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The main result is that in perfectly competitive markets, every value allocation is competitive. 
The model used is that of a non-atomic continuum of traders, both in a Walrasian and in a 
transferable utihty (monetary) market. No differentiability assumptions are made. The prob- 
lems of existence of the value and of the converse to the above result (i.e., that every competitive 
allocation is a value allocation) are also studied. 

1. Introduction 

The Value Equivalence Principle states that in a sufficiently differentiable 
perfectly competitive market, the set of value allocations coincides with the 
set of competitive allocations. 

By a ‘perfectly competitive’ market it is meant one in which every single 
trader is negligible. A ‘differentiable’ market is one where the preference 
relations of all the traders are representable by differentiable (or smooth) 
utility functions. 

The purpose of this paper is to investigate the above principle in general 
markets - i.e., not necessarily differentiable. 

We represent the ‘perfectly competitive’ market by a non-atomic continuum 
of traders [cf. Aumann (1964)], and we use the asymptotic approach for the 
concept of vaIue [cf. Aumann and Shapley (1974), Aumann (1975)]. The two 
kinds of markets are studied - Walrasian (without transferable utility) and 
monetary (with transferable utility). 

The main result is that one direction of the Value Principle is always true, 
namely, that in a perfectly competitive market, every value allocation is cotn- 

petitive. This can be interpreted to mean that the allocation of marginal con- 
tributions, if it is feasible, is also competitive. The reader is referred to Shapley 
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(1967) and Aumann (1975, $1 and §6), for detailed intuitive discussions and 
interpretations of these concepts. 

Next, it is shown that the second direction of the Principle - i.e., that every 
competitive allocation is a value allocation - is no longer true for all markets. 
However, it is proved that, at least in the transferable utility case, the Value 
Equivalence Principle holds for almost every market. 

A parallel development should be noted here. It is based on a limit approach - 
finite markets with a fixed number of types of traders, in which the number of 
traders in each type goes to infinity (replica economies). 

To place this work in its ‘context’ of research done on the relation between 
competitive and value allocations, table 1 is useful. 

Table 1 

LR NA 

Shapley (1964)** Aumann and Shapley (1974)** D 
M 

Champsaur (1975)* - S Hart (this paper)* ND 

Aumann (1975)** D 
W 

Champsaur (1975) * - S Hart (this paper)* ND 

M = Monetary (with transferable utility) 
W = Walrasian (without transferable utility) 

LR = Limit of replicas 
NA = Non-atomic 

D = Differentiable 
ND = Non-differentiable 

S = Symmetric value allocations only 
* = {value allocations} c {competitive allocations} 

** = {value allocations} = {competitive allocations} (Equivalence) 

The results of this paper were made possible by the development of the theory 
of asymptotic value for a class of non-atomic games which are, in some sense, 
non-differentiable [Hart (1977)]. 

The paper is organized as follows: the main results are included in section 3 
(for monetary markets) and in section 4 (for Walrasian markets), whereas 
section 2 is devoted to the model and some preliminary results. 

The book of Aumann and Shapley (1974) being a used reference, it will be 
abbreviated by A&S. 

2. Preliminaries 

We begin by recalling the basic mathematical model. The measurable space 
(1, %) is the trader space and p is a non-atomic non-negative o-additive measure 
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defined on V, satisfying, without loss of generality, p(I) = 1. We also assume 
(I, U) to be a standard measurable space [i.e., isomorphic to the unit interval 
with the Bore1 sets - cf. A&S (2.1)]. Since all integrals will be with respect to p, 
we will usually drop the symbol dp: when the integral is over all I, we will 
write J instead of JI. The commodity space is Sz, the non-negative orthant of the 
Z-dimensional Euclidian space. For x in CC?, xi will denote its jth coordinate. 
The initial allocation1 a is a measurable function from I to Q. We assume every 
commodity to be actually present in the market, i.e.,’ 

(2.1) S a 4 0. 

To each trader t in I corresponds a real-valued function ut defined on SL, 
called the utility function of t. All utility functions will be normalized by 
u,(O) = 0. The following assumptions are made: 

(2.2) Weak monotonicity.’ x 2 y implies u,(x) >= u,(y) for all t in I, 

(2.3) Continuity. u, is a continuous function, for all t E I, 

(2.4) Measurability. u,(x), as a function of (x, t), is measurable in the product 
field %? x gz, where L# denotes the Bore1 o-field on Sz, 

(2.5) q(x) = o(j 1 x 1 I) as 11 x 11 + co, integrably in t. 

