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ABSTRACT 

We present two (closely-related) proposi- 
tional probabilistic temporal logics based on 
temporal logics of branching time as introduced 
by Ben-Aft, Pnueli and Manna and by Clarke 
and Emerson. The first logic, PTLf, is inter- 
preted over finite models, while the second 
logic, PTLb, which is an extension of the first 
one, is interpreted over infinite models with 
transition probabilities bounded away from 0. 
T h e  logic PTLf al lows us  to  reason about finite- 
state sequential probabilistic programs, and the 
logic PTL b allows us to reason about (finite- 
state) concurrent probabilistic programs, 
without any explicit reference to the actual 
values of their state-transition probabilities. A 
generalization of the tableau method yields 
exponential-time decision procedures for our 
logics, and complete axiomatizations of them 
are given. Several meta-results, including the 
absence of a finite-model property for PTL~, 
and the connection between satisfiable formulae 
of PTL b and finite state concurrent prohabilistic 
programs, are also discussed. 

(*) Work by the second author has been supported in part 
by a grant from the Bat-Sheva Fund and by a grant from 
the U.S.-Israeli Binational Science Foundation. 

1. Introduction 
Recent progress in the theory of probabilistic pro- 

grams [SPH], [HSP], [HS] has yielded relatively simple 
methods for verification of certain properties of such pro- 
grams. Sequential probabilistic program.g have been 
represented in [SPH] as discrete Markov chains, whereas 
concurrent probabilistic programg have been represented 
in [HSP] and [HS] as processes involving cooperation of 
several Markov cbaln~ (with a common state space) obey- 
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ing certain "fairness" constraints. In both cases, if one 
assumes that the state space of the programs in question 
is finite, then one can obtain simple algorithmic tech- 
niques for analyzing and proving term/nat/on of such pro- 
grams. For sequential programs these techniques are 
essentially classical results in Markov chain theory, 
whereas for concurrent programs new techniques had to 
be developed. In both cases, the actual values of the 
state-transition probabilities proved to be irrelevant for 
the properties in question. 

These encouraging results have motivated the study 
of logics for probabilistic program% as presented in this 
paper. These logics are expressive enough to allow one to 
express various properties of such programs, including 
invariant and liveness properties, without explicit refer- 
ence to the values of the transition probabilities. The first 
logic, which we call PTLf, is intended for reasoning about 
sequential program% whereas the second logic, called 
PTLb, extends the first one and is intended for reasoning 
about concurrent programg. Both logics are based (at 
least syntactically) on existing temporal logics for branch- 
ing time [BPM], [CE]. These logics are interpreted over 
models which can simulate the execution of probabilistic 
programs; for PTLf these are essentially finite Markov 
chains, whereas for PTLb they are infinite stochastic 
processes whose state-transition probabilities are bounded 
away from 0 (this assumption holds for finite-state con- 
current probabilistic programs since there are only finitely 
many different state-transitions). 

It turns out that satisfiability of formulae in both log- 
ics is decidable, in one-exponential time, by decision pro- 
cedures based on the tableau technique which-generalize 
similar procedures for the nonprobabilistic logics of 
[BPM] and [CE]. The probabilistic context of our logics 
makes these procedures more complicated than their 
nonprobabilistic counterparts, and introduces into them 
some special techniques which are variants of the tech- 
niques used in [HSP] for analyzing termination of con- 
current probabilisfic programs. 

Together with these decision procedures, we also 
provide complete axiumatizafious for both logics, and 
show that the same decision procedures can be used to 
construct a proof of the negation of any unsatisfiable 
formula. 

Moreover, by inspection of the decision procedure 
for PTLb, we see that for many (satisfiable) formulae of 
that logic the model constructed by that procedure can be 
replaced by a finite model. This establishes a connection 
between satisfiability of a formula in PTL b and its satisfm- 
bility in P/Z/,  when certain conditions hold. In any case, 
the model constructed by the decision procedure can 



always be viewed as the execution tree of some finite- 
state concurrent probabilisfic program, under some 
schedule. Some additional properties of the models of 
formulae in these logics are also discussed. 

Probabilisfic logics of various sorts have b e ~  
recently proposed by various authors 
[FH],[Fe],[Pn],[KL],[LS],[Ko]. Some of these logics per- 
rain only to sequential progr~m¢ and involve explicit 
reference to the values of transition probabilities. Like 
our logic PTLb, the logics proposed by Pnueli [Pn] and by 
Lehmann and Shelach [IS] also aim to reason about con- 
current probabilisfic programs and do not refer explicitly 
to the values of probabilities involved. However, the logic 
of Pnuell is not complete; the logic of Lehmann and 
Shelach is more expressive than ours, and consequently 
the presently available decision procedures for that logic 
are much more inefficient than ours (the best such pro- 
cedure, given in [KL], runs in doubly exponential non- 
deterministic time). Both these logics are based on tem- 
poral logic of linear time, which, in our opinion, is some- 
what inappropriate, since it does not fully correspond to 
the more standard branching tree-like model for the exe- 
cution of probabilisfic programs. Use of temporal logic of 
branching time is a more appropriate choice, and it makes 
the logic and its interpretation much more natural. 

The paper is organized as follows. In Section 2 we 
define the syntax and semantics of our logics, and make a 
few basic observations concerning these notions. In Sec- 
fion 3 we give axiomatic systems for both logics. Section 
4 describes the decision procedures for our logics, shows 
how to construct a model for a satisfiable formula in 
either logic. Section 5 establishes the completeness of the 
axiomatic systems, in the sense that the proof of any for- 
mula p for which ~ p  is uusatisfiable, can be mechanically 
obtained from the tableau constructed for ~p .  Section 6 
discusses some meta-results con~rning properties of for- 
mulae and their models. 

2. Syntax and Semantics 

Our two logic systems, denoted PTLf and PTLb, are 
almost identical syntactically, but differ in the interpreta- 
fion of their formulae. Like the (nonprobabilisfic) logic 
CTL, our logics are based on the propositional calculus 
extended by three modal operators, two unary prefm 
operators ~X and ~vF, and one binary infm operator q.J. 
The operator '*F in PTLf is redundant, and can be defined 
in terms of the other two operators; however, this is not 
the case in PTL b. 

PTL! and PTL b are interpreted as follows. A model 
of PTL b is a (discrete) Markov chain, possibly having 
infinitely many states, for which there exists a > 0  such 
that all nonzero transition probabilities of the chain are 
~a; and a specified initial state. In addition, there is an 
assi£,nment of truth values to all propositions appearing in 
a given formula at each state of the chain. Formally, such 
a model M is defined as a quadruple (S,P,s0,p), where $ 
is a set of states, so E S is the initial state, P is a transi- 
tion probability matrix (i.e. mapping on S x 5  with 

P(s,O = 1 for all s E S) each of whose entries is 
tE$ 
either 0 or ~ a ,  where a is some positive constant, and p 

is a mapping on S assJzning to each s E S the set of true 
propositions at that state. For convenience, we abbreviate 
p E p(s) a sp  E s. 

A model of PTL/is defined similarly, with the addi- 
tional requirement mat the set $ be finite (the require- 
ment of the buundedness of the transition probabilities 
dearly holds here). 

Each model M induces a probability measure IXM on the 
space II  M of all in/mite paths in S starting at s 0. Validity 
of a formula p of either logic, in  an appropriate model M, 
denoted ~:M P, is defined recursively as follows. 

