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We introduce a new knowledge operator called ``knowing whether.'' Knowing
whether an event occurred means either knowing that it occurred or knowing that
it did not occur. We demonstrate the following difference between ``knowing
whether'' and ``knowing that.'' In a multiple agent model, a sequence of events
generated by successively applying ``knowing that'' operators, or their negations,
may be contradictory. But when ``knowing whether'' operators are used instead, the
sequence is never contradictory. Using this property of the ``knowing whether''
operator we construct a multiple agent model with a continuum of knowledge
states. This simplifies such a construction due to Aumann [1]. Journal of Economic
Literature Classification Number: D80. � 1996 Academic Press, Inc.

1. Introduction

How many different states of knowledge are there with regard to some
given fact, when several agents are involved? This question has some bearing
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on the problem of naming states of knowledge. If there are only finitely or
denumerably many states then they can have finite names, in a language
with a finite or countable alphabet. But if the cardinality of the set of these
states is that of the continuum, then it is impossible to name them all, in
much the same way that we cannot name each point in our physical space.
In such a case, the idea that agents know the ``epistemic model'' that
describes their knowledge should be interpreted very cautiously. If the
model is rich enough, then ``know'' in this context does not mean that
agents can talk (in ordinary language) about every state.

The answer to our question is that there is indeed a continuum of
different knowledge states, and therefore we cannot name them all. This
answer is by no means novel. Aumann [1], in a set of widely circulating
but unpublished lecture notes, constructed, in a rather non-trivial way,
a continuum of different states of knowledge in an interactive environment.
Here we present a very simple construction of such a continuum using an
epistemic operator which we call ``Knowing whether.'' The standard
knowledge operator, by contrast, is ``Knowing that.'' By saying ``Alice
knows whether the hatter is mad'' we mean that either she knows that the
hatter is mad or she knows that the hatter is not mad. Thus, while ``Alice
knows that the hatter is mad'' implies that the hatter is indeed mad, ``Alice
knows whether the hatter is mad'' is just about Alice's state of mind, with
no implication regarding the sanity of the hatter.

We are making no philosophical claim about the primacy of either
epistemic operator or the ``correct'' way to model knowledge. On the
contrary. Both operators can be used in the same model since each can be
expressed in terms of the other. Thus, ``Bob knows whether X '' is the same
as ``Bob knows that X or he knows that not X,'' while ``Bob knows that X ''
is exactly the same as ``X, and Bob knows whether X.'' The question of
which operator to use is one of convenience.

What this paper demonstrates is that in some cases ``Knowing whether''
is much more convenient to use than ``Knowing that.'' When one considers
sentences (or events, depending on the formal framework) in which
``Knowing that'' operators of several agents alternate, as in ``Bob knows
that Alice does not know that he knows . . .,'' one discovers that the logical
relationship between such sentences can be rather complicated. This
complexity is the reason why the construction of a continuum of states is
cumbersome when the operator ``Knowing that'' is used as a building
block. These complications disappear when ``whether'' is used instead of
``that.'' The logical relationship between sentences formed by alternating
``Knowing whether'' operators of different agents is extremely simple; they
are logically independent. This simplicity is at the base of the uncomplicated
construction we present here. The usefulness of the ``Knowing whether''
operator in a different context is demonstrated in Heifetz and Samet [3].
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The next section describes the formal framework of a state space with
partitions, which is the standard model in game theory and economics.
In Section 3 we show the difficulties one encounters when dealing with
alternating ``Knowing that'' operators. In Section 4 we introduce the
``Knowing whether'' operator and construct a continuum of knowledge
states.

2. Stating the Result Formally

We model interactive knowledge in a standard way, (see for example the
survey, Geanakoplos [2]) by means of an information structure (0, 61 ,
62), where 0 is a state space and 61 , 62 are partitions of 0 representing
the information that agents 1 and 2 have about the states. Subsets of 0 are
called events. The complementary event to E, 0"E, is denoted by cE (read
``not E ''). For | # 0 and i=1, 2 denote by 6i (|) the unique element of 6i

containing |. We define two knowledge operators K1 and K2 for agents 1
and 2, Ki : 20 � 20, i=1, 2, as follows. For each event E,

Ki E :=[| # 0 | 6i (|)�E].

Fix a nontrivial event X. In order to describe all events that express
interactive knowledge concerning X, we construct inductively a sequence
B0 , B1 , B2 . . . of finite Boolean algebra2 of events. B0 :=[3, X, cX, 0], is
the Boolean algebra generated by X. For n�1, Bn is the Boolean algebra
generated by Bn&1 _ [KiE | E # Bn&1 , i=1, 2]. Let B :=��

n=1 Bn . The
events in B are said to be ( finitely)3 generated by X. Such events
correspond to sentences constructed using the phrases ``X,'' ``not,'' ``or,''
``and,'' ``1 knows,'' and ``2 knows.'' A typical event generated by X is, for
example,

(K1(K2 X _ cK1cX )) & K2 K1X. (V)

With some abuse of language we call expressions like (V) events generated
by X, although strictly speaking such expressions describe events only for
a given information structure and event X.