The first three assumptions are standard. As for the last one, this is the Awnann- 
Perles (1965) condition. 

The non-atomic game a is defined by 

(2.6) u(S) = max { Js u,@(t)) dp(t) ] Ss a = Js x and x(t) E 0 
for all t e S>, 

for all SE %‘. The maximum is attained [this follows from (2.4) and (2.5) by 
the main theorem in Aumann-Perles (1965)]. For a discussion on the economic 
meaning of u see A&S ($30). The usual interpretation is that there is money in 
the market, and each trader’s utility increases by one unit for each unit of money 
added. Then v(S) is the maximum utility the coalition S can get by using its 
own initial resources alone, with unrestricted side payments between its members. 
This model is called: a market with transferable utility, or a monetary market. 
From now on, we will identify u with the market it arose from. 

‘Boldface letters will denote functions on I. 
2Forx,yinS2,x~ymeansx’>y~forallj=1,..., I, and x 2 y means xJ 2 y’ for all 

j=l 9 * * *, I. 
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An allocation is an integrable function x from Z to B such that 

A transferable utility competitive equilibrium (t.u.c.e.) is a pair (x, p), where x 
is an allocation and p E Q, such that for almost all t E Z, 

(2.7) U,(X) -P e (x - 40) 5 244t)) -p . w - 4th 

for all x E Q. The measure v defined by 

(2.8) 4s) = js k(x(t>> -p . (x(t) -4tNl dAt)> 

for all SE V, is called the competitive payof distribution, with respect to the 
t.u.c.e. (x,p). Again, see A&S (832) for an intuitive discussion of this concept. 

(2.9) Proposition. The core of v is not empty, and it coincides with the set 
of competitive payofldistributions. 

Proof. Propositions 32.5 and 32.2 in A&S. 

(2.10) Proposition. Let z be such that v(Z) is attained at z. Let (x, p) be a 

t.u.c.e. Then (z, p) is a t.u.c.e., and their competitive payofldistributions coincide. 

Proof Apply (2.7) to x = z(t) to get 

(2.11) u,MO> -P * (z(t) -4t)) 5 utCx(t)) -p * (x(t) -a(t)), 

for almost all t E I. Since s z = s x = J a, the integration over Z gives 

(2.12) j u,cdO) s j uMt>>. 

But v(Z) is attained at z, therefore we must have equality in (2.12), hence 
also in (2.1 I), for almost all t E I, which proves the proposition. 

In the following, let z be a fixed allocation at which v(Z) is attained, and 
define 

(2.13) 57s) = ss u,(z(t)) du(t), 

(2.14) c’(S) = js (uj-z’j, for j = 1, . . . . Z, 
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for all S E %‘. Then co is a non-atomic measure, and c = ([I, . . . , 5’) is a vector 
of non-atomic measures. 

The set of all competitive prices, i.e., the set of all p in 52 such that (x,p) 
is a t.u.c.e. for some allocation X, will be denoted by P. For every p in 0, let 

(2.15) vp = 5O+-P * 5, 

then we get: 

(2.16) Corollary. The core of v is the set of all vg for p in P. 

Proof. Propositions 2.9 and 2.10. 

Two characterizations of P are given in the next propositions. 
Let f be a real-valued function on .52, and let z E a. The vector p E R is called 

a super-gradient off at z if 

f(x) Sf(z)+p * (x-z), 

for all x E 0, i.e., if the hyper-plane with ‘slope’ p through f(z) is always 
‘above’ f. Let df(z) denote the set of supergradients off at z. If f is concave, 
then df(z) is non-empty for every z b 0; if, moreover, f is differentiable, then 
the only point in df(z) is the gradient off at z [see Rockafellar (1970, $23, $25 
and p. 308)]. 

Let A, be a set for all t in I. The essential intersection of A, for all t in I is 
defined to be the set of all points belonging to almost3 all A,. We will denote 
this set by ess.n,,,d,. 

