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We consider economies with many agents and compare the competitive equilibria and
the value allocations of the resulting coalitional games. In particular, we provide a (smooth
and robust) example where the “value principle” does not hold for the HarsanyiNTU-value:
there is a unique competitive equilibrium, which however does notbelong tothe (nonempty)
set of Harsanyi value allocationdournal of Economic Literatur€lassification Numbers:
C71,D51. ©1996 Academic Press, Inc.

[. INTRODUCTION

Consider an economic situation of the standard general equilibrium variety
Such an economy determines the coalitional form of a cooperative game and ol
can then study the allocations that conform to some of the axiomatically base
solution concepts of cooperative game theory. In this paper we focualoa
concepts. The traditional justification of these is normative, but connections als
exist with multilateral bargaining theory.

Suppose for a moment that utility is transferable (this is called the TU case)
Then the central value solution is the Shapley (1953) value. Shapley and Sht
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bik (1969) and Aumann and Shapley (1974) established a remarkable rest
provided that the economy has many traders and is smooth, the Shapley va
allocation coincides with the unique competitive equilibritirim parallel with

the Core Equivalence Theorem, this is called the “Value Equivalence Theoren

How general is the Value Equivalence Theorem, and, in particular, does itst
vive in aworld without transferable utility (NTU)? Champsaur (1975), Aumanr
(1975), Mas-Colell (1977), and Hart (1977) (see Cheng, 1996, for a survey) €
tablished the following/alue Principle In a large economy all value allocations
are competitive, and moreover, if the economy is sufficiently regular, then tt
two sets of allocations coincide. All these papers use an adaptation of the Sh:
ley TU-value to the non-transferable utility case that was proposed by Shapl
(1969) and is called the Shapley NTU-vafue.

The purpose of this paper is to take a second look at this result by presenti
an example that, at the very least, shows that the general validity of the Vall
Principle is under some question. In our (robust) example it cmedold.
Specifically, in the example there is a uniqgue Walrasian allocation, which doe
not however belong to the (non-empty) set of value allocations.

Since the results mentioned in the paragraph before last are of course corre
some explanation is required. The key to our approach isthat we adopt a differe
generalization of the Shapley TU-value to the NTU contextHbesanyi NTU-
valueintroduced by Harsanyi (1963). We do not claim that the Harsanyi value i
the “ultimate” value, but we do believe that it is a more sophisticated adaptatic
to the NTU-case than the Shapley NTU-value. In a way which is illustrated b
the current paper (for other ways see Roth, 1980; Shafer, 1980; and Hart, 198
the Shapley procedure reduces the construction of the NTU-value to the TU-ce
in too drastic a manner.

We do not think that our position on the Harsanyi vs. the Shapley NTU
values should be controversial. Shapley introduced his NTU-value explicitly &
a simplification of the Harsanyi value. It thenturned out tobe of interest inits ow
right, and moreoveramenable to analysisin economic models with many ager
In contrast, the construction ofthe Harsanyi value in large games is not a simj
task. Yet by pursuing the potential approach introduced in Hart and Mas-Cole
(1989), we have already carried out the necessary technical groundwork; <
our investigation of the egalitarian solutions in Hart and Mas-Colell (1995a an
1995b) to be referred to from now on as (HM,1) and (HM,II), respectively).
Given this, constructing the Harsanyi values becomes a relatively easy ta:

1 More precisely: If “many traders” is modeled by a continuum, then there is a unique equilibriun
(recall that we are in the TU-case), there is a unique value, and the two coincide. If one consid
instead appropriate sequences of finite economies, then the limit of the values is precisely the uni
competitive allocation.

2 Known in the literature also as the.‘transfer value.”
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Finally, we note here that Imai (1983) has also offered an analysis of Harsany
values of continuum games. We discuss his work in Section VII.

Sections II-1V are devoted to the definitional preliminaries and to aninformal
summary of the facts one needs to know from our earlier work. The example
of a large economy whose unique Harsanyi NTU-value differs from its unique
competitive allocation is presented in Section VI. Sections V and VIl clarify the
theoretical issues: they establish when and why the (near) equality of Harsan
values and competitive equilibria can be expected. Section VIII is devoted to al
informal discussion of some of the underlying economic considerations. Mos
of the technical details are relegated to three appendices.

[I. HARSANYI VALUES OF FINITE GAMES

In this section we will recall the definition of the Harsanyi (1963) value of a
finite game.

Let (N, V) be afinite NTU-game in coalitional fornHereN = {1, ..., n}is
afinite set of players and is a point-to-set map that associates ase$) c RN
with every coalitionS C N. Theinterpretation isthat the element¥/dfS) are the
payoff vectors thatare achievable by the coalit®le assume that the s&t$S)
are nonempty, closed, convex, and comprehensive. M$8) +RN'\S ¢ V(9),
i.e., the payoffs of players not i can take any value (this is just an inessential
conventior).

The Harsanyi value is constructed in two steps. In the first, a vector of utility
comparison weights € R, is taken as givefi.Thus, 5; may be interpreted
as the “social” utility equivalent of a unit of utility of player. Relative to
these weights one considers then the “egalitarian” (to be callexjalitarian”)
solution. This solution tries to capture the idea that the gains from cooperatiol
are split equally among the players (hence comparison weights are needed); <
Kalai and Samet (1985). We will present here a definition that fits particularly
well with later developments. Itis based on fietential approactdeveloped in
Hart and Mas-Colell (1989, Section 6).

Consider to begin with the case where all weights are equal. say1, 1,
..., 1). Thepotential function Pis the unique functiorP: 2N — R which
satisfiesP () = 0and

DP(S = (P(9 — P(S\i))ies € V(9 forall SC N,
wheredV (S) denotes the (Pareto efficient) boundary/¢fS), the coordinates of

3 Note thatherd/ (S)is a subsetadRN and nota subset &S. The two representations are equivalent
(the coordinates o\ Sare arbitrary), and the choice is justa matter of convenience.

4 We write R, for the strictly positive orthantdRN. The assumptions we make will ensure that,
for the Harsanyi value, one need not consider the case where some of the weights vanish.
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N\ Sbeing ignored. Thegalitarian solutiorof (N, V) is then the payoff vector
Eg(N) .= DP(N) € 0V (N). Tojustify the term “egalitarian” note that for any
Sc N andi, j € Swe have

Eg (S — Eg (S\)) = Egj(S) — Eg;(S\i);

that is, relative to the solution, what contributes toi is the same as what
contributes tgj (the contribution ofj to i being measured by the changd th
payoff due tojth presence). This “preservation of differences” principle could
actually be taken as the defining axiom of the egalitarian solution (see Myersc
1980, or Hart and Mas-Colell, 1989).