Some facts about X and knowledge concerning X, which may be quite
complex, can be true in one state and false in another one. In such a case
we say that the two states are separated by X. Formally,
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3 Events generated by X for infinite ordinals are defined in Heifetz and Samet [3].
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Definition 2.1. Two states | and |$ are separated by X if there exists
an event E which is generated by X, such that | # E and |$ # cE.

One may wonder how many states can be in an information structure
(0, 61 , 62) such that an event X separates any two of them. We prove in
Section 4:

Theorem 2.2. There exists an information structure (0, 61 , 62) and an
event X�0, such that all the states in 0 are separated by X, and 0 has the
cardinality of the continuum.

Clearly the cardinality of such a set of states cannot be greater than 2+0

since there are only a denumerable number of events generated by X.
Theorem 2.2 shows that this upper bound is indeed attained.

3. Why Isn't it Straightforward?

At first glance, the existence of a continuum of states describing interactive
knowledge of X seems rather obvious. Consider the following construction.

Let (E1 , E2 , ...) be a list (finite or infinite) of events generated by X.
We say that the list is consistent if there is an information structure
(0, 61 , 62), an event X�0, and a state | # 0 such that all the events in
the list are true in | (that is, if the intersection of all the events in the list
is non-empty).

Consider now the two lists,

(X, K1X ), (X, cK1 X ).

Clearly, both are consistent, expressing the idea that the truth of X does
not imply knowledge of X or lack of it. We can extend each of the two lists
in two ways by applying knowledge of agent 2, or lack of it, to the last
event in the list. Thus we obtain four lists,

(X, K1X, K2 K1 X ), (X, K1 X, cK2K1 X ),

from the first one, and

(X, cK1X, K2 cK1 X ), (X, cK1 X, cK2cK1X ),

from the second. It is easy to see that all four lists are consistent by con-
structing an appropriate information structure. Applying now K1 and cK1

to the last event in each list we have already eight lists which again are
consistent. We call a list of this type a K-list. We can go on, ad infinitum,
generating infinitely many infinite K-lists, and the cardinality of this set of
lists is 2+0.
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The-fault in this line of proof is that not every K-list is consistent, as the
following example shows. Consider the K-list (E1 , ..., E5) defined by

(X, K1X, cK2 K1 X, cK1cK2K1 X, K2cK1 cK2K1 X).

This list is inconsistent; that is, for each information structure and event X
the intersection of the events in the list is empty. Indeed, the intersection
of the third and fifth events is already empty. We demonstrate this by a
simple story followed by a rigorous proof.

Adam and Eve are waiting for a phone call from Godot. When finally
Godot calls, only Adam is at home and he receives the call, an event which
we denote by X. Obviously the event E2=K1 X holds in this case when we
designate Adam as agent 1. Adam leaves a message on Eve's answering
machine, telling her about the call he received. But Eve does not check her
answering machine and so clearly the event E3=cK2 K1X is true, where
Eve is agent 2. Adam does not know that Eve did not check her answering
machine and thus the event E4=cK1 cK2 K1X is also true.

Suppose now that Mr. Beckett, who is aware of all these events, brings
to Eve's attention that Adam does not know that she does not know that
he, Adam, received the call. In other words, Mr. Beckett tells her that E4

holds true and thus the event E5=K2 cK1 cK2 K1 X is now true. Is E3 still
correct? That is, knowing E4 , is Eve still ignorant of Adam receiving the
call? Certainly not. Had Adam not received the call, he would have known
for sure that Eve could not have possibly known that he received it,
contrary to E4 . Therefore, knowing E4 , Eve concludes that Adam received
the call; that is, she knows E2 and hence E3 is false. Thus E5 contradicts
E3 , or formally, E5 & E3=<.

Now we state and prove formally:

Proposition 3.1. In any information structure and for any event X,

(K2cK1 cK2K1X ) & (cK2K1X )=<.

Proof. To prove it we record three properties of the operators Ki that
follow readily from the definition. Let K stand for either K1 or K2 , then for
any events E and F: (a) KE�E, (b) KcKE=cKE, (c) if E�F then
KE�KF.