(2.17) Proposition.4 Let z and P be as above. Then 

P = ess.n ,,14(Gt))* 

Proof. Immediate from the definition of t.u.c.e. and Proposition 2.10. 

This means that a vector P in Sz is a competitive price if and only if it is a 
super-gradient of U, at z(t) for almost all t in I. 

(2.18) Example. Let 1 = 1, and assume half the traders have utility function 
ul, and the other half utility z+, (see fig. 2.19). Then the onZy competitive 
price is p. 

3With respect to .u. 
4Robert J. Aumann, private communication. 
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Fig. 2.19 

As in A&S ($36) we will define the function u, on Q by 

u,(a) = max ( J+(t)) d,n(t) ) Jx = a, x(t) E G? for all t E I}, 

for all a E 8. Note that the maximum is attained, and 

where z is the allocation defined above. 

(2.20) Proposition. 5 Let P and u, be as above, then 

P = du,(Ja). 

Proof. First, assume p E P, and let a E Sz. Then ul(a) is attained at some X. 
Using Proposition 2.17, we get 

for almost every c in I. By integrating over I, it follows that 

Second, assume p 4 P. Again, by Proposition 2.17, there is a set S E V of 
positive measure and a vector x(t) E !A for every t in S, such that 

5Robert J. Aumann, private communication. 



S. Hart, Values of non-diflerentiable markets 109 

(2.21) %(W> > u,(z(t>) +p * (x(t) -z(t)>, 

for all t E S. Define x(t) = z(t) for t $ S, then we get equality in (2.21) for 
those t. 

Integrating over all I (recall that S has positive measure) we get 

Denote a = jx, then the definition of U, implies that 

hence p 4 Au,(Ja). 

3. Monetary markets 

This section includes the main results for markets with transferable utility 
(i.e., monetary markets). 

First, we will recall some notions and theorems from Hart (1977). 
The space H; consists of all non-atomic games in pNA’ (i.e., limits in the 

supremum norm of all polynoms in non-atomic measures), which are homo- 
geneous of degree one, superadditive and monotone. For a subset X of a linear 
space, x0 is a center of symmetry of X if for every x in X, its symmetrical image 
with respect to x,,, i.e., 2x,-x, also belongs to X. 

The next three theorems are proved there (as Theorems A, B and C, res- 
pectively) : 

(3.1) Theorem. Let v E Hi. If v has an asymptotic value +v, then 4v is a 
member of the core of v. 

(3.2) Theorem. Let v E H, . If v has an asymptotic value +v, then C#W is the 
center of symmetry of the core of v. 

(3.3) Theorem. Let v E Hi. If the core of v contains only one member vO, 
then v has an asymptotic value C$V = v,,. 

We return now to the monetary markets. To use the above results, we have 
to prove first the following: 

(3.4) Proposition. Let v be a transferable utility non-atomic market sati:fying 
(2.2)-(2.5). Then v E Hi. 

The proof will be given at the end of this section. 
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We come now to the Value Equivalence Principle. One should note that in 
the case of transferable utility markets, the set of value allocations is either 
empty, or consists of one member (the asymptotic value of the corresponding 
game). 

The first theorem is the one part of the Value Principle which is always true. 

Theorem A. Let v be a transferable utility non-atomic market satisfying (2.1)- 
(2.5). If v has an asymptotic value @, then &I is a competitive payoff distribution. 

Proof. Follows immediately from Theorem 3.1 and Propositions 2.9 and 3.4. 

The next theorem gives a necessary condition for the existence of the value: 

Theorem B. Let v be a transferable utility non-atomic market satisfying (2.1)- 
(2.5). If v has an asymptotic value, then the set of competitive payofSdistributions 
and the set P of competitive prices each have a center of symmetry. 

Proof: It is easy to see that the assertions for the two sets are equivalent, since 

%0-p = 2%&-v,, 

by (2.15), and since vp is a competitive payoff distribution if and only if p E P 
(Corollary 2.16). The theorem follows now from Theorem 3.2 and Propositions 
2.9 and 3.4, 

As a consequence of this theorem, we will show now that the Value Equi- 
valence Principle is not always true. Indeed, take any market for which P has 
no center of symmetry [e.g., whenever P is the convex hull of more than two 
price vectors -cf. Hart (1977); see also Example 4.61. The set of value alloca- 
tions is then empty, whereas the set of competitive allocations is not (Proposition 
2.9). 

