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Abstract

We consider the menu size of mechanisms as a measure of their complexity, and study how it relates 
to revenue extraction capabilities. Our setting has a single revenue-maximizing seller selling a number of 
goods to a single buyer whose private values for the goods are drawn from a possibly correlated known 
distribution, and whose valuation is additive over the goods. We show that when there are two (or more) 
goods, simple mechanisms of bounded menu size—such as selling the goods separately, or as a bundle, or 
deterministically—may yield only a negligible fraction of the optimal revenue. We show that the revenue 
increases at most linearly in menu size, and exhibit valuations for which it increases at least as a fixed 
fractional power of menu size. For deterministic mechanisms, their revenue is shown to be comparable 
to the revenue achievable by mechanisms with a similar menu size (which is exponential in the number 
of goods). Thus, it is the number of possible outcomes (i.e., the menu size) rather than restrictions on 
allocations (e.g., being deterministic) that stands out as the critical limitation for revenue extraction.
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1. Introduction

Are complex auctions better than simple ones? Myerson’s (1981) classic result (see also Riley 
and Samuelson, 1981, and Riley and Zeckhauser, 1983) shows that if one is aiming to maximize 
revenue when selling a single good, then the answer is “no.” The optimal auction is very simple, 
allocating the good to the highest bidder (using either first or second price) as long as he bids 
above a single deterministically chosen reserve price.

However, when selling multiple goods the situation turns out to be much more complex. There 
has been significant work both in economics and in computer science1 showing that, for selling 
multiple goods, simple auctions are no longer optimal. Specifically, it is known that randomized 
auctions may yield more revenue than deterministic ones, and that bundling the goods may yield 
higher (or lower) revenue than selling each of the goods separately. This is true even in the very 
simple setting where there is a single buyer.

In this paper we consider such a simple setting: a single seller, who aims to maximize his 
expected revenue, sells two or more heterogeneous goods to a single buyer whose private values 
for the goods are drawn from an arbitrary (possibly correlated) but known prior distribution, and 
whose value for bundles is additive over the goods in the bundle. Since we are considering only a 
single seller, this work may alternatively be interpreted as dealing with the monopolistic pricing 
of multiple goods.2

In our previous paper, Hart and Nisan (2012/2017),3 we considered the setup where the 
buyer’s values for the different goods are independent, in which case we showed that simple 
mechanisms are approximately optimal: selling each good separately (deterministically) for its 
optimal price extracts a constant fraction of the optimal revenue. In this paper (see Hart and 
Nisan, 2013, for the original version), we show that the picture changes completely when the 
valuations of the goods are correlated, in which case “complex” mechanisms can become arbi-
trarily better than “simple” ones.

The setup is that of k goods, whose valuation to the single buyer is given by a random variable 
X = (X1, X2, ..., Xk) with values in Rk+; we emphasize that we allow for arbitrary dependence 
between the coordinates of X. The buyer’s valuation for a bundle of goods is additive over the 
goods; thus, for example, getting the first two goods is worth X1 + X2 to the buyer. We denote 
by REV(X) the optimal revenue achievable by any mechanism for selling k goods to an additive 
buyer with a random valuation X.

Consider first the case of just two goods, i.e., k = 2. When the valuations of the two goods are 
independent (i.e., X1 and X2 are independent random variables), Hart and Nisan (2017) showed 
that selling the goods separately—each one at its optimal one-good price—is guaranteed to yield 

1 See Section 2 for a literature survey.
2 Appendix A.4 discusses the extension of our results from the single-buyer to the multiple-buyer setting.
3 By “2012/2017” we mean “conference proceeding in 2012 and journal publication in 2017.”
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at least 50% of the optimal revenue, a bound that was later improved to 62% by Hart and Reny
(2017).4 This can be stated in terms of the “Guaranteed Fraction of Optimal Revenue” (GFOR)5

as6

GFOR(SEPARATE; 2 independent goods) ≥
√

e√
e + 1

≈ 0.62.

How does this fraction change when the two goods need not be independent? Our first result 
is that it drops all the way down to zero:

GFOR(SEPARATE; 2 goods) = 0.

Indeed, we show that7

For every ε > 0 there exists a two-good random valuation X with values in [0, 1]2 such that

SREV(X) < ε · REV(X),

where SREV stands for the “separate revenue” achievable by selling the goods separately. Thus, 
for correlated goods, selling separately may yield only an arbitrarily small fraction of the optimal 
revenue. We emphasize that, while we provide specific such random valuations X, none of the 
constructions in this paper are knife-edge (see Remark 6.2(b)).

This suggests considering the other one-dimensional mechanism, namely, that of selling the 
two goods as a bundle. That does not help: the guaranteed fraction of optimal revenue is still 
zero; i.e.,

GFOR(BUNDLED; 2 goods) = 0.

In fact, even the larger class of all “deterministic” mechanisms—in which the seller sets a price 
for each good separately as well as a price for the bundle—does not fare any better:

GFOR(DETERMINISTIC; 2 goods) = 0. (1)

This immediately extends to any number of goods k ≥ 2 (just add k − 2 goods with zero 
valuation):

GFOR(DETERMINISTIC; k ≥ 2 goods) = 0. (2)

While these results (all of which are special cases of Theorem A) are new in the case of k = 2
goods, they have already been established for k ≥ 3 goods in the related model of a unit-demand
(instead of additive) buyer—i.e., a buyer who wants to get only one of the k goods—by Briest 
et al. (2010/2015); the case of two goods was left open, with some partial results indicating 
that GFOR may be bounded away from zero for k = 2. While the unit-demand model and our 

4 For regular goods, Hart and Reny (2017) show that this bound increases to 73%, quite close to the known upper 
bound of 78% (Hart and Nisan, 2017).

5 See Hart and Nisan (2017): given a class of mechanisms N and a class of valuations X, we define GFOR(N ; X) as 
the maximal fraction of the optimal revenue that is guaranteed—for all valuations in X—to be achieved by mechanisms 
in N (cf. Section 3.4).

6 In the related unit demand setup (see below), Chawla et al. (2010b) show a GFOR of 1/4 for the separate selling of 
any number of independent goods.

7 This is a special case of Theorem A; see Section 4 for precise statements of the main results.
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additive model are different, they are closely related: the various revenues in the two models are 
within constant factors of one another (see Appendix A.3 for precise statements). On the one 
hand, this implies that our result (2) for k ≥ 3 goods follows from the above-mentioned result of 
Briest et al. (2015); on the other hand, our result (1) solves their open problem for k = 2: there 
is an infinite gap between the deterministic revenue and the optimal revenue in the unit-demand 
model, already for two goods.

What these results say is that allowing for probabilistic outcomes, where the buyer gets some 
goods with probabilities that are strictly between 0 and 1, makes a huge difference in terms 
of revenue. But is it really the probabilistic vs. deterministic distinction that matters here? A 
deterministic mechanism for k goods consists of setting prices for nonempty subsets of goods 
and thus provides to the buyer at most 2k − 1 nonzero outcomes to choose from. Suppose we 
were to limit the seller to provide the same number, i.e., 2k − 1, of outcomes, but allow these 
outcomes to be probabilistic; would that significantly increase the revenue? The answer is that it 
would not! As we will see, the guaranteed fraction of optimal revenue remains zero for any fixed 
bound on the number of outcomes.

Formally, we define the menu size of a mechanism to be the number of possible outcomes of 
the mechanism, where an outcome (or “menu entry”) specifies for each good i the probability qi

that it is allocated to the buyer, together with the payment s that the buyer pays to the seller8; it 
turns out to be convenient not to count the “zero” outcome of getting nothing and paying nothing 
(this outcome is always available, as it corresponds to the individual rationality or participation 
constraint). It is easy to see, and well known, that in our setting any mechanism can be put 
into the normal form of offering a fixed menu and letting the buyer choose among these menu 
entries. Notice that while deterministic mechanisms for k goods can have a menu size of at most 
2k −1 (since each qi must be 0 or 1), randomized mechanisms can have an arbitrarily large, even 
infinite, menu size. Let REV[m](X) denote the optimal revenue achievable by mechanisms whose 
menu size is at most m. For a single good, k = 1, the characterization of optimal mechanisms 
of Myerson (1981) implies that REV[1](X) is already the same as the optimal REV(X), but this 
is no longer true for more than a single good: the revenue may strictly increase as we allow the 
menu size to increase.

Our general result—Theorem A—is that for any fixed m, mechanisms that have at most m
menu entries cannot guarantee any positive fraction of the optimal revenue:

GFOR(MENU SIZE ≤ m; k goods) = 0 (3)

for any number of goods k ≥ 2 and any menu size m ≥ 1. Thus, having a large set of possible 
outcomes—a large menu from which the buyer chooses, according to his valuation (or type)—
seems to be the crucial attribute of the high-revenue mechanisms: it enables the sophisticated 
screening between different buyer types that is required for high-revenue extraction. As stated 
above, taking m = 2k − 1 yields result (2), which suggests that (2) is not driven by the mecha-
nisms being deterministic, but rather by their being limited in the number of outcomes that they 
can offer.

Result (3) says that it does not matter exactly how “simple” mechanisms are defined; as long 
as their menu size is bounded (which is natural, as unbounded menu size can hardly be considered 
simple9), we have

8 See Dobzinski (2011) for an earlier use of menu size in the context of combinatorial auctions.
9 See the discussion in Section 3.2 on other complexity measures that do not use the “normal form” menu representa-

tion.
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For multiple goods, simple mechanisms cannot guarantee any positive fraction of the opti-
mal revenue.

At this point, all simple mechanisms look equally “bad” when compared to the optimal 
revenue-maximizing mechanism. It does not however preclude some mechanisms from being 
better than others in terms of their revenues. This leads us to compare mechanisms by taking 
as a benchmark the simplest basic revenue (rather than the optimal revenue), which we take to 
be REV[1](X), the revenue that is achievable from a single take-it-or-leave-it offer (i.e., a sin-
gle menu entry); as we will see in Section 3.3, this basic revenue turns out to be nothing other 
than the revenue from selling the bundle of all goods at its optimal price, which we denote by10

BREV(X). Thus, given a mechanism μ we define the “Multiple of Basic revenue” of μ, or 
MOB(μ) for short, to be the maximum, over all (relevant) valuations X, of the ratio of the rev-
enue that μ extracts from X to the basic revenue REV[1](X) from X. Thus, MOB(μ) measures 
how many times better the revenue from μ can be relative to the basic revenue. The definition 
of MOB is then extended to classes of mechanisms by taking, as usual, the maximum over the 
mechanisms in the class.

Besides its natural meaning, the MOB measure turns out to be quite a useful tool for the anal-
ysis; in fact, most of the results here are obtained using MOB. First, MOB turns out to be given 
by a simple explicit formula (see Theorem 5.1 in Section 5). Second, GFOR(BOUNDED) = 0 is 
equivalent to having mechanisms with arbitrarily large MOB (see Proposition 3.4(i)); we con-
struct such mechanisms making use of the explicit formula for MOB (see Sections 6 and 7). 
And third, for any class N of mechanisms with a finite MOB—such as deterministic mecha-
nisms, or mechanisms with bounded menu size—the result that GFOR(N ) = 0 follows imme-
diately from GFOR(BOUNDED) = 0 (see Proposition 3.4(ii)). All these together prove Theo-
rem A.

In addition, we show that the relation between MOB and menu size is polynomial11 (see 
Theorem C); that the MOB of deterministic mechanisms is exponential in the number of goods 
(specifically, for many goods, i.e., large k, the MOB of deterministic mechanisms is essentially 
the same as the MOB of mechanisms with the same menu size, i.e., 2k −1; see Theorem D); and, 
finally, that the MOB of separate-selling mechanisms is linear in the number of goods (specifi-
cally, it equals the number of goods k; see Theorem E).

To summarize the contribution of this paper: in the context of selling multiple goods, where 
finding the optimal, revenue-maximizing, mechanism is an extremely difficult problem, we study 
what can be achieved by simple mechanisms. First, we introduce the concept of menu size, 
which, although just a simple and crude measure of the complexity of mechanisms, nevertheless 
turns out to be strongly related to their revenue-extraction capabilities (see for instance The-
orems C and D). Second, we show that mechanisms having an arbitrarily large, even infinite, 
number of menu items are needed when maximizing revenue for two or more correlated goods, 
whereas mechanisms with bounded menu size may yield only an arbitrarily low fraction of the 
optimal revenue (see Theorem A). And third, we compare mechanisms in terms of how high a 
multiple of the basic revenue they can achieve, a comparison tool that turns out to be very useful 
throughout the whole analysis.

10 The “B” in BREV, which stands for “Bundled,” may thus stand also for “Basic.”
11 Rather than exponential/logarithmic; specifically, a fixed fractional power of menu size.
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1.1. Organization of the paper

In Section 2 immediately below we briefly go over some of the related literature. Section 3
presents our model, defines the menu-size complexity measure and the revenue comparison tools
GFOR and MOB, and provides some preliminary results. The main results are then formally 
stated in Section 4, which also includes a guide to the proofs. Section 5 deals with the MOB
measure, which is then used in Sections 6 and 7 to construct valuations that prove our results. 
Section 8 studies separate selling, and introduces the more refined “additive menu size” com-
plexity measure. We conclude in Section 9 with positive approximation results for the case where 
the valuations are in a bounded domain. Additional results are relegated to the appendices: the 
computation of MOB for two-good deterministic mechanisms (Appendix A.1); the use of the 
separate-selling revenue, instead of the bundled revenue, as the “basic” revenue (Appendix A.2); 
the relations between our setup and the unit-demand setup (Appendix A.3); and the multiple-
buyer case (Appendix A.4). A summary list of the main notation can be found in Appendix A.5.

2. Literature

We briefly survey some of the existing work on these issues (see also the Introduction section 
above).

