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Abstract

Regret-based dynamics have been introduced and studied in the context of discrete-time repeated
play. Here we carry out the corresponding analysis in continuous time. We observe that, in contrast
to (smooth) fictitious play or to evolutionary models, the appropriate state space for this analysis is
the space of distributions on the product of the players’ pure action spaces (rather than the product of
their mixed action spaces). We obtain relatively simple proofs for some results known in the discrete
case (related to ‘no-regret’ and correlated equilibria), and also a new result on two-person potential
games (for this result we also provide a discrete-time proof).
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1. Introduction

‘Regret-matching’ as a strategy of play in long-run interactions has been introduced and
studied in a number of earlier papers (Hart and Mas-Colell, 2000, 2001a, 2001b). We have
shown that, under general conditions, regret-matching leads to distributions of play that
are related to the concept of correlated equilibrium. The purpose of the current paper is to
reexamine the dynamics of regret-matching from the standpoint of differential dynamics
in continuous time. It is well known that this approach often leads to a simplified and

Y Previous version: August 2001.

* Corresponding author.
E-mail addresses: hart@huiji.ac.il (S. Hart), mcolell@upf.es (A. Mas-Colell).
URL: http://www.ma.huji.ac.il/~hart.

0899-8256/$ — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0899-8256(03)00178-7



376 S Hart, A. Mas-Colell / Games and Economic Behavior 45 (2003) 375-394

streamlined treatment of the dynamics, to new insights and also to new results—and this
will indeed happen here.

An importantinsight comes already in the task of formulating the differential setup. The
appropriate state space for regret-matching is not the product of the mixed action spaces
of the players but a larger set: the distributions on the product of the pure action spaces of
the players. Of course the players play independently at every point in time—nbut this in no
way implies that the state variable evolves over time as a product distribution.

In Section 2 we present the model and specify the general setup of the dynamics we
consider. In Section 3 we analyze general regret-based dynamics, the continuous-time
analog to Hart and Mas-Colell (2001a), to which we refer for extensive discussion and
motivation. In Section 4 we establish that for some particularly well-behaved classes of
two-person games—zero-sum games, and potential games—the dynamics in fact single
out the Nash equilibria of the game. The result for potential games is new and so we present
a discrete-time version in Appendix A. In Section 5 we move to the analysis of conditional
regret dynamics and prove convergence to the set of correlated equilibria. Finally, Section 6
offers some remarks. Appendix B provides a technical result, and Appendix C deals with
the continuous-time version of the approachability theorems a la Blackwell (1956), which
are basic mathematical tools for this area of research.

We dedicate this paper to the memory of Bob Rosenthal. It is not really necessary
to justify this by exhibiting a connection between our topics of interest here and some
particular paper of his. The broadness of his intellectual gaze guarantees that he would
have been engaged and that, as usual, he would have contributed the insightful comments
that were a trademark of his. At any rate, we mention that one of the cases that we examine
with some attention is that of potential games and that Bob Rosenthal was the first to
identify the remarkable properties of this class of games (Rosenthal, 1973).

2. Moddl
2.1. Preliminaries

An N-person game I" in strategic form is given by a finite setv of players, and, for
each playei € N, by a finite setS’ of actions and apayoff function ' : S — R, where
S:=[];ey S is the set ofN-tuples of actions (we call the elements$f‘actions’ rather
than strategies, a term we will use for the repeated game). We $vrite= [y . S/

for the set of action profiles of all players except playend alsos = (s', s~"). Let M be
a bound on payoffgu’(s)| < M forall i € N and alls € S.

A randomized (mixed) action’ of playeri is a probability distribution ovei’s pure
actions, i.el x’ € A(S%). A randomizedjoint action (or joint distribution) z is a probability
distribution over the set oV -tuples of pure actions, i.e.,z € A(S). Given suchz, we
write z' € A(S") andz =" € A(S~') for the marginals of, i.e.,z/ (s') = 3" —icg—i z(s', s77)

1 For a finite setA, we write |A| for the number of elements of, and A(A) for the set of probability
distributions o4, i.e., A(A) :={x € Rﬁ: Y aea X(a) =1} (the (JA| — 1)-dimensional unit simplex).
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forall s’ € §',andz ™ (s ™') = i g 2(s', s~ forall s~ € S~'. When the joint action is
the result of independent randomizations by the players, we f@aye= [ [, z' (s) for
all s € S; we will say in this case thatis independent, or that it is aproduct measure.?

2.2. Dynamics
We consider continuous-time dynamics 4QS) of the form

(1) = %(q(t) —z2(1)), (2.1)
whereg (1) € A(S) is® the joint play at timer andz(¢) is the ‘time-average joint play.
Assume one starts at= 1 with somé z(1) € A(S).

To justify (2.1), recall the discrete-time model: Timeis 1, 2,...; playeri at periods
playss; € §', and the time-average joint play at timés z, € A(S), given inductively by
2= (1/0)(L;, + ¢ — D)z-2), or

1
it —4-1= ;(15', —Zi-1).

Taking the expectation over—whose distribution ig;,—leads to (2.1).

3. Regret-based strategies
3.1. Regretsand the Hannan set

Given a joint distributiory € A(S), theregrets of playeri are defined b
Di(z):=u'(k,z™") —u'(z), foreachkeS’;

put D' (z) := (D} (2))es for thevector of regrets.
Itis useful to introduce the concept of thiannan set H (of a given gamd™) as the set
of all z € A(S) satisfying

u'(z) > maxu' (k,z7") forallie N
keSt

(recall thatz~' denotes the marginal afon S7/); i.e.,z € H if all regrets of all players
are non-positiveD’ () < 0 for all i € N. Thus, a joint distribution of actions lies in the
Hannan set if the payoff of each player is no less than his best-reply payoff against the joint

2 We thus view[];cy A(S?) as the subset of independent distributiongiits).

8 If in fact the players play independently thety) € [;cy A(S") C A(S).

4 Note that if z(r) is on the boundary ofA(S), i.e., if (z(s))(t) = O for somes € S, then (2.1) implies
(z2(s))(¢) > 0, and thus(r) can never leave\(S).