Now by (a), K2K1X�K1X, and therefore by taking complements
cK1X�cK2 K1X. Hence by (c), K1 cK1 X�K1 cK2K1X. Applying (b)
to the left-hand side of this inclusion we have cK1X�K1 cK2K1X.
Taking complements again yields cK1cK2 K1 X�K1 X. Finally by (c) we
conclude that K2cK1cK2K1X�K2K1 X which completes the proof. K
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Thus not all K-lists of length 5 are consistent. The list we examined is the
shortest inconsistent one. The next new4 consistent K-list is of length 9.
Does the set of all consistent K-lists have the cardinality of the continuum?
We do not know the answer, and it seems that to prove or disprove it is not
straightforward. Aumann [1], constructs another continuum of consistent
lists, but the construction is rather tricky and does not have the simplicity
of the, alas, faulty K-lists. In the next section we construct an even simpler
set of lists that does the job.

4. Knowing Whether

Define the operators J1 and J2 by

Ji E :=(KiE) _ (Ki cE), i=1, 2

for each event E. We read JiE as ``i knows whether E '' meaning that agent
i knows whether E is true or not, without saying whether E is true or not.
Obviously Ji E is the union of all elements of 6i which are entirely included
in either E or cE. It is easy to see that the operator Ki can be expressed
in terms of Ji , namely, Ki E=E & Ji E. Note that the operators Ji are
invariant under complementation; i.e., JiE=JicE for each event E.

Consider now lists of events of the same form as the K-lists of Section 3,
only with the operators Ji replacing the Ki operators. We call such a list
a J-list. A typical J-list is, for example,

(X, J1X, cJ2 J1X, cJ1 cJ2J1X, J2cJ1 cJ2J1X, ...).

But in light of the complementation invariance of the J operators we can
omit all complementation signs which do not precede an event. Thus the
previous list is the same as

(X, J1X, cJ2 J1X, cJ1 J2 J1 X, J2J1 J2J1 X, ...).

Thus each event in a J-list is generated by applying alternately J1 and J2

or J2 and J1 , starting from X, and then possibly taking the complement.
We show now that, as opposed to the K-lists, all 2+0 infinite J-lists are
consistent. This follows from the proof of Theorem 2.2 below.

Proof of Theorem 2.2. Let 0 be the set of all pairs of infinite sequences
of 0's and 1's with the same starting digit; that is,

0=[(a0a1 a2 ..., b0 b1b2 ...): ak , bk # [0, 1] \k�0, a0=b0].

Clearly, 0 has the cardinality of the continuum.
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Let the event X be the set of all states in which a0=b0=1. Define an
equivalence relation t1 on states by

(a0a1 a2 ..., b0b1b2 ...)t1 (a$0 a$1a$2 ..., b$0b$1 b$2 ...)

if and only if

for all k�1: ak=a$k and ak=1 O bk&1=b$k&1.

Let 61 be the partition of 0 into equivalence classes of t1 . Define
analogously t2 and 62 , interchanging the roles of the a's and the b's.

For all k�0 let the event [ak=1] be the set of states whose ak th coor-
dinate is 1. Define similarly the events [ak=0], [bk=1], and [bk=0].
Note that [ak=0]=c[ak=1] and [bk=0]=c[bk=1].

Lemma 4.1. For all k�0

[ak=1]=J1J2J1 } } }
k operators

X, [ak=0]=cJ1J2J1 } } }
k operators

X,

[bk=1]=J2J1J2 } } }
k operators

X, [bk=0]=cJ2J1J2 } } }
k operators

X.

With this lemma the theorem is proved. Any two different states in 0
differ by either the ak th or the bk th coordinate for some k�0. If k=0, the
two states are separated by the event X itself (here we use the equality
a0=b0 in the definition of a state). If k�1, then by the lemma the two
states are separated by some event generated by X. K

Lemma 4.1 also shows that every J-list is consistent. Indeed all the events
in such a list hold true in all states with coordinates given by the events in
the list according to the lemma. Proving the lemma is now straightforward.

Proof of Lemma 4.1. We prove by induction on k. For k=0 the
equality in the lemma holds by the definition of X. It suffices now to show
that for all k�1,

[ak=1]=J1[bk&1=1],

[bk=1]=J2[ak&1=1].

We prove the equality for [ak=1]. By the definition of J1 we have to show
that

[ak=1]=(K1[bk&1=1]) _ (K1[bk&1=0]).

Suppose that | # [ak=1] and denote by ; the bk&1th coordinate of |.
Then by the definition of t1 , any state which is t1 equivalent to | must
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have the same bk&1th coordinate. Thus 61(|)�[bk&1=;] and therefore
| # K1[bk&1=;].

Conversely, assume that | � [ak=1]. Let |$ be the state which is iden-
tical to | in all coordinates except bk&1. Then |$t1 |, which implies that
| � K1[bk&1=;] for both ;=0 and ;=1. K
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