The realization that maximizing revenue with multiple goods is a complex problem has had 
a long history in economic theory and more recently in the computer science literature as well. 
McAfee and McMillan (1988) identify cases where the optimal mechanism is deterministic. 
However, Thanassoulis (2004) and Manelli and Vincent (2006) found a technical error in the 
paper and presented counterexamples.12 These papers contain good surveys of the related work 
within economic theory, with more recent studies by Fang and Norman (2006), Pycia (2006), 
Manelli and Vincent (2007, 2012), Jehiel et al. (2007), Lev (2011), Pavlov (2011), Hart and 
Reny (2015). In the past few years algorithmic work on these types of topics has been carried 
out. One line of work shows that for discrete distributions the optimal mechanism can be found 
by linear programming in rather general settings: Briest et al. (2010/2015), Cai et al. (2012a), 
Alaei et al. (2012). Another line of work deals with optimal mechanisms for multiple goods in 
various settings: Daskalakis et al. (2013, 2014, 2017), Giannakopoulos (2014), Giannakopoulos 
and Koutsoupias (2014), Menicucci et al. (2015), Tang and Wang (2017). Yet another line of 
work attempts to approximate the optimal revenue by simple mechanisms in various settings, 
where simplicity is defined qualitatively: Chawla et al. (2007, 2010a, 2010b), Alaei et al. (2012), 
Cai et al. (2012b). In this line of research, Hart and Nisan (2012/2017) consider mechanisms 
that sell the goods either separately or as a single bundle to be simple mechanisms, and show 
that when the values of the goods are independently distributed then a nontrivial fraction of the 
optimal revenue can be ensured by simple mechanisms. This was followed by various improved 
approximation results for independently distributed goods: Li and Yao (2013), Babaioff et al.
(2014), Yao (2014), Rubinstein and Weinberg (2015), Hart and Reny (2017), Babaioff et al.
(2018). By contrast, Briest et al. (2015) consider deterministic mechanisms to be simple, and, in 
the unit-demand setting with at least 3 correlated goods, prove that deterministic mechanisms 
cannot ensure any positive fraction of the revenue of general mechanisms.

12 See Hart and Reny (2015) for a simple and transparent such example, together with a discussion of why this phe-
nomenon can occur only when there is more than one good.
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Approaches to quantifying the complexity of mechanisms are studied by Balcan et al. (2008), 
Dughmi et al. (2014), Morgenstern and Roughgarden (2015); we discuss these in Section 3.2. 
Since the circulation in 2013 of early versions of the present paper there has been additional 
work on menu-size complexity; see Babaioff et al. (2017), Gonczarowski (2017), the tutorial of 
Goldner and Gonczarowski (2018), and the references there.

In the case where the valuations are bounded, the approximation of auctions and mechanisms 
by various discretizations is studied by Hartline and Koltun (2005), Balcan et al. (2008) (where 
the construction is attributed to Nisan), Briest et al. (2015), Daskalakis and Weinberg (2012), 
Dughmi et al. (2014); see the discussion following the statement of Theorem B in Section 4.

3. Preliminaries

3.1. The model

The basic model is standard, and the notation follows our previous paper Hart and Nisan
(2017), which the reader may consult for further details (see also Hart and Reny, 2015). For the 
reader’s convenience, we have provided a summary of the basic notations in Appendix A.5.

One seller (or monopolist) is selling a number k ≥ 1 of goods (or items, objects, etc.) to one 
buyer.

The goods have no value or cost for the seller. Let x1, x2, ..., xk ≥ 0 be the values of the goods 
to the buyer. The value of getting a set of goods is additive: getting the subset I ⊆ {1, 2, ..., k} of 
goods is worth 

∑
i∈I xi to the buyer (and so, in particular, the buyer’s demand is not restricted to 

one good only). The valuation of the goods is given by a random variable X = (X1, X2, ..., Xk)

that takes values in Rk+ (we thus assume that valuations are always nonnegative); we will refer 
to X as a k-good random valuation. The realization x = (x1, x2, ..., xk) ∈ Rk+ of X is known to 
the buyer, but not to the seller, who knows only the distribution F of X (which may be viewed 
as the seller’s belief); we refer to a buyer with valuation x also as a buyer of type x. The buyer 
and the seller are assumed to be risk neutral and to have quasilinear utilities.

The objective is to maximize the seller’s (expected) revenue.
As was well established by the so-called Revelation Principle (starting with Myerson, 1981; 

see for instance the book of Krishna, 2010), we can restrict ourselves to “direct mechanisms” 
and “truthful equilibria.” A direct mechanism μ consists of a pair of functions13 (q, s), where 
q = (q1, q2, ..., qk) : Rk+ → [0, 1]k and s : Rk+ → R, which prescribe the allocation of goods 
and the payment, respectively. Specifically, if the buyer reports a valuation vector x ∈ Rk+, then 
qi(x) ∈ [0, 1] is the probability that the buyer receives good14 i (for i = 1, 2, ..., k), and s(x) is the 
payment that the seller receives from the buyer; we refer to (q(x), s(x)) as an outcome. When the 
buyer reports his value x truthfully, his payoff is15 b(x) = ∑k

i=1 qi(x)xi −s(x) = q(x) ·x −s(x), 
and the seller’s payoff is s(x).

The mechanism μ = (q, s) satisfies individual rationality (IR) if b(x) ≥ 0 for every x ∈Rk+; it 
satisfies incentive compatibility (IC) if b(x) ≥ q(x̃) · x − s(x̃) for every alternative report x̃ ∈Rk+
of the buyer when his value is x, for every x ∈Rk+.

13 All functions in this paper are assumed to be Borel-measurable (cf. Hart and Reny, 2015, footnotes 10 and 48).
14 When the goods are infinitely divisible and the valuations are linear in quantities, qi may be alternatively viewed as 
the quantity of good i that the buyer gets.
15 The scalar product of two n-dimensional vectors y = (y1, ..., yn) and z = (z1, ..., zn) is y · z = ∑n yizi .
i=1
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The (expected) revenue of a mechanism μ = (q, s) from a buyer with random valuation X, 
which we denote by R(μ; X), is the expectation of the payment received by the seller; i.e., 
R(μ; X) =E [s(X)]. We now define

• REV(X), the optimal revenue, is the maximal revenue that can be obtained: REV(X) =
supμ∈M R(μ; X), where the supremum is taken over the class M of all IC and IR mecha-
nisms μ.

When there is only one good, i.e., when k = 1, Myerson’s (1981) result is that

REV(X) = sup
p≥0

p · (1 − F(p)), (4)

where F(p) = P [X ≤ p] is the cumulative distribution function of X. Thus, there are optimal 
mechanisms where the seller “posts” a price p and the buyer buys the good for the price p
whenever his value is at least p; in other words, the seller makes the buyer a “take-it-or-leave-it” 
offer to buy the good at price p.

Besides the maximal revenue REV(X), we are also interested in what can be obtained from 
certain classes of mechanisms. For any class N of IC and IR mechanisms (i.e., N ⊆M) we 
denote

• N -REV(X) := supμ∈N R(μ; X), the maximal revenue over the class N .

In particular:

• SREV(X), the separate revenue, is the maximal revenue that can be obtained by selling each 
good separately. Thus

SREV(X) = REV(X1) + REV(X2) + ... + REV(Xk).

• BREV(X), the bundling revenue, is the maximal revenue that can be obtained by selling all 
the goods together in one “bundle.” Thus

BREV(X) = REV(X1 + X2 + ... + Xk).

• DREV(X), the deterministic revenue, is the maximal revenue that can be obtained by de-
terministic mechanisms; these are the mechanisms in which every good i = 1, 2, ..., k is 
either fully allocated or not at all, i.e., qi(x) ∈ {0, 1} for all valuations x ∈ Rk+ (rather than 
qi(x) ∈ [0, 1]).

While the separate and bundling revenues are obtained by solving one-dimensional problems 
(using (4)), for each good in the former, and for the bundle in the latter, the deterministic revenue 
is a multidimensional problem.

Finally, as seen in Hart and Nisan (2017, Proposition 6), when maximizing revenue we can 
limit ourselves without loss of generality to those IC and IR mechanisms that satisfy in ad-
dition the no positive transfer (NPT) property, namely, s(x) ≥ 0 for every x ∈ Rk+ (and so 
s(0, 0, ..., 0) = b(0, 0, ..., 0) = 0). Indeed, the NPT property is obtained by adding a nonneg-
ative constant to the payment function s while keeping the allocation function q unchanged, 
which can only increase the revenue, and preserves the IC and IR properties as well as the class 
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to which the mechanism belongs, for any of the classes of mechanisms that we deal with here 
(such as separate, bundled, deterministic, and bounded menu size).

From now on we will thus assume that all mechanisms μ are given in direct form, i.e., μ =
(q, s), and that they satisfy IC, IR, and NPT.

3.2. Menu and menu size

Given a k-good mechanism μ = (q, s), we define its menu as the range of its nonzero out-
comes; i.e.,

MENU(μ) := {(q(x), s(x)) : x ∈ Rk+}\{(0,0, ...,0),0)} ⊂ [0,1]k ×R+
(we ignore the zero outcome, ((0, 0, ..., 0), 0), which is always included without loss of generality 
as it corresponds to the IR constraint16). We will refer to each outcome in the menu as a menu 
entry. Conversely, any set of outcomes M ⊂ [0, 1]k ×R+ generates a mechanism μ = (q, s) with 
(q(x), s(x)) ∈ arg max(g,t)(g ·x− t) where (g, t) ranges over M ∪{((0, 0, ..., 0), 0)}, whose menu 
is included in17 M (the mechanism is well defined up to tie-breaking; see Hart and Reny, 2015
for more details).

The menu size of a mechanism μ is defined as the cardinality of its menu, i.e., the number of 
elements of MENU(μ), which may well be infinite:

MENU SIZE(μ) := |MENU(μ)|.
Since a menu cannot contain two entries (g, t) and (g, t ′) with the same allocation g ∈ [0, 1]k
but with different payments t and t ′ (if, say, t ′ > t then (g, t ′) will never be chosen, as (g, t) is 
strictly preferred to it by every buyer type), the menu size is identical to the cardinality of the set 
of nonzero allocations; i.e.,

MENU SIZE(μ) = |{q(x) : x ∈ Rk+ and q(x) = (0,0, ...,0)}|.
The corresponding revenue is

• REV[m](X), the “menu-size-m” revenue, is the maximal revenue that can be obtained by 
mechanisms whose menu size is at most m.

We will refer to the menu-size-1 revenue REV[1] as the basic revenue: it is the revenue achiev-
able from a single take-it-or-leave-it offer.

Interestingly, Babaioff et al. (2017) have recently shown that the communication complexity
of a mechanism is precisely the base 2 logarithm of its menu size.

Menu size is clearly a very crude measure of the complexity of a mechanism. In particular, 
it is based on the “normal” form of the mechanism (namely, the menu), and so it ignores the 
fact that a large menu may well be representable in a very succinct manner. Such an approach, 
namely, a Kolmogorov complexity notion, is used by Dughmi et al. (2014). The additive menu 
size, a refinement of menu size that we introduce in Section 8, is also a step in this direction. 

16 We thus slightly depart from Hart and Reny (2015) (where the menu includes the zero outcome as well); this yields 
simple relations (such as Proposition 3.1) between menu size and revenue.
17 As some outcomes in M may never be chosen; it will be convenient at times to ignore this and refer to such a μ as a 
mechanism with menu M .
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Another approach is based on learning-like notions of “dimension”: see Balcan et al. (2008)
and Morgenstern and Roughgarden (2015). The advantage of our menu-size measure is that it is 
simple, it is defined for each mechanism separately (rather than for classes of mechanisms), and, 
as we will see below,18 it provides useful connections to revenue-extraction capabilities.

3.3. Basic results on menu size

We provide here a few simple and immediate relations concerning menu-size complexity and 
revenue. First, revenue from the smallest menu size of 1 is nothing but the bundled revenue; 
second, the revenue is subadditive in menu size; third, the revenue increases at most linearly 
in menu size; and fourth, the deterministic revenue is bounded by the revenue from menu size 
2k − 1.

Proposition 3.1. For every k ≥ 2 and every k-good random valuation X we have

(i) REV[1](X) = BREV(X); (5)

(ii) for any integers m1, m2 ≥ 1

REV[m1+m2](X) ≤ REV[m1](X) + REV[m2](X);
(iii) the sequence 1

m
REV[m](X) is weakly decreasing in m, and thus, in particular, for every 

integer m ≥ 1

REV[m](X) ≤ m · REV[1](X); (6)

(iv) DREV(X) ≤ (2k − 1) · REV[1](X) = (2k − 1) · BREV(X).

Proof. (i) Let μ be any mechanism with a single menu entry, say (g, t). If the seller offers 
instead to sell the whole bundle at the same price t , the buyer will surely buy whenever he did so 
in μ, and the revenue can only increase. Thus R(μ; X) ≤ BREV(X). Conversely, BREV(X) is 
achieved by a single menu entry by Myerson’s result (4).

(ii) Let μ = (q, s) be any mechanism with menu (gn, tn)
m1+m2
n=1 . For each menu entry (gn, tn)

let πn be the probability that it is chosen (when the valuation is X); then the revenue from μ
is 

∑m1+m2
n=1 πntn. Let μ1 and μ2 be mechanisms with menus (gn, tn)

m1
n=1 and (gn, tn)

m1+m2
n=m1+1, 

respectively. The probability that (gn, tn) for n ≤ m1 is chosen is at least as large in μ1 as it is in 
μ (since every valuation x ∈ Rk+ that prefers this menu item in μ continues to prefer it in μ1, and 
all tn are ≥ 0 by NPT), which implies that the revenue from μ1 is at least 

∑m1
n=1 πntn. A similar 

argument shows that the revenue from μ2 is at least 
∑m1+m2

n=m1+1 πntn.
(iii) Let μ = (q, s) be any mechanism with menu (gn, tn)mn=1; for each menu entry (gn, tn) let 

πn be the probability that it is chosen. Without loss of generality order the menu entries so that the 
sequence πntn is weakly decreasing. Let m′ < m; the mechanism μ′ with menu (gn, tn)m

′
n=1 yields 

as revenue at least 
∑m′

n=1 πntn, which is at least (m′/m) 
∑m

n=1 πntn (because πntn is weakly 
decreasing). Thus R(μ′; X) ≥ (m′/m)R(μ; X).

