDA CR

(see, e.g., Meyer and Meyer 2005, 2006).
28 For some of our results it suffices to require monotonic decisions from some wealth

on.
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number can never tell the whole story, having more than one measure
can only help.29 Additional studies will hopefully clarify this further.

(g) The class of gambles.—To avoid inessential technical issues, we have
maintained throughout the assumption that each gamble takes only
finitely many values. It should not be difficult to relax this and replace
it with, say, boundedness (at least from below).

Our gambles have positive expectation and take some negativeg � G
values; this is the interesting case. Indeed, a random variable f with

is rejected by every risk-averse decision-maker, and a (nontriv-E[ f ] ≤ 0
ial) random variable is accepted by every decision-maker, and sok ≥ 0
any gamble g in acceptance dominates f and is acceptance dominatedG
by k, i.e., for all30 .k ≥ g ≥ f g � GA A

(h) Beyond expected utility.—This paper (as well as Aumann–Serrano
2008 and Foster–Hart 2009) deals with pure risk in the standard von
Neumann and Morgenstern expected utility setup. It would be inter-
esting to go beyond that and consider more general setups—such as
subjective probability, uncertainty, and various non-expected-utility mod-
els—and try to capture universal notions of “more risky” and/or “more
uncertain.”

(i) Characterizations of dominance.—First- and second-degree stochastic
dominance have equivalent characterizations (in terms of lower values
and mean-preserving spreads). Restricting the utilities to some of the
classes in this paper ( , or , or ) may affect the stochastic order,31U U U*DA IR

and it would be of interest to obtain appropriate characterizations (cf.
Whitmore 1970 and the survey of Levy 1992); the same applies to ac-
ceptance dominance.

( j) Acceptance dominance.—To see that acceptance dominance in fact
goes beyond stochastic dominance, take any gamble and putg � G

where (i.e., multiply all the outcomes of g by the constanth :p lg l 1 1
factor ). Although g cannot stochastically dominate h (for instance,l 1 1
because ), it turns out that g acceptance dominatesE[g] ! E[h] p lE[g]
h, i.e., . Indeed, for every concave function u we haveg ≥ hA

u(w � x) ≥ (1/l)u(w � lx) � (1 � 1/l)u(w),

and so

E[u(w � g)] ≥ (1/l)E[u(w � h)] � (1 � 1/l)u(w).

Therefore (6) is satisfied: if —i.e., g is rejected—thenu(w) ≥ E[u(w � g)]
necessarily —i.e., h is also rejected.u(w) ≥ E[u(w � h)]

A precise characterization of acceptance dominance is provided in

29 In addition, it may make various “manipulations” harder; see for instance the dis-
cussion in Foster and Hart (2011, Sec. 7(b)).

30 One may thus define the riskiness of these f and k to be � and 0, respectively.
31 In the same way that adding concavity takes us from first-degree to second-degree

stochastic dominance.
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Hart (2010, App. A.1): it amounts to stochastic dominance between
“dilutions” of the given gambles, where “diluting” a gamble means taking
it with a probability that may be less than one.

(k) Wealth-bounded dominance.—Acceptance dominance requires that
if g is rejected by u at w then h is also rejected by u at w; wealth-uniform
dominance derives the same conclusion (that h is rejected by u at w),
but from a much stronger premise (that g is rejected by u at all ).′w
One may also consider some middle ground between the rejection of
g at a single wealth level in (5) and its rejection at all wealth levels in
[WU]: rejection at a certain range of wealths.

Indeed, the premise in (5) that g is rejected by u at w tells us very
little about the values of u outside the interval [w � min g, w �

. But may well have outcomes that aremax g] p [w � L , w � M ] w � hg g

far away from this interval, which explains why it is hard, except in
special cases, to deduce that every u that rejects g at w also rejects h at
w (this is why acceptance dominance is only a partial order). It also
suggests that, in order to deduce that h is rejected at w, one may want
to strengthen the premise on g and require that g be rejected not just
at w itself, but also at all wealth levels in a certain interval around w—
an interval that is determined by (the ranges of outcomes of) g and h..

We thus introduce another order: a gamble wealth-boundedlyg � G
dominates a gamble , denoted (“WB” stands for “Wealth-h � G g ≥ hWB

Bounded”), whenever there exists a bound (that dependsb { b(g, h) ! �
only on g and h) such that for every utility and wealth ,u � U* w 1 0

′ ′if g is rejected by u at all w with Fw � wF ≤ b [WB]

then h is rejected by u at w.