For a general, let V, be thex-rescaling oV, that isV, (S := AxV(S) =
{Lxa:ae V(S)}forall Sc N,where weusethe notation:a = (A1a4, Aray,
..., Anay) € RNforthe coordinatewise multiplication of vectors. Then we define
a € dV(N) to be thei-egalitarian solutionof (N, V) if it is egalitarian relative
to the unitsy; i.e., if its rescalingh x a is the egalitarian solution of the rescaled
game(N, V,). Equivalently, define th&-potential function P of (N, V) as the
potential function of the gameN, V, ): it is the unique functiorP,: 2V — R
which satisfies?, (4) = 0and

DP,(S = (P(S — P,(S\i)ics € 3V, (S) =1 %3V (S  forall Sc N.

The A-egalitarian solutionof (N, V) is then that payoff vectoa € aV (N)
such that.xa = DP,(N) (i.e.,a = DP,(N)/x, where the division is again
coordinatewise). We denote it I8, = Eg, (N).

The second step in the construction of the Harsanyi value consists in endog
nizing the determination of the comparison weightshis is done by demanding
thatA be such that the-egalitarian solutiorE g, be alsoi-utilitarian, i.e., that
it maximizes the sum of the-rescaled payoffs:

A-Eg o >A-a foralla e V(N).

If the boundary ofV (N) is smooth this can be expressed in local terms as th
requirement that reflect the marginal rates of transformation of utilities at the
Pareto efficient poinEg,. A Pareto efficient payoff vectan € daV(N) is a
Harsanyi valuef, when we compare utilities by means of some Pareto weight:
supportinga, it turns out that is egalitarian.

We summarize the definitioithe payoff vector & V (N) is a Harsanyi value
of the gaméN, V) if there exists a vectax e RL such that:

(i) Axa= DP,(N), whereP, is the A-potential of(N, V); and
(i) A-a=xr-aforalla € V(N).

Note that ther-egalitarian solutions are not invariant to independent rescalin
of utilities; Harsanyi values are.
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For weights chosen arbitrarily theutilitarian solutions and the-egalitarian
solutions will typically not coincide. To bring them into equality the weights
will have to be adjusted (informally speaking, the weights of players receiving
comparatively less at theutilitarian solution are to be increased, thus making
their utility more valuable when looking at total utility and less necessary when
trying to equalize social equivalents). Under our assumptions (see below), th
A-egalitarian solutions are individually rational (see, for example, Corollary V.2
in HM,II) and therefore belong to a compact subsetodf(N). A standard
fixed point argument then proves that the adjustment of weights can be dor
successfully and that therefore Harsanyi values exist.

In the transferable utility (TU) case (i.e., when there exists a real-valuec
function v: 2N — R such that, for allS, we havea € V(9 if and only if
Ziesai < v(s)) there is a unigue Harsanyi value: it is the Shapley (1953)
value of the TU-gaméN, v) (the corresponding is of course proportional to
(1, 1,...,1). Inthen-person pure bargaining case (i.e., whére aV(S) for
all S# N)there is again a unique Harsanyi value; it is the Nash (1950) solutior
for the bargaining problem with feasible $&tN) and disagreement point 0. The
Harsanyi value is thus an NTU solution that generalizes both of these classic:
concepts. There are other NTU values that do the same; in particular, see Shap
(1969) and Maschler and Owen (1992) (also Hart and Mas-Colell, 1996).

. HARSANYIVALUES OF CONTINUUM GAMES

Our basic model of a game with a continuum of players is as follows. There
aren types of players. The primitive data are a set-valued Mdmm R". to the
nonempty, closed, convex, and comprehensive subsgts e callV thegame
form (or,game functioh Everyx € R} (called a“profile”) stands for a vector of
the total masses of each of theypes. Evena € V (x) is a vector ofper-capita
utility payoffs that are feasible for the profike(assuming equal treatment inside
each typ&). A continuum finite-type nontransferable utility garsegiven by
specifying, in addition td/, the profilex of the grand coalition. Given the game
formV, itis useful tointroduce the notatidh(x) := {xxa: a € V(x)}; vectors
b € V (x) represent total (per-type) payoffs.

In analogy with the case where there is only a finite number of players we
again construct the Harsanyi value in two steps. In the first step avector of (type
symmetric) utility comparison weights € R'}  is taken as given and, relative

5 That is, the origin 0= RN is Pareto efficient for all coalitions that do not contain all players. Of
course, we may take any fixed vector instead of 0.

6 We may restrict ourselves totype-symmetric allocations and weights since we are interested in tt
relations to the competitive allocations, which are type-symmetric. Allowing for non-type-symmetric
values will not alter the results.
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to these weights, we consider theegalitarian solution. The task of defining
theA-egalitarian solutions for continuum games is not straightforward. We hav
provided the appropriate construction in our papers (HM,l and HM,II), togethe
with extensive justifications. We emphasize again that there is nothing arbitra
in our definition: it is the one dictated by the asymptotics of finite game approx
imations. In Appendix A we list the precise set of hypotheses imposed in ot
two papers (HM,l and HM,Il)These hypotheses are maintained throughout
the present paper.

As shown in (HM,I), the construction of-egalitarian solutions requires the
analysis of a first order partial differential equation. We summarize it now. Fc
everyx e R}, andp e R", define

v(X, p):=sugp-(rxa): ae V(X)},

and alsov, (X, p/X) := v, (X, p), wherep/X := (pi/X1, . .., Ppa/Xn) € R". Thus
v, (X, -) and v, (x, -) are the support functions of the convex s¥igx) =
AV (x)andV, (x) := A * V (x), respectively. Note also that(x, p) = v(X, A% p).
Consider for everx < R" | thevariational problem

1
P,(X) := inf/ v, (X(1), X(1)) dt,
0

where the infimum is taken over all absolutely continuous patbsnnecting
the origin 0 tox, i.e.,x: [0, 1] — R, U {0} withx(0) = 0 andx(1) = x.

Itturns out that the functiof,, is well defined and Lipschitz (but not necessar-
ily differentiable, evenif the original data are as smooth as desired). Furthermol
whenever the gradient vect®rP, (x) exists (which happens for almost every
we have

VP.(X) € a0V, (X).

We callthe functiorP, the (variational) A-potentialof V. In (HM,l) we also show
that for smooth hyperplane games (i.e., games whgre q) < oo for a single
normalizedy, which may vary withx), and in particular for TU-games, the vari-
ational potential will be differentiable. As a matter of interpretation this mean
thatthe lack of differentiability of | which is a robust and non-pathological
phenomenonis essentially linked to the NTU character of the gamé note
that the differentiability ofP, at x is intimately related to the multiplicity of the
optimal paths for the variational problem. In fagtP, (x) exists if and only if
the optimal path is unique (cf. Theorem E(c) in (HM,1)).