(iv) A deterministic mechanism has menu size at most 2k − 1. �
18 See the tutorial of Goldner and Gonczarowski (2018) and the references there for additional such results.
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For small menu size m the inequalities in (ii) and (iii) are tight, as the example below shows 
that REV[m](X) = m · REV[1](X) for m not exceeding the number of goods k. They remain 
essentially tight for m up to 2k − 1 (by Theorem D below); as for large m, we will see that 
REV[m](X) can be as large as19 �(m1/7) · REV[1](X) (see Theorem C).

Example 3.2. Let 1 ≤ m ≤ k. Take a large20 H > 0, and consider the following random valuation 
X. For each i = 1, ..., m, with a probability αi that is proportional to 1/H i−1, good i is valued 
at Hi−1 and all the other goods are valued at 0; thus αi = c/H i−1, where c := 1/(1 + 1/H +
... + 1/Hm−1). Bundling yields a revenue of 1 (because setting the bundle price at Hi−1 yields 
a revenue of c(1/H i−1 + ... + 1/Hm−1), which is maximal at i = 1, and the revenue there is 
1). Selling each good i = 1, ..., m at price Hi−1 yields a revenue of c from each good; this is 
obtained at distinct valuations, and so the mechanism consisting of these m menu entries yields 
a revenue of mc, which is close to m for large H .

3.4. Revenue comparisons: GFOR and MOB

To evaluate how good mechanisms are, we compare the revenue that they can extract to two 
benchmarks, a “high” one and a “low” one. The high benchmark is the optimal revenue REV, 
and the low benchmark is the basic revenue21 REV[1] = BREV. As discussed in the Introduction, 
when the valuations of the goods are correlated the comparison to the optimal revenue yields in 
most cases of interest just a vanishing fraction, and then it is the comparison to the basic revenue 
that may become useful and informative.22

Formally, let X be a class of random valuations (e.g., k goods, two independent goods, and so 
on), and let N ⊂M be a class of mechanisms (e.g., separate mechanisms, deterministic mecha-
nisms, and so on).

We define

• GFOR(N ; X), the Guaranteed Fraction of Optimal Revenue (Hart and Nisan, 2017), as the 
maximal fraction α such that, for any random valuation X in X, there are mechanisms in the 
class N that yield a revenue that is at least the fraction α of the optimal revenue; that is,23

GFOR(N ;X) := inf
X∈X

N -REV(X)

REV(X)
,

where N -REV(X) = supμ∈N R(μ; X) is the maximal revenue that can be obtained by any 
mechanism in the class24 N .

19 It is convenient to use the standard O and � notations. For two expressions F and G that depend on certain variables, 
we write F = O(G) if supF/G < ∞, and F = �(G) if infF/G > 0; i.e., there is a constant 0 < c < ∞ such that 
F ≤ cG, respectively F ≥ cG, for any values of the variables in the relevant range.
20 Theorem 5.1 below provides the tool to easily generate such examples.
21 See Appendix A.2 for a similar, but slightly less sharp, approach where the basic revenue is taken to be the separate-
selling revenue SREV.
22 A parallel may be sequences that converge to zero, which are then compared in terms of how much faster, or slower, 
than the basic sequence 1/n they converge to zero.
23 When taking the infimum we ignore the cases 0/0 and ∞/∞ (because the inequality N -REV(X) ≥ α REV(X) holds 
for any α in these cases). The same applies when taking the supremum and, more generally, when dealing with any ratio 
of revenues throughout the paper.
24 GFOR is the reciprocal of the so-called “competitive ratio” used in the computer science literature. While the two 
notions are clearly equivalent, using the optimal revenue as the benchmark (i.e., 100%) and measuring everything relative 
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• MOB(N ; X), the Multiple of Basic revenue, as the minimal multiple β such that, for any 
random valuation X in X, all mechanisms in the class N yield a revenue that is at most the 
multiple β of the basic revenue; that is,

MOB(N ;X) := sup
X∈X

N -REV(X)

REV[1](X)
= sup

X∈X
N -REV(X)

BREV(X)
;

when N consists of a single k-good mechanism μ and X is the class of all k-good random 
valuations we write MOB(μ) for short.

Thus, MOB(N ; X) is the highest multiple of the basic revenue that may be achieved by the 
mechanisms in N for valuations in X.

For every random valuation X in X we therefore have

α · REV(X) ≤ N -REV(X) ≤ β · REV[1](X),

where α = GFOR(N ; X) and β = MOB(N ; X). Moreover, for these α and β the inequalities 
are tight: for every α′ > α there is X in X with α′ · REV(X) >N -REV(X), and for every β ′ < β

there is X in X with N -REV(X) > β ′ · REV[1](X).

Remark 3.3. Using MOB, the results of Proposition 3.1(iii)–(iv) can thus be restated as

MOB(MENU SIZE ≤ m; k goods) ≤ m and

MOB(DETERMINISTIC; k goods) ≤ 2k − 1.

The following proposition provides simple connections between GFOR and MOB that will 
be used repeatedly in our proofs.

Proposition 3.4. Let X be a class of valuations. Then:

(i) GFOR(BUNDLED;X) = 1

MOB(M;X)
; and

(ii) for every class of mechanisms N ⊂M

GFOR(N ;X) ≤ MOB(N ;X) · GFOR(BUNDLED;X)

= MOB(N ;X)

MOB(M;X)
.

Proof. (i) GFOR(BUNDLED) = infX BREV(X)/REV(X) and MOB(M) = supX REV(X)/

BREV(X).
(ii) N -REV/REV = (N -REV/BREV) · (BREV/REV) ≤ MOB(N ) · (BREV/REV) gives the 

inequality; the equality is then by (i). �
Thus, showing that there are mechanisms μ with arbitrarily large MOB proves by (i) that 

GFOR(BUNDLED) = 0, which then implies by (ii) that GFOR(N ) = 0 for all classes of mech-
anisms N with finite MOB(N ), in particular those in Remark 3.3 above.

to this basis—as GFOR does—seems to come more naturally. See the remarks in Section 2.2 of Hart and Nisan (2017), 
which, in particular, explain why ratios are used.
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4. Main results and guide to the proofs

We now state formally the main results, first for the Guaranteed Fraction of Optimal Revenue 
(GFOR), which compares the revenue to the optimal revenue (Section 4.1), and then for the 
Multiple of Basic revenue (MOB), which compares it to the basic bundled revenue (Section 4.2). 
We then provide an outline of the way in which these results are proved (Section 4.3).

4.1. Results for GFOR

The results here are, first, that GFOR equals 0 for any class of simple mechanisms, that is, 
mechanisms with bounded menu size, and, second, that in the case of bounded valuations GFOR
becomes close to 1 for an appropriately large enough menu size.

A class N ⊂M of mechanisms has bounded menu size if supμ∈N MENU SIZE(μ) is finite; 
i.e., there is n0 < ∞ such that all mechanisms in N have menu size at most n0.

Theorem A. Let k ≥ 2 and let N ⊂M be a class of k-good mechanisms with bounded menu 
size. Then

GFOR(N ; k goods) = 0. (7)

Moreover:

(i) For every ε > 0 there exists a k-good random valuation X with values in [0, 1]k such that

N -REV(X) < ε · REV(X).

(ii) There exists a k-good random valuation X such that

N -REV(X) = 1 and REV(X) = ∞.

By Proposition 3.1 or Remark 3.3, N can be taken to be any of the following classes25:

• SEPARATE

• BUNDLED

• DETERMINISTIC

• MENU SIZE ≤ m for some 1 ≤ m < ∞.

Thus, no class of simple mechanisms can guarantee any positive fraction of the optimal revenue 
when there are two or more correlated goods: mechanisms with an infinite menu may well yield 
an infinitely higher revenue than mechanisms with a finite menu.

Each one of (i) and (ii) yields (7). In (ii) the valuations are unbounded, which allows us to get 
the fraction ε in (i) to go all the way down to 0. Clearly (ii) implies (i) (just truncate X beyond a 
high enough value); the construction that yields (i) is however simpler and explicit. Claim (i) is 
proved in Section 6 and claim (ii) in Section 7.

25 The result for N = SEPARATE may be viewed as follows. Given the marginal distributions of the valuations of the 
goods—which determine the separate revenue—we obtain joint distributions for which the revenue becomes arbitrarily 
large; by contrast, Carroll (2017) looks at the smallest joint revenue for given marginals.
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Remark 4.1. The result for the class BUNDLED immediately implies the result for all other 
classes N . Indeed, MOB(N ) is finite for each such N (since MOB(N ) ≤ MOB(MENU SIZE ≤
n0) ≤ n0, where n0 < ∞ is a bound on the menu size of all mechanisms in N ); therefore 
GFOR(BUNDLED) = 0 implies GFOR(N ) = 0 by Proposition 3.4(ii) (and similarly for claims 
(i) and (ii)). Thus, Theorem A holds for any class of mechanisms N whose MOB(N ) is finite. 
In particular, the result for three or more goods, i.e., k ≥ 3, follows from Briest et al. (2015) by 
Proposition A.11 in Appendix A.3.

Now, looking at the constructions used in the proof of Theorem A, one sees that the range of 
valuations (i.e., the support of X) is exponential in the gap obtained; more precisely, if we restrict 
the values of each good to being in a range that is bounded (from above as well as from below, 
i.e., away from26 0), say, in the range [L, H ], then the gap becomes bounded by some constant 
power of log(H/L); see Section 9, where we show that this exponential blowup in the range is 
indeed needed. Our result is:

Theorem B. Let k = 2. There exists a constant c < ∞ such that for every 0 < L < H < ∞ and 
ε > 0,

GFOR(MENU SIZE ≤ m; 2 goods with values in [L,H ]2) ≥ 1 − ε

holds for every menu size m that satisfies

m ≥ c

ε5
log2

(
H

L

1

ε

)
.

This theorem is proved in Section 9. Again, contrast this result with the unbounded range case: 
when the upper bound H is infinite (and L > 0) there is a valuation X with REV(X) = ∞ while 
REV[m](X) ≤ m for every finite m (by27 Theorem A(ii) and (6)), and when the lower bound L is 
zero (and H is finite) for every finite m there is a valuation X with REV[m](X)/REV(X) < mε

(by Theorem A(i) and (6)).
Thus arbitrarily good approximations of the optimal revenue can be obtained, for two goods, 

by a menu size m that is only polylogarithmic in the range size H/L. This improves results 
obtainable by known techniques (Hartline and Koltun, 2005; Balcan et al., 2008; Briest et al., 
2015, and our Proposition 9.2 below), which yield a polynomial dependence on H/L (i.e., m ≥
(H/Lε)ck). Recently Dughmi et al. (2014) extended the polylogarithmic result to all k (i.e., 
m ≥ (log(H/(Lε))/ε)ck), and showed that the exponential dependence on k is necessary.

4.2. Results for MOB

The results here show the relations between MOB and menu size (polynomial), and, for deter-
ministic and separate-selling mechanisms, between MOB and the number of goods (exponential 
for the former and linear for the latter).

Theorem C. There exists a constant c > 0 such that for every k ≥ 2 and m ≥ 1,

cm1/7 ≤ MOB(MENU SIZE ≤ m; k goods) ≤ m.

26 Both bounds are needed, as rescaling X rescales all revenues and so does not affect the ratios between revenues.
27 For the boundedness away from 0, see Remark 7.2.
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As discussed above, the right-hand side inequality, whose simple proof is in Proposition 3.1, 
says that the revenue may grow at most linearly in the menu size; as for the left-hand side, which 
is obtained from our construction in the proof of Theorem A(ii) in Section 7, it says that the 
revenue may grow as a fixed fractional power of menu size.28

Returning to deterministic mechanisms, whose menu size is at most 2k − 1, we have the 
following.

Theorem D. For every29 k ≥ 2,

2k − 1

k
≤ MOB(DETERMINISTIC; k goods) (8)

≤ MOB(MENU SIZE ≤ 2k − 1; k goods) ≤ 2k − 1. (9)

The upper bound (9) is given, again, by Proposition 3.1; as for the lower bound (8), 
which is proved using the techniques of the proof of Theorem A(ii) in Section 7, it shows 
that the exponential-in-k bound is essentially tight (the factor k being much smaller than 
2k − 1 for large k). Note again the contrast to the independent case, for which the bound 
is linear, rather than exponential,30 in k: Lemma 28 in Hart and Nisan (2017) implies that 
for k independent goods DREV(X) ≤ REV(X) ≤ ck · REV[1](X) for some c > 0, and thus 
MOB(DETERMINISTIC; k independent goods) ≤ ck.

The two inequalities in Theorem D say that the revenue that can be extracted by deterministic 
mechanisms is, for large k, of the same order of magnitude as the revenue that can be extracted 
by general (probabilistic) mechanisms with a menu of size 2k − 1. This suggests that the main 
reason that deterministic mechanisms may yield low revenue is that being deterministic limits 
their menu size (to 2k − 1); indeed, all mechanisms with that menu size do similarly badly (cf. 
Theorem A and Proposition 3.4(ii)).

Finally, we consider the maximal revenue SREV obtainable by selling each good separately 
(at its one-good optimal price). We have

Theorem E. For every k ≥ 2,

MOB(SEPARATE; k goods) = k.