However, the next theorem will show that in general, this is not the case: 

Theorem C. Let U = (utjrsI be utility functions satisfying (2.2)-(2.5). Let 
A = AU denote the set of all vectors a in 52 such that there is a transferable 
utility non-atomic market6 (a, U> with7 j a = a, for which the Value Equivalence 
Principle does not hold. Then A is a set of (Lebesque) measure zero in 52. 

Proof. By Proposition 2.19, the set P of competitive prices is the set of super- 
gradients of u, at a. The function u1 is concave on Sz [cf. A&S (Proposition 

‘I.e., the market with initial allocation a and utility functions U. 
‘The vector a is the ‘total initial allocation’. 
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36.3)], hence the set of points where it is not differentiable has measure zero 
in 52 [cf. Rockafellar (1970, Theorem 25.5)]. Therefore P consists of a unique 
point [the gradient - cf. Rockafellar (1970), Theorem 25.1)] outside a set of 
measure zero in 52. Applying now Theorem 3.3 and recalling Corollary 2.16 
Propositions 2.9 and 3.4, the theorem is proved. 

Remarks. (i) The proof of Theorem C reveals the following interesting fact: 
although the utility functions are not differentiable, one gets almost always 
unique competitive price and payoff distribution (recall also Example 2.18). 

(ii) Assumption 2.1 is necessary only to ensure that the core and the set of 
competitive payoff distributions coincide (Proposition 2.9). In case it is not 
satisfied, both Theorem A and Theorem B must be formulated in terms of the 
core. For the same reason, Theorem D does not depend on this assumption. 

Theorem D. Let v be a transferable utility non-atomic market satisfying (2.2)- 
(2.5). Assume that 

(3.5) for every t, &,(x)/axj exists at every x in 52 for which xj > 0, for all 
lsjsl. 

Then v has an asymptotic value &I, and the core of v consists of the single measure 

dv. 

PrOOJ< Assume first that (2.1) is also satisfied. We will prove that (3.5) implies 
that the set P of competitive prices consists of a single point. Let p E P, then 
Proposition 2.17 implies that p is a super-gradient of U, at z(t) for almost all t. 
Let 1 5 j 5 I, then s cej > 0 by (2.1), therefore z’(t) > 0 for a set of positive 
measure in I. Let ej denote the jth unit vector in R1 (i.e., whose jth coordinate 
is 1 and all others are 0), and let t be such that z’(t) > 0 and p E Au&(t)). 
Then, by definition of super-gradient, we get for I > 0 small enough 

[u,(Z(t>+~ej)-u,(Z(t>)l/l 5 [P ' lejl/n = P’, 

and 

[",(Z(t)--;lej)-uu,(Z(t))]/(--;l) 2 [P * (-Aej)]/(-2) = P’. 

By (3.5), the limit as I -+ 0 of the left-hand side exists, and equals 
au(z(t))/dxj, hence pj is uniquely determined, which proves that there is only 
one p in P. 

We have proved that (3.5) implies that the core of v consists of only one 
point, assuming (2.1). But v does not change whenever commodities with zero 
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as total initial allocation are added, hence the assumption (2.1) is not needed. 
The theorem now follows from Theorem 3.3 and Propositions 2.9 and 3.4. 

Remark. Theorem D includes the asymptotic part of Proposition 31.7 in 
A&S. In fact, we assume less (weak monotonicity instead of strict one,8 and 
existence of the partial derivatives only, without their continuity), and the proof 
is much simpler-no need for the complicate approximations in A&S (see 
especially $40). 

To end this section, we have to prove Proposition 3.4. We will follow quite 
closely the results of Chapter VI in A&S. 

Let U denote the set of utility functions {u~}~~~. U is of finite type if it is a 
finite set. 

(3.6) Lemma. Let U be ofJinite type. Then v E H; . 