If the vectora € 9V (X) satisfies, xa = V P, (x) then it is clear thaa should
be thei-egalitarian solution for the gang, V). There is, however, a problem.
What if P,(x) is not differentiable at? For fixedx this can only occur on
a set of measure zero (sin€ is Lipschitz) and therefore in (HM,l), where
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A-egalitarian solutions

HGURE 1

A was fixed, we did not worry about this issue. But in this paper we need tc
endogeneously adjustand thus we cannot simply sidestep the problem. As we
shall see below, thosgs such thatP, is not differentiable at the givexn may

well be the crucial ones. What we will therefore do is to allow the egalitarian
solutionsto be set-valued at nondifferentiability points of the potential. We define
an egalitarian solution as a Pareto efficient point that Pareto dominates son
generalized gradient of the potential. Specifically, a payoff veatar oV (x)

is a A-egalitarian solutionfor the game(x, V) if a > a, for somea, such
thati xag € VCP,(x), whereVCP, (x) is the set of Clarke (1983) generalized
gradients ofP, atx (i.e., VP, (x) is the convex hull of the s¢lim VP, (x.,): P,

is differentiable atx,, andx,, — x}; see Fig. 1). Formally, the.-egalitarian
solution of the gameéx, V) is the set

Eg. (x, V) := (V*P.(X)/A +R) N aV(x).

When P, is differentiable atx, Eg, (X, V) reduces tov P, (x) (see Corollary
VI1.4.3 in (HM,1)).

We moreover say that is atight A-egalitarian solution if actuallyr«xa €
VEP, (x).As we can see in Fig. 1, F°P, (x) is not asingleton, thenit may well
contain nonefficient payoffs. The egalitarian solutions are always efficient.



HARSANY| VALUES OF LARGE ECONOMIES 81

a2

Harsanyi value
(non-tight)

VeP, (z)/A

V(z)

FIGURE 2

It is not difficult to see that for a TU-game the current construction (for equa
weights across players) gives us the diagonal formula of Aumann and Shapl
(1974) for the value of continuum TU-games. In fact, for arghe solution to
the variational problem is the diagonal patf) = tx. Thus the gradient of the
variational potential can be viewed as a natural extension of the diagonal formt
to the NTU situation (see Sections VII and VIII below, and also Section IV.2 ir
(HM,1) for further discussions on this topic). We recall here a key feature: in th
NTU case the optimal paths of the variational problem need not be diagonal.

The second step of the definition of the Harsanyivalue consistsin endogenizi
the determination ofthe weights. For this we proceed by imposingtditarian
requirement on the-egalitarian solution, in exactly the same manner as we di
for the case with a finite number of players. We say that the payoff vectc
a € dV(x) is aHarsanyi value of the gamex, V) if there isx € R7, such
that:

(i) a> ayfor somea, such thath xa; € V°P,; (x); and
(i) Y aixia =Y Aixa foralla’ € V(x).

If, in addition,A xa € V°P, (x) then we say thadis atight HarsanyivalueSee
Fig. 2 for a nontight Harsanyi value.
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The previous definition, and in particular its use of the generalized gradient
may appear arbitrary. In the next section we put on record that it is the right
definition, in the sense that it is given by the limits of the Harsanyi values of
finite games approximations.

Another consequence of the result of the next sectionis a proof of the existenc
of Harsanyi values in the continuum case. A direct fixed-point proof (that is, nof
going through finite approximations) could also be given.

IV. HARSANYI VALUES OF LARGE BUT FINITE GAMES:
CONVERGENCE

Here we will show that the definition of the Harsanyi values in the previous
section is the appropriate one, in the sense that it yields precisely the limits c
the Harsanyi values of finite games converging to the limit continuum game. Thq
definitions below follow (HM,II).

Given the continuum gamex, V), we obtain asequence of finite games
(N, Vo), forr =1,2, ..., by regarding each player as having mags More
specifically, suppose that forevaryeare given a finite set of playeks which
belong to some of the types. For a coalitiors ¢ N,, letm;(S) be the number
of players of typé in S and putm(S) := (My(S), My(S), ..., M, (§) € R].

We will say that the finite gamé\,, V,) constitutes the-approximationto the
continuum gamex, V) if:

(i) ther-normalized profilem(N, )/ of the grand coalition isX; and
(i) for each coalitionS C N, the set of feasible type-symmetric payoff
vectors, denoted by, (S), is V(M(S/r).

Let H, denote the set of (type-symmetric) Harsanyi values of the finite game
(N;, V,); it isa subset 0bV, (N,) = aV (X). We can now state the convergence
result.

THEOREMIV.1. Let (X, V) be a continuum game and Iel;, ;) be itsr-
approximation Then every limit point as > oo of the sets Hof Harsanyi
values of the finite game&#,, i) is a Harsanyi value of the gam@, V).

The theorem will be proved in Appendix B; it is an application of the results
and techniques developed in (HM,I) and (HM,I1).

Our assumptions imply that each finite gaih, V;) possesses at least one
Harsanyi value, and they all lie in the compacfs#¥ (x) N R".. Therefore we

7 We assume tha is an integer for each (for instanceg = (1, . .., 1)).

8 Thea-e galitarian solutions are individually rational—see, for example, Corollary V.2in (HM,I))—
and therefore belong @V (X) N RY}.. A standard fixed-point argument then proves the existence of
the Harsanyi values for the finite approximations. (Recall that both weights and payoffs are type
symmetric.)
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have as a corollary that Harsanyi values exist for the continuum game:

COROLLARY IV.2. The continuum game, V) has a Harsanyi value

V. ECONOMIC GAMES WITH A CONTINUUM OF PLAYERS

The remainder of the paper is devoted to the case where the game/form
is generated from an economy. The crucial property is homogeneity; name
replicating the players does not change the feasible per capita payoffs. Stand
models of pure exchange or production lead to such games.

We thus assume inaddition to the standing hypotheses (again, see Appehdix

A.10 (HOMOGENEITY). V (tx) =V (x) for all x € R, andt > 0.