This theorem is proved in Section 8. Unlike in our previous results, the bound here is the same 
as the one we obtained for independently distributed goods, and it is tight already in that case; 
see Proposition 14(i) and Example 27 in Hart and Nisan (2017).

Now the mechanism that sells the k goods separately has menu size 2k − 1 (since the buyer 
may acquire any subset of the goods, and so there are 2k − 1 possible outcomes), but its rev-

28 The increase is at a fractional power of m, namely, m1/7; we do not think that the constant of 1/7 we obtain is tight. 
For larger values of k the construction in Briest et al. (2015) implies a somewhat better polynomial dependence on m. 
For m that is at most exponential in k, Theorem D below shows that the growth can be almost linear in m.
29 We obtain in fact a lower bound that is somewhat better than (2k − 1)/k; for large k, it is close to twice as much. See 
Proposition 7.3 and Remark 7.4.
30 Proposition A.10 in Appendix A.2 below shows that the same exponential-in-k gap exists between deterministic 
mechanisms and separate selling: there is X such that DREV(X) ≥ (2k − 1)/k · SREV(X). This provides a rare dou-
bly exponential contrast with the independent case in which DREV(X) ≤ c log2 k · SREV(X) for some constant c (by 
Theorem C in Hart and Nisan, 2017).
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enue may be at most k times, rather than 2k − 1 times, the bundling revenue. Moreover, selling 
separately seems intuitively to be much simpler than this exponential-in-k menu-size measure 
suggests: one needs to determine only k prices. All this leads us to define a stronger notion of 
mechanism complexity, one that assigns to separate selling its more natural complexity, namely, 
k. This new measure allows “additive menus” in which the buyer may choose not just single 
menu entries but also sets of menu entries. We present this additive menu size complexity mea-
sure in Section 8, and show that in fact our results hold with respect to this stronger complexity 
measure as well.

4.3. Outline of the proofs

We now present a short but hopefully useful outline of the proofs in the following sections.

• In Section 5 we provide an explicit formula for MOB of a mechanism, and construct random 
valuations where MOB is (almost) attained (Theorem 5.1).

• In Section 6 we construct mechanisms with an arbitrarily large MOB, which shows that 
MOB(M) = ∞ and so GFOR(BUNDLED) = 0, thus proving Theorem A(i) (see Re-
mark 4.1).

• In Section 7 we construct, using the technique of “gaps,” a valuation with finite bundled 
revenue and infinite optimal revenue, which proves Theorem A(ii) (again, see Remark 4.1). 
For this valuation the revenue increases polynomially with the menu size, which proves the 
lower bound of Theorem C. Finally, the same technique is used to show the lower bound of 
Theorem D for deterministic mechanisms.

• In Section 8 we prove Theorem E on MOB of separate selling, and then introduce and ana-
lyze the more refined “additive-menu-size” measure, showing that our results hold also for 
this measure.

• In Section 9 we deal with valuations in bounded domains and prove that in this case large 
enough menu sizes yield good approximations, i.e., Theorem B.

5. The Multiple of Basic revenue (MOB)

We start by providing a precise tool that measures how much better a mechanism can be 
relative to bundling. It will then be used in the next sections to construct random valuations 
together with corresponding mechanisms that yield revenues that are arbitrarily higher than the 
bundling revenue, and thus than any other simple revenue as well. Recall that for a single k-good 
mechanism μ we write MOB(μ) for short for MOB({μ}; k goods).

Theorem 5.1. Let μ = (q, s) be a k-good mechanism. Then

MOB(μ) =
∞∫

0

1

v(t)
dt,

where for every t > 0 we define31

31 The 1-norm ||x||1 = ∑k
i=1 |xi | on Rk gives, for nonnegative x, the value 

∑k
i=1 xi of the bundle of all goods to the 

buyer of type x. The infimum of an empty set is taken to be ∞, and so v(t) = ∞ when t is higher than any possible 
payment s(x).
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v(t) := inf{||x||1 : x ∈Rk+ and s(x) ≥ t}.

Thus v(t) is the minimal value of the bundle, x1 + ... + xk , among all the valuations x where 
the payment to the seller is at least t . Geometrically, this says that the supporting hyperplane 
with normal (1, ..., 1) to the set {x ∈ Rk+ : s(x) ≥ t} is x1 + ... + xk = v(t). The function v is 
weakly increasing and satisfies v(t) ≥ t for every t > 0 (because 

∑
i xi ≥ q(x) · x ≥ s(x) for 

every x by IR); the function 1/v is nonnegative, weakly decreasing, and vanishes beyond the 
maximal possible payment (i.e., for t > supx s(x)). Its integral may well be zero or infinite, i.e., 
0 ≤ MOB(μ) ≤ ∞ (with MOB(μ) = 0 only when v(t) = ∞ for every t > 0, which is the case 
only for the null mechanism with s(x) = 0 for all x). When μ has a finite menu, say {(gn, tn)}mn=1, 
ordered so that the sequence tn is weakly increasing, we have v(t) = v(tn) for every tn−1 < t ≤ tn
(some of these intervals may well be empty32), and so

MOB(μ) =
m∑

n=1

tn − tn−1

v(tn)
(10)

(computing the numbers v(tn) amounts to solving m linear programming problems).
It may be instructive to compute MOB(μ) in a few examples with k = 2 goods.

Example 5.2. Let μ be given by the menu33 {x1 −p1, x2 − 2, x1 + x2 − 4}, and allow p1 to vary.
(i) When p1 = 1 we have (t1, t2, t3) = (1, 2, 4) and (v(t1), v(t2), v(t3)) = (1, 2, 5) (at-

tained, respectively, at the points (1, 0), (0, 2), and (2, 3); see Fig. 1). Therefore MOB(μ) =
(1 − 0)/1 + (2 − 1)/2 + (4 − 2)/5 = 19/10. As we will see in the proof of Theorem 5.1 be-
low, MOB(μ) is attained for the random valuation X that takes the values (1, 0), (0, 2), and 
(2, 3) with probabilities 1/v(1) − 1/v(2) = 1/2, 1/v(2) − 1/v(4) = 3/10, and 1/v(4) = 1/5, 
respectively; indeed, BREV(X) = max{(1 + 0) · 1, (0 + 2) · (1/2), (2 + 3) · (1/5)} = 1 and34

R(μ; X) = 1 · (1/2) + 2 · (3/10) + 4 · (1/5) = 19/10.
(ii) When p1 = 2 we have (t1, t2, t3) = (2, 2, 4) and (v(t1), v(t2), v(t3)) = (2, 2, 4) (with v(2)

attained at (2, 0) and also at (0, 2), and v(4) at (2, 2)). Therefore MOB(μ) = (2 − 0)/2 + (2 −
2)/2 + (4 − 2)/4 = 3/2.

(iii) When p1 = 5 we have (t1, t2, t3) = (2, 4, 5) and (v(t1), v(t2), v(t3)) = (2, 4, ∞) (with the 
first two attained at (0, 2) and (2, 2), and v(5) infinite since x1 − 5 is never chosen by the buyer, 
as it is always strictly worse than x1 + x2 − 4). Therefore MOB(μ) = (2 − 0)/2 + (4 − 2)/4 +
(5 − 4)/∞ = 3/2.

Proof of Theorem 5.1. Put β := ∫ ∞
0 1/v(t) dt .

(i) First, we show that

R(μ;X)

BREV(X)
≤ β

32 If v(tn) = v(tn+1) then we may eliminate tn altogether from the sum, because (tn − tn−1)/v(tn) + (tn+1 −
tn)v(tn+1) = (tn+1 − tn−1)/v(tn+1).
33 We write a menu entry (g, t) here as g · x − t ; the payoff of the buyer with valuation x is thus b(x) = max{0, x1 −
p1, x2 − 2, x1 + x2 − 4}).
34 Assume without loss of generality that the buyer breaks ties in favor of the seller (i.e., the mechanism μ is “seller-
favorable”); see Hart and Reny (2015).
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Fig. 1. The function v in Example 5.2(i): v(1) = ||(1,0)||1 = 1, v(2) = ||(0,2)||1 = 2, v(4) = ||(2,3)||1 = 5.

for every k-good random valuation X. Indeed,

R(μ;X) =E [s(X)] =
∞∫

0

P [s(X) ≥ t] dt ≤
∞∫

0

P [||X||1 ≥ v(t)] dt

≤
∞∫

0

BREV(X)

v(t)
dt = β · BREV(X),

where we have used: s(X) ≥ 0 by NPT; s(X) ≥ t implies ||X||1 ≥ v(t) by the definition of v(t); 
and u · P [||X||1 ≥ u] ≤ BREV(X) for every u > 0.

(ii) Second, we show that for every β ′ < β (which, when β is infinite, is taken to mean any 
arbitrarily large β ′), there exists a k-good random valuation X with 0 < BREV(X) < ∞ and

R(μ;X)

BREV(X)
> β ′. (11)

Indeed, the function 1/v(t) is weakly decreasing and nonnegative, and its integral is β , and so 
there exist 0 = t0 < t1 < ... < tN < tN+1 = ∞ with 0 = v(t0) < v(t1) < v(t2) < ... < v(tN) <
v(tN+1) = ∞ such that

β ′′ :=
N∑ tn − tn−1

v(tn)
> β ′.
n=1
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Let ε > 0 be small enough so that β ′′ > (1 + ε)β ′ and v(tn+1) > (1 + ε)v(tn) for all 1 ≤ n ≤ N . 
By the definition of v we can choose for every 1 ≤ n ≤ N a point35 xn ∈ Rk+ such that s(xn) ≥ tn
and v(tn) ≤ ||xn||1 < (1 + ε)v(tn); then

N∑
n=1

tn − tn−1

||xn||1 >

N∑
n=1

tn − tn−1

v(tn)(1 + ε)
= β ′′

1 + ε
> β ′. (12)

Put ξn := ||xn||1; the sequence ξn is strictly increasing (because (1 + ε)v(tn) < v(tn+1)) and 
ξ1 > 0 (because v(t1) > 0). Let X be a random variable with support {x1, ..., xN } and distri-
bution P [X = xn] = ξ1/ξn − ξ1/ξn+1 for every 1 ≤ n ≤ N , where we put ξN+1 := ∞; thus 
P [X ∈ {xn, ..., xN }] = ξ1/ξn for every36 n ≥ 1.

To compute BREV(X), we need to consider only the bundle prices ξn for 1 ≤ n ≤ N (these 
are the possible values of 

∑
i Xi = ||X||1), for which we have

ξn · P [||X||1 ≥ ξn] = ξn · P [X ∈ {xn, ..., xN }] = ξn · ξ1

ξn

= ξ1,

and so

BREV(X) = ξ1. (13)

Finally, the revenue R(μ; X) that μ extracts from X is

R(μ;X) ≥
N∑

n=1

s(xn)P [X = xn] ≥
N∑

n=1

tn

(
ξ1

ξn

− ξ1

ξn+1

)
(14)

=
N∑

n=1

(tn − tn−1)
ξ1

ξn

> ξ1β
′ = β ′ · BREV(X)

(use ξN+1 = ∞, (12), and (13)). �
Remark 5.3. (a) In the proof of part (ii) above: for any m < N let μm be obtained by restricting 
the menu of μ to the entries chosen by x1, ..., xm in μ (with ties broken the same way as in μ for 
x1, ..., xm, and arbitrarily otherwise).37 The computation of R(μm; X) is the same as in (14), but 
the sum is now going up only to m instead of N , and thus there is a final term of tm(ξ1/ξm+1)

that needs to be subtracted; this gives

R(μm;X) >

(
m∑

n=1

tn − tn−1

ξn

− tm

ξm+1

)
· BREV(X) (15)

(recall (13)). This result will be used in Proposition 7.1 below.

35 Subscripts n, m, and j are used for sequences, whereas i is used exclusively for coordinates; thus xn is a vector in 
Rk+, and xi is the i-th coordinate of x.
36 Since the payment s(xn) increases with n, we want to put as much probability as possible on points xn with high n, 
subject to the constraint that the bundled revenue is kept fixed, specifically, equal to ξ1 = ||x1||1; for illustration see the 
random valuation X in Example 5.2(i) above.
37 Formally, μm = (qm, sm) satisfies (qm(x), sm(x)) = (q(x), s(x)) for x ∈ {x1, ..., xm} and (qm(x), sm(x)) ∈
arg max1≤n≤m(q(xn) · x − s(xn)) otherwise.
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(b) The random valuation X that we have constructed in part (ii) of the proof has finite support, 
and is thus bounded from above; one may therefore rescale it (which does not affect the ratio of 
revenues) so that it takes values in, say, [0, 1]k .

(c) If the mechanism μ has a finite menu of size m then v(t) can take at most m distinct 
values, and so N ≤ m and the support of the resulting X is of size at most m.

(d) If the mechanism μ has a finite menu of size m then MOB(μ) ≤ m (because v(t) ≥ t

implies that each term in the sum (10) is ≤ 1). This is the linear-in-menu-size bound of Proposi-
tion 3.1(iii); Example 3.2 in Section 3.3 above is obtained by making each term close to 1.

In Appendix A.2 we will provide a similar analysis with the separate revenue instead of the 
bundling revenue; it will use the ∞-norm instead of the 1-norm.

6. The Guaranteed Fraction of Optimal Revenue (GFOR)

Based on the result of the previous section we can now construct mechanisms whose revenues 
may be arbitrarily higher than the bundling revenue, which yields the GFOR = 0 result.

Proposition 6.1. Let k = 2. For every finite m ≥ 1 there exists a two-good mechanism μ with a 
menu of size m such that

MOB(μ) >
1

2
lnm − 1.