5 We write 1, for the unit vector inA(S) corresponding to the pusece S.

6 It is convenient to extend multilinearly the payoff functions from S to A(S), in fact to all RS; i.e.,
u(z) =7y gcgz(s)u(s) forall z € RS. We slightly abuse notation and write expressions of the férm=") or
k x z7" instead ok} x =/, wherek € S" ande} € A(S") is thek-unit vector.
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distribution of actions of the other players (in the context of a repeated game, this is the
Hannan (1957) condition).
We note that:

e The Hannan sefl is a convex set (in fact a convex polytope).

e The Hannan seH contains all correlated equilibrfaand thusa fortiori all Nash
equilibria.

o If z is independent over the players, theis in the Hannan self if and only if z is a
Nash equilibrium.

3.2. Potential functions

General regret-based strategies make use of potential functions, introduced in Hart and
Mas-Colell (2001a). Apotential function onR™ is a functionP : R™ — R satisfying:

(P1) P is aC?! function; P(x) > O forall x ¢ R™, and P(x) =0 for all x € R™;

(P2) VP(x) 20andVP(x)-x > 0forallx ¢ R™;

(P3) P(x) = P([x]4) for® all x; and

(P4) there exist & p1 < p2 < ocosuchthap1 P(x) < VP(x)-x < p2P(x) forall x ¢ R™,

Note that (P1), (P2), and (P3) correspond to (R1), (R2), and (R3) of Hart and Mas-Colell
(2001a) fof- 10 ¢ = R™. Condition (P4) is technicaf

The potential functior? may be viewed as a generalized distancR’to for example,
take P (x) =min{([lx — yllp)?: y e R"} = (l[x]+1I,)? where]| - ||, is the/”-norm onR™
and 1< p < oo.

From now on we will always assume (P1)—(P4). By (P2), the gradieft af x ¢ R”
is a non-negative and non-zero vector; we introduce the not&tion

P(x): VP(x) e A(m) (3.1

TIVP@

7 Consider the setup where players get ‘recommendations’ before the play of the game. Correlated equilibria
are those outcomes where no player can unilaterally gain by deviating from some recommendation. If only
constant deviations (i.e., playing a fixed action regardless of the recommendation) are allowed, this yields the
Hannan set. Note that if every player has two strategies, then the Hannan set coincides with the set of correlated
equilibria. See Section 5.

8 We write [¢]+ for the positive part of the red], i.e., [§]+ = maxX&, 0}; for a vectorx = (x1,...,xy), We
write [x]4+ for ([x1]+, ..., [xm]1+)-

9 The second part of (P1) is without loss of generality—see Lemma 2.3(c1) and the construajoim tiie
Proof of Theorem 2.1 of Hart and Mas-Colell (2001a).

10 The ‘better play’ condition (R3) is ‘I < 0 thenVj P (x) = 0, which indeed implies thaP (x) = P ([x]4.).

11 VP(x) - x/P(x) =dP(rx)/dr evaluated at = 1; therefore it may be interpreted as the ‘local returns to
scale of P at x.” Condition (P4) thus says that the local returns to scale are uniformly bounded from above and
from below (away from 0). IfP is homogeneous of degreethen one can takp; = p2 = .

12 1t will be convenient to use throughout th&-norm | x| = 3", |x¢|. The partial derivatived P(x)/dx; of
P (x) with respect tax; is denotedVy P(x) (it is the k-coordinate of the gradient vect& P (x)). Finally, we
write A(m) for the unit simplex ofR™.
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for thenormalized gradient of P atx; thus?kP(x) = Vi P(x)/(}_esi Ve P(x)) for each
k=1,...,m.

3.3. Regret-based strategies

‘Regret-matching’ is a repeated game strategy where the probabilities of play are
proportional to the positive part of the regrets (i.e.[ 1 (z)].). This is a special case
of what we will call regret-based strategies.

We say that playei uses aregret-based strategy if there exists a potential function
P:RS" — R (satisfying (P1)—(P4)) such that at each timehere some regret of player
is positive, the mixed play’ (r) € A(S’) of i is proportional to the gradient of the potential
evaluated at the current regret vector; that is,

q' () =VP (D' (2(t))) whenD' (z(1)) ¢ RS (3.2)

Note that there are no conditions when the regret vector is non-positive. Such a strategy is
called aP!-strategy for short.

Condition (3.2) is the counterpart of the discrete-tiestrategy of Hart and Mas-
Colell (2001a):

gi(T+1) =Pish =k |hr] =VP{(D'(zr)) whenD'(zr) ¢ RS

Remark. The class of regret-based strategies of a playerinvariant to transformations

of i’s utility function which preserve’s mixed-action best-reply correspondence (i.e.,
replacingu’ with @' given by’ (s) := au’ (s) + v(s~') for somex > 0; indeedy(-) does

not affect the regrets, and changes the scale, which requires a corresponding change
in P').

The main property of regret-based strategies (see Hart and Mas-Colell, 2001a,
Theorem 3.3, for the discrete-time analog) is:

Theorem 3.1. Let z(¢) be a solution of (2.1) and (3.2). Then lim;_, o D% (z(¢)) < 0 for
everyk e S°.

Remark. This result holds foany strategies of the other playqui; in fact, one may
allow correlation between the playersi\{i} (but, of courseq™" must be independent
of g'—thusq (1) = q'(t) x ¢~ (1)).

Proof. For simplicity rescale the time so that (2.1) becomés ; = ¢ — z. Assume

Di(z) ¢ RS, so PI(D/(z)) > 0. We have (recall Footnote 6)
Di@=u(kxz"—2)=u'(kx (¢ —z7)—q¢' xq7 +2)

i_qi Xq_i—kxz_i+z)

=u'(k,q™") —u'(q'.q7") = D(2).