(i) If p is a proposition, then ~M P ¢~'P E so. 

(ii) I f p = - q ,  then ~MP "-~ ~MP- 
(iii) If p=qVr, then ~=M P ~ ~=M q or ~=M r, and simi- 

larly for all other logical connectives. 

(iv) If p=~cXq, then ~M P ~ ~Mi P for all sl E 5 such 
that P(so,sl) > 0, where M1 is the model M with ini- 
fial state sl, instead of s 0. 

(v) If p=qYUr, then ~:M P ~:~'~gM(Aq,r) =1, where 

Aq,r = {to=Cs.) aM I in n I ~M, q} ~ in~n IbM. r} }, 

and Mn is the model M with initial state sn instead of 
So. I.e. Aq, consists of paths along which either q 
always holds, or else q holds until the first time r 
holds. 

(vi) If p =~vFq, then ~M P fff there exists a stopping time 
N on/'1M which is gM-almost surely finite, such that 
~=M, q for each co with N(to)<oo. (A Mopping time N 
is a mapping from f~v into {0,1,2 . . . . .  =}, such that 
N(to) = n implies N(to') = N(to) for each path to' 
which coincides with to at all steps up to, and includ- 
ing n. Thus, N may depend only on so,s 1 . . . . .  SN~=) 
(the past and the present), but not on sA,+ 1 .... (the 
future)). 

Remarks: 

(1) The negations of the modal operators ~¢X, ~ and VF 
are defined as follows: 

~Xp -- - O X  - p ) .  

p3Uq - - ( ( -q)~U(-p)) .  
_ ~  -- --~F-p 

(2) Intuitively, ~=g ~vX p means that p holds at all immedi- 
ate successors (sons) of the initial state of M. Similarly, 

M ~ P means that p is valid in at least one son of the 
initial state of M. ~=M p~IJq means that along all paths to 
starting at so and consisting only of transitions with 
nonzero probability, p holds at all states of ¢0 up to the 
first state, ff any, at which q holds. Similarly, ~=M p-~lq 
ff there exists a fin/re path ¢0 of states reachable from s o 
via transitions having nonzero probabilities, such that p 
holds at all states of to, and q holds at the final state of 
to- ~=M bFp ff p is valid eventually on almost every path. 
Also, ~=M _::lGp ff the p.M-measure of the set of paths 
along which p always holds (i.e. the set Ap,fmhe), is posi- 
five. 

(3) The modal operators ~Gp and E]Fp of [BPM] can be 
defined in both PTLb and PTL! in the following usual 
way: 



~Fp -- trne -3U p 

~vC~ -- p ~.J false 

(4) In PTLI, the operator ~F and its negation ~ can be 
eliminated from the logic, by defining them in terms of 
the other operators, as follows: 

- ~  ----p ~ ( ~ p )  ----p ~U ~ t ~ )  
~Fp - (3Fp) ~d.Jp -- ( t r u e _ ~ p ) ~ U p  

These two definitions are quite nonobvions, and are spe- 
cial to the finite model interpretation of PTLf. ~=~ ~Fp if 
on ~M-almost every path p holds eventually. However, in 
the case of finite models (i.e. finite Markov chains), this 
is equivalent to requiring that on every path to and every 
state s n along to before the first time (if any) p holds on 
to, there exists a path from s, on which p eventually 
holds. This latter property is always implied by the 
interpretation of ~M~F as defined above (including 
infinite Markov chains); the reverse impfication can be 
proved for fin/re Markov chains using standard "0-1 law" 
arguments, similar to those in [HSP]. The definition of 
the operator ~ follows by negation. However, in PTLb 
there is no way to define these operators in terms of the 
other operators, so that the core of PTLb will have to 
include also the operator ~F. For nnlformity of notation, 
we will include ~F also as a basic operator of PTLf, and 
use the alx~ve definition of ~F as an axiom. 

(5) The intended application of the logic PTL/ (resp. of 
PTLb) is to reason about finite-state probabilistic sequen- 
tial (resp. concurrent) programs. It is easily seen that 
each possible execution of such a program can be 
represented as a model of the corresponding logic, such 
that the model states are program states, and the proposi- 
tions contained in each such state are properties of the 
state. In this perspective, it is noteworthy that the 
behavior of a finite state concurrent program (involving 
more than one process) cannot always be modeled by a 
finite Markov chain. For example, suppose that the pro- 
gram consists of three states Sl, s2, and s3, and of two 
prOCesses kl,  k2, such that under kl the transitions having 
nonzero probability are (sl,sl), (sl,s2), (s2,sl), (s2,s2), 
(S3,$3) , and under k2 they are (sl,s3), (s2,s3) , (s3,s3). 
Consider the schedule or starting at sl and defined by the 
rule: schedule kl repeatedly until the first time at which 
the number of visits at s2 is greater than or equal to the 
number of visits at sl; in this case schedule k2, and then 
schedule kl and k 2 alternately. Then the execution of the 
program under or cannot be modeled by a finite-state 
Markov chain; in fact this execution is identical to the 
behavior of a random walk on 0,1,2 . . . . .  with absorption 
at 0. Moreover, the fairness of or does depend on the 
transition probabilities of k I at s 1 and $2 (e.g. or is fair if 

k 1 k I 1 
Psi,s2, P~2,s2 ~ -- and is unfair if both these probabilities 

2 '  
1 are < ~-.) 

The problem with this or is that it is not f/n/tary. 
Roughly speaking, a schedule is fmitary if it is a finite 
automaton, whose decisions are based only on checking 
whether the past eexccution history belongs to onc of 
several regular languages. It is easily seen that for finite- 
state programs, their execution under a schedule or can be 
modeled by a finite-state Markov chain if and only if or is 
finitary. 

Fair schedules need not be fmitary. However, it can 
be shown from Theorem 1.1 of [HSP l that almost-sure 
termination by any fair schedule can be effectively 
decided by essentially considering only finitary (fair) 
schedules, and therefore is a property that can be stated 
and verified in PTLf. This interplay between PTLb and 
PTLf will be studied in more generality in Section 6 
below. We will obtain there the property just noted as a 
special case of a more general rule, which gives sufficient 
conditions for formulae of PTLb to be equivalently 
represented in PTLf. 

3. Axiomatic Systems 

The following axiomatizations of PTL! and of PTL b 
are shown to be complete: These axiomatizafions include 
all axioms and inference rules of the propositional cal- 
culus, plus the following additional axioms and rules 
(some of which are similar to the axioms and rules of UB 
[BPM], while others are special to our logic, and are 
recquired to handle the probabilistic nature of our modcls): 

Axioms and Rules Common to both Logles: 
Axioms: 

(A1) ~X(p~q) ~ (~Xo::~Xq) 

(A2) p ~ q :3 qV(pAbX~ ~ q)) 

Inference rules: 

(R1) {- p => {- 

(~.) ~- r ~ qV~X~) => {- r ~ ~q 

(R3) /- p :> 4- -(~-p) 

Additional Axioms for PTL l 

(A3) ~ p  - (true _=U p) ~ p 

Additional Axioms and Rules for PTLb 

(A4) vFp .~ p~X~tFp 

(AS) ~ p  ~ ~Fp 

(A6) (~dq) ̂  ~(-p) ~ ~q 

m4) ~ r ~pV¢,,X~,Fr^~Xp) => ' t - " ~ P  

Let us comment briefly on the interpretations of 
these axioms and rules in our logics, so as to justify their 
soundness. Axioms (A1) and (A2) and rules (R1) and 
(R2) are nonprobabilistic and are sound in our interpreta- 
tions, as well as in the interpretations of the nonproba- 



bilistic logic C/Z. (It has been pointed out by Amir Pnueli 
that these axioms and rules can be used to simplify exist- 
ing axiomatizations for that logic.) The axiom (A1) and 
the rule (R1) are taken from [BPM], and their soundness 
follows from the definition of ~X, as in [BPM]. Axiom 
(A2) states that • = p~qJq satisfies the implication 
• ~ qV(p/tCXr), which again is obvious from the defini- 
tions of the operators ~U and YX, whereas rule (R2) 
states that p ~.J q is the "largest" solution to that implica- 
tion, in the sense that it is implied by any other solution. 
The soundness of this rule can be proved by a simple 
inductive argument. 