Proof. Let m = (N + 1)2 − 1 where N ≥ 2 is an integer. Let g0, g1, ..., gm be the m + 1 =
(N +1)2 points of the 1/N -grid of [0, 1]2 arranged in the lexicographic order, i.e., in order of in-
creasing first coordinate, and, for equal first coordinate, in order of increasing second coordinate 
(thus g0 = (0, 0) and gm = (1, 1)).

For each n ≥ 1, by writing the vector gn as gn = (i1/N, i2/N) with i1 ≡ i
(n)
1 and i2 ≡ i

(n)
2

integers between 0 and N , we define yn := (N + 1 − i2, 1). We claim that for every 0 ≤ j < n

we have

(gn − gj ) · yn ≥ 1

N
. (16)

Indeed, let gj = (�1/N, �2/N). Now j < n implies either (i) i1 = �1 and i2 ≥ �2 + 1, in which 
case (gn − gj ) · yn = i2/N − �2/N ≥ 1/N , or (ii) i1 ≥ �1 + 1, in which case (gn − gj ) · yn =
(i1/N −�1/N)(N +1 − i2) + (i2/N −�2/N) ≥ (1/N)(N +1 − i2) + i2/N −�2/N = 1 +1/N −
�2/N ≥ 1/N .

Let tn := Nn−1 and xn := Nnyn, and consider the mechanism μ = (q, s) with menu 
{(gn, tn)}mn=1 that is “seller-favorable”; i.e., when indifferent, the buyer chooses the outcome 
with the highest payment (that is, ties are broken in favor of the seller; see Hart and Reny, 2015). 
For every 0 ≤ j < n we have

gn · xn − gj · xn = Nn(gn − gj ) · yn ≥ Nn−1 = tn ≥ tn − tj ,

and so gn · xn − tn ≥ gj · xn − tj . Therefore a buyer of type xn will not choose any menu entry 
(gj , tj ) with j < n (by seller-favorability when there is indifference, because tj < tn), and so 
s(xn) is one of {tn, tn+1, ..., tm}, which implies that s(xn) ≥ tn. Thus v(tn) ≤ ||xn||1 = Nn(N +
2 − i

(n)
), and so
2
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MOB(μ) =
m∑

n=1

tn − tn−1

v(tn)
≥

m∑
n=1

Nn−1 − Nn−2

Nn(N + 2 − i
(n)
2 )

≥
N∑

i1=1

N∑
i2=1

1

N

1

N + 2 − i2
=

N+1∑
�=2

1

�

> ln(N + 2) − 1 >
1

2
lnm − 1

(in the second line we have dropped the terms with i1 = 0 or i2 = 0). �
Thus MOB(MENU SIZE ≤ m) is at least of the order of logm; in the next section we will im-

prove this lower bound and show that it is polynomial in m. From Proposition 6.1 we immediately 
get Theorem A(i).

Proof of Theorem A(i). We prove this for k = 2 goods; for k > 2 goods we take the two-good 
random valuations and append k − 2 goods with constant valuation 0, which does not affect any 
of the revenues.

We have MOB(N ) ≤ n0 by (6) or Remark 3.3, where n0 < ∞ is a bound on the menu size 
of all the mechanisms in the given class N . Since MOB(M) = supμ MOB(μ) = ∞ by Proposi-
tion 6.1, it follows that GFOR(N ) ≤ MOB(N )/MOB(M) = n0/∞ = 0 (see Proposition 3.4(ii) 
in Section 3.4). This proves (7).

For claim (i), for each m ≥ 1 let μ be the mechanism given by Proposition 6.1, and then let 
X be a random valuation in [0, 1]2 with support of size m, as constructed by Theorem 5.1 (see 
Remark 5.3(b) and (c)), that satisfies

REV(X)

BREV(X)
≥ R(μ;X)

BREV(X)
>

1

2
lnm − 1. (17)

Taking m large enough so that (1/2) lnm − 1 > n0/ε then yields N -REV(X) ≤ n0 · BREV(X) <
ε · REV(X) (by Proposition 3.1(iii)), which proves claim (i). �
Remark 6.2. (a) An explicit random valuation X that satisfies (17) is easily obtained from the 
proof of Proposition 6.1. Take xn = Nnyn = Nn(N + 1 − in2 , 1), put ξn := ||xn||1, and let X have 
support {x1, ..., xm} and distribution P [X = xn] = ξ1/ξn − ξ1/ξn+1 for every 1 ≤ n ≤ m. Then 
BREV(X) = ξ1 and REV(X) ≥ R(μ; X) > ξ1((1/2) lnm − 1) (cf. the proof of Theorem 5.1). To 
get the valuations in [0, 1]2 one just needs to rescale: divide everything by Nm.

(b) Any random valuation X′ that is close to the above random valuation X will yield a 
similar gap between the optimal revenue and the simple revenues.38 The same applies to all 
our constructions, and so none of our results is knife-edge. It would of course be of interest to 
characterize the correlated valuations where these gaps are obtained.

7. General construction

We now generalize the construction of the previous section, and obtain a single mechanism 
μ whose MOB is infinite, together with a corresponding random valuation X for which the 
optimal revenue is infinite, whereas all its simple revenues—bundled, separate, deterministic, 

38 For formal revenue continuity results, see Hart and Reny (2017, Appendix A).
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finite-menu—are bounded; this proves claim (ii) of Theorem A. The technique of “gaps” in 
Proposition 7.1 below will turn out to be useful also for evaluating MOB of deterministic mech-
anisms, thereby proving Theorem D.

Proposition 7.1. Let (gn)
N
n=0 be a finite or countably infinite sequence in [0, 1]k starting with 

g0 = (0, ..., 0), and let (yn)
N
n=1 be a sequence of points in Rk+ such that

gapn := min
0≤j<n

(gn − gj ) · yn > 0

for all n ≥ 1. Then for every ε > 0 there exist a sequence (tn)Nn=1 of positive real numbers and a 
k-good mechanism μ with menu {(gn, tn)}Nn=1 such that

MOB(μ) ≥ (1 − ε)

N∑
n=1

gapn

||yn||1 .

Moreover, there is a k-good random valuation X with 0 < BREV(X) < ∞ such that39

R(μ;X)

BREV(X)
≥ (1 − ε)

N∑
n=1

gapn

||yn||1 , and (18)

R(μm;X)

BREV(X)
≥ (1 − ε)

m∑
n=1

gapn

||yn||1 − ε (19)

for every finite 1 ≤ m < N , where μm denotes the mechanism obtained by restricting μ to its 
first m menu entries {(gn, tn)}mn=1.

Proof. Let xn := (tn/gapn)yn where the sequence of positive numbers (tn)n≥1 increases fast 
enough so that the sequence ξn := ||xn||1 = tn||yn||1/gapn is increasing and tn+1/tn ≥ 1/ε for 
all n ≥ 1. We have ξn ≥ tn (because gapn ≤ gn · yn ≤ ||yn||1) and thus, when N is infinite, 
(tn)n and (ξn)n both increase to infinity; when N is finite, we put tN+1 = ξN+1 = ∞. For every 
0 ≤ j < n,

gn · xn − gj · xn = tn

gapn

(gn − gj ) · yn ≥ tn ≥ tn − tj

(for j = 0 put as usual t0 = 0). Thus, in the seller-favorable mechanism μ = (q, s) with menu 
{(gn, tn)}Nn=1, the buyer of type xn prefers the menu entry (gn, tn) to any entry (gj , tj ) with 
0 ≤ j < n. Therefore s(xn) ≥ tn, and so v(tn) ≤ ||xn||1 = ξn, and we get

MOB(μ) =
N∑

n=1

tn − tn−1

v(tn)
≥

N∑
n=1

tn − tn−1

ξn

=
N∑

n=1

tn − tn−1

tn

gapn

||yn||1 ≥ (1 − ε)

N∑
n=1

gapn

||yn||1 (20)

39 Thus, the same valuation X that satisfies the MOB inequality (18) satisfies also the inequalities (19) for all m. This 
is needed for proving Theorem C on the polynomial increase of the revenue with respect to menu size.
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(the final inequality follows from tn−1/tn ≤ ε). As in the proof of Theorem 5.1, let X take 
the value xn with probability ξ1/ξn − ξ1/ξn+1; then R(μ; X) ≥ ξ1 · ∑N

n=1(tn − tn−1)/ξn and 
BREV(X) ≤ ξ1, which implies (18) (use (20)); to get (19) for a finite m < N , use (15) and 
ξm+1 ≥ tm+1 ≥ tm/ε. �
Remark 7.2. The random valuation X that we have constructed in Proposition 7.1 is bounded 
away from zero: ||X||1 ≥ ||x1||1 = ξ1 > 0.

Before showing how to obtain the infinite separation of Theorem A(ii), we use Proposition 7.1
for deterministic mechanisms, proving the lower bound on MOB(DETERMINISTIC) of Theo-
rem D (recall that the upper bound of 2k − 1 is immediate; see Proposition 3.1(iv)).

Proposition 7.3. For every k ≥ 2,

MOB(DETERMINISTIC; k goods) ≥
k∑

�=1

1

�

(
k

�

)
>

2k − 1

k
. (21)

Proof. Let I0, I1, I2, ..., I2k−1 be the 2k subsets of {1, . . . , k} ordered in weakly increasing size 
(i.e., |In| ≥ |In−1| for all n), and let gn be the indicator vector of In (i.e., the i-th coordinate of 
gn is 1 for i ∈ In and 0 for i /∈ In). Take yn = gn (thus ||yn||1 = |In|); then for 0 ≤ j < n we have 
gj · gn = |Ij ∩ In| < |In| = gn · gn (the strict inequality holds because otherwise In would be a 
subset of Ij , contradicting |Ij | ≤ |In| and j = n), and thus gapn ≥ 1 (in fact, gapn = 1: take Ij

to be a subset of In with one less element). Thus

2k−1∑
n=1

gapn

||yn||1 ≥
2k−1∑
n=1

1

|In| =
k∑

�=1

1

�

(
k

�

)
,

and we use Proposition 7.1. Replacing each 1/� with the lower 1/k yields the final inequal-
ity. �
Remark 7.4. Let dk denote the binomial sum in (21).

(a) A better lower bound on dk , easily obtained by replacing each 1/� with the lower 1/(� +1), 
is40 dk ≥ (2k+1 − k − 2)/(k + 1) ∼ 2 · (2k − 1)/k.

(b) For large k most of the mass of the binomial coefficients, whose sum is 2k − 1, is at those 
� that are close to k/2, and so dk ∼ 1/(k/2) · (2k − 1) = 2 · (2k − 1)/k (formally, use a standard 
large deviation inequality; in (a) above we got this estimate only as a lower bound on dk).

(c) For k = 2 goods we have d2 = (2
1

)
/1 + (2

2

)
/2 = 5/2, which turns out to be the exact value 

of MOB; see Proposition A.1 in Appendix A.1 (proved by using, again, Theorem 5.1).
(d) Proposition A.10 in Appendix A.2 shows that the same lower bound of (2k − 1)/k also 

holds relative to the separate (instead of the bundling) revenue, and even relative to the maximum 
of the two revenues.

We now construct, already for two goods, an infinite sequence of points for which the appro-
priate sum of gaps in Proposition 7.1 is infinite.

40 The standard notation f (k) ∼ g(k) means that f (k)/g(k) → 1 as k → ∞.
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Proposition 7.5. There exists an infinite sequence of points (gn)
∞
n=1 in [0, 1]2 with ||gn||2 ≤ 1

such that taking yn = gn for all n we have gapn = �(n−6/7).

Proof. The sequence of points that we build is composed of a sequence of “shells,” each 
containing multiple points. The shells get closer and closer to each other, approaching the 
unit sphere as the shell, N , goes to infinity: all the points gn in the N -th shell are of length 
||gn||2 = ∑N

�=1 �−3/2/α, where α = ∑∞
�=1 �−3/2 (which indeed converges; thus ||gn||2 ap-

proaches 1 as n increases), and each shell N contains N3/4 different points in it so that the 
angle between any two of them is at least �(N−3/4).

We now estimate gn · gj = ||gn||2 · ||gj ||2 · cos(θ), where θ denotes the angle between gn and 
gj . Let N be gn’s shell. For j < n there are two possibilities: either gj is in the same shell, N , as 
gn or it is in a smaller shell, N ′ < N . In the first case we have θ ≥ �(N−3/4) and thus cos(θ) ≤
1 −�(N−3/2) (because cos(x) = 1 − x2/2 + x4/24 − . . .) and since ||gn||2 = 
(1) we have gn ·
gn − gn · gj ≥ �(N−3/2). In the second case, ||gn||2 − ||gj ||2 = ∑N

�=N ′+1 �−3/2/α ≥ N−3/2/α, 
and so again since ||gn||2 = 
(1) we have gn ·gn −gn ·gj ≥ �(N−3/2). Thus for any point gn in 
the N -th shell we have gapn = �(N−3/2). Since the first N shells together contain 

∑N
�=1 �3/4 =


(N7/4) points, we have n = 
(N7/4) and thus gapn = �(N−3/2) = �(n−6/7). �
This directly implies claim (ii) of Theorem A, i.e., the infinite separation between the opti-

mal revenue and the simple revenues, and also the lower bound in Theorem C, i.e., the revenue 
increasing polynomially in menu size.