Equivalently,\?(tx) =t \7(x) forall x andt. Note that our standing hypotheses
include superadditivity A.3, which, together with the homogeneity assumptio
A.10, yields concavity. That s, the supporting functi@ix, q) is concave and
homogeneous of degree Lxnfor each fixedg. We will refer to such &/ as a
market game forgrand to(X, V) as amarket game

Let us note an immediate consequence of homogeneity:

LEMMA V1. If the game formV is homogeneotien for eachi. € R | the
potential function B is homogeneous of degrée

Proof. Saythak =e=(1,...,1).Foreach > 0defineQ!(x) := P(tx)/t
for all x. ThenQ! is a Lipschitz potential (see (HM,I) for this concept). By the
maximality property of the potentid? (see Theorem B(c) in (HM,l)) we get
P(x) > Q'(x) = P(tx)/t for all x andt. Substitutex for tx and 1t for t to get
the reverse inequality. ThUB(x) = P (tx)/t. =

The economic solution concept we are interested in is that afahepetitive

or Walrasian equilibriumwhich is based on the idea of allocating goods through
prices that equalize demand and supply. We will not need, however, to introdu
an explicit economic model. The reason is that we can appeal to the well knov
Core Equivalence Theoremhich asserts that in such economic games with ¢
continuum of players the set of competitive equilibrium payoffs coincides witl
the core of the game (see Aumann, 1964). Thus, in investigating the relationst
between the Harsanyi values andthe competitive equilibria it suffices to compe
the set of Harsanyi values to the core. Recall that a payoff vectoiR" is in

the core of the continuum gameéx, V) if a € 3V (X) anda ¢ intV(x) for all

9 Note that A.10, like A.4—A.9, applies only to strictly positive profilesAlso, from now on we
assume A.3rather than the weaker A.3w.
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X < X; that is,a is feasible and efficient for the grand coalition, and it can be
improved upon by no subcoalition.

We are interested in the relations between the competitive equilibrium concey
and the Harsanyi value. We will present first a “positive” redight Harsanyi
values are competitive. Section VIwill then provide an example where the uniqu
Harsanyi value is nontight and it differs from the unique competitive allocation.
In Section VII we analyze more deeply the relations between the two concepts

THEOREMV.2. Let (X, V) be a continuum market gam€&hen evenytight
Harsanyi value belongs to the cofeence it is a competitive allocation of any
underlying economy

Proof The resultfollows fromour more detailed analysis of Section VII. We
will provide here a simple (and hopefully instructive) proof for the case where
the potential function is actually continuously differentiable everywhere.

Leta € 0V (X) be a Harsanyi value ofk, V), with associated weights €
R? .. Thusi xa = VP, (X), whereP, is thei-potential.

The game is homogeneous, and so by Lemma V.1 the potential functiol
P, is homogeneous of degree 1. Therefare VP, (x) = P, (x) for all x
(by Euler’s formula for homogeneous function). B4, € AV (x), which
givesx - VP, (X) < U(X, A), or P,(X) < 0(x, ) for all x. Moreover, atx we
have equality,P, (X) = 0(X, 1), sinceP,(X) = X- VP, (X) = X - (A *xa) =
A+ (Xxa) = 0(X, 1), the last equality holding becauaés A-utilitarian. There-
fore V.0 (X, 1) = VP, (X) = A % a (two differentiable functions that coincide at
X and such that one majorizes the other must have the same gradignt at

Thisyieldsv(x, A) < 0(X, 1) + V40 (X, 1) - (X — X) = (A*xa)- x forall x (we
used the concavity df(-, A), and then applied Euler’'s formula &}. Therefore
A xa is weakly separated fromx V(x), ora ¢ intV(x), for all x. Together
with a € dV (X) this implies that belongs to the core gk, V). =

VI. THE EXAMPLE

This section is devoted to the example of a market game whose (unique
Harsanyi value is not competitive.
There are two types (i.en, = 2). The coalitional function is
V(x):= {ae R 2@ + Xoae < g(X1, X2),
X181 + 2% < g(Xyg, Xp) and
3x1a1 + 3Xea2 < 1.859(X1, X2)},

whereg(x) = g(x1,X2) := XiX2/(X1 + X2). This can be rewritten in a more
transparent form. Define

B:={beR%* 2b, +b, <1,b; +2b,<1,3b; +3b, < 1.85},
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by

by

FIGURE 3

(see Fig. 3), theiV(x) = g(x) B for all x. Note thatg is concave and homoge-
neous of degree 1, and that the Bat convex. Moreover, the support function
(X, -) of V (x) satisfiesd(x, 1) = g(x)w(r) for all x andi, wherew is the
support function of the seB.

This game form can be generated from an economy of the usual gene
equilibrium type. Suppose that there are two inputs, with amounts deypted
andy,, and two outputs, with amounts denotgdandz,. Initially each agent
of type 1 owns just 1 unit of the first input (and nothing of the other goods)
and each agent of type 2 owns just 1 unit of the second input. Thus the to
initial endowment of a coalition with profilex;, %) is (X1, X5, 0, 0). The utility
functions of the two types depend only on outputs (and not on inputs). They a

min{z/2, z},
min{z, z2/2}.

ui(y, Y2, 21, 22) :
uz(y1, ¥z, 21, 22) :

Finally, there isa constant returns to scale production technology, freely availal
to every coalition: the output vectors that are producible from inpytsy) are

{(z1, )1 21 < 9(Y1.¥2). 2 < 9(Y1. ¥2), Z + 2 < 1.85Q(W1, Y2)}-
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It is straightforward to check that this economy does indeed generate th
game formV. If so desired it is possible to transform this economy into a pure
exchange market that generates the $8re The production interpretation,
however, seems simpler and more natural.

We takex = (51, 49) as the profile of the grand coalition. Arxysufficiently
close to the diagonal but not on it will do (whén = X, the symmetry of the
example makes all solutions identical).

Consider first the core. We claim that it consists of the single payoff vector

_ 1.85 ~
C.= TVg(x) ~ (0.148 0.160.

In Fig. 4 we placex « & in V (%). Itdoes indeed belong @V (x) and the corre-
sponding supporting Pareto weights are (1, 1). To verify thatt belongs tothe
core recallthat(x, 1) = g(x) w(x) for all x andi (with w the support function
of the setB), and soVx (X, 1) = Vg(X) w() = C, becauses (i) = 1.85/3.
Sinceu(-, A) is concave and homogeneous of degree 1 we have

DX, A) < DX L) + Vi d(X,A) - (X —X)=C- X

for all x, and therefor& ¢ intV (x) for all x. Thus€ indeed belongs to the core.
For uniqueness we refer to part (C2) of Theorem VII.1 belbw.

Next we show that is not a Harsanyi valuelf it were, then the utilitarian
condition in the definition of the Harsanyi value would imply that the vector of
weightsx must be (proportional to) = (1, 1). For these weights we can exhibit

10 This can be done by means of the so-called Rader’s trick. Let the endowments be the same
above and the utility of each consumer be defined over net trades of the four commaodities. Allov
also negative trades of the output commodities (this is an inessential feature; it can be fixed by givin
consumers positive endowments of output commodities). Make then the utility value of a net trade th
maximum utility that the consumer can reach by using the available technology (thus transformed int
a household technology). To verify that the game function is the same, note that what effectively goe
on in computingV (x) is that, say, type 1 consumers pass their inputs to type 2 consumers, who thet
produce by themselves and transfer output to the type 1 consumers.