The soundness of the rule (R3) is also easy to establish 
from the definitions. As noted in the preceding section, 
axiom (A3) is sound only under finite-model interpreta- 
tions; this can be shown using standard "zero-one" argu- 
ments, as e.g. those given in Theorem 2.2 of [HSP]. 

The axioms (A4)-(A6) of PTL b are all probahillstic, and 
state various properties of almost-surely finite stopping 
times. (A4) states that an event p happens eventually 
almost surely if and only if it either happens now, or else 
it happens eventually almost surely from any next 
instance on. Axiom (AS) states that if there exists an 
almost surely finite stopping time N such that for each 
path ca with N = N(¢o)<~, the event p will happen even- 
tually almost surely after reaching ¢a~v, then p will happen 
eventually almost surely. (In other words, the composi- 
tion of a family of almost-surely finite stopping times on 
an almost-surely finite stopping time yields an almost- 
surely finite stopping time.) Axiom (A6) states that if p 
holds continuously until the fwst time (if any) at which q 
holds, and if there exists an almost surely finite stopping 
time N at which p does not hold, then there exists 
another almost surely finite stopping time N' ~ N at 
which q holds. The soundness of this axiom is immediate 
from the definitions. 
Remark:  Axioms (A4)-(A6) are not specific to the 
bounded-model interpretation of PTLb, but rather hold 
also in general (unbounded) models, as can be easily 
checked. 
Finally, the rule (R4) states that for • to imply that p will 
eventually hold almost surely, it is sufficient to require 
that • implies that either p holds now, or that at least one 
succeeding state satisfies p, and at the same time • will 
hold once more eventually after every succeeding state. 
To prove the soundness of this rule, we argue as follows. 
Let S 0 denote the set of all states s in S at which • holds, 
and which are reachable from the initial state s o via paths 
along which p did not hold yet (except possibly at s 
itself). Assume So ~ So (for otherwise there is nothing to 
prove). For each s ~ 5o let [~ denote the probability that 
p will hold eventually, given that we have reached s. The 
premise of (R4) implies that [3, > a ,  for each s ~ 50. Let 
, / - -  • ~'mf'ol~ ~ ~e a .  Assuming that ~ < 1, let s ~ S0 be 

such that 13, < ~/+ a(1-~/)  2 Again, the premise of 

(R4) implies that 

+ a ( l - ~ / )  > [$~ > et + ( l -or )r /  
2 

which is plainly impossible. Hence ~/ = 1, so that in par- 
ticular [$~o = 1, which is what we wanted m show. 

Remark:  It would be tempting to replace (R4) by the 
simpler sound rule 

(R4') F r~pVO,XrAZlX.p)  = >  ~ - r ~ c F p  

However, the resulting axiomatic system will not be com- 
plete. In fact, the following formula w, which is a variant 
of (R4), 

is not provable from the modified axiomatic system. To 
see this, consider the interpretation of these axioms under 
models M which axe defined as in PTLb, except that their 
asscx:iated transition probabilities are not required to be 
bounded away from 0. Instead we require that for each 

state s at the i-th level of M we have P(s,t) ~ 1., for 
1 

each nonzero transition probability P(s,O. It is easy to 
see that all axioms and rules of the modified system are 
sound under this Hw.rpretafion. tudc,~d, cverythind except 
(R4') is either nonprobabilistic or holds in general 
unbounded models. Concerning (R4'), suppose that a 
model M satisfies the premise of (R4'), and that r holds 
at the initial state of M. Then the probability that p still 

n 1 
does not hold after n levels of M is at most I I  ( 1 -  ~ )  - 0 

as n-,oo. Nevertheless, it is easy to construct a model M 
of this new kind which does not satisfy the variant w of 
(R4) given above.~To obtain M, take a sequence {it} of 

levels for which H ( 1  - ~ )  > o, and define M so that 
i, r 

holds at the root and at each node in each of the levels i t. 
For each node n at the i t level, p holds at exactly one son 

m of n, with e(n,m) = 1.. It is then easy to check that 
i t  

M satisfies the precedent of w but not its consequent. 

Hence, the "essence" of the bounded-model interpre- 
tation of PTL b is captured by the rule (R4). 

Theorems Common to PTLf and to PTL b 

We next list a few theorems provable from the core 
set of axioms and inference rules common to both logics, 
most of which are needed in subsequent sections. 

(TI) 
(~) 
(~) 

(T4) 
(TS) 
(~) 

(T7) 
(TS) 
(~) 

Wecan 
~I') 

0u.') 
01-9 
(R6) 

4 

~XCoAq) - vX;,A~,Xq 

v ~xn ~ ~xCovq) 
p ~ q -- qvCo~x ~ ~ q)) 

p~ .Jq  A (( - -q)q.Jr)  D p ~ . J r  

(pVq) ~ r D p ~ (qVr) 

O, ~a 0 A (q ~ 0 - ~ )  ~ • 

~Fp D true ZIUp 

vx4, ~ ~ p  

also deduce a few additional inference rules: 

/- v ~ q = >  F'.Xp ~ v x q  

~ - p = > ~ - p V L l q  for any q 
F p  = > F ~ p  

F p ~ q  = > k ~ p  ~ ~ q  



Proofs of these theorems and rules are omitted in 
this version. 

4. The Tableau Method 
In this section we modify the tableau method 

described in [BPM] to obtain exponential-time decision 
procedures for formulae in P T L f  and in PTL b under the 
respective finite-model and bounded-model interpreta- 
tions. It suffices to treat the (more complicated) case of 
PTLb, since the tableau construction in PTL! can be 
obtained as a special case (using the formulae given in 
Remark (4) of Section 2). The tableau construction for 
our logics is similar to that of [BPM] in many details, but 
differs from it in several significant aspects, reflecting the 
probabilistic context of our interpretations. 

Given a formula P0 of PTLb which we wish to test for 
satisfiability, we construct from it a finite directed graph 
T, called'tableau, each of whose nodes n is labeled by a 
set F a of formulae (intuitively, formulae to be fulfdled at 
n), some of which have already been "expanded", while 
others are still "unexpanded". Initially T contains a single 
node no (the root), and Fno = ~PO}, with P0 unexpanded. 
T is then constructed inductively as follows. A_t each step 
we pick a node n having no successors, and a formula 
p E F a which has not yet been expanded. We then 
expand p by one of the rules stated below, thereby creat- 
ing outgoing edges from n, some of which may lead to 
newly created nodes of T, while others may point back at 
nodes already present in T. 