Proof of Theorems A(ii) and C. For k = 2 the infinite sequence of points (gn)
∞
n=1 constructed in 

Proposition 7.5, together with yn = gn for all n, satisfies 
∑m

n=1 gapn/||gn||1 ≥ ∑m
n=1 gapn/

√
2 ≥

�(
∑m

n=1 n−6/7) (recall that ||gn||2 ≤ 1 and so ||gn||1 ≤ √
2). When m = ∞ this sum is infinite, 

and when m is finite it is �(m1/7). Applying Proposition 7.1 gives a two-good random valuation 
X that satisfies 0 < BREV(X) < ∞, REV(X) = ∞, and REV[m](X) = �(m1/7) for every finite 
m. This gives the lower bound in Theorem C (the upper bound is by Proposition 3.1 (iii)). To 
prove claim (ii) of Theorem A, just rescale the X above to make its N -REV equal to 1 (we have 
0 < N -REV(X) < ∞ because BREV ≤ N -REV ≤ n0 · BREV, where 1 ≤ n0 < ∞ bounds the 
menu size of all mechanisms in N ). For k > 2, again, add k − 2 goods with constant valuation 
0. �
8. Additive menu size

We start by proving Theorem E, which says that MOB of selling separately k goods equals 
the number of goods k.

Proof of Theorem E. For each good i we have Xi ≤ ∑
� X�, which implies that41 REV(Xi) ≤

REV(
∑

� X�) = BREV(X). Summing over i yields SREV(X) ≤ k · BREV(X).
Example 27 in Hart and Nisan (2017) shows that this bound is tight for every k, even for 

independent goods. �
41 Use the monotonicity of the one-good revenue (Hart and Reny, 2015, or Hart and Nisan, 2017), or Myerson’s (1981)
characterization (4).
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Now optimal separate mechanisms sell each good i at a price pi , and so have a menu size of 
at most 2k − 1 (the buyer can buy any set of goods I ⊆ {1, . . . , k} for the price 

∑
i∈I pi ), and 

yet Theorem E shows that the separate revenue is at most k times the bundling revenue, rather 
than 2k − 1 times that (as is the case for menu size 2k − 1 and, in particular, for deterministic 
mechanisms; see Theorem D). Intuitively, this seems related to the fact that separate-selling 
mechanisms have only k “degrees of freedom” or “parameters” (the k prices).42 To formalize 
this we introduce a more refined “additive menu size” complexity measure, as follows.

Let μ be a k-good mechanism with menu M ⊆ [0, 1]k × R+. An additive representation of 
M is a subset M0 = {(g1, t1), (g2, t2), ..., (gm, tm)} ⊆ M of menu entries, which we will refer to 
as basic menu entries, such that every menu entry (g, t) in M can be represented as a sum of 
basic menu entries in M0, i.e., (g, t) = ∑

n∈N(gn, tn) for some N ⊆ M0, and moreover every 
partial sum 

∑
n∈N ′(gn, tn) with N ′ ⊂ N is also a menu entry in43 M . The additive menu size of 

a mechanism μ is defined as the minimal size |M0| of an additive representation of its menu M . 
Since taking M0 equal to M trivially yields an additive representation, the additive menu size 
can thus only be lower than its menu size. For separate selling of k goods, the additive menu size 
is at most k, rather than 2k − 1: the basic menu entries consist of selling each good by itself at its 
price.44

The corresponding revenue is

• REV[m]∗(X), the “additive-menu-size-m” revenue, is the maximal revenue that can be ob-
tained by mechanisms whose additive menu size is at most m.

Interestingly, the basic properties of the menu size, namely, that menu size 1 yields the 
bundling revenue, and that the increase in revenue is at most linear in the menu size (Propo-
sition 3.1 in Section 3.2), hold for the additive menu size as well.

Proposition 8.1. For every k ≥ 2 and every k-good random valuation X,

(i) REV[1]∗(X) = REV[1](X) = BREV(X), and
(ii) REV[m](X) ≤ REV[m]∗(X) ≤ m · BREV(X) for every m ≥ 1.

Proof. The only claim that is not immediate is the last inequality. Let M0 with |M0| = m be a 
minimal additive representation of the menu. Let (g, t) ∈ M0 be a basic menu entry. If the buyer 
with valuation x chooses (g, t) (i.e., (g, t) is part of the chosen subset N ⊆ M0), then g ·x − t ≥ 0
(otherwise, dropping it from the chosen subset—i.e., switching to N\{(g, t)}, which yields an 
available menu entry—would strictly increase the buyer’s payoff at x); hence 

∑
i xi ≥ g · x ≥ t

(the first inequality is due to (1, ..., 1) ≥ g and x ≥ 0). Therefore the total probability45 π that 

42 This is related to the fact that menu size is defined using the “normal” form of a mechanism—its menu—rather than 
its other, possibly simpler, descriptions.
43 Our definition is just one of several possible definitions. Indeed, basic entries may be combined in other ways—such 
as taking the allocation probabilities to be independent (as in Briest et al., 2015), or adding them and then capping the 
sum at 1. What matters (see the proof of Proposition 8.1 below) is that any chosen basic entry should yield a nonnegative 
payoff (i.e., if (g, t) is part of the set chosen by type x then g · x − t ≥ 0); the variants mentioned above satisfy this.
44 More precisely, it is the number of goods whose price is positive.
45 The sum of these probabilities over all basic menu entries may be as high as m, as these events need not be disjoint 
(in contrast to standard menu items, where they are disjoint).
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(g, t) is chosen is at most P
[∑k

i=1 Xi ≥ t
]
, and so that part of the expected revenue that comes 

from (g, t), namely t · π , is at most t ·P
[∑k

i=1 Xi ≥ t
]

≤ BREV(X). This holds for each one of 
the m basic menu entries in M0. �
Remark 8.2. Proposition 8.1 implies that the results in the present paper hold mutatis mu-
tandis for this more refined complexity measure as well. Specifically, Theorem A holds also 
for any class of mechanisms N ⊂M with bounded additive menu size, and we may replace 
MENU SIZE ≤ m with ADDITIVE MENU SIZE ≤ m in each one of Theorems B, C, and D (use 
REV[m] ≤ REV[m]∗ for the lower bounds, and REV[m]∗ ≤ m · BREV, which is the same as 
MOB(ADDITIVE MENU SIZE ≤ m) ≤ m, for the upper bounds).

Moreover, by Theorem E, this more refined measure captures well the complexity of selling 
the goods separately, as its additive menu size is at most k.

9. Bounded valuations

In this section we deal with valuations in bounded domains, i.e., [L, H ]k for 0 < L < H <

∞. Since rescaling valuations by a constant factor of 1/L changes the range from [L, H ]k to 
[1, H/L]k without affecting ratios of revenues, we take without loss of generality L = 1 and the 
range [1, H ]k . We first prove Theorem B: for two goods with valuations in [1, H ]2, mechanisms 
need not have more than a polylogarithmic-in-H menu size in order to obtain arbitrarily good 
approximations. It is a direct corollary of the following lemma that shows how to incur, with an 
appropriate bounded menu size, only a small loss of payment for every valuation x.

Lemma 9.1. Let k = 2. For every H > 1 and ε > 0 there exists m = O(ε−5 log2 H) such that for 
every two-good mechanism μ = (q, s) whose nonzero payments lie in the range [1, H ] (i.e., for 
each x either s(x) = 0 or s(x) ∈ [1, H ]), there exists a mechanism μ̃ = (q̃, ̃s) with menu size at 
most m that satisfies s̃(x) ≥ (1 − ε)s(x) for all x.

Proof. We will discretize the menu of the given mechanism μ. Our first step will be to discretize 
the payments s, and the second to discretize the allocations q = (q1, q2).

We start by splitting the range [1, H ] into K subranges, each with a ratio of at most H 1/K

between its endpoints, where K is chosen so that H 1/K ≤ ε2, i.e., K = O(ε−2 logH). We define 
a real function φ(s) by rounding s up to the top of its range and then multiplying by 1 − ε. Hence 
we have (1 − ε)s < φ(s) < (1 − ε)(1 + ε2)s. Then for any s′ < s(1 − ε) we have φ(s) −φ(s′) <
(1 − ε)(1 + ε2)s − (1 − ε)s′ < s − s′.

Now we take every menu entry (q, s) of the original mechanism and replace s with φ(s). 
The previous property of φ ensures that any buyer who previously preferred (q, s) to some other 
menu entry (q ′, s′) with s′ < (1 − ε)s still prefers (q, φ(s)) in the new menu; thus in the new 
menu he pays φ(s′) for some s′ ≥ (1 − ε)s, and φ(s′) > (1 − ε)s′ ≥ (1 − ε)2s; his payment in 
the new menu is therefore at least (1 − ε)2 times his payment in the original menu.

We now have a menu with only K distinct price levels s1 < . . . < sK . Before we continue, 
we scale it down by a factor of (1 − ε), i.e., multiply both the q’s and the s’s by (1 − ε). This 
does not change the menu choice of any buyer, reduces the payments by a factor of exactly 1 − ε, 
and ensures that q1, q2 ≤ 1 − ε. We now round down each q1 and each q2 to an integer multiple 
of ε/K , and then add εj/K to each menu entry whose price is sj . Notice that rounding down 
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reduces each q by at most ε/K , and since higher-paying menu entries get a boost that is at least 
ε/K greater than any lower-paying menu entry, any buyer that previously chose an entry that 
pays s can now choose only an entry that pays some s′ ≥ s.

All in all, we have obtained a new mechanism whose payment is at least (1 − ε)3 ≥ 1 −
3ε times that of the original one (and so we redefine the ε in the proof to be 1/3 of the ε in 
the statement). There are K = O(ε−2 logH) price levels and ε−1K = O(ε−3 logH) different 
allocation levels for both q1 and q2. However, notice that for a fixed price level s and a fixed q1
there can only be a single value of q2 that is actually used in the menu (as lower ones will be 
dominated), and so the total number of possible allocations is O(ε−5 log2 H). �
Proof of Theorem B. Let X be a two-good random valuation with values in [1, H ]2, and let 
μ = (q, s) be a two-good mechanism. We have s(x) ≤ q(x) · x ≤ 2H for every x ∈ [1, H ]2; 
and, because the revenue from X is at least 2 (obtained, for instance, by selling each good at 
price 1), we can assume without loss of generality that R(μ; X) ≥ 2. First, we eliminate from 
the menu of μ all entries whose payment is less than46 2ε; any type x with s(x) < 2ε then either 
pays 0, or some s(y) ≥ 2ε. The loss in revenue, if any, is thus at most 2ε · P [s(X) < 2ε] ≤ 2ε. 
Let μ′ = (q ′, s′) denote the resulting mechanism; then the range of its nonzero payments is 
[2ε, 2H ]. Applying Lemma 9.1 to μ′ yields a new mechanism μ̃ = (q̃, ̃s) with a menu of size 
O(ε−5 log2(H/ε)), such that s̃(x) ≥ (1 − ε)s(x) for all x, and thus

R(μ̃;X) ≥ (1 − ε)R(μ′;X) ≥ (1 − ε)(R(μ;X) − 2ε)

≥ (1 − 2ε)R(μ;X)

(recall that R(μ; X) ≥ 2). �
Notice that the polylogarithmic dependence of m on H is “about right” since the valuation 

X induced by the first m points in the construction of Proposition 7.5 (used for proving Theo-
rem A(i)) has H = mO(m), and the �(m1/7) gap between REV(X) and REV[1](X) implies that 
for, say, m = O((logH)1/8), we get REV[m](X) = o(REV(X)).

For more than two goods, i.e., k > 2, we obtain the somewhat weaker result that the menu 
size need only be polynomial in H .

Proposition 9.2. For every k ≥ 2 and ε > 0 there is m0 = (k/ε)O(k) such that for every k-good 
random valuation X with values in [0, 1]k and every m ≥ m0,

REV[m](X) ≥ REV(X) − ε.

This result is directly implied by the following lemma.

Lemma 9.3. Let m = (n + 1)k − 1, where n ≥ 1 is an integer. Then for every k-good random 
valuation X with values in [0, 1]k ,

REV[m](X) ≥ REV(X) − 2k√
n
.

46 Formally, for every x with s(x) < 2ε we take (q ′(x), s′(x)) to be a maximizer of q(y) · x − s(y) over all y such that 
either s(y) = 0 or s(y) ≥ 2ε.
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Proof. Let X have values in [0, 1]k , and let μ = (q, s) be a mechanism.
Define a new mechanism μ̃ = (q̃, ̃s) as follows: for each x ∈ [0, 1]n, let q̃(x) be the rounding 

up of q(x) to the 1/n-grid on [0, 1]k , and let s̃(x) := (1 − 1/
√

n)s(x). Since q̃ can take at most 
(n + 1)k different values, the menu size of μ̃ is at most (n + 1)k − 1 = m.

If q̃(x) ·x − s̃(x) ≤ q̃(y) ·x − s̃(y), then (recall that q(x) ·x − s(x) ≥ q(y) ·x − s(y)) we must 
have (1/n) 

∑k
i=1 xi ≥ (1/

√
n)(s(x) −s(y)); hence s(y) ≥ s(x) −k/

√
n (since 

∑
i xi ≤ k), which 

implies that the seller’s revenue at x from μ̃ must be ≥ (1 − 1/
√

n)(s(x) − k/
√

n). Therefore 
R(μ̃; X) ≥ (1 −1/

√
n)R(μ; X) −k/

√
n ≥ R(μ; X) −2k/

√
n (since R(μ; X) ≤ ∑

i xi ≤ k). �
From Proposition 9.2 we can derive an essentially equivalent multiplicative approximation 

result.

Proposition 9.4. For every k ≥ 2, ε > 0, and H > 1, there is m0 = (H/ε)O(k) such that for every 
k-good random valuation X with values in [1, H ]k and every m ≥ m0,

REV[m](X) ≥ (1 − ε) · REV(X).

Proof. We first rescale [1, H ] to [1/H, 1], which for multiplicative approximations is the same. 
We then design a mechanism that gives an additive approximation to within εk/H , which, by 
Proposition 9.2, requires a menu size m as stated. Now, since each Xi is bounded from below by 
1/H , the revenue of X is at least k/H (each good is sold for sure at the price 1/H ), and thus an 
εk/H -additive approximation is also a (1 − ε)-multiplicative approximation, as required. �
Appendix A

A.1. Two-good deterministic mechanisms

Using the formula of Theorem 5.1 we can show that the Multiple of Basic revenue for two-
good deterministic mechanisms equals precisely the d2 = 5/2 bound of Proposition 7.3 (see 
Remark 7.4(c)).