11 An economic argument for uniqueness goes as follows. Consider the production economy de
scribed in the text as underlying the gameform. We argue thatit has a unique equilibrium. To this effec
note, first, that at any Walrasian equilibrium the input prices have to be collinear with the marginal
productivity vectorvg(x). Therefore the distribution of income across types has to be same at all
competitive equilibria. Butit is well known that if the technology is of constant returns to scale and
the consumers’ preferences are homothetic then no two different equilibria are compatible with th
same distribution of income. Hence the competitive equilibriumis unique, and therefore the core o
the game consists of a single payoff vector.
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A-egalitarian solution
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0.5 g(a?)\
FIGURE 4
the potential explicitly (we writd®(x) for P; (X)):
X1)? X
[ Xl—( ) In<1+—2), if X1> Xo,
X2 X1
P(x) = (a2 y
X2 — 2 In <1+ —l) s if X1 < Xo.
l X1 X2

The functionP is differentiable everywhere except on the diagonak x,.

To verify thatP is the potential function one needs to check that for any poin

not on the diagonal, i.e., for anywith x; # X%, one has:

@iy VP(x) € 9V (x); and
(i) P(x) = fol v(X(t), X(t)) dt for some pathx(-) ending aix;

(see implication (ii) of Proposition V.7.1 in (HM,1)). Property (i), which is all

it would take if P were everywhere differentiable, can be checked by direc
computation. Property (ii) is also not difficult to verify. We refer the reader to
Section VIII of (HM,I) where these steps are carefully carried out for essentiall

the same example (more on this below).
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The A-egalitarian solution ak is therefore
VP(X) ~ (0.108 0.199 # C.

Hencec, the unique core allocation, cannot be a Harsanyi value. Thus we con
clude that for this example no Harsanyi value (whose existence is guaranteed |
Corollary 1V.2) belongs to the core. In particular, by Theorem Idd limit point
of the set of Harsanyi values of the finite ganiis, ;) belongs to the core

This completes the example. It may be useful now to discuss the idea behir
it. The starting point is the potential functio®. We introduced this function
in Section VIII of (HM,I) as an example of a nondifferentiable potential (for
A = (1, 1)). The game function used there wdsx) = g(x) B, with

B'={beR% 20, +b, <1,b,+2b, <1}

(Note that the only difference is that the €ts replaced by the slightly larger
setB’.) WheneverP is differentiable atx we havex « VP(x) € aV'(x) but,
precisely because of the nondifferentiability ®flong the diagonat; = xo, it
follows thatx « V P(x) isbounded away from the corner®¥’ (x), thatis, from
the pointg(x) (1/3, 1/3). Hence we can “flatten” slightly the se¥(x) around
this central corner while having remain the potential. This is what the &t
above does.

Suppose for a moment that we starkat (50, 50). By symmetry the unique
core payoffvectoc = (c1, &) gives the same utility to the two types. Therefore
x * cis placed atthe center ofthe middle segmerit\éf x). Again by symmetry
thiscis also the Harsanyi value. But it has to be a nontight Harsanyi value sinc
the utilitarian weights aré. = (1, 1) and we know that ifV P(x) existed then
X * VP (x) could not belong to the middle segment. Letus now aitgightly to
anx with unequal weightsg = (51, 49) suffices. By continuity, for the unique
new core payoffs, the vector ¢ will remain in the middle segment 6 (X)
andtherefore the only compatible utilitarian weights continue tobe (1, 1).

But now X; # X, implies thatP is differentiable atk and soX * VP (X) does
not lie in the middle segment. Our conclusion is tBatannot be a Harsanyi
allocation.

Where are the Harsanyi valueslocated? Note from Fig. 4¢hat P (X) liesin
the part of the boundary &f (X) with supportvectok = (1, 2) and thattherefore
thea- utilitarian solutions give less to type 2 than thegalitarian solution (recalll
thatA = (1, 1)). In order to find a Harsanyi value this suggests increasing the
weight of type 2 (thus making the utility of type 2 more valuable when we look
at total social utility, and less necessary when we try to equalize social utility
values across types). Indeed, it can be checked that there is a unique Harsa
value (hence a unique limit of the Harsanyi values of the finite gaiesV,))
at the “corner” pointr X %(0.117,0.192), corresponding to some between



HARSANY| VALUES OF LARGE ECONOMIES 89

b

=/

0.5 g(

by

0.5 g(

81

)

FIGURE 5

(1,2) and (1, 1). At this A’ the potentialP,, is not differentiable ak (when

we change. from (1, 1) to A’ the potential function and its nondifferentiability
region also change) and, as we already know from Theorem V.2, it must be t
case that the Harsanyi value fails to be tight. See Fig. 5.

We conclude by observing that the example does not satisfy allourassumptic
A.1-A.10 (see Appendix A). In particular, the boundaries of the gétg have
both “flats” and “kinks.” However, asthe discussion above suggests, the examj
has been constructed to be robust. A close enough approximation making
boundaries both smooth and strictly convex will not matter: the core and tt
Harsanyi value still obtain at distinct points. For a specific such approximatiot
see Appendix C.

VIl. NTU VALUES AND THE CORE

In this section we analyze in more detail the connections between the co
and the Harsanyi value.

An important element of the characterizations we will obtain isdiagonal
path forx, namely the pati: [0, 1] — R defined byk(t) := txforallt. Given
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avectori € R, consider the variational problem that defines thgotential
P,.. We will say that thaliagonal path forx isA-minimalif P, (X) is attained at
this path (i.e., it solves the variational problem). We will say thatdiagonal
path for x is A-critical if the Euler—Lagrange first order necessary conditions
for the variational problem (cf. Theorem E(a) in (HM,I)) are satisfied along the
diagonal path; thus, if the diagonal pathiisminimal then it isA-critical (but
the converse need not hold, aswe shall see below; the variational problemis n
“convex”).

Given an efficient payoff vectosm € 9V (X), we will say that the vector of
normalized weight€ 1 € A(N) isassociated to & a is A-utilitarian. This may
be formally expressed as- (X xa) = X - (A*xa) = v(X, A) or equivalently,
asa = Vyu(X, A*xX). Note that our assumptions on the boundaryek)
imply that there is a one-to-one correspondence betweard A. We can now
characterize the core.

THEOREMVII.1. Suppose thatx, V) is a continuum market gameeta e
oV (x) and letA € A(N) be the associated vector of normalized weightsen
the following three statements are equivalent

(C1) a belongs to the core ak, V);
(C2) L xa= V, (X, A);
(C3) the diagonal path fok isA-critical.