=ui(k xq~

13 Takef = exp(r).
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Multiplying by ¢! and summing ovek € S’ yields
q'-D'(x)=—q" - D'(2). (3.3)
Definer’(z) := P/(D'(z)); then (recall (3.2))
#'(z) = VP (D' (2)) - D'(z) = | VP (D' (2)|l¢" - D' (2)
=—|VP(D'(@)|¢" - D'(x) ==V P (D'(2) - D' (). (3.4)

Using condition (P2) implies that’ < 0 when Di(z) ¢ RS —thus 7' is a strict
Lyapunov function for the dynamical system. It follows tfat’(z) — 0. O

Corollary 3.2. If all players play regret-based strategies, then z(¢) convergesast — oo to
the Hannan set H.

One should note that here (as in all the other results of this paper), the convergenceis to
theset H, and not to a specific point in that set. That is, the distance beta@gand the
setH converges to Qor, equivalently, the limit of any convergent subsequence lies in the
set.

We end this section with a technical result: Once there is some positive regret, then
a regret-based strategy will maintain this forever (of course, the regrets go to zero by
Theorem 3.1).

Lemma 3.3. If D (z(10)) ¢ RS then Di (z(t)) ¢ RS for all 1 > 1o.

Proof. Let 7' := P/(D'(z)). Thenx'(10) > 0, and (3.4) together with (P3) implies that
7t > —porrt and thust! (1) > e P20~ 7i(1g) > Oforallt > tg. O

4. Nash equilibria

In this section we consider two-person games, and show that in some special classes of
games regret-based strategies by both players do in fact lead to the set of Nash equilibria
(not just to the Hannan set, which is in general a strictly larger set).

If z belongs to the Hannan sék, thenu!(z) > u'(k',z/) for all k' € §' andi # j.
Averaging according te’ yields

u'(z) >l (242%) fori=12. (4.1)

Lemma 4.1. In a two-person game, if z belongs to the Hannan set and the payoff of z is
the same as the payoff of the product of its marginals, i.e., if

u'(z)=u'(z42%) fori=1,2, (4.2)
then (z1, z2) isa Nash equilibrium.

14 Note that only (P1) and (P2) were used in this proof.
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Proof. If z € H thenu! (k',z/) <u'(z) =u' (71,22 forallk’ e . O
4.1. Two-person zero-sum games

Consider a two-person zero-sum gaiei.e., u* = u andu? = —u. Let v denote the
minimaxvalue of I'. A pair of (mixed) strategieéy?, y?) is a Nash equilibrium if and only
if y' is anoptimal strategy of player (i.e., if it guarantees the valug.

Theorem 4.2. Let I" be a two-person zero-sum game. If both players play regret-based
strategies, then (z1(r), z2(r)) convergesto the set of Nash equilibria of I", and u(z(r)) and
u(zX(r), z2(r)) both convergeas r — oo to the minimax value v of I".

Proof. The inequalities (4.1) for both players imply the equalities (4.2), and the result
follows from Theorem 3.1 and Lemma 4.10

See Corollary 4.5 in Hart and Mas-Colell (2001a) for the discrete-time analog.
4.2. Two-person potential games

Consider a two-persopotential game I': Without loss of generality the two players
have identical payoff functiod8u' = u? =u: 5 — R.

We will show first that if initially'® each player has some positive regret, then both
players using regret-based strategies leads to the set of Nash equilibria. Regret-based
strategies allow a player to behave arbitrarily when all his regrets are non-positive—in
particular, inside the Hannan set (which is larger than the set of Nash equilibria). In order
to extend our result and always guarantee convergence to the set of Nash equilibria, the
strategies need to be appropriately defined in the case of non-positive regrets; we do so at
the end of this subsection.

Before proceeding we need a technical lemma.

Lemma 4.3. Let P be a potential function (satisfying (P1)—(P4)) Then for every K > 0
there exists a constant ¢ > 0 such that

mkaXxk < c(P(x))l/p2 for all x e[-K, K]™.

Proof. Since replacing? with PY/#2 does not affect (P1)—(P4), we can assume without
loss of generality thap, = 1 in (P4). Take a non-negatiwec [0, K], and let f () :=
P(zx) fort > 0. Then f'(t) = VP(tx) - x < P(tx)/t = f(z)/t for all t > 0; hence
(f(r)/7) <0, which implies thatf (t)/t > f(1) forall T <1. ThusP(tx) > t P(x) for
allx>0andall 0< 7 <1 Leta:=min{P(x): x >0, ||x| = K}, thena > 0 since the
minimum is attained. Hence

X1

P@:Puh“mw>mmﬁwqm>%Pwﬁwqm>?a

15 Recall the remark preceding Theorem 3.1.
16 | .e., atr = 1—or, in fact, at any = r.
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(the first inequality sincé&/ P > 0). Altogether we getc; < ¢P(x) wherec = K /a; the
same applies to the other coordinates. Far[—K, K]™ which is not non-negative, use
(P3):

mkaXxk < m]?>{xk]+ <cP([x]4) =cP(x).
This completes the proof.O0

By replacing P with ¢PY/?2 for an appropriate- > 0—which does not affect the
normalized gradient—we will assume from now on without loss of generality that the
potential P* for each playel is chosen so that

maxx; < Pi(x) forallx e [—2M, 2M]5". (4.3)
keS!

We deal first with the case where initially, at= 1, both players have some positive
regret.

Theorem 4.4. Let I" be a two-person potential game. Assume that initially both players
have some positive regret, i.e., D' (z(1)) ¢ RS for i = 1,2. If both players use regret-
based strategies, then the pair of marginal distributions (z1(r), z2(1)) € A(S1) x A(S?)
converges as t — oo to the set of Nash equilibria of the game. Moreover, there exists a
number © such that (z1(r), z2(r)) converges to the set of Nash equilibria with payoff & (to
both players), and the average payoff u(z(¢)) also convergesto v.

Proof. We again rescale so thatz = ¢ — z. Lemma 3.3 implies thatr! (r) =
P'(D'(Z' (1)) > O for all . We have

(2 2?) =a(et x 2?) =u(zt x 22+ 21 x %)
ullg?=<1) w22 2 x (g2 =)
=u(q" 2%) +u(z ¢%) — 2u(zt, 22).