Proposition A.1. For k = 2 goods,

MOB(DETERMINISTIC; 2 goods) = 5

2
.

Proof. We compute the supremum of MOB(μ), as given by Theorem 5.1, over all deterministic 
mechanisms μ. Such a mechanism is given by nonnegative prices p1, p2, and p12 for good 1, 
good 2, and the bundle, respectively (thus b(x) = max{0, x1 − p1, x2 − p2, x1 + x2 − p12}). 
Without loss of generality we assume that p1 ≤ p2 ≤ p12; the first inequality because we can 
interchange the two coordinates, and the second because if pi > p12 then the menu entry xi −pi

is never chosen, and so replacing pi with p′
i := p12 does not affect the revenue. We have four 

cases:

• If p1 > 0 then MOB(μ) = (p1 − 0)/v(p1) + (p2 − p1)/v(p2) + (p12 − p2)/v(p12). Now 
v(p1) = p1 (attained at x = (p1, 0)) and v(p2) = p2 (attained at x = (0, p2)); as for v(p12), 
if s(x) = p12 then x1 + x2 − p12 ≥ xi − pi for i = 1, 2, which implies x3−i ≥ p12 − pi ≥
p12 − p2, and so x1 + x2 ≥ 2(p12 − p2). Therefore MOB(μ) ≤ 1 + 1 + 1/2 = 5/2.
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• If p1 = 0 < p2 then MOB(μ) = (p2 − 0)/v(p2) + (p12 − p2)/v(p12) ≤ 1 + 1/2 = 3/2.
• If p1 = p2 = 0 < p12 then MOB(μ) ≤ 1.
• If p1 = p2 = p12 = 0 then MOB(μ) = 0.

Thus MOB(μ) ≤ 5/2 in all cases; taking, say, p1 = 1, p2 = H , and p12 = H 2 for large47 H

shows that supμ MOB(μ) over all deterministic mechanisms μ is indeed 5/2. �
For separate-selling mechanisms we have in addition p12 = p1 + p2, and then v(p1 + p2) =

p1 + p2 (attained at x = (p1, p2)), and so MOB(μ) = 1 + 1 − p1/p2 + p1/(p1 + p2), 
which is less than 2, but can be made arbitrarily close to 2 by taking, say, p1 = 1 and 
p2 = H for large H . This shows that MOB(SEPARATE; 2 goods) = 2; cf. Theorem E. For 
symmetric deterministic mechanisms we have p1 = p2, and so MOB(μ) ≤ p1/p1 + (p12 −
p1)/(2(p12 − p2)) = 3/2, with equality for, say, p1 = p2 = 1 and p12 = 2 (which is in fact a 
symmetric separate-selling mechanism). Thus MOB(SYMMETRIC DETERMINISTIC; 2 goods) =
MOB(SYMMETRIC SEPARATE; 2 goods) = 3/2.

A.2. Multiple of Separate revenue (MOS)

Our MOB measure takes as basic revenue the bundling revenue, obtained by menu-size-1. We 
now consider using the separate revenue instead:

MOS(N ;X) := sup
x∈X

N -REV(X)

SREV(X)

(MOS stands for “Multiple of Separate revenue”).
We start with a simple comparison between the bundling and separate revenues.

Proposition A.2. For every k ≥ 2,

MOS(BUNDLED; k goods) ≤ k.

Proof. Let BREV(X) be achieved for a bundle price of p. If the separate auction offers each 
good at a price of p/k then whenever 

∑
i xi ≥ p we have xi ≥ p/k for some i, and so one of the 

k goods will be acquired in the separate auction; thus BREV(X) ≤ k · SREV(X). �
This is tight for k = 2.

Example A.3. Let X1 be distributed uniformly on [0, 1], and consider the two-good random 
valuation X = (X1, 1 −X1). The bundling revenue is 1, since the bundle is always worth 1 to the 
buyer. Each good is distributed uniformly on [0, 1] and so the optimal revenue from each good 
is, by (4), 1/4 (obtained at price 1/2).

For larger values of k, we can get a stronger result.

Proposition A.4. There exists a constant c < ∞ such that for every k ≥ 2 and every k-good 
random valuation X,

47 Alternatively, use the bound of Proposition 7.3 (see Remark 7.4(b)).
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MOS(BUNDLED; k goods) ≤ c logk.

Proof. Let BREV(X) be achieved for bundle price p. We first assume without loss of gen-
erality that the support of X contains only points x with 

∑
i xi = p or 

∑
i xi = 0. (This is 

without loss of generality, since the random variable X′ defined by X′ := 0 when 
∑

i Xi < p

and X := (p/ 
∑

i Xi)X satisfies BREV(X′) = BREV(X), while SREV(X′) ≤ SREV(X) because 
X′ ≤ X everywhere.48) We now make another assumption without loss of generality, namely, 
that 

∑
i Xi = p (and so BREV(X) = p). (This is without loss of generality because if we re-

place X with its conditional on 
∑

i xi = p, then all revenues are just rescaled by a factor of 
1/P

[∑
i Xi = p

]
.)

At this point there are two different ways to proceed; we present both, as they may lead to 
different extensions.

Proof 1: Let ei := E[Xi] be the expected value of good i; then (using our assumptions) ∑
i ei = p. The claim is that good i can be sold in a separate auction yielding a revenue of 

at least (ei − p/(2k))/(2(1 + log2 k)). The result is then implied by summing over all i.
Indeed, split the range of values of Xi into (2 + log2 k) subranges: a “low” subrange for which 

Xi ≤ p/(2k), and, for each j = 0, . . . , log2 k, a subrange where p/(2j+1) < Xi ≤ p/(2j ) (notice 
that since Xi ≤ p we have covered the whole support of Xi). The low subrange contributes at 
most p/(2k) to the expectation of Xi , and thus one of the other 1 + log2 k subranges contributes at 
least ((ei −p/(2k))/(1 + log2 k) to this expectation. The lower bound of this subrange, p/(2j+1), 
is smaller by a factor of at most 2 than any value in the subrange, and so setting it as the price for 
good i yields a revenue that is at least half of the contribution of this subrange to the expectation, 
i.e., at least ((ei − p/(2k))/(2(1 + log2 k)).

Proof 2: Let ri := REV(Xi) = supt>0 t · (1 − Fi(t)) (where Fi denotes the cumulative distri-
bution function of Xi); then 1 − Fi(t) ≤ ri/t and so (recall that Xi ≤ p because 

∑
i Xi = p)

E [Xi] =
∞∫

0

(1 − Fi(t))dt ≤
ri∫

0

1dt +
p∫

ri

ri

t
dt = ri(1 + lnp − ln ri).

Averaging over i and using the concavity in r of the function r(1 + lnp − ln r) yields

p

k
= 1

k

k∑
i=1

E [Xi] ≤ s

k

(
1 + lnp − ln

s

k

)
,

where s := ∑
i ri . Thus p/s ≤ 1 + ln(p/s) + ln k, from which it follows that49 BREV(X)/

SREV(X) = p/s < 4 lnk. �
Corollary A.5. There exists a constant c < ∞ such that for every k ≥ 2,

MOS(DETERMINISTIC; k goods) ≤ c2k logk.

For the special case of k = 2 goods, we have a somewhat tighter bound.

48 See footnote 41 above.
49 The function x − lnx − 1 − lnk is increasing in x, and is positive at x = 4 ln k (because k ≥ 2 implies k3/ lnk > 4e).
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Proposition A.6. Let k = 2. Then

MOS(DETERMINISTIC; 2 goods) ≤ 3.

Proof. A deterministic mechanism has at most three menu entries: either selling just one of the 
goods, or selling the bundle. The portion of the revenue that comes from those types that buy 
only good i cannot exceed REV(Xi), and the portion that comes from those that buy the bundle 
cannot exceed BREV(X); in total, DREV(X) ≤ SREV(X) + BREV(X). The proof is completed 
by Proposition A.2. �

We now study MOS; the analysis is analogous to the one carried out with respect to the 
bundling revenue in Sections 5–7, but we now use the maximum norm ||x||∞ = maxi |xi | instead 
of the 1-norm.

We have

Theorem A.7. Let μ = (q, s) be a k-good mechanism. Then

1

k

∞∫
0

1

w(t)
dt ≤ MOS(μ) ≤

∞∫
0

1

w(t)
dt,

where for every t > 0 we define

w(t) := inf{||x||∞ : x ∈Rk+ and s(x) ≥ t}.

Unlike Theorem 5.1, here we do not get a sharp formula for MOS, but only an expression that 
is within a factor of k from it (see Remark A.8(b) below).

Proof. Let γ := ∫ ∞
0 1/w(t) dt .

First, for every t > 0 we have

P [s(X) ≥ t] ≤ P [||X||∞ ≥ w(t)] = P [∪i{Xi ≥ w(t)}] ≤
∑

i

P [Xi ≥ w(t)]

≤
∑

i

REV(Xi)

w(t)
= SREV(X)

w(t)
.

Integrating over t yields R(μ, X) ≤ γ · SREV(X), proving that MOS(μ) ≤ γ .
Second, we show that for every γ ′ < γ there exists a k-good random valuation X such that 

0 < SREV(X) < ∞ and R(μ; X)/SREV(X) > γ ′/k. Let 0 = t0 < t1 < ... < tN < tN+1 = ∞
with 0 = w(t0) < w(t1) < w(t2) < ... < w(tN) < w(tN+1) = ∞ be such that

γ ′′ :=
N∑

n=1

tn − tn−1

w(tn)
> γ ′.

Let ε > 0 be small enough so that γ ′′ > (1 + ε)γ ′ and w(tn+1) > (1 + ε)w(tn) for all 1 ≤ n ≤ N , 
and choose for each 1 ≤ n ≤ N a point xn ∈ Rk+ such that s(xn) ≥ tn and w(tn) ≤ ||xn||∞ <

(1 + ε)w(tn); then

N∑ tn − tn−1

||xn||1 >

N∑ tn − tn−1

w(tn)(1 + ε)
= γ ′′

1 + ε
> γ ′. (22)
n=1 n=1
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Let X be a random variable with support {x1, ..., xN } and distribution P [X = xn] =
ξ1/ξn − ξ1/ξn+1 for every 1 ≤ n ≤ N , where ξn := ||xn||∞ and we put ξN+1 := ∞; thus 
P [X ∈ {xn, ..., xN }] = ξ1/ξn for every n ≥ 1.

Consider good i. For every u ∈ (ξn−1, ξn] (with 1 ≤ n ≤ N ) we have

u · P [Xi ≥ u] ≤ u · P [X ∈ {xn, ..., xN }] = u
ξ1

ξn

≤ ξ1

(because X = xj for some j ≤ n − 1 implies Xi ≤ ||xj ||∞ ≤ ||xn−1||∞ = ξn−1 < u). Therefore 
REV(Xi) = supu>0 u ·P [Xi ≥ u] ≤ ξ1 for every good i, and so SREV(X) ≤ kξ1 (which is finite; 
also SREV(X) > 0 because X does not vanish).

Finally, the revenue of R(μ; X) that μ gets from X is

R(μ;X) ≥
N∑

n=1

s(xn)P [X = xn] ≥
N∑

n=1

tn

(
ξ1

ξn

− ξ1

ξn+1

)

= ξ1

N∑
n=1

tn − tn−1

ξn

> ξ1γ
′ = γ ′

k
· kξ1 ≥ γ ′

k
· SREV(X)

(recall (22)). �
Remark A.8. (a) As in Theorem 5.1 (see Remark 5.3 following its proof), the random valuation 
X in the second part of the proof may be taken so that its values are in [0, 1]k and its support is 
at most the size of the menu of μ.

(b) The gap of k in Theorem A.7 is correct. Take two goods. For the mechanism μ1 that sells 
the bundle at the price of 1 we have w(1) = 1/2 (attained at x = (1/2, 1/2)) and so γ (μ1) = 2; 
the two-good random valuation X of Example A.3 has R(μ1; X)/SREV(X) = 1/(1/2) = γ (μ1). 
For the mechanism μ2 that sells each good separately for the price of 1/2 we have w(1/2) = 1/2
and w(1) = 1, and so50 γ (μ2) = 2, but R(μ2; X)/SREV(X) ≤ 1 = γ (μ2)/k for any X (with 
equality for, say, the constant valuation (1/2, 1/2)).

(c) Recalling the definition of v(t) in Theorem 5.1, we have 1/v(t) ≤ 1/w(t) ≤ k/v(t) for 
every t (because ||x||1 ≥ ||x||∞ ≥ ||x||1/k), and so for every mechanism μ we have MOB(μ) ≤∫

1/w(t) dt ≤ k · MOB(μ).
(d) We can take as a benchmark the maximum of the two simple mechanisms, bundled and 

separate (cf. Babaioff et al., 2014). Thus, putting

MOBS(μ) := sup
X

R(μ;X)

max{BREV(X), SREV(X)} ,
we have

1

k

∞∫
0

1

w(t)
dt ≤ MOBS(μ) ≤

∞∫
0

1

v(t)
dt. (23)

Indeed, in the second part of the proof of Theorem A.7 above, for every u ∈ (kξn−1, kξn],

u · P
[

k∑
i=1

Xi ≥ u

]
≤ u · P [X ∈ {xn, ..., xN }] = u

ξ1

ξn

≤ kξ1

50 It is easy to see that γ (μ) = k for every k-good mechanism μ that sells the goods separately at positive prices.
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(because X = xj for some j ≤ n − 1 implies 
∑

i Xi ≤ k||xj ||∞ ≤ k||xn−1||∞ = kξn−1 < u), and 
so BREV(X) = supu>0 u · P [Xi ≥ u] ≤ kξ1 as well, which yields the first inequality in (23). 
For the second inequality we use MOBS(μ) ≤ MOB(μ) ≤ ∫

1/v (which, by (c) above, yields a 
better inequality than MOBS(μ) ≤ MOS(μ) ≤ ∫

1/w).