Let n be a node of T. It can be expanded either by 
an ct expansion, a [3 expansion or an X expansion. An a 
expansion is obtained by picking an unexpanded formula 
• of F ,  having one of the forms in the first col,mn of 
Table 1, creating one son n 1 of n and putting 
Fat = FaU{rl,r2, • " • }, where rl,r2, • • • are the 
corresponding formulae in the other columns of the table. 
Similarly, a 13 expansion is obtained by picking an unex- 
panded formula • of F ,  having one of the forms in the 
first c o l n m  of Table 2, creating two sons n I and n 2 of n, 
a n d  putting Fax  = F.U{rl}; F. 2 = F.U{r2}. 

fv~. 
r Va~ 

~(r^%) 
~ f f  

,% 

P 

pAT 
P 

~p 

f, 

q 
q. 

p ^ vX (P Vu%) 
p^ 3x (e3t~T) 

Vxvgp A axvgp 

~xafp 

Table 2: p-expansions 

Remark: Comparing these tables to the expansion rules in 
[BPM], [CE], we see that the only rules which have 
changed are for formulae of the forms ~vFp, =~Gp. The 
example given in the appendix demonstrates the necessity 
for this change in the case of -~G-formnlae. 

If none of these expansions are possible at n, then 
each element of Fa is either a proposition, a negated pro- 
position, or of one of the forms ~vXp, ~Xp. In this case 
we call n a state, and we apply to it the X-expansion rule 
of [BPM]. That is, let 

~"Xpl . . . . .  "Xl,o 

be all the formulae preceded by ~vX in Fa, and let 

~txql . . . . .  3xq~ 

be all the formulae preceded by ~IX in Fa. Then create b 
sons n 1 . . . . .  n b of n and lXR 

Fnl = {Pl ..... Pa,q*} 

for each k= 1 . . . . .  b. (If  b = O, create one son n0 of n 
and put 

F,~ = ~ ..... po} .) 

Each successor of n under this expansion is called (as in 
[BPM]) a p r e -  state. The  root n 0 is also called a pre-state. 

The construction of T is terminated by using the 
same termination rules as in [BPM], i.e. not expanding 

r 

pAT 
ae? 

~(Pv,T) 
..(weu%) 
~( f3u.$)  
,.,(vFe) 
- (3 ep) 
~(vxe) 

v&p 

i'- 4 

P 
P 

- p  

c ~'gw-c-'r) 
~CG. "p 
VF "., p 
3X -P  
VX" ~P 

vxvop 

5 

Vg [ t ~  v 3 6. !' ) 

Table i: a-expansions 



and 'closing' nodes n for which Fn contains both a propo- 
sition and its negation, and, at an X-expansion of a node 
n, not creating new succeeding pre-states if their set of 
formulae is identical to the set of formulae of some ances- 
tor pre-state m of n, in which case the corresponding out- 
going edge from n points back to m. These termination 
rules ensure that the resulting graph T is finite, and that 
its size is at most exponential in the length of the initial 
formula P0- 

Having thus created T we proceed to mark some of 
its nodes using the following rules (the fLrSt four of which 
coincide with the rules (M1)-(M4) of [BPM], while the 
last two are special to the probabilisfic case). Roughly 
speaking, a node is marked if its set of formulae cannot 
be satisfied by a model that can be obtained from 
"unwinding" the tableau. Such nodes will eventually be 
deleted from the tableau. 

(M1) Mark every dosed node (i.e. a node containing 
both a proposition and its negation. 

(M2) If n is a node at which an a-expansion has been 
applied and its son n I has been marked then mark n. 

(M3) If n is a node at which a 13-expansion has been 
applied and both its sons n 1 and n 2 have been marked 
then mark n. 

(M4) If n is a state and one of its succeeding pre-states 
has been marked then mark n. 

(MS) Let • = q ~ p or • = ~Fp, and let N,  be the set of  
a11 nnmarked nodes n of T whose set of formulae F n con- 

r. Assuming this set is nonempty, we apply the fol- 
lowing 'ranking' algorithm to it: 
(i) Initially, all nodes in N, are unranked. 

(ii) Let  n E Nr be a node at which the ~-expausion 
corresponding to r has been applied, and let nl be the son 
of n "inheriting" p.  If n 1 is unmarked, give n 1 the rank 0, 
and give n the rank 1. 

(iii) I f  n E Nr is a node at which an a-expansion or a [3- 
expansion other than that in (ii) has been applied, and if 
one of the successors of n is ranked, then give n a rank 
which is 1 + the smallest rank of any son of n. 

(iv) Finally, let n E Nr be a state (at which an X- 
expansion has been applied) and let n 1 be the son of n 
containing • if  r = p  ~ q ,  or otherwise the son of n gen- 
erated by the presence of the formula ~]K'd~p in n. If nl 
has been ranked, then give n the rank of n 1. 

After the o~,~pletion of the ranking algorithm, all 
unranked nodes in N r are marked.  

Remark: Note that the marking rule for formulae of the 
form ~vFp is quite different from the corresponding rule in 
the nonprobabilistic case. In fact, a node n coDtalning V 

Fp will not be marked if there exists at least one path 
from n to a node containing p;  in the nonprobabilistic case 
a/l paths from n must lead to a node containing p. 

(M6) (This rule is not required at all in the nonprobabilis- 
tic case.) Let • = --Up be a formula appearing in the set 
F n of  some unmarked state n. We first introduce some 
notations: Without loss of generality, assume all marked 
nodes have been deleted from T. Let 5 denote the set of 
states in T, and let rl denote the set of pre-s ta tes  in T. 

For every s E S, let X(s)  be the set of all successor pre- 
states of s (obtained by the X - ~ i o n  rule); for each 
pre-state ~ ( H, let T(~) denote the set of all states in 5 
which are reachable from ~ via paths consisting of a and 
[3-expausions only. We will also use the inverse relations: 
X-l(~) denotes the set of all predecessor states of ~ (there 
may be more than one such state according to the rules 
for terminating the tableau construction), and T - l ( s )  is 
the (unique) pre-state preceding s. Essentially, all inter- 
mediate nodes of T which are neither states nor pre-states 
are ignored in the sequel. 

Given r = ~ J p  and n ( 5 with • E F n as  above, let 
$, = {s E 5 : • E F,},  and let YCH be the set of all pre- 
states ~ which are reachable from n along paths whose 
states all belong to St. We will obtain a decomposition of 
Y which is closely related to the decomposition of the 
state-space of a concurrent probabilistic program given in 
[HSP]. The purpose of this decomposition is to fred 
ergodic sets E of states, all of which contain r, and for 
which there exists an "unwinding" of the tableau starting 
at any s E E and visiting from then on only states of E. 
Such an unwinding will enable us to show that • is satis- 
fied in a model constructed from this unwinding and 
whose initial state is either in E or from which E can be 
reached via some fmire path of states in iV,. 

More precisely, define 

10 = Is E r ( r )  : • ~ F,}. 