Now

u(qh2?) = quuk. ) =u@ + Y _ ¢iDi(@) =u@) +q*- D" > u(z)

kes?t kesl
(by (P2) sincey?! is proportional tov P1(D1)). Thus
L't(zl, zz) > 2u(z) — 2u(z1, zz). 4.4)

Next, (4.3) implies
u(k.z%) — u(z) = Dj () < P(D'(2)) =n*
for all k € §, and therefore
u(zt 2%) —u(z) < nt. (4.5)
Similarly for player 2 and thus from (4.4) we get

L't(zl, zz) >—gt— 72 (4.6)
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Now
7' =-VP(D'(2)) - D'(z) < —pP' (D' (2)) = —pn’ (4.7)

(we have used (3.4) and (P3), wijththe minimum Ofpi of (P4) fori =1, 2).
Definev :=u(z, z%) — nl/p — 72/ p; from (4.6) we get

v=i(t 22 —wYp —7%/p 2 u(t 22) +nt+ 2> 0. (4.8)

Thereforev increases; since it is bounded, it convergespléte its limit. Theorem 3.1
implies thatr’ — 0, sou(zt, z2) — ©.
By Lemma 4.1, it remains to show thatz) — u(z1, z2) — 0. We use the following

Lemma 4.5. Let f:R;— R be a non-negative, uniformly Lipschitz function such that
Jo~ f()di <oco. Then f(r) > Oast — oo.

Proof. Let L be such thatf(t) — f(T)| < L|t — T| for all ¢, T. If f(T) > 2¢ > 0,
thenf(t) >eforall T<t<T+¢/L, SO fTT“/L f(@)dr > e2/L. Since the integral is
bounded, it follows that there can be at most finitely many such occurrenc£61'$6< 2¢

for all T large enough. O

To get back to the proof of Theorem 4.4: defifie= 2u(z) — 2u(zt, z%) + 't + %
then f is non-negative (by (4.5)) and uniformly Lipschitz, af@c f () dt is finite (it is
bounded by, sincef < ii(z2, z2) + 71 + 72 < v by (4.4) and (4.8)). Lemma 4.5 implies
that f — 0; thusu(z) — u(z%, z%) — 0 (sincer! — 0). O

We handle now the case where at the initial conditi¢h) all the regrets of a player
are non-positive. We define the strategyi ais follows:i plays an arbitrarfixed mixed
strategyy’ € A(S'), up to such timel'" when some regret is at least?’ (i.e., 7' is the
first# > 1 such that’ max.g Di(z(1)) > 1/1); of course, if this never happens (i.e., if
T' = 00), theni always playsy’. After time 77 playeri plays P! -regret-matching (recall
Lemma 3.3). Thatis,

i ¥, fort < T,
=y . . 4.9
7 {VP’ (D'(z(1))) fort>T". (4.9)

Corollary 4.6. Theresult of Theorem 4.4 holdsfor any initial z(1) when the strategies are
given by (4.9).

Proof. If there is some tim&" after which both players play’ = V P/ (D' (z)), then we
apply Theorem 4.4 starting dt Otherwise, for a player that playsy’ forever, we have
max, i D,i(z(t)) <1/t for all #, so Di(z(1)) — RS". Moreoverz (1) converges to the
constanty’ and soz(¢) becomes independent in the limit (i.e(r) — z' () x z 7 (t) — 0);

17 We use ¥t rather than 0 in order to avoid difficulties at the boundar;Rtif; any positive function of
converging to 0 as — oo will do.
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the convergence to the set of Nash equilibria follows from Lemma 4.1. Finally, the payoff
v is just the best-reply payoff againgt O

The analog of this result for discrete-time—which is a new result—is stated and proved
in Appendix A.

4.3. Other classes of games

Smooth fictitious play—which may be viewed as (approximately) a limiting case of
regret-based strategies—has been shown to converge to the set of (approximate) Nash
equilibria for additional classes of two-person games, namely, games with a unique interior
ESS, and supermodular games (see Hofbauer and Sandholm, 2002). It turns out that general
regret-based strategies converge to Nash equilibria for the first class (Hofbauer, personal
communication (2002)); we do not know about the second class.

5. Correlated equilibria

Given a joint distributiory € A(S), the regret of playet for actionk may be rewritten
as follows:

Di(z) = Z[u’ (k,s™") —u'(s)]z(s)

55 e )

We now define theonditional regret of player i from action j to action k (for j, k € S
with j £ k) as follows:

Ci@:= > [u' (ks —u'(j.s™)]z(j.s 7). (5.1)
sTteST!
This is the change in the payoff ofif action j had always been replaced by actibn
DenoteL :={(j, k) € §' x §': j #k} and letC!(z) := (C;k(z))(j,k)eL be the vector of
conditional regrets. A distribution € A(S) is a correlated equilibrium if and only if
Ci(z) <Oforalli e N (see Hart and Mas-Colell, 20085.

Conditional regret-based strategies for a playeill define the action of by the way it
changes with time—i.e., by a differential equation. This requires us tg’adde A(S?) as
a state variable—in addition t@r) € A(S), which changes according to (2.1). Specifically,
we say that playei plays aconditional regret-based strategy if there exists a potential
function P' : RL — R (satisfying (P1)—(P4)), such that, whén(z(r)) ¢ RE,

G50 ="V P (C'(z)))gi(t) = Y Vi PH(C (z(1)) g} () (5.2)
k#j k#j

18 Note thath.k(z) <0 for all j # k implies D (z) = Y itk C', (z) < 0; this shows that the Hannan set
contains the set of correlated equilibria (recall Section 3.1 and Iéootnote 7).
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forall j e S, whereV ;) denotes the derivative with respect to ithe j)-coordinate*?
again, there are no conditions when all conditional regrets are non-positive, i.e., when
Ci(z(1)) e RE.