The analogous result to the construction of Section 7 is

Proposition A.9. Let (gn)
N
n=0 be a finite or countably infinite sequence in [0, 1]k starting with 

g0 = (0, ..., 0), and let (yn)
N
n=1 be a sequence of vectors in Rk+ such that

gapn := min
0≤j<n

(gn − gj ) · yn > 0

for all n ≥ 1. Then for every ε > 0 there exist a sequence (tn)Nn=1 of positive real numbers, 
a k-good mechanism μ with menu {(gn, tn)}Nn=1, and a k-good random valuation X with 0 <
BREV(X) < ∞, such that

MOS(X) ≥ MOBS(X) > (1 − ε)
1

k

N∑
n=1

gapn

||yn||∞ .

The proof is omitted, as it is identical to that of Proposition 7.1, except that it uses throughout 
the ∞-norm instead of the 1-norm (and the construction of the appropriate random valuation is 
as in Theorem A.7 and Remark A.8(d) above instead of Theorem 5.1).

As a consequence, for deterministic mechanisms we get (see Corollary A.5 for the opposite 
inequality):

Proposition A.10. For every k ≥ 2,

MOS(DETERMINISTIC; k goods) ≥ MOBS(DETERMINISTIC; k goods) ≥ 2k − 1

k
.

Proof. We proceed exactly as in the proof of Proposition 7.3, but now we have ||yn||∞ = 1, and 
so we get

1

k

2k−1∑
n=1

gapn

||yn||∞ = 1

k

k∑
�=1

(
k

�

)
= 2k − 1

k
. �

For k = 2 goods, the supremum of 
∫

1/w over all deterministic mechanisms equals 3 (attained 
in the limit as H → ∞ by prices p1 = 1, p2 = H , p12 = H 2; cf. the proof of Proposition A.1). 
Thus,

3

2
≤ MOS(DETERMINISTIC; 2 goods) ≤ 3

3

2
≤ MOBS(DETERMINISTIC; 2 goods) ≤ 5

2

(cf. Proposition A.1, which shows that MOB is exactly 5/2).
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A.3. The unit-demand model

In this section we briefly compare our model to the unit-demand model that is considered 
in many papers. There are k goods for sale and a single buyer. There are two basic differences 
between our model and the unit-demand one. First, in the unit-demand model, the buyers are 
modeled as having unit-demand valuations. Additionally, the unit-demand model requires the 
mechanism to offer only single goods, rather than bundles of goods as in our model. This second 
restriction turns out not to matter.

More formally, in the unit demand model there is a single buyer with a unit demand valu-
ation; i.e., the valuation of a set I ⊆ {1, . . . , k} of goods is maxi∈I xi (rather than 

∑
i∈I xi ). A 

deterministic mechanism in this setting would offer a price pi for each good i. For unit-demand 
buyers this is equivalent to a completely general deterministic mechanism as there is no need to 
offer prices for bundles since the buyer is not interested in them. Thus, for example, a mechanism 
asking price p1 for good 1, price p2 for good 2, and price p12 for both goods would be the same 
as asking price min{p1, p12} for good 1 and price min{p1, p12} for good 2.

A randomized mechanism in this model is allowed to offer a set of lotteries, each with its own 
price, where a lottery is a vector of probabilities α1, . . . , αk of getting the goods, with 

∑
i αi ≤ 1

(in contrast to our additive buyer, where qi ≤ 1 for each i). Again, for unit-demand buyers this is 
equivalent to general randomized mechanisms that are also allowed to offer lotteries for bundles 
of goods. For example, a menu entry offering the lottery “good 1 with probability 2/9; good 2
with probability 3/9; and both goods with probability 4/9” at a certain price can be replaced by 
the two menu entries “good 1 with probability 6/9; good 2 with probability 3/9” and “good 1
with probability 2/9; good 2 with probability 7/9,” each at the same price as in the original menu 
entry.

Let us use the notation REVUD(X) to denote the revenue obtainable from a unit-demand buyer 
with a k-good random valuation X. Similarly DREVUD(X) denotes the revenue achievable by 
deterministic mechanisms. We can compare these revenues to those achievable in our model from 
an additive buyer whose valuation for the k goods is given by the same X.

Proposition A.11. For every k ≥ 2 and every k-good random valuation X,

(i) REVUD(X) ≤ REV(X) ≤ k · REVUD(X), and
(ii) DREVUD(X) ≤ DREV(X) ≤ k2k · DREVUD(X).

Proof. The lower bounds in both cases are obtained by noting that any mechanism in the unit-
demand model offers only unit-demand menu entries, and for these both the unit-demand buyer 
and the additive buyer have the same preferences; thus offering the same menu in our setting 
gives exactly the same revenue as it does in the unit-demand setting.

For the upper bound for randomized mechanisms in (i), notice that if we replace each 
menu entry ((g1, ..., gk); t) in our model (where 0 ≤ gi ≤ 1 for each i) by the menu entry 
((g1/k, . . . , gk/k); t/k), then we do not change the preferences of the buyer between the dif-
ferent menu entries, and thus the revenue drops by a factor of exactly k. However, the new 
mechanism gives only unit-demand allocations (because g1/k + ... + gk/k ≤ 1), and for these 
the unit-demand buyer and the additive buyer behave the same.

For the upper bound for deterministic mechanisms in (ii), consider a deterministic mechanism 
in our model. Since it has at most 2k − 1 menu entries, a fraction of at least 2−k of the revenue 
must come from one of them, which allocates, say, a set I of goods. A mechanism that offers 
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to sell only this set I of goods at the same price t as the original mechanism did will thus 
make at least a 2−k fraction of the revenue of the original one. Now consider the unit-demand 
mechanism that offers each one of the goods in I at the price t/|I |; whenever the additive buyer 
in the additive mechanism buys I we are guaranteed that his value for at least one of the goods 
in I is at least t/|I |, in which case the unit-demand buyer will also acquire that good at t/|I | in 
the unit-demand mechanism. �

The interesting gap in the above proposition is the exponential one for deterministic mecha-
nisms in (ii), and indeed we can show that this is essentially tight.

Proposition A.12. For every k ≥ 2,

sup
X

DREV(X)

DREVUD(X)
≥ 2k − 1

k
.

Proof. For every X we have DREVUD(X) ≤ SREV(X) because the good prices used in any 
deterministic mechanism in the unit-demand model can only yield more revenue in our ad-
ditive model where the buyer may buy more than a single good. Use Proposition A.10 in 
Appendix A.2. �

Despite the exponential separation, for fixed k it is constant, and so a super-constant separa-
tion between randomized and deterministic mechanisms in our setting is equivalent to the same 
separation in the unit-demand setting.

A.4. Multiple buyers

This paper has concentrated on a single-buyer scenario that may also be interpreted to be a 
monopolistic price setting. One may naturally ask the same questions in more general settings 
involving multiple buyers. An immediate observation is that since our main results (Theorems A, 
C, and D) are separations, they apply directly also to multiple-buyer settings, simply by consider-
ing a single “significant” buyer together with multiple “negligible” (in the extreme, with 0-value 
for all goods) buyers. The issue of extending the results to multiple-buyer settings is thus rele-
vant to the upper bounds in the paper, both the significant ones (Propositions 9.2 and A.4) and 
the simple ones (Proposition 3.1). In this appendix we discuss why these can all be extended to 
the multiple-buyer scenario, at least if we are willing to incur a loss that is linear in the number 
of buyers. It is not completely clear where and how this loss may be avoided.

In the case of multiple buyers, we must first choose our notion of implementation: dominant 
strategy or Bayesian Nash. Also, we need to specify whether we assume independence between 
buyers’ valuations or allow them to be correlated. The discussion here will be coarse enough to 
apply to all these variants at the same time, with differences noted explicitly.

The next issue is how we should define the menu size in the case of multiple buyers. In the 
single-buyer case we defined it as the number of options from which the buyer may choose, 
which is the same as the number of allocations |{q(x) : x ∈ Rk+}\{(0, . . . , 0)}|. In the case of 
multiple buyers, these are two separate notions. For example, consider deterministic auctions of 
k goods among n buyers. There are a total of (n + 1)k different allocations (each good may go to 
any buyer or to no one), but each buyer considers only 2k possibilities (whether he gets each good 
or not). Moreover, the set of allocations cannot be interpreted as a menu from which the buyers 
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may choose, since each buyer can choose only from the possibilities offered to him (and these 
choices need not be feasible overall). It takes the combined actions of all the buyers together in 
order for the mechanism outcome to be determined. For this reason we prefer to define the menu 
size of a multiple-buyer mechanism by considering its menu size from the point of view of the 
different buyers. Since the menu that a buyer sees is a function of the bids of the others, we take 
the maximum. We thus define:

• An n-buyer mechanism has a menu size of at most m if for every buyer j = 1, . . . , n and ev-
ery (n −1)-tuple of (direct) bids of the other buyers51 x−j ∈ (Rk+)n−1, the number of nonzero 
choices that buyer j faces is at most m, i.e., |{qj (xj , x−j ) : xj ∈Rk+}\{(0, . . . , 0)}| ≤ m.

Note that if the original mechanism was incentive compatible in dominant strategies then the 
mechanism induced on player j by x−j is also incentive compatible. However, if the original 
mechanism was incentive compatible in the Bayesian Nash sense then this need not be the case, 
but we still have individual rationality52 of the induced mechanism, which suffices for what 
comes next.

Let us first analyze the simplest mechanisms, those with a single nontrivial menu entry for 
each buyer. Clearly, bundling mechanisms satisfy this property; however, not every mechanism 
that has a single nontrivial menu entry for each buyer can be converted to a bundling mechanism. 
We also need to be careful with the meaning of a bundling mechanism. Clearly, in the case of 
correlated buyer valuations, the optimal mechanism for selling even a single good (the whole 
bundle in our case) is not necessarily to sell it to the highest bidder, but rather to use the bids of 
the others to set the reserve price for each bidder. (Consider, for example, the case of two buyers 
with a common value, where the bid of one of them should be used as the asking price for the 
other.) Thus, in the rest of the discussion below we use BREV to denote the optimal revenue from 
mechanisms that sell the bundle only as a whole—not necessarily to the highest bidder or at a 
uniform reserve price. For the case of independent buyer values, the simpler version that sells it 
to the highest bidder at a fixed reserve price will suffice as well.

What can be easily observed is that by focusing solely on the buyer that pays the largest 
fraction of the revenue, we can reduce the problem to the single-buyer case and extract at least 
a 1/n fraction of revenue by selling the bundle to that single buyer. A full bundling mechanism 
can only do better, which gives us the analog to Proposition 3.1(i) for the case of n buyers53:

BREVn(X) ≤ REVn
[1](X) ≤ n · BREVn(X).

The loss of the factor of n can be seen to be justified by considering independent buyer values 
and the restricted definition of bundling mechanisms already in the case of one good (i.e., k = 1): 
take the distribution where each buyer j = 1, ..., n values the single good at Hj with probability 
H−j , and zero otherwise (independently over buyers), for a large enough but fixed H .

A similar argument that focuses on the single buyer that provides the largest fraction of rev-
enue yields the generalization of Proposition 3.1(iii) and (iv):

51 Superscripts are used here for the buyers.
52 This assumes that the original mechanism was ex-post individually rational, which one may verify is without loss of 
generality relative to ex-ante individual rationality.
53 The superscript n on the various revenues denotes the number of buyers.
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REVn[m](X) ≤ n · m · BREVn(X) and

DREVn(X) ≤ n · (2k − 1) · BREVn(X).

It turns out that the linear loss in n is required here too, again for independent buyer values and the 
restricted interpretation of bundling mechanisms: take the construction of Theorem D for each of 
the n different buyers and combine it with the argument above. That is, whenever the construction 
has a valuation x with probability p, let buyer j have valuation Hjx with probability H−jp

(independently over the buyers).
Versions of Propositions 9.2 and A.4 that incur a linear loss in n are also easily implied, but 

do not seem to be interesting. It would seem that in both cases sharper results, in which the 
additional loss due to the number of buyers is avoided, might be obtained.

A.5. Summary of notation

For convenience we collect here the notation for classes of mechanisms and the corresponding 
revenues.

Mechanisms Class Revenue Section

all mechanisms M REV 3.1
subclass of mechanisms N N -REV 3.1
selling the goods separately SEPARATE SREV 3.1
selling the goods as one bundle BUNDLED BREV 3.1
deterministic mechanisms DETERMINISTIC DREV 3.1
bounded menu size MENU SIZE ≤ m REV[m] 3.2
bounded additive menu size ADDITIVE MENU SIZE ≤ m REV[m]∗ 8

The two basic comparison tools are (see Section 3.4):

• GFOR, the Guaranteed Fraction of Optimal Revenue, is the maximal fraction α such that, 
for any random valuation X in X, there are mechanisms in the class N that yield a revenue 
that is at least the fraction α of the optimal revenue, i.e.,

GFOR(N ;X) = inf
X∈X

N -REV(X)

REV(X)
.

• MOB, the Multiple of Basic revenue, is the minimal multiple β such that, for any random 
valuation X in X, all mechanisms in the class N yield a revenue that is at most the multiple 
β of the basic bundled revenue, i.e.,

MOB(N ;X) = sup
X∈X

N -REV(X)

BREV(X)
.

Thus, the inequalities

α · REV(X) ≤N -REV(X) ≤ β · REV[1](X) for all X in X

become tight for α = GFOR(N ; X) and β = MOB(N ; X).
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