We will construct inductively a sequence of (disjoint) sub- 
sets {Hm}m> 1 of Y, as follows. We begin by constructing 
a directed graph G, whose nodes are the pre-states of Y, 
and whose edges are given by the relation 1, -- XaT res- 
tricted to Y (i.e. ~l (p((~) if there exists s E Sr such that 
s ( T ( ~ )  and "q ( X(s); it is helpful to label each such 
edge by the corresponding state s); note that G may con- 
tain loops (i.e. edges of the form (~,~)) and multiple 
edges. Let H 1 be a terminal strongly connected com- 
ixment of G, including the degenerate case of a singleton 
H 1 = {~}, in which case it is not req red that (~ ,0  be an 
edge of G. Thus, for each ~ ( H i  and each t (T (~ ) ,  
either X ( t ) C H  1 or t E 10. Next, suppose that 
H1 . . . . .  Hm-1 have already been defined, and put 
Kin-1 = iU<Hi • We first update G by. erasing all nodes 

E Hm-1, together with all edges (~,~]') for which there 
exists s E TOO such that both ~ and ~ '  belong to X(s)  
(thus, besides edges (TI,~) we also erase edges 0), 'q ')  with 
the same label s as 01,~)). Hm is then defined to be a 
terminal strongly connected component of the (updated) 
graph G (including the degenerate case of a singleton, as 
above). Thus, H m has the following property: For each 

( H,,, and each t ( T( O,  either 

( 1 ) ,  ~ Io; or 
(2) x(t)nKm=~ ~ 0 ;  or 
(3) X(t)  C H m. (Note that this holds for m = 1 too.) 

We continue with this process until G becomes empty. 
Having obtained this decomposition, we next define, 

for each m ~ l  

l m "  {t ( 5 : r - l ( t )  ( H .  and X(O CHm}. 

Lm ---- {t ( S : T- l ( t )  E Hm, t E 10 and X(t)Olm} 



It is easy to establish the following properties: 

(a) l m =  0 iff Hm is a non-strongly connected singleton 
{~}; in this case each t E T(O is either in I 0 or satisfies 
x(t)nx.,_~ ~ 0 .  
(b) For each s E i  m and each ~ E X ( s )  we have 
T(Onl~, ~O.  
(c) For each s,t E In, t ~ s, there exists a chain of states 
in Ira, S=So,al . . . . .  Sj=t; such that si+ 1 E N(si), for 
i=O . . . . .  n -  1, where N ---- Tog. 

Suppose that I m ~ 0 for some m. Intuitively, this 
means that, starting at some s E Ira, one can "unwind" 
the tableau into an infinite tree which consists only of 
states in ira, by choosing at each pre-state ~ E Hm a state 
t E T(~)NIm,  and by noting that all successor pre-states 
of t are contained in Hra. Since the formula _:Up is con- 
tained in F,,  we could potentially use such an unwinding 
of T as a model for the satisfiability of _:Up. This, how- 
ever, depends on our ability to satisfy other formulae of 
Fs by that same unwinding. As will be seen below, it suf- 
rices to require from lm that its unwinding can satisfy 
every formula of the form ~Fq which appears at some of 
its states. 

DeFinition: A set E of states in S is called an ergodie set  
if it satisfies properties (b) and (c) stated above for !~, 
and moreover for each formula of the form ~Fq which 
appears in F,  for some s E E, there exists t E E such that 
q EFt. 

Consequently, we distinguish between three subeases: 

O) ~m = ~" 
(ii) lm is ergodic. 

(iii) lm is not ergodic. That is, there exists s Elm and a 
formula 0Fq) E F, such that q ~ F, for all t E 1=. (It is 
easily seen, by the properties of expansions involving ~F, 
that in this case the formula ~vFq belongs to Ft for every 
t ~ tin.) 

We are now in a position to state the marking rule 
( M 6 )  for • = :_Gp and for a state n E S containing r: 

Obtain the above decomposition of the set Y, and check 
for each m ~ l  for which l= is nonempty whether this set 
is ergodic. If no such ergodic set exists (i.e. for each m 
either case (i) or case (iii) holds), then mark n. Other- 
wise n remains unmarked. 

The marking process proceeds in phases; in each such 
phase we either apply one of the rules (M1)-(M4) to a 
sin_~!_e node of T, or apply rule (M5) to a formula YFp or 
p _--U q at some node of T, which may cause several 
nodes of T to be marked simultaneously, or apply rule 
(M6) to a formula ~ and a node ¢outainlng it, which 
again can result in marking more than one node. This 
marking process terminates when no new nodes can be 
marked. An example illustrating the tableau construction 
and marking rules is given in an appendix below. The 
main result of this paper is the following 

Theorem 4.1:P0 is satisfiable if and only if the root n o of 
T has not been marked. Moreover, if the root has been 
marked then "To is provable in the axiomatic system of 
section 3 (i.e. this system is complete). In this latter case 
the proof of "To  can be obtained mechanically off the 
tableau T. 

The proof of this theorem is fairly involved, and is there- 
fore only very briefly sketched in this abstract, with most 
of the technical detail omitted. 

We first show that if no has not been marked, then we 
can construct a model of PTLi, for P0 from the unmarked 
nodes of T. This is achieved by first constructing from 
the unmarked nodes of T a Hintikka structure (defined 
below), and then transforming this structure into a model 
for P0- 
Definition: A Hintikka structure H for a formula P0 of 
PTL b is an infinite tree with a root s o such that the 
number of sons of any node in H is bounded, and such 
that with each node s E H there is associated a set F,  of 
formulae of PTL b. Given such a tree H, we can associate 
with each edge (re,n) of H a transition probability equal to 
l/d, where d is the out-going degree of m (note that these 
probabilities are bounded away from 0). This probability 
assignment allows us to regard H as a stochastic process, 
and induces, for each node s E H, a probability measure 
g , , s  on the set II ,  of all infinite paths in H starting at s, 
in the standard manner as in Section 2. In addition, H 
must have the following properties (p E F s is abbreviated 
a sp  E s): 

(HO) Po E s o. 

(H1) - p  E s implies p E s (i.e. H is consistent). 

(H2) Let r be a formula to which an a-expansion is 
applicable (see Table 1); then r E s implies rj E s 
for all corresponding subconjuncts rj of r (appear- 
ing in the other columns of the table). 

(I-I3) Let • be a formula to which a fl-expansion is 
applicable (see Table 2); then • E s implies r 1 E s 
or r2 E s (where rl ,r  2 are the two corresponding 
disjuncts appearing in the other columns of the 
table). 

If ~Xp E s then p E t for all succeeding nodes t of 
s inH.  

If E]Xp E s then p E t for at least one succeeding 
node t of s in H. 

If p ~U q E s then there exists a path from s all 
of whose nodes contain p ,  and its last node also 
contains q. 

If p ~ q E s then every simple path starting at s 
either contains p in all its nodes, or contains p at 
all its initial nodes (possibly none) before reach- 
ing a node which contains q. 

If ~Fp E s then there exists a stopping time N, 
defined on t~s(the subtree of H rooted at s), 
which is UsEr-almost-surely finite, and for which 
p E ,o~(~), for each ,o E I I ,  with N(w)<~ .  
If _:Up E s then 

iLsd¢[o~ El ls  : p E a~ n for all n> l}  > 0. 

(H4b) 

(H4c) 

(H~) 

~4~) 

~-I4 0 



Lemma 4.2: If P0 has a Hintikka structure, then it has a 
model, i.e. it is satisfiable. 

Proof: Omitted. 