Proqfl As in A&S ($39) we get a continuous, non-decreasing and concave 
function g, and a vector of NA measures v, such that v = g 0 v [(39.7), Lemma 
39.9 and (39.18) in A&S]. By Lyapounov’s (1940) theorem, the range of v is 
compact, hence there is a sequence of polynomials (h,} converging to g in the 
supremum norm on the range of v (Weierstrass’ approximation theorem). 
Since h, 0 v are polynomials in NA measures, we get h, 0 v EPNA’ and 
(h,ov)* = h, 0 v* by Proposition 22.16 in A&S. Hence h, 0 v are homogeneous 
of degree one, and h, o v + g 0 v = v in the supremum norm. This implies that 
v is inpNA’ and is homogeneous of degree one. From the definition of v follows 
v 2 0 and its superadditivity, which proves the lemma. 

(3.7) Lemma. . .. 
For every E > 0 there IS U = (iit}tEl of$nite type such that 

I 4% - W) I < E, 

for all S E %, where 0 denotes the set function obtained by replacing U with 0. 

Proof. The same arguments prove that Propositions 35.5 and 35.6 in A&S 
are true for @,, and aO, respectively; i.e., for every 6 > 0 there is a &approxi- 
mation to U of finite type. Let 6 correspond to 

% what concerns the asymptotic approach, this solves positively Open Problem B in A&S 
(0 41). 
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by Proposition 37.11 in A&S, and let 8 be the above b-approximation, then 

which proves the lemma. 

Proof of Proposition 3.4. For every E > 0 there is 0 of finite type such that 
11 v-5 11’ < E, where 11 11’ denotes the supremum norm (Lemma 3.7). But 0 
is in N; (Lemma 3.6), which is closed in the supremum norm, therefore v E H$. . 

4. Walrasian markets 

In this section we will prove our theorem for non-atomic markets without 
transferable utility (i.e., Walrasian markets). 

As in section 2, we are given a trader space (1, %?), a positive non-atomic 
measure p on V and an initial allocation u satisfying (2.1). Unlike the transfer- 
able utility case, no (cardinal) utility functions are given. Instead, we have for 
each t in I, an ordinal preference relation >t on Q, which satisfies: 

(4.1) 

(4.2) 

(4.3) 

Desirability. x 2 y and x # y imply 

Continuity. For each x in Q, the sets {y 
are open relative to Q. 

Measurability. For any two measurable 
to Q, the set {t I x(t) >, y(t)} is in %T. 

x >tY. 

I Y >t x> and (Y I x >t v>l 

functions x and y from I 

An allocation is a measurable function x from I to 51 such that J x = J u. It 
is called competitive if there exists a vector p # 0 in B such that (x, p) is a Walras 
competitive equilibrium, i.e., for almost all t in I, x(t) is maximal with respect 
to >t in tth budget set, 

B,(t) = {x E 0 1 p * x 5 p - a(t)>. 

Let u = hLI be a family of utility functions, representing the given 
preferences {>t}ter; i.e., for every t in I, 

u,(x) > u,(y) if and only if x st y. 

If U satisfies also’ (2.59, a transferable utility market v = vu can be defined 
by (2.6). 

gNote that (4.2) and (4.3) imply (2.3) and (2.4), respectively. As for (4.1), it implies strict 
monotonicity [i.e., x 2 y and x # y imply u,(x) > u,(y)], which is stronger than (2.2). 
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The allocation x is called a value allocation if there exists a family U of 
utilities, representing the preferences and satisfying (2.5), such that vu has an 
asymptotic value I&J”, and 

&dS) = js &(t>> d/-4), 

for all S in %?. 
This definition is much more natural than Aumann’s (1975), since almost any 

family U is ‘admissible’ here, and not only bounded differentiable ones [the 
only requirement is (2.5), which ensures that v,(S) is attained for every S in WJ. 

The definition of value in the non-transferable utility case is due to Harsanyi 
(1959) and Shapley (1967). A good intuitive discussion of the non-transferable 
utility value in an economic context can be found in Aumann (1975). The 
reasoning is as follows: First, one artificially assumes that uti2ity transfers are 
permissible. If the game vu which results has a value, and this value can in fact 
be achieved by an allocation x without any utility transfers, then x is a value 
allocation. 

Theorem E. In a non-atomic Walrasian market satisfying (2.1) and (4.1)-(4.3), 
every value allocation is competitive. 