Proof The Euler-Lagrange equation for the diagonal path is

d
Vxv (X, A% X) = E(va(t)'(, A% X))

for all t € (0, 1]. The right-hand side is the derivative with respect tof a
constant (by homogeneity), hence it equals 0. The left-hand side atequals
Vi0(X,A) — A# Vpu(X, A X) = V0 (X, 1) — A*a(we have used the identity
(X, Q) = v(X, q * X); compare with the proof of Proposition VII.3.1 in(HM,1)).
This establishes the equivalence of (C2) and (C3).

Next, assume (C2). Sindg-, 1) is concave and homogeneous of degree 1 we
havet(x, 1) < 0(X,A) + Vo (X, 1) - (X— X) = (Axa) - X forall x. Therefore
A x ais weakly separated from V(x), ora ¢ int V (x). Thusa belongs to the
core.

Conversely, assume (C1x belongs to the core. Recall the “Hamiltonian”
functionH introduced in Section VII.2 of (HM,)H(x, @") := min{v(X, p) —

p - &'}, where the minimum is over alp with || p| = |X||. We always have
VyH(x,a) = Vyu(x, p) where pis the solution of the minimum problem at
(x,a").Also, H(x,a") > 0ifandonlyifa’ € V(x),andH(x, &) = Oifandonly

if @ € 9V(X). Sincea € core (X, V) we haveH (Xx,a) = 0 andH(x,a) < 0

12 A(N) denotes tha — 1 dimensional unit simplex oN,i.e., A(N) = {x e RY: Y. 2 =1}
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for all x < X, hence for allk (use homogeneity; for everythere isp > 0 such
pX < X). ThereforeH (-, a) is maximal atk, which implies thatv, H (X, a) = 0.
Letp=A1xX.Thenuv(X, p)=a- p, and we have

Vid(X, &) = Vv (X, P) + A x Vou(X, p) = VyH(X, @) + 1 xa= Axa,
or(C2). =

The equivalence (C1¥ (C2) should come as no surprise. It is the “Value
Equivalence Theorem” for the Shapley NTU-value (see Shapley and Shubi
1969, and Aumann, 1975). The Shapley NTU-value is defined as follows: .
payoff vectora € aV(X) is a Shapley NTU-value of the ganie, V) if there
exists a vectok € R" , of weights such that « a equals the Aumann—Shapley
(1974) TU-value of the continuum TU-game with coalitional functian, 1)
and grand coalitiorx. We have

COROLLARY VII.2. Let(X, V) be a continuum market gamiehen the core
coincides with the set of ShaplBiyU-values

Proof. The Aumann-Shapley TU-value of the TU-ganig v(-, 1)) is
fol Vxd(tX, 1) dt (by the “diagonal formula™), which equalSxv (X, 1) since
0(-, A) is homogeneous of degree 1. Therefaiis a Shapley NTU-value if and
only if (C2) is satisfied. m

We may thus add to Theorem VII.2 another statement that is equivalent
(C1), (C2), and (C3), namely:

(C4) aisa Shapley NTU-value ¢k, V).
We come now to the Harsanyi value.

THEOREMVIL.3. Suppose thatx, V) is a continuum market gameet a €
aV (X) and leth € A(N) be the associated vector of nhormalized weightsen
the following three statements are equivalent

(H1) a is atightHarsanyi value ofx, V);
(H2) Pi(X) = 0(X, A);
(H3) the diagonal path fok isA-minimal

Proof. For the diagonal path we hawgx(t), A xX(t)) = v(tX,A*xX) =
v(X, Ax X) = 0(X, 1) for all t (we used homogeneity). This yields the equiva-
lence of (H2) and (H3).

Next, assume (H1)a is a tight Harsanyi value. The potential functidh
is homogeneous of degree 1. Therefore at ewewhere it is differentiable
we haveP, (X) = (P,(X +8X) — P,(x))/§ — x - VP,;(x) asé — 0". Thus
P, (x) = x- VP, (x) at all differentiability points ofP,, implying thatP, (x) =



92 HART AND MAS-COLELL

x - & for everyx and every (Clarke) generalized gradienite V°P,(x). In
particular, since.xa € V°P;(X) (here we use the tightness assumption), we
haveP, (X) = X - (A xa), which equalg)(X, A) sincea is A-utilitarian. This is
(H2).

For the converse, assume (H2). For everye havev (x(t), A« X)) =
v(tX, A xX) = v(X, A xX) = 0(X, A) for the diagonal path fox, implying that
P,(X) < 0(x, A). At X there is equality (this is (H2)), and 98 (x) — 0 (X, A)
is maximized atx = X. Hence 0 is a generalized gradient of this function at
x (cf. Proposition 2.3.2 of Clarke, 1983), & v(X, ) € V°P, (X). But (H2)
implies (C2) (since.-minimal (H3) impliesa-critical (C3); see Theorem E(a)
of (HM,I)). Thereforerxa = V,d(X, 1) € V°P,(X) anda is a tight Harsanyi
value. =

Note finally that from Theorems VII.1 and VII.2 we immediately obtain (since
(H3) implies (C3)) Theorem VI.2: Every tight Harsanyi value is in the core.

This is an appropriate time to compare our results with those of Imai (1983)
For continuum games similar to the ones considered in this paper, Imai define
a notion of “diagonaH-value” and proves its equivalence, in the homogeneous
case, to the core. In our terms, Imai's value corresponds to a payoff vectc
a € dV (X) with an associated vector of weightshaving the property that the
diagonal path fronx is A-critical. Thus, Imai’'s equivalence result is in the nature
of our Theorem VII.1. Itis therefore an implication of our example that the limit
of the finite games’ Harsanyi values need not be an Imai diagéralue. That
is, at the limitx, the diagonal path may not Becritical. There always exists a
A-critical path—the minimal path for thie-variational problem—but, as in our
example, this path may be not diagonal.

We emphasize that these differences are not a matter of taste indefinitions. Tl
only notion of Harsanyi value for the continuum case that precisely captures th
limits of the finite games approximations is the one we have given in this pape!
And, as we have seen, it need not coincide with the solution suggested by Ima

VIIl. DISCUSSION

The content of Section VII constitutes the beginning of an understanding o
the failure of the Value Equivalence Theorem for the Harsanyi value from the
standpoint of its formal, mathematical structure. Butfrom the economic point of
view there is still much to understand. We devote this section to afew imprecis
remarks.