It therefore remaln~ to construct a I-Ymfikka structure 
H for P0 from the unmarked nodes of T. For this, we use 
the following construction, in which we assume, for sim- 
plicity, that all nodes of T are unmarked. The following 
observations, which have already appeared implicitly in 
the marking rule (M6), will be useful in motivating and 
explaining the construction of the required Hintikka struc- 
ture. As before, we let S (resp. II) denote the set of all 
(unmarked) states (resp. pre-states) of T. The nodes of 
the Hintikka structure H we are about to construct from 
T will be states in S. The number of sons of a node s E H 
is the same as the number of pre-states in X(s). For each 
such E E X(s) there will correspond a son of s in H which 
will be an element of T(~). The decisions as to which 
state in T(E) to choose as the corresponding son of s can 
be thought of as being taken by some "scheduler", and we 
will refer to them as a schedule of T. This notation is 
very similar to the modelling of the execution of a con- 
current probabilistic program, as described e.g. in [HSP]. 
In this analogy, the "program states" are our pro-states II; 
at each such ~ E If, the schedule assigns a process to exe- 
cute the next program state, which, in our case, 
corresponds to choosing a state t E T(O, and then "exe- 
cute" the X-transitions from t to new pre-states (i.e. new 
program states). Thus "program execution" corresponds 
to the construction of H, in which we just record the 
states in S chosen by the scheduler. 

The preceding remarks imply that to construct H it 
suffices to define the corresponding schedule or. cr is a 
function defined on the set of all finite execution kistories, 
each such history being a sequence of the form 

hn = ( ~ 0 , $ 1 , ~ 1 , $ 2  . . . . .  Sn,~n) 
with ~0 the root of  T and where for each i =  1 . . . . .  n we 
have si E T(E~_i) and ~i E X(s~). (Thus, for convenience, 
we label each node of H also by the pro-state E of its 
corresponding state s. Each such h n corresponds to a 
path ~ of length n in H in which the schedule's decisions 
at the first n -  1 nodes are already recorded; ¢r(hn) is to be 
the state s~+l in T(~,) that the schedule will choose at the 
terminal node of ~o.) 

Before defining cr, we first modify T slightly to elim- 
inate any partial overlapping between ergodic sets. For 
this, suppose that E~ and E 2 are two distinct ergodic sets 
(for the same, or for different formulae) whose intersec- 
tion E = Elf'IE 2 is nonempty. We then duplicate each 
s E E into two copies (s,1) and (s,2) such that for j - 1 , 2  
we have 

F O j  = F. ;  X ( ( . , j ) )  = X 0 ) ;  ) = T - 1 0 )  

Having thus split each s E E, we define 

E 1' = (E1-E2)U{($,I) : s E E}, 

and 

E 2' = (E2-E1)U{(s,2) :s E E}. 

Since the internal structure of E/' is isomorphic to the 
structure of E l  for j =  1,2, it follows that both these new 
sets are ergodic. Furthermore, if we apply the marking 

procedure to the new tableau obtained by this spiitting, 
then no new nodes will be marked because the duplication 
of states in the above manner cannot cause any of the 
marking rules (M1)-(M6) to become applicable if it were 
not applicable before. 

Repeating the splitting procedure just described as 
needed, we obtain an equivalent but larger tableau T' for 
which all ergodic sets are palrwise disjoint. Without loss 
of generality, we will assume that T itself already has this 
property. Let E1 . . . . .  E a be the ergodic sets of T. Then 
each set s E S either belongs to a unique ergodic set E e, 

or else is "transient", i.e. belongs to E0 ---- lee • 

For every s E $ and t~ E X(s),  we d e ~ e  

v( ,O = [ r ( O  , if Eo 

Note that V(s,~) is always noneml~ J. 

For each such s and ~ let (t~, . ,t~) be a fixed 
enumeration of the elements of T(~), and let 
(vts,O . . . . .  vls,O ) be a fixed enumeration of the elements 
of V(s,~) (note that k--~k(O and t---t(s,¢)). Let 

h. = ( 0,sl, l,s2 . . . . .  

be a finite history in H; we will define cr(h,) = s,+ z as 
follows. Let r be the number of occurrences of s ~ s~ in 
h n Cup to and including n), i.e. r -- I{i : l ~ i ~ n ,  si=sn} [. 
Two possible cases can arise: 

(a) All the following three conditions hold: 
(/) • = v 2 for some v~3 .  

(ii) IX( )I > 1. 
(iii) ~nl = ~,m, . . . . .  ~,m,, where 

n > m 1 > m 2 > - • • > m v a r e  t h e  p l a c e s  i n  

h,  of the last i, occurrences of s (before the n- 
th place). 

(b) At least one of these conditions does not hold. 

If case (a) occurs, let j - - - -v(modk)  and define 
= t L. 

If case (b) occurs, let j---- (,-H)(rood l) and define 
I. ,I 

Let us call a visit at s for which • is a perfect square ~ 9  a 
square visit. Thus case (a) occurs only at pro-states ~ fol- 
lowing a square visit (of order v 2) at a state s which has 
more than one succeeding pro-state, and for which s is 
followed in h, by the same pre-state E at each of the last 
v visits at s. When this case applies, the schedule iterates 
through T(O in a round robin fashion (stepping through 
the elements of T(E) once per each such special square 
visit). Similarly, case (b) occurs when the visit at the last 
s ta te  a~in h n is either non-square, or is square but not all 
last V •  visits at s have been followed by the same 
succeeding pre-state. In these cases the schedule iterates 
through V(s,~) in a round robin fashion, in which the 
square visits at s are not counted. 

We next show that the unwinding of the tableau T by 
the schedule ¢r just defined yields a I-Iintlklra structure H 
for P0- The proof that H satisfies conditions (H4c), 



(H4e) and (H4f) is somewhat involved and technical. 
There are some difficulties in showing the existence of a 
path (or, in the case of (H4 0 ,  a set of paths having posi- 
tive measure) passing only through nodes containing the 
corresponding subformula • = q ~ p,  "~Fp or ~ and 
(in the cases of (H4c) and (H4e)) ending at a node con- 
taining p;  these difficulties arise because as such a path is 
being constructed, it can enter various ergodic sets, some 
of which may be irrelevant to the "fulfillment" of r, and 
so must be exited in order for • to be fulfilled. The 
schedule er has been defined in a way which ensures that 
these sets are properly exited from, and that the required 
path or set of paths does exist. These technical details are 
omitted in this version, and we just state the final conclu- 
sion. 

Theorem 4.3: H is a Hintikka structure for P0- Thus P0 is 
satisfiable. 

We have thus shown that if the root of T has not 
been marked then p is satisfiable. The converse statement 
is proven in the following section. 

$. Completeness 

In this section we prove the second part of Theorem 
4.5, namely that if the root no of the tableau T con- 
structed for a formula P0 of PTLb is marked by the pro- 
cedure described in the preceding section, then "To is 
provable from the axioms of PTLb given in section 3. 
This, together with the proof of the first part of Theorem 
4.5, will establish the completeness of these axioms. 

As in [BPM] we define, for each node n E T, the 
associated formula afn of n to be V{~p : p E Fn}; note that 
af~ = ~P0- The proof proceeds by showing, using induc- 
tion on the phases of the marking procedure, that if n is a 
marked node, then af, is provable. Since we assume that 
n o is marked, it follows that ~P0 is provable. 

The basis for our induction are phases which mark 
nodes n using the rule (M1). In these cases we obtain, 
using dilution as in l_emma 5.1 of [I3PM], that Fafn. 
Similarly, for phases which mark nodes n using one of the 
rules (M2)-(M4), we can show, as in I_emma 5.2 of 
[BPM], that ~-af.. For the rules (M2) and (M3) 
(corresponding respectively to a and 13 expansions) this 
follows from simple propositional reasoning and from the 
fact that each of the expansions listed in Tables 1 and 2 of 
Section 4 is a theorem of PTLb. For the rule (M4) 
(corresponding to X-expansious) the proof proceeds 
exactly as in [BPM], using rule (RI ' )  and theorem (T1). 