To see where (5.2) comes from, recall the discrete-time strategy of Hart and Mas-Colell
(2000, (2.2)):

. 1 . 1 .
D=1 (1= R 0]+ L R0
[y [y

which, when taking expectations, yields

. , 1 . 1
Q;‘ t+1= q;‘ () |:1_ ; Z RE./sk)(t)j| + qul((t);REkh/)(t)

k#j k#j
. 1 . . . .
=50+ 2 D[Ry 0k = Rij 1 045 0)]
kit j

Replacing the positive part of the regreR%{!,.) = [Cé,.’k)]Jr with their generalizations
V. )P (C) leads to (5.2) (see Hart and Mas-Colell, 2001a, Section 5.1).

Remarks.

(1) The ‘speeds of adjustment’ gfandz (a constant fog, and ¥t for z) are different.
(2) wWe haver q; =0 andq; >0 whenq; = 0; thereforeg’ never leaves the simplex

A(S?) if we start there (i.e., i/ (1) € A(SY)).

Theorem 5.1. If player i plays a conditional regret-based strategy, then

fim;— o0 rfj))«;:(lXC;k(z(t)) <0
for any play ¢~ (¢) of the other players.

Corollary 5.2. If all players use conditional regret-based strategies, then z(¢) converges
ast — oo to the set of correlated equilibria of the game I".

Remark. Unlike the discrete-time case (see the discussion in Hart and Mas-Colell, 2000,
Section 4(d)), the result for continuous time applies to each player separately; that is, no
assumption is needed @’ in Theorem 5.1. The reason is that, in the ‘limit—as the
time periods become infinitesimal—the condition of Cahn (2000) is essentially satisfied
by any continuous solutioff Thus continuous-time conditional regret-based strategies are

19 (5.2) may be viewed as the differential equation for the expected probability of a continuous-time Markov
process.
20 The Cahn condition is that the effect of the choice of playat timer on the choice of another playgrat

some future time goes to zero agoes to infinity. More prepisely, if the histori&;w,fl and h;+wfl differ

only in their s{-coordinate, then for alj # i we have|Ps/, ,, = s/ |k 4,11 — Piis],,, = s1'|h;+w_1]| <
f(w)/g(t) for some functionsf andg such thatg(r) — 0 ast — oo.
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‘universally conditionally consistent’ or ‘universally calibrated’ (cf. Fudenberg and Levine,
1998, 1999).

Proof of Theorem 5.1. Assume without loss of generality that in (P4) we haye= 1
(replaceP! with (P?)Y/1). Throughout this proofj andk will always be elements of’;
we have:

Ch@= Y [u'(ks™) =u'(js™)]z(jos™)

sTieS—i
== D [ks™) = (s (=2(ns™) + 450 7)
s~ieS—i
= ;(-C;k(z)"i_ Z .[u’(k’s_l) _ul(jys_l)]q;qs_li). (53)
s~teS™!
Denoter (1) := P/ (Ci(z(r))) andG(t) = VP (Ci(z(1))). Then
7=G-Ci(z)
1 1 . : . . o
S— s Z q. {Z Gjrfu' (k,s™") —u'(j, s_’)]q}}, (5.4)
sTies—i J.k

where we have used (P4) (recall that= 1). Denote byE the right-hand sum over,
and byE(s™") the expression in the curly brackets.} (thus £ is a weighted average of
the E(s™")). Rearranging terms yields

E(s) = Zu(j,s—f)[zcqu;; - chjkq;} = (s )il
J k k J
We now claim thatj’, — 0 ast — oo for all j € S'.
Indeed, letm := |S'|, then |C’,| < 2M and so||C’|| < 2Mm(m — 1) =: My; also
|CEl <2M|S™|/1 (sincelz(s)| < 1/1 for all s by (2.1)) and thus
|CT| <2M|S7 |m(m — 1)/t =: M2/t

Let K be a Lipschitz bound fo¥ P! (x) over | x|| < My; then for allt, > 11 > 1 we have

[G(t2) — G| < K| C' (z2(t2)) — C' (z(tn) | < K| €' (z(D)) || (r2 — 12)

(5.5)

(t €11, 2] is some intermediate point).
Let M3 := maxj<my IVP' (x)|, and define

1
Aj(@) = %ij(t), for j £k, and

1
Ajj(t):=1— EZij(t).
k#j
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ThenA(r) is a stochastic matrixt and (5.2) can be rewritten%s
' (1) = Maq' 1) (A@) - I). (5.6)
Finally, (5.5) yield$3

mKMoitr) —11
M3 11

m
[462) — A < 360 — G| <

forallrp > > 1.

Applying Proposition B.1 (see Appendix B; the constafitin (5.6) does not matter—
replacer by Mast) implies that indeed’ — 0 ast — oo.

ThereforeE (s—') — 0 and so (recall (5.4)yt (1) + 7 (t) < E(t) — 0 ast — oo, from
which it follows thatr (r) — 0 (indeed, for each > 0 letrg = #p(¢) be such thatE (r)| < e
forall t > tg; then drm (¢))/dr < e for all t > tg, which yieldstz (¢) < forr (o) + &(t — tp)
and thudim,_ oo (r) <¢). O

6. Remarks

(a) It is worthwhile to emphasize, once again, that the appropriate state space for our
analysis is not the product of the mixed action spaces of the pldjers(S’), but the
space of joint distributions on the product of their pure action g&{g[; S'). This is so
because, as we pointed out in Hart and Mas-Colell (2001a, Section 4), with the exception
of the limiting case constituted by fictitious play, the dynamics of regret-matching depend
onu(z), the time-average of the realized payoffs, and therefore on the joint distrikution
It is interesting to contrast this with, for example, Hofbauer (2000) and Sandholm (2002),
where, in an evolutionary context, dynamics similar to regret-matching are considered but
where, nonetheless, the context dictates that the appropriate state space is the product of the
mixed action spaces. This family of evolutionary dynamics is named by Hofbauer (2000)
‘Brown—von Neumann—Nash dynamics.’