We emphasize that the bound b depends only on the two gambles g and
h, but applies to all utility functions and all wealth levelsu � U* w 1

.0
While wealth-bounded dominance is clearly a partial order lying≥WB

between and , it is in fact equivalent to the latter, i.e., to wealth-≥ ≥A WU

uniform dominance; this is proved in Section B of the Appendix (prop-
osition 5), where we also show that one can always take b(g, h) p

, and so b is indeed of the same order ofL � M ≤ max FgF � max FhFg h

magnitude as the outcomes of the two gambles.32

(l) The duality axiom and the Aumann–Serrano index.—The approach of
Aumann and Serrano (2008) is based on their duality axiom. Though
on the face of it this postulate seems very reasonable, on closer inspec-
tion it turns out to be relatively complex, and its rationale not entirely
straightforward. In particular, it involves two decision-makers and the
index itself (besides the two gambles that are compared). In contrast,

32 See Hart (2010, Sec. 4.1) for further details on .≥WB
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wealth-uniform dominance involves only one decision-maker. All this is
discussed in Hart (2010, Secs. 4.2 and A.5), where we analyze the duality
axiom and indicate how the approach of the present paper seems to
capture the Aumann–Serrano riskiness in a starker and more basic form;
indeed, we show how at the basis of the duality axiom lies wealth-uniform
dominance,33 and so using this order directly simplifies and streamlines
the whole approach.34

Appendix

The Appendix contains the proofs and some additional results.35

A. Acceptance, Rejection, and Risk Aversion

From now on we assume that is twice continuously differentiable, i.e., ofu � U
class , and for every . Recall that the Arrow–Pratt risk-aversion2 ′C u (x) 1 0 x 1 0
coefficient of u is given by for every x. The basic result′′ ′r { r r(x) p �u (x)/u (x)u

we will use is that a higher risk-aversion coefficient yields a concave transfor-
mation of the utility function, and thus more rejection (cf. Arrow 1965, 1971
and Pratt 1964—see in particular theorem 1 there).36 Specifically:

Proposition 2. Let , be two utility functions with absolute risk-u u � U1 2

aversion coefficients r1 and r2, respectively, and let be an interval37I O (0, �)
where for every . Then for every and such thatr (x) ≥ r (x) x � I w 1 0 g � G1 2

, if rejects g at w then rejects g at w.w � g O I u u2 1

Proof. Let w be such that ; then w is strictly increasing (sinceu p w � u u1 2 1

and are such), and concave (since for every we have ′u x � I w (u (x)) p2 2

, hence′ ′u (x)/u (x)1 2

′ ′ ′ ′ ′ ′(logw (u (x))) p (logu (x)) � (logu (x)) p �r (x) � r (x) ≤ 0,2 1 2 1 2

and so ).′′w ≤ 0
Therefore impliesE[u (w � g)] ≤ u (w)2 2

E[u (w � g)] p E[w(u (w � g))] ≤ w(E[u (w � g)]) ≤ w(u (w)) p u (w)1 2 2 2 1

33 The research program of the present paper originated from this observation; see
Hart (2009).

34 Moreover, the additional assumptions of Aumann and Serrano (2008)—homogeneity
(in their theorem A), or continuity together with monotonicity with respect to first-order
stochastic dominance (in their theorem D)—are no longer needed in the wealth-uniform
dominance approach (see Sec. X.N of Aumann and Serrano 2008 for counterexamples
without these additional conditions).

35 Some of the arguments below are standard; insofar as they are short enough, we
have preferred to provide self-contained proofs rather than refer the reader to various
other sources.

36 One may easily prove that the converse—which is not needed in the present paper—
also holds: a utility function that always rejects more than another utility function must
be a concave transformation of it, and thus have a higher risk-aversion coefficient.