Next consider a marking phase which has applied 
rule (MS) to a formula • = p ~ q. Let t be a state in T 
which has been marked because it has not been ranked. 
In what follows we will ignore the marked p6rtion of T 
(before the current application of (MS)), and assume that 
each node we refer to is presently unmarked. Let us 
introduce the following terminology: For each state u E S 
such that r E Fu, denote the r-son of  u (i.e. that son 
inheriting r) by ~u, and put R(u) ---- T('qu) (i.e. the states 

following "flu). Also put R* ~ R*(t) ~ U Rm(t). Note 
mffi0 

that each state in R* has not been ranked, for otherwise 
the ranking algorithm of (MS) would have ranked t too. 

For each u ( R* define V(u) to be the set of (presently 
unmarked) nodes at which r is expanded, which are 
reachable from ~lu by et and 13 expansions only (i.e. 
before a state in R(u)) .  Note that the essential son vl of 
any v E V(u) has already been marked, for otherwise v, 
and consequently also u and t, would be ranked by (M5). 
For each v E V(u), define Q(v) to be the set of unmarked 
states reachable from v (or from the nonessential son v2 
of v) by a and 13 expansions only. Note that QoV = R for 
all u E R*. Also denote, for each state u E R*, 

W~= A k - - A t ,  (forshort)  
kEY, 

and 

Wt= v W,. 
u ER* 

These formulae have the following properties, generaliz- 
ing Lemmas 5.3 and 5.4 of [BPM]: 
Lemma 5.1: ~- W t D ~ p  v ~ q .  

Proof: Omitted. 

Lemma $.2: ~- pAW t D ~XW t. 

Proof: Omitted. 

We can now show that ~- aft, as follows. Note that 
F~, = {r}UY r Thus af~ t = --rV--Wt. We have, by Lem- 
mas 5.1 and 5.2, 

~- W t :3 ~ p V ~ q  , 

F w' ~ - p v ~ x w ~ .  

Hence 

) 
or, ~mg (R2), 

'1- W ' ~  ( ~ q ) ~ C - p )  • 
t-Ience we also have 

t- w, ~ - ~ - 3 U  q) 
o r  

F -w ,v  - •  

that is, F a fw  Hence aft too, as follows from the induc. 
five step of our proof corresponding to the marking rule 
(M4). 

Next consider a marking phase which has applied 
rule (MS) to a fo~raula r = ~vFp, and let t be a state which 
has been marked by this phase. In a similar manner to 
what we did above for formulae involving -~.J, we denote 
by R* = R*(t) the set of all (presently unmarked) states 
reachable from t by choosing at each state u the •-son of 
u (also to be denoted as ~lu)- Again, since t has been 
marked at this phase, no state in R* has been ranked, so 
that it must contain both VXr and ~]Kr. In other words, at 
each node v where • has been expanded, the essential ~0F- 
son of v must have been previously marked. We will also 
use the notations R(u) ,  V(u),  Q(v) as above, each of 
which is defined in an obviously modified manner. Also 
put 



Yu = {k : VXk ~ F ,  and k~r} 

W u = ^ k ---- ̂ Yu 

W'=  v W,, 
u ER* 

These formulae have the following properties: 
Lemma 5.3: ~- W t ~ ~ p .  

Proof: Omitted. 

Lemma 5.4: ~ W t ~ ~ X W  t. 

Proof: Omitted. 

Lemmas 5.3 and 5.4 together imply 

F W' ~ (-~),WXW' 

which, using (R2), imply that 

~- w ~ 3 (-p) ~u fa t~e  

which in turn implies (using the contraposit~ve fo~m of 
(T8) and (R0)) 

F w'  ~ -.~,.,--.~ 

that is 

"1- ~ ( w : ~ ) .  
In other words, we have shown that ~af~,, from which, 
using the argument conresponding to the marking rule 
(M4), it follows also that ~-af, which is what was to be 
shown. 

Finally, we need to consider nodes at which the 
marking rule (M6) has been applied to some formula 
r = ~Gp. This portion of the proof is the most complex, 
and is special to PTLb, in the sense that all the other 
related logics (UB,  CTL,  PTLf)  have no similar marking 
rule for =~Jp. In this version we will only give a very 
brief sketch of the proof. 

l e t  t ~ S be a state that has been marked by (M6) 
for the formula r. Let r ( t )  denote the set of all pre-states 
reachable from t along paths each of whose states contain 
r. l e t  R*( t )  = {t}UT[F(t)].  (Recall the notations intro- 
duced when (M6) was defined at Section 4; for a state s, 
X(s )  is the set of its sons (pre-states); for a pre-state 6, 
T(~) is the set of states reachable from ~ by a and 13 
expansions only.) 

Applying rule (M6) for t and r, we decompose F(t) 
into finitely many disjoint sets H ~ U H 2 . ' ' U H m ,  and 
obtain a similar decomposition of R( t )  into 
loU1 ~ . • • UlmUL 1 • • • UL m where 10 is the set of all 
states in R( t )  which do not contain r, where each of the 
sets i~ . . . . .  im is either empty or a communicating but 
nonergodie set of states, and where L~ . . . . .  Lm are 
"transition sets" of  states satisfying 

E L s o r - ~ ( s )  E Hj  and x ( ~ ) n K / _ ~  

(recall that g~ = 0 ) .  
As already noted, since t has been marked by (M6), we 
must have, for each j =  1 . . . . .  m either 

( D r  s = O ; o r  
(II) l /  # O and there exists some formula q such that for 
each s E l j ,  ~Fq ~ Fs bu tq  I~ F,. 

Before investigating both these ceases, we begin with 
a few general observations and notations. For each 

~ r ( 0  we denote 

Z~ = AF t 

and for each s E R(t) we denote 

Q, = A F , .  

l e t  X ( s )  = {~!~ . . . . .  'qt}. This means that Qs is a con- 
junction involving, among others, formulae of the form 

~tx l~ ,  . . . . .  ~tx4~, , 

and also formulae of the form ~Xk, where k ~ Y,, in the 
sense that for each j =  1 . . . . .  k we have 

F~j = Y,U{p~). 
Note also that we must have one j for which ~ s  = :~Gp; 
we may assume j = 1. As usual we denote W s = AYs, so 
that we can write 

F Q, ~ ~xw, A ~lx13~, A • . .  A ~lx,e.~, (ol)  
which leads to 

F Q, ~ ~xJ(w,: '130 v (W~l~, )  v • • • v (02) 

v ( w A - 1 3 ~ #  • - • ^ - I % ) 1  

A ~ lx (w / ,¢  O A • • • A .EIx:(w/,13~) 

But -13 m --- ~ _ ~ p ,  so that we can write ((32) as 

'[- Q, 3 ~,X(ZmVZ~= • • • vZ~ ,V- :_~)  A ((33) 

~ 1  " " " A ~ . ~ , .  

l e t  us define, for each j =  1 . . . . .  m, 

AS = ~v-, zt ; ns= ,-sVA'- 

l e t  us fix some j =  1 . . . . .  m, and consider both cases (I) 
and (I 0 listed above: 

(I) l j  = 0 .  In this cease Hj  must contain a single element 
6, and r (~ )  C toULs. 
Lemma S.S: H lj satisfies condition (1) then 

F Aj = Z, ,~ V Q, v (O4) 

Proof: Omitted. 
From these formula we can deduce that for l j ' s  satis- 

fying (I) we have 

^ l AS 

(II) l / ~  0 and there exists q for which ~¢Fq E F ,  and 
q ¢ ~ F s f o r e a c h s  E I j .  