(b) The fact that the state space variable is the time-average distribution of (pjay
does not impose on players informational requirements additional to those familiar from,
say, fictitious play. It only asks that players record also their own play at each period (i.e.,
i keeps track of the frequency of eaghand not only ofs—).

(c) One could ask to what extent the discrete-time analog of the results in this paper
can be obtained by appealing to stochastic approximation technigues (see Benaim, 1999,
or Benaim and Weibull, 2003). We have not investigated this matter in detail. However, it
seems to us that for the results of Section 3 and Appendix C it should be a relatively simple
matter, but for those of Sections 4 (Nash equilibria) and 5 (correlated equilibria) there may
be a real challenge.

21 | e, its elements are nonnegative and the sum of each row is 1

22 vjectors (likeq) are viewed as row vectors;denotes the identity matrix.

23 The norm||A|| of a matrix A is taken to be mai{xA|: ||x|| = 1}, so that alwayg|xA| < | x| ||A]l. Note
thatif A = (A jx) is anm x m matrix then max i |A jx| < [|All < mmax; x |A ji|; if moreoverA is a stochastic
matrix, then||A|| = 1.
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Appendix A. Discrete-timedynamicsfor potential games

In this appendix we deal with discrete-time dynamics for two-person potential games (see Section 4.2). We
assume that the potential functiét of each player satisfies (P1)—(P4) and, in addition,

(P5) P is aC? function.

A discrete-time regret-based strategy of playeri is defined as follows: 1D (z,_1) ¢ RS’ (i.e., if there is some
positive regret), then the play probabilities are proportional to the gradient of the pofémigbD’ (z;_1)). If
Di(z;_1) € R (i.e., if there is no positive regretf,then we assume thatuses the empirical distribution of his
past choices;‘fl. One simple way to implement this is to choose at random a past pesicd 2, ..., r — 1 (with
equal probabilities of A(r — 1) each) and play at timethe same action that was played at timge., s’ = s;').25
To summarize: At time the action of playei is chosen according to the probability distributighe A(S%)
given by

_ _ VeP (D! (z-1). if D'(zi—1) ¢RY,
qi (ky=Pils =k|h_1] =1 ( ) .y . (A1)
LA (9) if D'(z;—1) €RY,

for eachk € S (starting atr = 1 with an arbitraryg} € A(S")).

Theorem A.l. Let I" be a two-person potential game. If both players use regret-based strategies (A.1), then,
with probability 1, the pair of empirical marginal distributions (z}, z?) converges as t+ — oo to the set of
Nash equilibria of the game, and the average realized payoff u(z,) (and u(z,l, z,z)) converges to the set of Nash
equilibrium payoffs.

Proof. Without loss of generality assume that (4.3) holds for both players ghesl in (P4)), and lep > 0 be
the minimum of thepi in (P4). Putd! (k) := D} (z,) for the k-regret andd! := D(z,) for the vector of regrets,
andr/ := P/(Di(z,)) = P! (d"). For clarity, we divide the proof into five steps.

Step 1. n," — 0 ast — oo a.s., and there exists a constafit such that

. . M
E[n] | hoa] < A= p/0m/_ 1 + —5 (A.2)

24 Unlike the continuous-time case (recall Lemma 3.3), here the regret vector may enter and exit the negative
orthant infinitely often—which requires a more delicate analysis.

25 |In short: There is no change when there is no regret. Other definitions are possible in this case of ‘no regret'—
for example, the result of Theorem A.1 can be shown to hold also if a player plays optimally against the empirical
distribution of the other player (i.e., fictitious play’) when all his regrets are non-positive.
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Proof. 26 Consider player dfor eachk € S* we have
t—1

E[d (k) —d} (k) | h—1] = %Ak, 2)+ %u(k, q?) - u(zi-1) — %u(q,l, q?)
—u(k, 22 ) +u(zi—1)
= 2(ulb.?) — ulab ) — T2 b,
The first term vanishes when averaging according,ltoso
Elgl - (4} —dly) 1] =~} dLy
(compare with (3.3)). I, ¢ RS" theng? is proportional tov P1(a! )); hence

1
E[V P ) - (@] = 1) [ hiea] = =TV PHdEy) - df g < =T PHaLy)

by (P4). This also holds whet} ; € RS" (since then bottP! and v P vanish). Therefore, by (P5), there exists
some constant/, such that

My

P
E[PHd}) = PY(dly) | ha] < =5 PHdEy) + 5

which is (A.2). Finally,z; — 0 follows from Theorem 3.3 in Hart and Mas-Colell (2001a) (or use (A.2) directly).

Step 2. Let? of | :=u(q], th—l) —u(zt ,z2 ) +x! . Thena!_, >0 and moreover:

If 7/ ;>0 then o ;>u(z_1)— u(ztl_l, Zzz—l) +xl ;>0 (A.3)

Proof. Takei = 1. We have
w(k, 22.1) —u(zi—0) =d (k) < PHdly) =7}y (A-4)
for all k € $1 by (4.3). Averaging ovet according t0z,1_1 yields

u(zt g, 72 1) —u(zi—1) < kg
If 71, =0theng! =z ; and soa} ; = 0. If 7} ; > 0 theng} - d* ; = ?Pl(d}_l) -d* | > 0 by (P2); thus
averaging the equality in (A.4) accordingcjﬁ)_1 implies that

u(gl,z221) —u(z—1) > 0.

Adding the last two displayed inequalities completes the proof.

Step 3. Letnr; :=nt + n? ande, := ol + o2, and define

1 M
v = u(zh Z,z) - ;n, - Z r—22,
r=t+1

whereM» :=2M + 2M1/p. Then

t

1
Elv; | hy—1] 2 v-1 + 1> V1, (A.5)

2
and there exists a bounded random variabtich thau(z}, z2) — v ast — oo a.s.