37 The interval I can be open or closed at either end, and its upper end can be �. As
usual, means that for every value x of g.w � g O I w � x � I
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(the concavity of w was used in the first inequality, and the monotonicity of w

and the assumption on in the second). QEDu 2

Recall that, for , the CARA utility satisfies for every¯a 1 0 v � U r (w) p aa CA v̄a

w. The definition (1) of implies that for every w we havea* { a*(g)
. Therefore¯ ¯E[v (w � g)] p v (w)a* a*

Lemma 3. Let and . If then accepts g at all¯ ¯g � G v � U b ! a*(g) v w 1b CA b

, and if then rejects g at all w.¯L b ≥ a*(g) vg b

Proof. Use proposition 2, or direct computation. QED
Proposition 4. Let , , and , and putu � U g � G w 1 L I :p [w � L , w �g g

. Then:M ] { [w �min g, w �maxg]g

(i) If for every then u rejects g at w.′ ′r (w ) ≥ a*(g) w � Iu

(ii) If for every then u accepts g at w.′ ′r (w ) ! a*(g) w � Iu

(iii) If u rejects g at w then there exists such that .′ ′w � I r (w ) ≥ a*(g)u

(iv) If u accepts g at w then there exists such that .′ ′w � I r (w ) ! a*(g)u

Proof. We will prove only (i) and (ii), since (iv) is equivalent to (i) and (iii)
is equivalent to (ii). Put .a* { a*(g)

(i) Since rejects g at w (by lemma 3) and for every ,′ ′v̄ r (w ) p a* wa* v̄a*

proposition 2 with and implies that u rejects g at w.¯u p u u p v1 2 a*

(ii) Let ; then (use the continuity of and′b :p max r (w ) 0 ! b ! a* r′w �I u u

). Since accepts g at w (by lemma 3), applying proposition 2¯w � L 1 0 vg b

with and implies that u accepts g at w. QED¯u p v u p u1 b 2

Proposition 4 is essentially (4.3.2) of Aumann and Serrano (2008); we have
proved it here directly for completeness (their arguments are slightly more
elaborate).

B. Wealth-Uniform Dominance

In this section we will prove theorem 1(i) together with the following proposition
on wealth-bounded dominance (see Sec. IV(k)).

Proposition 5. Wealth-uniform dominance and wealth-bounded domi-
nance are equivalent: if and only if , for every g, h in .g ≥ h g ≥ h GWU WB

Proof of theorem 1(i) and proposition 5. First, we claim that

g ≥ h implies a*(g) ≥ a*(h).WU

Indeed, if then put and let be given byˆa*(g) ! a*(h) b :p a*(g) u p v � U*b

(see footnote 14). Since for every ,r (x) :p max {1/x, b} r (x) ≥ b p a*(g) x 1 0u u

proposition 4(i) implies that u rejects g at all w; since for everyr (x) p b ! a*(h)u

, proposition 4(ii) implies that u accepts h at all w such thatx ≥ 1/b w � L ≥h

, which contradicts .1/b g ≥ hWU

Second, we claim that

a*(g) ≥ a*(h) implies g ≥ h with b p L � M . (A1)WB g h

Indeed, if and g is rejected by u at , then there exists ′a*(g) ≥ a*(h) w � b w �
such that (the first inequality by′[w � b � L , w � b � M ] r (w ) ≥ a*(g) ≥ a*(h)g g u

proposition 4(iii), the second by assumption), and so for every′r (w ) ≥ a*(h)u

(since is decreasing); for we have′w ≤ w � b � L r b p L � M w � b � L pg u g h g
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, which implies that h is rejected at w (by proposition 4(i))—and we havew � Mh

thus proved (A1).
Since implies (see Sec. IV(k)), altogether we have obtainedg ≥ h g ≥ hWB WU

g ≥ h if and only if g ≥ h if and only if a*(g) ≥ a*(h); (A2)WU WB

recalling (2) completes the proof. QED
Remarks. (1) (A1) shows that one can take

b { b(g, h) p L � M ≤ maxFgF �maxFhFg h

as the bound in [WB].
(2) The proofs above show that for the wealth-uniform results one can replace
with any collection of utilities that satisfies: (i) ; and (ii)W WU* U* O U U* O UDA

for every there is such that . In par-Wb 1 0 u � U* inf r (x) p lim r (x) p b1x 0 u xr� u

ticular, one may take .WU* p UDA

(3) An additional characterization of wealth-uniform dominance in terms of
“rejection classes” that follows from the results above is provided in Hart (2010,
proposition 12).