Let ~ E Hj be any pre-state. As in case (I) we clalm 
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Lemma $.6: If Ij satisfies condition (11) then 

~- Z~ ~ T~Onl (QsA--q) V ( V e (G6) 
, ~ • ~ r(onLj ' )  
v ( ) 

Proof: Omitted. 

These results, plus a few additional arguments imply 
that for i / s  satisfying (II) we have 

f AJ Z) ~F{--~jPV[bX(BmV--~jp~A-,~Bj-1]} . (GT) 

and since (G5) is a special case of (G7) by (A4), we con- 
dude that (GT) holds for each j = l  . . . . .  m. From this 
we can show that 

~- Bj D ~{--~oPVI~/X(BmV---~p)A~XBj-1]] (G8) 

for each l< j~m.  For j = l ,  the term in square brackets 
disappears, because L1 is empty; in this ease (G8) reduces 
to 

f B 1 D ~ ( - v )  (09) 

Lemma &7: 

k Bm D VF(-p) (G10) 

Proof: Omitted in this version; nevertheless we remark 
that it is here where rule (R4) is needed to establish com- 
pleteness of our axiomatic system. 

Having established (G10), choose next any pre-state 
e r(t) such that _ ~ p  E F e (e.g. for each 

s E m R(t ) - lo ,  the son ~, of s corresponding to ElM 

Lop E F s is such a pre-state). For each such ~ we have 

and also 

both of which formulae imply that 

so that, by dilution, 

Thus, by the por t ion  of the completeness p roo f  
corresponding to the marking rule (M4), it follows that 

of, for each • S'O), and in particular 

 of, 
O.E.D. 

This concludes our proof of completeness, for we 
have shown that the associated formula of each marked 
node is provable, and in particular afn0-- "To is prov- 
able, which is what we wanted to show. Q.E.D. 

6. Discussion 
Several additional consequences of our results 

deserve comment: Ftrst, the arguments of Section 4 actu- 
ally imply that PTL b has the following 

finite pre-model proimrty: If a formula p of PTL b is satis- 
fiable, then there exists a finite set of states i (actually 
pre-states of the associated tableau), and for each s E I 
there is a finite collection K(s) of probability distributions 
over ! such that a model for p can be obtained by some 
inductive "strategy" of choosing a distribution out of K(s) 
at each state s which in turn adds all states in the support 
of that distribution as successors of s in the model. 

The interest in the finite pre-modcl property stems 
from the intended application of PTL b to argue about con- 
current probabilistic programs. If p is a formula which 
asserts some property of a concarrent probabilisfic pro- 
gram, and which we wish to prove in PTLb, then either p 
is indeed provable, or else, by the finite pre-model pro- 
perry applied to - p ,  we can effectively construct a 
finite-state concurrent probabilistic program and produce 
a certain scheduling of its processes for which execution p 
does not hold. Thus PTLb, although interpreted over a 
larger collection of models, does serve as the proper tool 
to argue about finite-state concurrent probabilistic pro- 
grams. This observation also implies the following 
Corollary: It is impossible to express in PTLb a property 
of concurrent probabilistic programs which is true for 
some such programs having infinitely many states, but is 
false for all finite-state programs. 

However, the above model for a satisfiable formula p 
need not itself be finite (i.e. a model of PTLf), as can be 

seen from the example given in the appendix below. In 
fact, the formula ~C_r--dFp A _~3--p has no finite model, as 
can be easily checked. Newrtheless, it is possible to give 
sufficient and purely syntactic conditions for the existence 
of a finite model for a satisfiable formula of PTL b. In par- 
ticular we show that formulae expressing termination of 
finite state concurrent probabilistic programs satisfy these 
conditions, and hence can be tested for satisfiability in 
PT~e~ (for which a simpler decision procedure is avail- 
abl . More details are given in the complete version of 
the paper. 
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Appendix: An Example. 
Let • = ~,Cr--~Fp A :--[G~p be a formula in PTLb (for 

simplicity we use q3, ElF explicitly, instead of their impi- 
cit representation by ~U, _:U.) The construction of the 
tableau T for • is given in Fig. 1. To make T more corn- 

pact and readable, we combine several successive a 
expansions into a single expansion. Pre-states are given 
numerical labels enclosed in circles, while states are given 
alphabetical labels enclosed in boxes. Some intermediate 
nodes are also labeled, to indicate that the associated set 
of formulae is identical to that of a previously constructed 
node, so that further elaboration of T from that node on 
can be omitted from the figure, a and 13 expansions are 
denoted by dashed edges, while X expansions are denoted 
by solid edges. 

The tableau T just constructed is given in condensed form 
in Fig. 2, where only pre-states and states are shown, and 
where the expansion of a pre-state is shown only once. 

Since the subformula ~Fp is "fulfiUed" at state c, and 
since c is reachable from any other node of T, application 
of the marking rule (M5) results in no marking. Ap~ca-  
tion of the rule (M6) to the subformula q = _-_--tJ~p 
proceeds as follows: The set Nq of relevant nodes is 
{1,2,a,a',b,c}. The decomposition of this set as specified 
in (M6) is: 

10 = {b,c}; H1 = {1,2}; 11 = {a,a'} 

Since no subformulae of the form ~ appear in r, the set 
11 is ergodic, and so no node needs to be marked by this 

e ~ 

~: VG~Fl',,30"f 
3Fp, VXW. Ff. . L  3x  ,p Vx V 3O-e )  

O P . " L  ... VXVO3Fr. , vx (,,.,,. v 

# 

[ :]'. f~VXV'G3Ff 

| 

@ 

"l: 3x~FI" VXVC,3Ff 

Fig. 1. The tableau of • 
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Fig. 2. A condensed form of the tableau. 

rule. Hence • is satisfiable. To obtain a model for • from 
T we can use the following "schednling" strategy for the 
unwinding of T: 

At the we-state 1 schedule the (only possible) state a. 

At the we-state 2 schedule the state a '  until the first time 
in which the number of visits at the we-state 2 equals the 
number of visits at the we-state 1, in which case schedule 
the state c. 

At the we-state 3 always schedule the state c. 

The resulting model is shown in Fig. 3. It essentially coin- 
cides with the behaviour of a random walk on ~the nonne- 
gafive integers with absorption at 0. This model will 
satisfy r provided that we assign a probability > 1/2 to 
the edges from a to I and from a '  t o  1. The reader is 
invited to check that if one expands subformulae of the 
form _ ~ q  as q A ~ - k 3 q  (as done in the nonprobabilistic 
case [BPM]), then the modified tableau for r would be 
such that no model for r could be obtained by its unwind- 
ing. 

Remark: The schedule just introduced does not coincide 
with, and in fact is much simpler than the general 
schedule given in Section 4. The "price" that we pay for 
this simplicity is the need to assign probabilities within 
specific ranges to the transitions of this schedule, instead 
of the uniform assignment rule used in the schedule of 
Section 4. 

Fig. 3. Unwinding T into a model for r. 
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