26 Compare with (4.7) and with the computation of Lemma 2.2 in Hart and Mas-Colell (2001a).
27 We usej for the other player (i.ej = 3—1).
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Proof. We have

E[t M(Z, ,Z,) lhia] =~ D2u (Zt v )+ - l)”(qt Jzr ) +H— l)”(zt 19 ) +”(qt ’qt)
and thus (recall the definition m’ _p-andlu()| < M)

t—1 r—1 M
E[u (H22) 1 hie 1> u(zh 4, 224) - —7 -1 + 7z 41T T (A.6)
Using the inequality (A.2) of Step I;—1 > 0, anda;_1 > 0, we get
r—1 r—1 2M 1 2M1 X Mo
Elv; [ he—1] 2 (Zt 1 th 1) - = m-1+ R o S ;(17 p/t)m—1 — o Z
r=t+1

1 My t—1 t— 1
>u(z,l,l,z,2,1)—;m_1 Z St 1= vt > v

r=t

Therefore(v;),;=1.2,... is a bounded submartingale, which implies that there exists a bounded random variable
such that, — v a.s., and sa(z}, z,z) — v (sincer; — 0 by Step 1).

Step 4. lﬂ}>0(u(z,) u(z, ,z,)) — 0 ast - oo a.s.

Proof. From (A.5) we get

T

wr = (Elviea | bl —v) >

=1

B

2
= whereg,_1 := “;21) a1 >0.

]~

Il
a8

Thus(wr)r=12... iS @ non-negative non-decreasing sequence, with BGpr) = sup; E(vr4+1) — E(v1) < 00
(the sequence; is bounded). Therefore a.s. lmy exists and is finite, which implies that

Y= <o (A7)
In addition, |z; (s) — z,—1(s)| < 1/¢ for all s € S, and therefore
M3
|Bi — Bi-1l < —=  for some constants. (A.8)
LemmaA.2. Let (8;)/=1,2,... beanon-negative real sequence satisfying (A.7) and (A.8). Then g; — Oast — oo.

Proof. 28 Without loss of generality takéfs = 1. Let 0 < ¢ < 1, and assume tha, > 2¢ for somer. Then (A.8)
yields, for allr <r <t + et,

1 1 r—t B & e
>f - — — == >2——— 22 —¢e=¢, andthus— >—
Br = B 11 ; £ P E—E=¢ 1+ o)t
Therefore
B e &
— >et— = — A
L Trey=7>0
t<r<ttet

By (A.7), this implies that there can be at most finitely marmsych that, > 2¢, so indeed3; -~ 0. O

Using Lemma A.2 shows that a,8. — 0 and sax; — 0, which together withr, — 0 proves Step 4 (recall
(A.3)).

28 (A.7) implies that the Cesaro averages of fheconverge to O (this is Kronecker's Lemma); together with
(A.8), we obtain that thegg, themselves converge to 0
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Step 5. 1,1 _o(u(zr) —u(zf zf)) — 0 ast — co a.s.

Proof. Let y; := Lig be the indicator of the event! = 0 and defineX, := r(u(z;) — u(z}, z?)). Then
|X; — X,-1] <4M, and
ELX: |hio1. vim1=1=(t = Duz-1) +u(zq.q7 1) — (¢ = Du(zf g, 22 0) —u(zf 1,07 0) = Xia

(sinceq,1 = z,l_l wheny,_1 =1). LetY; := y,_1(X; — X;—1); then theY, are uniformly bounded martingale
differences. Azuma’s inequaly yields, for eacke > 0 andr < ¢,

t 2
Pr[ Z Ye > ts] < exp(—%) < exp(—8t)

T=r+1

wheres := £2/32M2 > 0, and thus

t
Pr[ Z Y, > te for somer < t:| < rexp(—s1).
t=r+1

For eachr > 1 defineR = R(¢) to be the maximal index < ¢ such thaty, = 0; if there is no suchr, put
R(t) =0 and, for convenience, takg = 0 andXp =0. Thusy, =1for R+ 1< t <t —1andyg = 0. Therefore
Vi-1X: — Xpay+1= ZtrzR(;H_z Y., and so

Prlyi—1X: — Xr(oy+1 > te] < 1 exp(—6t). (A.9)

The seriesy ", t exp(—§t) converges; therefore, by the Borel-Cantelli Lemma, the event of (A.9) happening for
infinitely many: has probability 0Thus a.sy;—1X:—1 — Xr() < vi—1X: — Xr)+1 + 8M <te + 8M for all
large enough (recall thaX, — X,_1| < 4M), which implies that

— 1 — 1

I|mt~>oo;)’tXt <limys 00 ;XR(I) +e.

Now eitherR(r) — oo, in which casg1/1)Xr«) < (1/R(1))Xr¢) — O by Step 4 sinca}m) >0; or R(t) =
ro for all t > ro, in which case(1/1)Xg) < (1/t)(4M)rg — 0. Thuslﬂ;zo(u(z,) - u(ztl,ztz)) =yX;/t—>0
a.s., as claimed.

Proof of Theorem A.1. Steps 4 and 5 show thatz,) converges (a.s.) to the same (random) liondf  (z7, z,z)
(recall Step 3), which proves that any limit point of the seque(m}ezf) is indeed a Nash equilibrium (see
Lemma4.1). O

Remark. The proof shows that in fact, with probability one, all limit points are Nash equilibria with the same

payoff; that is, for almost every realization (i.e., infinite history) there exists an equilibrium paynf€h that
u(z,l, z,z)—and alsau(z,)—converges ta.

Appendix B. Continuous-time Markov processes

In this appendix we prove a result on continuous-time Markov processes that we need in Section 5.

Proposition B.1. For each ¢ > 1, let A(r) be a stochastic m x m matrix, and assume that there exists K such that

[A@2) — AG)| <K

th—t
2t 1 foralleo>n>1.
1

29 Azuma’s inequality is: A7, ¥; > A] < exp(—22/(2K?m)), where the¥; are martingale differences with
|Y;| < K; see Alon and Spencer (2000, Theorem 7.2.1).
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Consider the differential system
i =x0(AW) - 1)

starting with some®° x (1) € A(m). Then
x(t) — 0.