C. Utility-Uniform Dominance

We start by characterizing .Usr

Proposition 6. Let and put .38 Then:�u � U u(0 ) :p lim u(x)�xr0

(i) if and only if for every there is such that g is�u(0 ) p �� g � G d 1 0
rejected by u at all .w � (L , L � d)g g

(ii) if and only if there is and such that g is accepted�u(0 ) 1 �� g � G d 1 0
by u at all .w � (L , L � d)g g

Proof. If , then for we have�u(0 ) p �� p :p P[g p �L ] 1 0g

E[u(w � g)] � u(w) ≤ pu(w � L ) � (1 � p)u(w � M ) � u(w) r ��g g

as w decreases to . Therefore for all w close enough toL E[u(w � g)] � u(w) ! 0g

, and g is rejected there.Lg

If then let be small enough so that�u(0 ) 1 �� 0 ! � ! 1/2 (1 � �)u(2) �
(recall that u is increasing). Then the gamble that takes the��u(0 ) 1 u(1) g � G

values 1 and �1 with probabilities and �, respectively, is accepted by u at1 � �
all that are close enough to 1.w 1 1 p Lg

These two implications, together with the fact that the clauses in (i) and (ii)
on rejection and acceptance, respectively, are clearly contradictory, yield the
converse implications in both (i) and (ii). QED

Corollary 7. Let , particularly ; then if and only ifu � U u � U* u � UDA sr

.�u(0 ) p ��
Proof. In case (i) of proposition 6 we get some , possibly ,d { d 1 0 d p �g

such that u rejects g at all and accepts g at all ; in case (ii),w ≤ L � d w 1 L � dg g

u accepts g at all (and so )—therefore g is sometimes rejected ifw 1 L d p 0g g

and only if case (i) occurs. QED
Lemma 8. Let . If there is such that then˜u � U c 1 0 sup r (x) ! 1!0 x≤c u

.�u(0 ) 1 ��

38 The limit exists (and is either finite or ��) since u is an increasing function.
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Proof. Let ; then . For every we have˜g :p sup r (x) 0 ≤ g ! 1 x � (0, c]!0 x≤c u

′ ′ ˜(logu (x)) p �r (x) p �r (x)/x ≥ �g/x,u u

and so
c

′ ′logu (c) � logu (x) ≥ (�g/y)dy p �g log (c/x).�
x

Therefore (with ), from which we get′ �g ′ gu (x) ≤ ax a :p u (c)c 1 0
c

�g 1�g 1�gu(c) � u(x) ≤ ay dy p a(c � x )/(1 � g),�
x

and so and . QED1�g �u(x) ≥ B :p u(c) � ac /(1 � g) u(0 ) ≥ B
Corollary 9. If then for all .˜u � U* r (x) ≥ 1 x 1 0u

Proof. If for some , then (since and˜ ˜ ˜r (c) ! 1 c 1 0 r (x) ≤ g :p r (c) ! 1 u � Uu u u IR

so is increasing); lemma 8 implies that is finite, and so by�r̃ u(0 ) u � Uu sr

corollary 7. QED
Lemma 10. Let and . Then u rejects g at all .FHu � U* g � G w ≤ R (g)
Proof. By the definition of the Foster–Hart measure, rejects gṽ (x) p log (x)1

at all . The result follows from proposition 2 with andFHw ≤ R (g) u p u u p1 2

(and so for every ), and . QED˜ ˜v r (x) p 1 x 1 0 I p (0, �)1 2

We can now prove theorem 1(ii).
Proof of theorem 1(ii). Lemma 10, together with the fact that at each w 1

the CRRA utility , which belongs to , does not reject g, impliesFH ˜R (g) v p log U*1

that “g is rejected by all at w” if and only if “ .” So the condi-FHu � U* w ≤ R (g)
tion in [UU] translates to “if then ,” which is equivalentFH FHw ≤ R (g) w ≤ R (h)
to “ .” QEDFH FHR (g) ≤ R (h)

Remarks. (1) The proofs above show that for the utility-uniform results one
can replace with any collection of utilities that satisfies: (i)U ˜U* U* O U v {1

and (ii) for every . In particular, one may takeU U˜log � U* inf r (x) ≥ 1 u � U*1x 0 u

, or , where requires rejection at arbitrarilyU U
′ ′ ′U* p U ∩ U U* p U ∩U UIR sr CR sr sr

small wealth levels (i.e., if and only if for every and there is′u � U g � G d 1 0sr

such that u rejects g at w).w � (L , L � d)g g

(2) If we drop the condition that each utility function u will sometimes reject
any gamble—i.e., —then the only wealth levels w where all utilities rejectu � U sr

a gamble g are , and so the resulting order, denote it , satisfiesw ≤ L ≥g L

if and only if .39g ≥ h L ≤ LL g h
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