The fact that theequivalence theorem holds for TU-games shows that nonequ
alence is intimately related to the lack of perfect substitutability among players
utilities. It can be presumed that the failure may be more likely the farther we
are from perfect substitutability.
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If we look at the example of Section VI from the economic standpoint we
detect at least two sources of nonsubstitutability:

(i) There is no perfect substitutability of inputs (or, to be more precise, ther
is no perfect substitutability of the input contributions of the two types). The
production function ofthe example can be writtergés) = (x; *+x, ). Itis
a CES withelasticity of substitution 1/2, thusless than 1. Suppose we wereto tr
Cobb-Douglas production functiog(x) = /X1 %. ThenP(x) = (1.85/3g(x)
is the potential (foi = (1, 1)) sincex s« VP(x) = (1.85/3g(x)(1/2, 1/2) €
g(x)aB for all x. Since the functior is differentiable we have that competitive
equilibria and Harsanyi values coincide. It may be conjectured that this wi
happen as long as the elasticity of substitution is larger than one. Of cour:
what matters is not the elasticity of substitution among inputs but among type
The latter depends on the form of the production function and also on ho
different the initial endowments of the types are (in the extreme case whe
they are collinear the two types are perfect substitutes as production input
Thus, in analogy to the terminology used by Ostroy and Zame (1994) in anoth
context, we could say thatthe example is characterized by alow level of “physic
substitution.”

(ii) Utility is not perfectly transferable across types. We already know tha
if it were then the Harsanyi value (=the Shapley TU-value) and the compet
tive solution would coincide. Thus, in line with the previous terminology, we
could say that the example is also characterized by a low level of “econom
substitution.”

We may try to highlight the role of substitution in a different way. Namely, by
analyzing what happens when the relative mass of the two types changes. S
pose that we begin at= (50, 50). Then, by symmetry, the competitive and the
Harsanyi solutions coincide andthey both give the same pay0#154, 0.154)
to the two types.

Let us now move tx = (51, 49), that is, type 2 becomes relatively scarce.
As we have seen, the core—hence the competitive payoff—move&s ~o
(0.148 0.160). Hence, as itis natural, individuals of type 2 gain from the rel-
ative scarcity of their input. But note that they gain a lot since, in spite of th
aggregate reduction of input from 50 to 49, the total utility of the type increase:
49 x 0.160 > 50 x 0.154. This sort of strong reward to scarcity is typical of
situations with underlying strong complementarity effects.

What is surprising, given its “fairness” motivation, is that the Harsanyi value
for X = (51, 49), which is~ (0.117,0.192, rewards scarcity even more pro-
nouncedly! (All these effects, incidentally, are preserved in the smoothed o
version of Appendix C.) From the technical point of view we may try to under-
stand what happens by focusing on the optimal pdththat realizesv P(X),
where P is the potential corresponding o = (1, 1), the utilitarian weights
at the competitive allocation. This path is represented in Fig. 6 where we al
indicate the level curves of the potential functiBn Thei-egalitarian solution
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level curves of P

diagonal path for z
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optimal path for =

FGURE 6
VP (X) is given by (see Theorem E(c) in (HM,)):

1
Xx VP(X) = / X(t) * V0 (X(1), X(t)/x(t)) dt.
0

Hence,VP(X) is an average of (properly computed) marginal productivities
of the two types along the path. Because the pathoisdiagonal it follows
that the marginal productivities change along the path and that therefore th
“intra-marginal” units leave their markin the egalitarian solution. In contrast, the
competitive solution depends only on the marginal productivities at the “margin”
X, thatis, onv, 9(X, 1) (recall Theorem VII.1 (C2)); equivalently, because of the
homogeneity of degree one, on the marginal productivities alondittymnal
path. We can see in Fig. 6 that along thgtimal path the relative scarcity of
type 2 is more pronounced than at the end point. Thus the average along tt
path—thek-egalitarian solution—magnifies the scarcity effect. At the Harsanyi
value the weights.” have adjusted in a countervailing direction, yet at the end
an “excess scarcity” effect is still left.

We believe that, at the very least, the example presented casts some unc
tainties on the value equivalence principle in the NTU context. But the mattet
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deserves further investigation both within the theory of the Harsanyi value ar
beyond it. It would be of interest, for example, to examine carefully the exter
of the validity of the equivalence principle for the consistent values of Maschle
and Owen (1992) (see also Hart and Mas-Colell, 1996); note that these valt
admit a simple bargaining interpretation.

APPENDIX A

This appendix states the basic assumptions on the games studied in this pa
The reader isreferred toour previous two papers, (HM,l and HM,II) for extensiv
discussions of them.

We first recall the notations, b, p, q, X, y denote vectors iiR".

EOREDT

e=(1,...,1) eR"

XY 1= (X¥i)izy..,n ANAX/Y = (Xi/¥i)iz1 .
V(X):={beR" b < xxafor somea € V(x)}
Vo(x) =V (x) N R}

v(X, p):=sugp-a: ae Vx)}

B(x, q) =suplq- b: be V(x)}

Do(X, q) := supq - b: b e Vo(x)}

I? ={(X,p eR}, xRL: v(X, p) < oo}

I?:: {(x, ) GR%X R": (X, q) < oo} A
DT :={(X,q € D: 9(X,q) =q - b forsomeb € Vo(x)}.

Now we state the basic assumptions. Note that the starred ongsAA21,
A.3%, and A.3w, which are only needed for the finite approximation setup,
concern allnonnegative profiles x R", whereas all the rest apply only to
strictly positiveprofilesx € R ..

A.l. Foreverx e Rl ,the seV (x)is closed, convex,and comprehensive.
Moreover,V (x) # @ andV (x) # R".

A.1*. Foreveryx € R",the setV(x) is closed, convex, and comprehensive.
Moreover,V (x) # @ andV(x) # R". If x, = 0 anda € V(x) thena € V(x)
whenever; =aj forall j #i.

A.2. There exists & > 0 such thabe = (0,0,...,0) € V(x) for all
xeRl,.

A.2*. There exists & > 0 such thabe = (0,0, ...,0) € V(x) for all
x € RY.
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A3. Vo(x) + Vo(X') C Vo(x + x') for all x, X € RT,.
A3*. Vo) +Vo(x) C Vo(x +x) for all x, X' € R].
A.3w. \70(x) +{x'x0€ C \70(x + X)) forall x, x" e RY,.
A3wr. Vo(x) + {X"*0e} C Vo(x +x') forall x,x e R".

A.4. There is a compact s€ C {q € R},: >, g = 1} such thatD C
R"  x ConeC, where Con&C := {fq: q € C, 8 > 0}.

A.5. There exists aconstalt < oo such thatlb|| < K||x| forallx € R,
and allb € Vo(x).

A.6. The support functionvyg(x,q) is uniformly Lipschitz on any
bounded (not necessarily compact) subseRdf x ConeC ; i.e., for every
B < oo thereisK < oo such thatig(X, ) — 0o(X', g)| < K|I(X, @) — (X, q")||
forall x,x” € R, with ||x||, [X|| < Bandallq,q’ € C.

A.7. Foreveryx e R" the support functior (x, -) is strictly subadditive,
i.e.,0(x,q) + 9(X,q) > v(x,q + q") whenevelg andq’ are not collinear.