The proof consists of considering first the case wh&te = A is independent of (Proposition B.2), and
then estimating the difference in the general case (Lemma B.3).

Proposition B.2. There exists a universal constant ¢ such that

dU-Da—n|<=
Jo-Dia -] < &
for any stochastic matrix®* A and any r > 1.

Proof. We have 84D =e /g4 =e~'&4 and
n—1 "

00 00
A _ _ [_ n+l _ an\ _ n — ! —
g4(A 1)_Zny(A A") =Y a,A",  wherew, = @Dl

n=0 " n=0
(putz~—1/(—1)! = 0). The matrixA” is a stochastic matrix for all; therefore||A” || = 1, and thus
o0
leta-D] < el
n=0

n>t -n
telescopic and reduces’fa’ /!, wherer := || denotes the largest integer thatis. Using Stirling’s formul&3
rl~+/27r r"e " together witht/r — 1 and(t/r)" — € yields

Now o, > 0 forn >t anda, <O forn<t, S0, loan| =, an — Z"@ a,. Each one of the two sums is

t e e
o rrrr 2wt
Therefore
— (A1) 2
iMoo €7D (A-DIVE< =,
T

from which the result follows* 0

Remark. For each stochastic matrix it can be shown tha ||€“=) A — I)|| = O(e), wherep < 0 is
given by?® 1 := max{Rex : 1 # 0 is an eigenvalue ol — I}. However, this estimate—unlike the (:~1/2) of
Proposition B.2—isot uniform in A and thus does not suffice.

30 Recall thatA(m) is the im — 1)-dimensional unit simplex iR™. Note thatx(1l) € A(m) implies that
x(t) € A(m) forallr > 1.

31 Of arhitrary sizen x m.

32 They are equal sincg_,, «, = 0.

33 f(r) ~ g(r) means thatf (r)/g(t) - 1 ast — oo.

34 Note that all estimates are uniform: They depend neithet mor on the dimension:.

35 f(r) = 0O(g(1)) means that there exists a constasuch that 1 (r)| < c|g(r)| for all 7 large enough.

36 ) is an eigenvalue of — I if and only if A + 1 is an eigenvalue oA. Thus|i + 1] < 1, which implies that
eitherh =0 or Rex < 0.
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Lemma B.3. For each r > 1, let A(¢), B(r) be stochastic m x m matrices, where the mappings + — A(¢) and
t — B(r) are continuous. Let x(¢) and y(¢) be, respectively, the solutions of the differential systems

X =x@)(A®) —1) and y(1)=y@®)(B@) 1),
starting with some x (1), y(1) € A(m). Thenfor all ¢+ > 1

t
lx() — )] < @ = yD | + / |AG) - B dr.
1

Proof. Letz(r) := €~ 1x(r) andw(r) := € 1y(r), thenz(t) = z(r) A(t) andw (r) = w(r) B(r). We have]|w (1)]| <
lw(®l | B(t)|l = lw(r)||, which implies that|w(r)|| < € 1w (D)| = €~1. Putu(r) := z(t) — w(r); then
[s)] < [0 = wn) A0 | + [wn(am) - BO)|
<z —wd||AO | + Jw®]]|A® = BO| < [v@)| + €728,
wheres (1) := || A(r) — B(#)||. The solution ofj(t) = n(t) + € 15(¢) is

t t

n(t)=é—1<n(1)+/3(r)dr), so o) gef—1<||v(1)|| +/8(r)dr),

1 1
which, after dividing by &1, is precisely our inequality. O
We can now prove our result.
Proof of Proposition B.1. Leta =2/5. GivenT, putTp:=T —T“. Let y(Tp) = x(Tp) andy(z) = y(¢)(A(Tp) —
I) fort € [Ty, T]. By Proposition B.2,
|3 < o((T - To)™¥2) = 0(T7*72).
Now [|A(t) — A(To)| S K(t —To)/To < KT® /(T —T%) = 0(T* Y forall € [Tp, T, and thus, by Lemma B.3,
we get||x(T) — y(T)|| < (T — To) O(T* 1) = 0(T%~1). Therefore
[2(T) = 3(T) | = | x(T)(AT) = I) = y(T)(A(To) — 1) |
< x| JAT) — AT || + [ x(T) — y(T) | |A(To) — 1|
<o(r*YH+o(r*YH=o(r*1).
Adding the two estimates yields
[ < 0(17%2) + 0(1%7%) = 0 (1)
(recall thate =2/5). O

Appendix C. Continuous-time approachability

We state and prove here the continuous-time analog of the Blackwell (1956) Approachability Theorem and
its generalization in Hart and Mas-Colell (2001a, Section 2); all the notations follow the latter paper. The vector-
payoff function isA:S' x $~f — R”, and we are given a convex closed et R”, which is approachable,

i.e., for everya € R” there exister’ € A(S’) such that

L A(of, s <wO) :=supr-y: yeC} foralls™ eSs™ (C.1)

(see (2.1) there).
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Let P:R"” — R be aC? function satisfying
VP(x)-x>w(VP(x)) forallx¢cC, (C.2)

and also, without loss of generality, P(x) > 0 for all x ¢ C and P(x) =0 for all x € C. We say that playei
plays ageneralized approachability strategy if the playq’ (r) € A(S?) of i at timer satisfies

) - Ag®),sT) <w(r() foralls™ e s, (C3)
where
M) =VP(A(z(D)) (C.4)

(such ag' (1) exists sinceC is approachable—see (C.1)). Note that the original Blackwell strategy corresponds to
P(x) being the squared Euclidean distance fromo the seiC.

Theorem C.1. Let z(r) be a solution of (2.1), (C.3)and (C.4). Then A(z(t)) — C ast — oo.

Proof. Rescale so that; =g — z. Denoter (r) := P(A(z(r))). If z(¢) ¢ C, then
F=VP-A@) =1 A(g",q7) = 1-A@) <w®) —w®) =0

(we have used (C.4), (C.3), and (C.2)). Thuss a strict Lyapunov function, and so— 0 ast — co. O
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