Proof. The proof is similar to that of Proposition 8.1 in Aumann (1975). 
Let x be a value allocation corresponding to U, i.e., 

(4.4) &J(S) = js uMt>) Mt), 

for every Sin %?. Then $~~(l) = v,(l), hence v,(l) is attained at X. By Theorem A, 
there is a vector p in P such that &, is the competitive payoff distribution with 
respect to the t.u.c.e. (x,p), i.e., 

(4.5) &J&S) = Js I&(t)) -p . (x0> - a(t>>l44t). 

Combining (4.4) and (4.5), we get that 

P * w> -a@>> = 0, 

for almost all t in I. A standard argument now implies that (x,p) is a com- 
petitive equilibrium [e.g., Lemma 13.3 in Aumann (1975)]. 

In the uniformly smooth case, the Value Equivalence Principle holds, as 
proved by Aumann (1975). In the general case, this is no longer true. The follow- 
ing example shows it: 
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(4.6) Example. Let [0, I] be the set of traders and let 1 = 3 be the number 
of commodities. The preference relations >t are the same for all t, and they are 
defined by the utility function 

u(x) = 0.7 - min x’+O.l * f xi. 
15i$3 i=l 

This is the so-called ‘three-handed’ glove market, cf. A&S (p. 203). The initial 
allocation is a(t) E (1, 1, 1). 

Let P denote the convex hull of the 3 vectors, 

p1 = (0.8, 0.1, O.l), 

p2 = (0.1,0.8, O.l), 

p3 = (0.1, 0.1, 0.8). 

Then U(X) = min,.i53pi *x = minpsPp * x, and P is the set of super-gradients _- 
of u at (1, 1, 1). 

Let w be any utility function representing the same preference relation as U. 
We claim that dw(1, 1, l), the set of super-gradients of w at (1, 1, l), must 
be equal to 

(4.7) v CtP, 
as‘4 

where A is some interval of the positive real line, possibly empty. The proof is 
as follows: First, there must be a continuous and strictly increasing function h 
such that w = h 0 U. Second, let A be the set of super-gradients of h at 
1 = ~(1, 1,l); then ccp E dw(1, 1,1) for every CI E A and p E P. Third, by con- 
sidering the indifference surface through (1, 1, l), we show that every q in 
dw(l, 1, 1) must be proportional to some p in P. And fourth, using the fact that 
u(v, y, JJ) = y for every y > 0, we prove that whenever ap E dw(1, 1, 1) for 
somep in P, c1 must belong to d/r(l). 

Returning to the market, it is easy to check that the only competitive alloca- 
tion is x = a (this follows from the quasi-concavity of the preference relations). 

Suppose x were also a value allocation, with respect to a family JV = {w,) 
of utilities. Since dw,(r(t)) is of the form (4.7) for every t, the set Q of trans- 
ferable utility competitive prices at x must be of the same form (by Proposition 
2.17). Hence Q is either empty or is a truncated triangular pyramid, which has 
no center of symmetry, and this implies by Theorems A and B, respectively, 
that ZI,+, has no asymptotic value. 
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(1) Added in proof 

A. Mas-Cole11 (1977), Competitive and Value Allocations of Large Exchange Economies, 
Journal of Economic Theory, vol. 14, pp. 419-438, proves the Value Equivalence Principle 
for sequences of finite Walrasian differentiable markets (converging to a regular limit), thus 
filling in the empty box W-D-LR in table 1. 

(2) Added in proof 

Theorem B (p. 110) is correct as it stands only if the range R(r) of the vector measure 5 (see 
p. 107) has full dimension (i.e., dimension I). In the general case, the second sentence of 
Theorem B must be amended to as read as follows: Zf v has an asymptotic value, then the set 
of competitive payoff distributions has a center of symmetry, and so does the projection of the 
set P of competitive prices on the Iinear space of R(I;). (The linear space of a set is the smallest 
linear space containing that set.) 

Unfortunately, in Example 4.6, we by bad luck chose precisely the most degenerate case - far 
from having full dimension, R(c) in this case has dimension 0. To make the example correct, 
we should choose a (t) to be (3,0,0,),(0,3,0,), and (0,0,3,) when t is in [O&3), [l/3, 2/3),and 
[2/3,1] respectively. Similarly, on line 7 from the bottom of p. 115, x = a should be replaced 
by x = (l,l,l,). 