A.8. The gradienW¥yio(X, q) existsfor all(x, g) eR], xConeC. Moreover,

(a) Itis uniformly bounded on any bounded (not necessarily compact) sub
set of its domairR", x ConeC; i.e., for every8 < oo there isK < oo such
that|| Vxio(x, )| < K forall x € R}, with ||x|| <8 and allg € C.

(b) It is uniformly Lipschitz on any bounded (not necessarily compact)
subset of its domaiR], x ConeC which is bounded away from the ori-
gin of R} ,; i.e., forevery 0< p < B < oo there isK < oo such that
[Vxdo(x, d) — Vxdo(X', )|l < K[I(x,q) — (X', )]l for all x, X" € R}, with
p <X, IX] <B,andallg,q" € C.

A.9. The domairD+ has nonempty interior and the functidétx, q) is C2
on D+. Moreover,Vyq0(X, q) has full possible rank — 1, and its minimal
nonzero eigenvalue is positive and bounded away from zero in a bounded (n
necessarily compact) subsetdf thatis bounded away from the originef,
i.e., on any set of the fornd* N ({x e Rl p < |x]| < B} x C) for some
O<p<pB<o.

A.10. V(tx) =V (x) forallx e R}, andt > 0.

All statements in the paper that refer to a continuum gam¥ ) assume that
V satisfie$® A.1-A.9 andx > 0. A continuum market game satisfies in addition

13 For the results of Section IV one may replace Al the weaker A.3v (as is done in (HM, 1)
and (HM, II)). When we consider market games, we make use of the full superadditivity assumptior
A3.
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A.10. In Section IV on the convergence of finite games, A.1-A.3 are (slightly
strengthened to A*LA.3".

APPENDIX B

This appendix containsthe proof of Theorem IV.1. Ituses arguments develop
in (HM,I and HM,II).

Proof of TheoreniV.1. Leta € 9V (X) be a Harsanyi value ofN;, V),
corresponding to weights € C. Assume without loss of generality that —
ac dV(X)andi, — A € C asr — oco.We will showthata isa Harsanyi value
of (X, V) corresponding to the weighits Since the utilitarian condition clearly
holds, we need to prove thatis 1-egalitarian.

Let Py, denote the:-potential of the finitegamé\;, V,). Part(c) of the Main
Theorem of (HM,Il) states that, for every fixe € C, we have
dist(DP: . (X), Eg,(X)) — 0 asr — oo, where “dist” denotes distance and
Eg,(X) := (V°P.(X) + R}) N3 V,.(X). Moreover, it can be easily checked that
this convergence is uniformim (since all evaluations in (HM,11) are determined
by the constants appearing in the various assumptions—and these are the s
for all V,,). Therefore distir « ar, Eg,, (X)) — 0 asr — oo, and it remains to
show thatLim Eg,, (X) = Eg; (X).

By the definition of Eg(X), it suffices to prove the convergence for the
extreme points oV°P, (X). Thus, letxy — X be such thatP, is differen-
tiable atx; anda, := VP, (x) — a. Then, by Proposition VII.3.1in (HM,1),
b (=X xa = fol X * Vi 0 (X, A % X /X;), wherex; is (the) optimal path fox,
andi, (i.e.,P;, (X)) = [ v(X, A, % %)). Letx be a uniform limitofx, . Asin the
proof of Proposition VII.3.2in (HM,]), we obtain thatis optimal fork and , that
% — X inmeasure, and finally thiit — [ X% Vxi(X, & #X/X) € X VEP, (%)
(see Proposition VII.4.4 in (HM,1)). Bub — Xx*a, which completes the
proof. m

APPENDIX C

In this appendix we will show how to modify the example of Section VI in
such a way that it will satisfy all the assumptions A.1-A.10, and still the unique
core allocation is not a Harsanyi value.

The first, and a bit delicate, task consists in adjusting the example to agame'
V¢ similar toV except that the two noncentral straight segments of the boundal
of the sets/ (x) are replaced by smooth, strictly convex pieces.

Torthis effect, letO< ¢ < 1. We define the game forit as followsV* (x) 1=
g° (x) B? for everyx, whereg® andB? ares-perturbations of andB, respectively.
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Forb; < by, let h°(b) := by + 2by, h'(b) = /(b))2 + y ()2 (the constant

y > 0 will be determined later) and themf(b) := (1 — £)h%(b) + eh'(b).
Forb; > b, make the symmetric construction relative to the diagdnakt b,,
namelyh® (b, by) = h®(b,, b;). We then definegf (x) := h*(xx VP(x)) =

h® (x; V1 P(X), X,V P(x)) for all x, whereP is the potential (foi. = (1, 1)) of

the example of Section VI. Note that¥; > x, thenx;V{P(X) < X,V,P(X),

and thus we are in the casg < b, in the definition ofh®. Moreover, the
symmetry of P andh® along the corresponding diagonals implies the same for
g°, i.e., g% (X1, X2) = g (%, X;) for all x. Note thatg” = g and thatg® andh®

are homogeneous of degree 1. The constastchosen such that;g*(1, 1) =
V,g'(1, 1). Since the same equality holds fg; itwill be satisfied also by all the

g°. Therefore the two “pieces” af are “glued” in a continuously differentiable
way along the diagonal. Furthermore, the second derivatives also match the
(use the Euler formula fov,g* andV,g*—which are homogeneous of degree
O—at the point1, 1)). Thusg? is actually aC? function. Also, it can be checked
that the second derivatives gf are bounded as approaches1, 0) and (0, 1);
henceg® is concave for small enough (recall thatg® is concave). Finally,
put

B?:= {b e R?% Nh(by, by) = h®(b,, by) < 1,3b, +3b, < 1.85.

We can now check the following (compare with Section 6):

(1) The potential ov¢ (for A = (1, 1)) is the same functio®: for all x
we haveV P(x) € aV#(x) (Indeedg® was defined such thdf (x « VP(x)) =
g°(x)) andP(x) = [v(x,%) for some pathx(t) ending atx. Therefore the
egalitarian solutiorWP (X) is not on the boundary 06V (X) with supporti =
(1, 1), hence there is no Harsanyi value foe= (1, 1).

(2) The unique core allocation is proportionaMg® (X) (thus close to the
vectorc); it lies on the boundary with suppokt= (1, 1).

We still have to deal with the straight piece of the boundaryBéfwhere
3b; + 3b, = 1.85. But note that the points in this region (and in a neighborhood
of it) do not arise at all in the considerations of (1) above. As for (2), only
a neighborhood of the poidtwith supporting vectoi = (1, 1) matters. We
may therefore perturb the boundary Bf around this central segment so as to
make the boundary oB® smooth and strictly convex. This will make all the
assumptions A.1-A.10 hoH.

14 Actually, for A.2 we will need to shift the origin: we repladé’ (x) by Vé(x) + {6e} for some
fixed® > 0.
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